分析电流控制型开关电源方案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析电流控制型开关电源方案
随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一成本反转点。随着电力电子技术的发展和创新,使得开关电源技术在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广泛的发展空间。
电压控制型开关电源会对开关电流失控,不便于过流保护,并且响应慢、稳定性差。与之相比,电流控制型开关电源是一个电压、电流双闭环控制系统,能克服电流失控的缺点,并且性能可靠、电路简单。据此,我们用UC3842芯片设计了一个电流控制型开关电源。为了提高输出电压的精度,系统没有采用离线式结构,而采用直接反馈式结构。本系统在设计上充分考虑了电磁兼容性和安全性,可广泛应用于
工业、家电、视听和照明设备。
电流控制型开关电源的原理框图
电流型控制是针对电压型控制的缺点而发展起来的,在保留了电压控制型的输出电压反馈控制部分外,又增加了一个电流反馈环节,其原理框如图1所示。
图1 电流控制型开关电源的原理框图
电流控制型开关电源是一个电压、电流双闭环控制系统,内环为电流控制环,外环为电压控制环。当U O变化导致UF变化,或I变化导致US变化时,从而改变UO,达到输出电压稳定的目的。
电流型控制芯片UC3842
UC3842 采用固定工作频率脉冲宽度可控调制方式,共有8 个引脚,各脚功能如下:①脚是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性;②脚是反馈电压输入端,此脚电压与误差放大器同相端的2.5V 基准电压进行比较,产生误差电压,从而
控制脉冲宽度;③脚为电流检测输入端,当检测电压超过1V时缩小脉冲宽度使电源处于间歇工作状态;④脚为定时端,内部振荡器的工作频率由外接的阻容时间常数决定,f=1.8/(RT×CT);⑤脚为公共地端;⑥脚为推挽输出端,内部为图腾柱式,上升、下降时间仅为50ns 驱动能力为±1A ;⑦脚是直流电源供电端,具有欠、过压锁定功能,芯片功耗为15mW;⑧脚为5V 基准电压输出端,有50mA 的负载能力。
图2 UC3842内部电路
8端口双列直插塑料封装的UC3842各管端口功能简介。
①端口COMP是内部误差放大器的输出端。
②端口VFB是反馈电压输入端,与内部误差放大器同相输入端的+2.5V基准电压进行比较,产生误差电压,控制脉冲的宽度。
③端口ISENSE是电流传感端。在应用电路中,在MOSFET的源极串接一个小阻值的取样电阻,将脉冲变压器的电流转换成电压并送入③端口,控制脉冲的宽度。
④端口RT/CT是定时端。锯齿波振荡器的振荡频率f=1.8/(RT·CT),电流模式工作频率可达500kHz。
⑤端口GND是接地。
⑥端口OUTPUT是输出端,此端口为图腾柱式输出,驱动电流的峰值高达l.0A。
⑦端口VCC是电源。当供电电压低于16V时,UC3824不工作,此时耗电在1mA以下。芯片工作后,输入电压可在10~30V之间波动,工作电流约为15mA。
⑧端口VREF是基准电压输出,可输出精确的+5V基准电压,电流可达50mA。
UC3842构成电流控制型开关电源
1 电路组成
UC3842构成的电流控制型开关电源电路如图3所示。
图3 UC3842构成电流控制型开关电源
2 工作原理
220V交流电先通过滤波网络滤掉各种干扰。电阻R1主要用来消除断电瞬间残留的电压,热敏电阻RT1可以限制浪涌电流,压敏电阻VDR 保护电路免受雷电的冲击。当C17的正端电位升到≥R16时,⑦端口得工作电压,UC3842电路启动,⑥端口电位上升,Q1开始导通,同时⑧端口的5V电压通过内电路建立……C12滤波电容消除在开关时会产生尖峰脉冲,C11为消噪电容,R6、C13决定锯齿波振荡器的振荡频率,R9、C15用来确定误差放大器的增益和频响。C14起斜坡补偿作用,能提高采样电压的可靠性。正常工作后,线圈N2上的高频电压经过D2、R17、C18、D3为UC3842提供工作电压。
当开关管导通时,整流电压加在开关变压器初级绕组上的电能变成磁能储存在开关变压器中。开关管截止后,能量通过次级绕组释放到负载上。D7、D8是脉冲整流二极管,C7、R5吸收旁路开机瞬间出现的脉冲电流,L3、C8、C9、C10组成滤波电路。输出电压可由下式描述。
UO=UI(TON/KTOFF)
式中,UO为输出电压,UI为整流电压,K为变压器的变压比,TON 为Q1的导通时间,TOFF为Q2的截止时间。
由上式可知,输出电压和开关管的导通时间及输入电压成正比,与变压器的变压比及开关管的截止时间成反比。C16、R12、D5用来限制栅极电压和电流,进而改善Q1开关速度,有利于改善电磁兼容性。R13主要来防止Q1栅极悬空,D1、R4、C5和D6、R16、C20构成两级吸收回路,用于吸收尖峰电压,防止Q1损坏。
系统中的稳压电路有:
用三极管的管压降代替稳压二极管电路中的稳压电阻R。当UI或RL 变化引起输出电压UO变化时,UO的变化将反映到三极管的发射结电压UBE上,引起UCE的变化,从而调整UO,以保持输出电压的基本稳定。根据三极管所起的作用,称为调整管。由于调整管与负载是串联关系,所以图15-2-1称为串联型稳压电路。它主要由基准电压、比较放大、取样电路和调整元件组成。比较放大可以是单管放大电路、差动放大电路、集成运算放大器。调整元件可以是单个功率管,复合管或用几个功率管并联。取样电路取出输出电压UO的一部分和基准电压VREF比较。