新北师大班八年级上第二章 实数 单元检测卷(含答案) (17)

合集下载

第二章 实数数学八年级上册-单元测试卷-北师大版(含答案)

第二章 实数数学八年级上册-单元测试卷-北师大版(含答案)

第二章实数数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、以下各数中,、0.1010010001…(相邻两个1之间0的个数逐次加1),无理数的个数有()A.3B.4C.5D.62、4的平方根是()A. 16B.±2C.2D.-23、 =( )A.-4B.±4C.4D.24、下列各数是无理数的是()A.1B.﹣0.6C.﹣6D.π5、与最接近的整数是()A.9B.8C.7D.66、估算+÷的运算结果应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间7、下列各数中的无理数是()A. B.3.14 C. D.8、设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.89、求7的平方根,正确的表达式是()A. B. C. D.10、如图,数轴上点E,F,G,H中,与相对应的点是()A.点EB.点FC.点GD.点H11、下列运算正确的是()A. =﹣3B.a 2•a 4=a 6C.(2a 2)3=2a 6D.(a+2)2=a 2+412、下列各数为无理数的是A.2B.C.D.13、下列各数中,是无理数的是()A.0B.C.D.14、9的算术平方根是()A. 3B.-3C.±3D.15、下列实数中,无理数是()A.3.14B.2.12122C.D.二、填空题(共10题,共计30分)16、已知:,则________.17、若=﹣x,则x的取值范围是________.18、要使式子有意义,则a的取值范围为________.19、计算:÷=________.20、64的立方根是________,的平方根是________.21、计算:=________22、如图,作一个长方形,宽OC=1,长CB=2,以数轴原点为圆心,以OB为半径画圆弧交数轴于点A,则点A在数轴上表示的数为________.23、二次根式在实数范围内有意义,则x的取值范围为________ .24、平方等于4的数是________立方等于-8的数是________.25、计算:()2 =________三、解答题(共5题,共计25分)26、计算:.27、计算:•(﹣)÷3 .28、把下列各数填入相应集合内:,,4, 1.101001000…,,π,0,3%,,-|-3|,整数集合:{   …}分数集合:{ …} 无理数集合:{ …}正数集合:{ …}29、实数a,b,c在数轴上的位置知图所示,试化简.30、已知的算术平方根是3,的立方根是-2,求的平方根.参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、D5、B6、D7、A9、B10、A11、B12、C13、D14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、30、。

北师大版八年级上册数学第二章实数单元测试(含答案)

北师大版八年级上册数学第二章实数单元测试(含答案)

八年级上册数学第二章单元测试一、选择题:本大题共12小题,每小题3分,共36分.在每小题列出的四个选项中,只有一个选项是符合题目要求的.1.在实数227,-6,39,0,π,-25中,无理数的个数是( )A .1B .2C .3D .4 2.下列结论中,正确的有( )①8=4;②179=±34;③-32的平方根是-3;④(-5)2的算术平方根是-5;⑤±76是11336的平方根. A .1个 B .2个 C .3个 D .4个 3.若(a -4)2与a -b +3互为相反数,则a +b 的值为( )A .3B .4C .11D .54.如图,正方形OABC 的边OC 落在数轴上,OC =2,以O 为圆心,OB 长为半径作圆弧与数轴交于点D ,则点D 表示的数是( )A .2 2B .-2 2 C. 2 D .-2 5.若31-2x 与33y -2互为相反数,且y ≠0,则2x +1y 的值是( )A .13B .23 C .2 D .3 6.利用计算器计算出的各数的算术平方根如下: … 0.0625 0.625 6.25 62.5 625 6 250 62 500 … …0.250.79062.57.9062579.06250…根据以上规律,若 1.69=1.3,16.9≈4.11,则 1 690≈( ) A .13 B .130 C .41.1 D .4117.实数a ,b 在数轴上的对应点的位置如图所示,化简(a +1)2+|a -b |+2(1-b)2-|a+b|的结果是()A.2a-b+1 B.a-2b+1 C.-a+2b-1 D.2a+b-18.把(2-x)1x-2的根号外的(2-x)适当变形后移入根号内,得()A.2-x B.x-2 C.-2-x D.-x-2 9.若45+a=b5(b为整数),则a的值可以是()A.15B.27 C.24 D.2010.如图①是第七届国际数学教育大会(ICME-7)的会徽图案,它是由一串有公共顶点O的直角三角形(如图②)演化而成的.如果OA1=A1A2=A2A3=…=A7A8=1,那么OA8的长为()A.10 B.4 C.3 D.22(第10题) (第11题) (第12题) 11.如图,已知△ABC为等腰直角三角形,∠ABC=90°,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为1 , l2,l3之间的距离为3,则AC的长是()A.4 B.4 2 C.5 D.5 212.将1,2,3三个数按如图所示的方式排列,若规定(a,b)表示第a排第b列的数,则(8,2)与(100,100)表示的两个数的积是()A.1 B. 2 C. 3 D.6二、填空题:本大题共6小题,每小题4分,共24分.13.若式子12x-1在实数范围内有意义,则x的取值范围是____________.14.已知y=x-4+4-x-5,则(x+y)2 023=________.15.定义新运算“△”:a △b =ab +1,则2△(3△5)=__________. 16.一个正数m 的两个平方根分别为1-3a 和a +5,则m 的立方根是__________. 17.=____________.18.“分母有理化”是根式运算的一种化简方法,如:2+3 2-3=(2+3)( 2+3)(2+3) (2-3)=7+43.除此之外,还可以用先平方再开方的方法化简一些有特点的无理数,如要化简4+7-4-7,可以先设x =4+7-4-7,再两边平方,得x 2=(4+7-4-7)2=4+7+4-7-2(4+7)( 4-7)=2,又因为,4+7>4-7,所以x >0,所以x =2,故4+7-4-7=2.根据以上方法,化简 6 -36 +3+8+43-8-43的结果是__________.三、解答题(一):本大题共2小题,每小题8分,共16分. 19.计算:(1)⎝ ⎛⎭⎪⎫-12-1+|3-3|-(π-1)0-27(2)20+55-13×12-(3+2)(2-3).20.已知a,b,c满足a2-42a+8+b-5+|c-32|=0.(1)求a,b,c的值;(2)若a,b,c为三条线段的长,这三条线段能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.四、解答题(二):本大题共2小题,每小题10分,共20分.21.某农场有一块用铁栅栏围成的面积为700 m2的长方形空地,长方形空地的长与宽的比为7:4.(1)该长方形空地的长与宽分别为多少米?(2)农场打算把长方形空地沿边的方向改造出两块不相连的正方形试验田,两块正方形试验田的边长比为4:3,面积之和为600 m2,并把原来长方形空地的铁栅栏全部用来围两块正方形试验田,请问能改造出这样的两块不相连的正方形试验田吗?如果能,原来的铁栅栏够用吗?22.阅读材料:因为2<6<3,所以6的整数部分为2,小数部分为6-2. 解决下列问题:(1)填空:73的小数部分是 ____________;(2)已知a 是19-4的整数部分,b 是19-4的小数部分,求代数式(a +1)3+(b +4)2的值;(3)已知m 是2+3的整数部分,n 是2+3的小数部分,求m -n 的相反数.五、解答题(三):本大题共2小题,每小题12分,共24分.23.规定新运算符号“☆”:a ☆b =ab +3b -3.例如:(-2)☆1=(-2)×1+31-3=1- 3. (1)求27☆3的值; (2)求(12+3)☆12的值;(3)若[-(2x -1)2]☆⎝ ⎛⎭⎪⎫-13=-3,求x 的值.24.观察下面的式子:S1=1+112+122,S2=1+122+132,S3=1+132+142,…,S n=1+1n2+1(n+1)2.(1)计算:S1=__________,S3=__________,猜想:S n=________(用含n的代数式表示);(2)计算:S=S1+S2+S3+…+S n.(用含n的代数式表示)答案一、1.C2.A3.C4.B5.D6.C7.C8.D 点拨:由1x-2≥0且x-2≠0,得x-2>0,故(2-x)1 x-2=-(x-2)1 x-2=-(x-2)2×1x-2=-x-2.9.D10.D点拨:因为OA1=A1A2=1,所以由勾股定理可得 OA 2=12+12=2,所以OA 3=(2)2+12=3, 所以OA 4=(3)2+12=4=2,…, 所以OA n =n , 所以OA 8=8=2 2. 11.D 12.C 二、13.x >1214.-1 点拨:因为y =x -4+4-x -5,所以x =4, y =-5,所以(x +y )2 023=(-1)2 023=-1. 15.3 16.2 17.10n 点拨:18.3 点拨:设x =8+43-8-43,两边平方,得x 2=(8+43-8-43)2=8+43+8-43-2(8+43)( 8-43)=8, 因为8+43>8-43, 所以x >0, 所以x =2 2. 故原式=6 -36 +3+22=( 6 -3)2( 6 +3)( 6 -3)+22=9-623+22=3-22+22=3.三、19.解:(1)原式=-2+3-3-1-33=-4 3.(2)原式=4+1-4-[22-(3)2]=2+1-2-(4-3)=1-1=0.20.解:(1)因为a2-42a+8+b-5+|c-32|=0,所以(a-22)2+b-5+|c-32|=0,所以a-22=0,b-5=0,c-32=0.所以a=22,b=5,c=3 2.(2)能.因为22+32=52>5,所以能构成三角形,三角形的周长=22+32+5=52+5.四、21.解:(1)设该长方形空地的长为7x m,则宽为4x m,依题意,得7x×4x=700,即x2=25,所以x=5(负值舍去).所以7x=35,4x=20.答:该长方形空地的长为35 m,宽为20 m.(2)设两块正方形试验田的边长分别为4y m,3y m,依题意,有(4y)2+(3y)2=600,即25y2=600,所以y=2 6 (负值舍去),所以4y=86,3y=6 6.因为86+66=146<35,86<20,所以能改造出这样的两块不相连的正方形试验田. 146×4=56 6 (m),(35+20)×2=110(m), 因为566>110,所以原来的铁栅栏不够用. 22.解:(1) 73-8(2)因为4<19<5, 所以0<19-4<1.因为a 是19-4的整数部分,b 是19-4的小数部分, 所以a =0,b =19-4, 所以(a +1)3+(b +4)2 =13+(19)2 =1+19 =20.(3)因为1<3<2,所以3<2+3<4.因为m 是2+3的整数部分,n 是2+3的小数部分, 所以m =3,n =2+3-3=3-1,所以m -n 的相反数为-(m -n )=n -m =3-4. 五、23.解:(1)27☆3=3 3×3+33-3=9. (2)(12+3)☆12 =(12+3)×12+312-3 =12+6+32-3 =18-32. (3)因为[-(2x -1)2]☆⎝ ⎛⎭⎪⎫-13=[-(2x -1)2]×⎝ ⎛⎭⎪⎫-13+3-13-3=-3,所以13(2x -1)2=9, 所以2x -1=±33,所以x=1+332或x=1-332.24.解:(1)32;1312;n(n+1)+1n(n+1)点拨:因为S1=1+112+122=94,所以S1=94=32.因为S2=1+122+132=4936,所以S2=7 6.因为S3=1+132+142=169144,所以S3=13 12,….所以S n=n(n+1)+1 n(n+1).(2)S=S1+S2+S3+…+S n=32+76+1312+…+n(n+1)+1n(n+1)=1+12+1+16+1+112+ (1)1n(n+1)=n+(1-12+12-13+13-14+…+1n-1n+1)=n+1-1 n+1=n2+2n n+1.。

北师大版八年级上学期数学第二章“实数”单元测试试题(含答案)

北师大版八年级上学期数学第二章“实数”单元测试试题(含答案)

八年级第二章实数单元测试试题(满分120分 时间120分钟)一、单选题。

(每小题3分,共30分) 1.下列是无理数的是( )A.0B.2022C.﹣π0D.√932.√81的平方根是( )A.9B.±9C.3D.±3 3.计算|√7-3|的结果是( )A.√7+3B.﹣√7-3C.3-√7D.√7-3 4.下列不是最简二次根式的是( )A.√56B.√7C.√21D.√395.下列说法中:①﹣164的立方根是﹣18;②0.081的算术平方根是0.9;③√9=±3;④算术平方根和立方根都等于本身的是0;⑤0.027的立方根为0.3,其中正确的有( )个。

A.0 B.1 C.2 D.3 6.估计8-√17的值在( )A.1和2之间B.2和3之间C.3和4之间D.4和5之间 7.下列计算正确的是( )A.√2+√3=√5B.√42+52=4+5=9C.√24÷√6=2D.4√3-√3=4 8.下列说法正确的是( )A.无限小数都是无理数B.任何数都有算术平方根和平方根C.实数分为正有理数和负有理数D.√10的小数部分是√10-39.若x ,y 都是实数,且满足y=√x -3×√3-x5-2,则x y 的值为( )A.6B.﹣6C.9D.1910.如果一个等腰三角形的两条边长分别为3√3和4√7,那么这个等腰三角形的周长为( )A.6√3+4√7B.6√3+8√7C.6√3+4√7或6√3+8√7D.3√3+8√7 二、填空题。

(每小题3分,共18分)11.﹣√(﹣23)2= .12.一个正数的两个平方根分别是3x+5和﹣x+1,则这个正数是 . 13.若√x +4在实数范围内有意义,则x 的取值范围是 .14.实数a 在数轴上对应的点位置如图所示,则化简|a -√4|-√(1-a )2= .15. 6-√5的整数部分是a ,6+√5的小数部分是b ,则(a+√5)(b -1)= . 16.我们规定:a △b=√b (√2a -√b ),例如:2△3=√3(√4-√3),则8△9= . 三、解答题。

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)班级:姓名:座号:成绩:一、选择题(30 分)1. 16 的平方根是( )A.4B. ±42.下列各式正确的是( )A.√16 =±4B.±√16 =43. 下列各数中,为无理数的是( )22A. π B 一.74. 下列各数中的无理数是( )1A .0B .25. 下列说法正确的是( )A.所有无限小数都是无理数C.有理数都是有限小数6. 实数9 的算术平方根为( )A.3 B.士37. 下列根式中不是最简二次根式的是(A. √10B. √88. 下列变形正确的是( )C.8D. ±8 C.√(−4)2 =-4 D.3√−27 =-3C. 0D. -2 C. D.B.所有无理数都是无限小数D.不是有限小数就不是有理数C.士 3 D.士3)C.√6D.√2A.√(−16)(−25)= √−16 × √−25B.√161 = √16 × √1 =4×14 4 2C.√(−1) 2 =1D.√252 − 242 =25-24=13 39. 若最简二次根式√2x + 1和√4x − 3能合并,则x 的值为( )A.0.5B.1C.2D.2.510.若将−√2,√6,−√3,√11 四个无理数表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A . −√2B . √6C . −√3D . √113 8 5二、填空题(28 分)11. 16 的算术平方根是12. 比较大小: 4 3 713. 若已知 a 一3 + (b 一5)2 = 0 ,那么以a ,b 为边长的直角三角形的第三边长为.14. 请写出一个大于1且小于2的无理数:.15.若= 1 + 7 ,则的整数部分是,小数部分是.16. 计算: ( 4) 2-20220 =.17.如图,,,,是数轴上的四个点,这四个点中最适合表示7 的点是 .三、解答题18.计算:(4×4=16分)(1) ﹣2 (2) 8 + 32 一 2(3) (3 + 5)(2 一 5 )(4) (5 一3)219.再计算:(4×4=16分)(1)(2)27 一一2 3 一 3 x(2 一π)0+(一1)20222 3 (4) .20.还是计算:(4×4=16分)1 1(1) 20×(-3 48)÷ 2 (2) 12( 75+33- 48)(3) 27 ×3-182+8(4)√ ( − 3)2-(-1)2023 -(π-1)0+(|(21-121. 阅读下列材料:(6 分)∵√4< √7< √9,即 2 < √7 < 3 ,∴√7请你观察上述的规律后试解下面的问题:的整数部分为2,小数部分为√7 − 2 .如果√5 的小数部分为ᵄ, √13 的小数部分为ᵄ,求ᵄ + ᵄ−√5 的值.(3)22. 阅读理解:1已知a = ,求 2a 2 一 8a +1的值.2 一 3常a 一 2 = 3 .常 一 =,即 a 2 一 4a + 4 = 3 .常a 2 一 4a = 一1 .常2a 2 一 8a +1 = 2(a 2 一 4a) +1 = 2 x (一1) +1 = 一1 .请根据以上解答过程,解决如下问题:(8 分) 1 = .2 +11 3+2 3 (2 (1)计算:(2)计算:(a 2)2 3 1100 + 2 3 ;99 4 + 3 2 3 2 +1+…+ 2+ +11 ,1 +a = = = + 一一 3)(2 + 3)参考答案6 A11. 212. <13. 5 或 714. 2 ( 3 答案不唯一)15. 3 , 7 216. 317. P18. (1)1 (2) 5 2 (3)1 5 (4)28 10 319. (1)2 3 (2) 1 (3)1+ 2 2 (4)10 + 6 220. (1) 2 10 (2)12 (3)4 (4)521. 13 522. (1) 2 1(2) 910B3A 2D4C 7B5B8C9C1B。

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)班级: 姓名: 座号: 成绩: 一、选择题(30分)1. 16的平方根是( )A .4B .±4C .8D .±8 2.下列各式正确的是( )A.√16=±4B.±√16=4C.√(−4)2=-4D.√−273=-3 3. 下列各数中,为无理数的是( ) A . π B .227C . 0D . -24. 下列各数中的无理数是( )A .0B .12 C 5 D 385. 下列说法正确的是( )A.所有无限小数都是无理数B.所有无理数都是无限小数C.有理数都是有限小数D.不是有限小数就不是有理数 6. 实数9的算术平方根为( ) A .3 B .3±C .3±D .3±7. 下列根式中不是最简二次根式的是 ( )A . √10B . √8C . √6D . √2 8. 下列变形正确的是( )A.√(−16)(−25)=√−16×√−25B.√1614=√16×√14=4×12C.√(−13)2=13 D.√252−242=25-24=19. 若最简二次根式√2x +1和√4x −3能合并,则x 的值为( )A.0.5B.1C.2D.2.510.若将 −√2,√6,−√3,√11 四个无理数表示在数轴上,其中能被如图所示的墨迹覆盖的数是( ) A . −√2B . √6C . −√3D . √11二、填空题(28分)11. √16的算术平方根是 12. 比较大小:4√3 7 13. 若已知0)5(32=-+-b a ,那么以a ,b为边长的直角三角形的第三边长为 .14. 请写出一个大于1且小于2的无理数: .15.若 x =1+√7,则 x 的整数部分是 ,小数部分是 . 16. 计算:√(−4)2-20220= .17.如图,M ,N ,P ,Q 是数轴上的四个点,这四个点中最适合表示 √7 的点是 .三、解答题18.计算:(4×4=16分) (1) ﹣2 (2)(3) )52)(53(-+ (4) 2)35(-19.再计算:(4×4=16分) (1)(2)202201233227)()(-+-⨯---π2328-+(3)(4).20.还是计算:(4×4=16分) (1) 20×(-1348)÷223 (2) 12(75+313-48)(3)27×3-18+82 (4)√(−3)2-(-1)2023-(π-1)0+121-⎪⎭⎫⎝⎛21. 阅读下列材料:(6分)∵√4<√7<√9,即 2<√7<3, ∴√7 的整数部分为 2,小数部分为 (√7−2). 请你观察上述的规律后试解下面的问题:如果 √5 的小数部分为 a ,√13 的小数部分为 b ,求 a +b −√5 的值.22. 阅读理解: 已知23a -2281a a -+的值.1232323(23)(23)a +===+--+23a ∴-=.2(2)3a ∴-=,即2443a a -+=.241a a ∴-=-.222812(4)12(1)11a a a a ∴-+=-+=⨯-+=-.请根据以上解答过程,解决如下问题:(8分) (1)计算:21=+ .(2)计算:21324310099+++++参考答案1 2 3 4 5 6 7 8 9 10 B DACBABCCB11. 2 12. < 13. 5或714. 2(3答案不唯一) 15. 3, 27-16. 3 17. P18. (1)1 (2) 25 (3)51- (4)31028- 19. (1)32 (2) 1 (3)221+ (4)2610+ 20. (1)102- (2)12 (3)4 (4)5 21. 513- 22. (1)12- (2) 9。

北师版八年级数学上册 第二章 实数 综合测试卷 (含答案)

北师版八年级数学上册    第二章 实数  综合测试卷 (含答案)

北师版八年级数学上册 第2章实数 综合测试卷(时间90分钟,总分120分)一.选择题(共10小题,3*10=30) 1.8的立方根是( ) A .±2 B .±12C .2D .-22.下列四个数中,是负数的是( ) A .|-2| B .(-2)2 C .- 2 D.(-2)23.下列二次根式中,是最简二次根式的是( ) A .25a B .a 2+b 2 C .a2D .0.5 4.如图,下列各数中,数轴上点A 表示的可能是( )A .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根5.已知a -3+|b -4|=0,则ab 的平方根是( )A .32 B .±32C .±34D .346.实数a ,b 在数轴上的位置如图所示,且|a|>|b|,则化简a 2-|a +b|的结果为( )A .2a +bB .-2a +bC .bD .2a -b7.实数a ,b 在数轴上对应的点的位置如图所示,且|a|>|b|,则化简a 2-|a +b|的结果为( )A .bB .-2a +bC .2a +bD .2a -b8.下列说法:①5是25的算术平方根;②56是2536的一个平方根;③(-4)2的平方根是-4;④立方根和算术平方根都等于自身的数是0和1.其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个9.若m <0,n >0,则把代数式m n 中的m 移进根号内的结果是( ) A .m 2n B .-m 2nC . |m 2nD . |-m 2n10.规定用符号[m]表示一个实数m 的整数部分,例如[23]=0, [3.14]=3,按此规定[10+1]的值为( ) A .3 B .4 C .5 D .6二.填空题(共8小题,3*8=24) 11.16的算术平方根是________. 12.若81x 2=49,则x =________.13.将实数3,π,0,-5由小到大用“<”连接起来:____________________. 14.计算:8-18=_________.15.已知x 1=3+2,x 2=3-2,则x 12+x 22=________. 16.已知一个正数的平方根是3x -2和5x +6,则这个数是_________.17.设一个三角形的一边长为a ,这条边上的高为63,其面积与一个边长为32的正方形的面积相等,则a =________.18.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式.即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为S =14⎣⎢⎡⎦⎥⎤a 2b 2-⎝⎛⎭⎫a 2+b 2-c 222.现已知△ABC 的三边长分别为2,3,4,则△ABC 的面积为________.三.解答题(共9小题,66分)19. (6分) 求下列各式中x的值.(1)(x+2)3+1=0;(2)9(3x-2)2=64.20. (6分) 计算:(1)(-3)2+3-8+|1-2|;(2)(6-215)×3-61 2.(3)48÷3-215×30+(22+3)2.21. (6分) 已知a,b互为倒数,c,d互为相反数,求-3ab+c+d+1的值.22. (6分) 如图,在四边形ABCD中,AB=AD,∠BAD=90°.若AB=22,CD=43,BC =8,求四边形ABCD的面积.23. (6分) 一个正方体的表面积是2 400 cm2.(1)求这个正方体的体积;(2)若该正方体的表面积变为原来的一半,则体积变为原来的多少?24. (8分) ) 20.如图,每个小正方形的边长为1.(1)求四边形ABCD的面积和周长;(2)∠BCD是直角吗?请说明理由.25. (8分) 高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=h5(不考虑风速的影响).(1)从50m高空抛物到落地所需时间t1是________s,从100m高空抛物到落地所需时间t2是________s;(2)t2是t1的多少倍?(3)经过1.5s,高空抛物下落的高度是多少?26. (10分) 甲同学用如下图所示的方法作出了C点,表示数13,在△OAB中,∠OAB=90°,OA=2,AB=3,且点O,A,C在同一数轴上,OB=OC.(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如下所给数轴上描出表示-29的点F.27. (10分) 先阅读下列解答过程,然后作答:形如m±2n的化简,只要我们找到两个正整数a,b(a>b),使a+b=m,ab=n,即(a)2+(b)2=m,a·b=n,那么便有m±2n=(a±b)2=a±b.例如:化简7±4 3.27. 解:首先把7±43化为7±212,这里m=7,n=12.由于4+3=7,4×3=12,即(4)2+(3)2=7,4·3=12,所以7±43=7±212=(4±3)2=2±3.用上述例题的方法化简:(1)13-242;(2)7-40;(3)2- 3.参考答案1-5CCBCB 6-10CACDB 11. 4 12.±7913.-5<0<3<π 14. - 2 15.10 16.49417.2 3 18.315419.解:(1)因为(x +2)3+1=0, 所以(x +2)3=-1,x +2=-1, 解得x =-3.(2)因为9(3x -2)2=64,所以3(3x -2)=±8, 解得x 1=149,x 2=-29.20.解:(1)原式=3-2-1+2= 2.(2)原式=18-245-32=32-65-32=-6 5. (3)48÷3-215×30+()22+32=16-26+11+46=15+2 6. 21.解:由题意,得ab =1,c +d =0,则-3ab +c +d +1=-31+0+1=-1+0+1=0.22.解:∵AB =AD ,∠BAD =90°,AB =22,∴BD =AB 2+AD 2=4.∵BD 2+CD 2=42+(43)2=64,BC 2=64,∴BD 2+CD 2=BC 2,∴△BCD 为直角三角形,且∠BDC =90°.∴S 四边形ABCD =S △ABD +S △BCD =12×22×22+12×43×4=4+8 3.23.解:(1)设这个正方体的棱长为a cm(a >0),由题意得6a 2=2 400, 所以a =20.则体积为203=8 000(cm 3).(2)若该正方体的表面积变为原来的一半,则有6a 2=1 200.所以a =10 2.所以体积为(102)3=2 0002(cm 3). 因为2 00028 000=24,所以体积变为原来的24.24. 解:(1)由勾股定理可得AB 2=12+72=50,则AB =50=5 2.∵BC 2=42+22=20,∴BC =2 5.∵CD 2=22+12=5,∴CD = 5.∵AD 2=32+42=25,∴AD =5,故四边形ABCD 的周长为52+25+5+5=52+35+5,面积为7×5-12×1×7-12×4×2-12×1×2-12×(1+5)×3=17.5.(2)∠BCD 是直角.理由如下:连接BD ,由(1)得BC 2=20,CD 2=5,而BD 2=32+42=25,∴DC 2+BC 2=BD 2,∴△BCD 是直角三角形,且∠BCD =90°. 25. 解:(1)10 2 5(2)∵t 2t 1=2510=2,∴t 2是t 1的2倍.(3)由题意得h 5=1.5,即h5=2.25,∴h =11.25m. 答:经过1.5s ,高空抛物下落的高度是11.25m.26. 解:(1)在Rt △OAB 中,由勾股定理得OB 2=OA 2+AB 2,所以OC =OB =OA 2+AB 2=22+32=13, 即点C 表示数13(2)画图略.在△ODE 中,∠EDO =90°,OD =5,DE =2,则OF =OE =29,即F 点为-2927.解:(1)13-242=(7-6)2=7- 6. (2)7-40=7-210=(5-2)2=5- 2. (3)2-3=8-434=8-432=8-2122=(6-2)22=6-22.。

最新北师大版八年级数学第二章《实数》单元测试题及答案

最新北师大版八年级数学第二章《实数》单元测试题及答案

北师大版八年级数学第二章《实数》单元测试题考试时间:120分钟;满分:120分一.选择题(每小题5分,共50分)1.(4分)下列实数为无理数的是( ) A .﹣5 B .27 C .0 D .π 2.(4分)若1+a +|b +2|=0,那么a ﹣b=( )A .1B .﹣1C .3D .03.(4分)四个实数﹣5,﹣3,0,π1中最小的是( )A .﹣5B .﹣3C .0D .π14.(4分)下列正确的有( )①若x 与3互为相反数,则x +3=0;②﹣21的倒数是2;③|﹣15|=﹣15;④负数没有立方根.A .①②③④B .①②④C .①④D .① 5.(4分)|1﹣2|=( )A .1﹣2B .2﹣1C .1+2D .﹣1﹣26.(4分)如图,数轴上的点A 表示的数是1,OB ⊥OA ,垂足为O ,且BO=1,以点A 为圆心,AB 为半径画弧交数轴于点C ,则C 点表示的数为( )A .﹣0.4B .﹣2C .1﹣2D .2﹣17.(4分)若式子()212-+m m 有意义,则实数m 的取值范围是( ) A .m >﹣2 B .m >﹣2且m ≠1 C .m ≥﹣2 D .m ≥﹣2且m ≠18.(4分)下列计算正确的是( )A .(﹣3a 2)•2a 3=﹣6a 6B .a 6÷a 2=a 3C .ab =a •bD .(﹣ab ﹣1)2=a 2b 2+2ab +19.(4分)下列各组二次根式中,不是同类二次根式的是( )A .5.0与81B .a b 与ba C .y x 2与2xy D .52a 与32a 10.(4分)化简y x y x +-(x ≠y ,且x 、y 都大于0),甲的解法;y x y x +-=()()()()y x y x y x y x -+--=x ﹣y ;乙的解法:y x y x +-=()()y x yx y x +-+=x﹣y ,下列判断正确的是( )A .甲的解法正确,乙的解法不正确B .甲的解法不正确,乙的解法正确C .甲、乙的解法都正确D .甲、乙的解法都不正确二.填空题(每小题5分,共20分)11.(5分)根据如图所示的计算程序,若输入的x 的值为4,则输出的y 的值为 .12.(5分)若实数x ,y 满足(2x ﹣3)2+|9+4y |=0,则xy 的立方根为 .13.(5分)对于两个非零实数x ,y ,定义一种新的运算:x*y=x a +yb .若1*(﹣1)=2,则(﹣2)*2的值是 .14.(5分)观察下列运算过程:请运用上面的运算方法计算:= .三.解答题(共5小题,满分50分)15.(6分)计算:(1)(1﹣2)0+|2﹣5|+(﹣1)2018﹣31×45;16.(10分)已知某个长方体的体积是1800cm 3,它的长、宽、高的比是5:4:3,请问该长方体的长、宽、高是有理数还是无理数?为什么?17.(10分)现有一组有规律排列的数:1、﹣1、2、﹣2、3、﹣3、1、﹣1、2、﹣2、3、﹣3…其中,1、﹣1、2、﹣2、3、﹣3这六个数按此规律重复出现,问:(1)第50个数是( )(2)把从第1个数开始的前2017个数相加,结果是多少?18.(10分)已知5a ﹣1的算术平方根是3,3a +b ﹣1的立方根为2(1)求a与b的值;(2)求2a+4b的平方根.19.(14分)我们来定义一种新运算:对于任意实数x、y,“※”为a※b=(a+1)(b+1)﹣1(1)计算(﹣3)※9(2)嘉琪研究运算“※”之后认为它满足交换律,你认为她的判断(正确、错误)(3)请你帮助嘉琪完成她对运算“※”是否满足结合律的证明.证明:由已知把原式化简得a※b=(a+1)(b+1)﹣1=ab+a+b∵(a※b)※c=(ab+a+b)※c=a※(b※c)=∴∴运算“※”满足结合律.参考答案一.选择题(共10小题,满分40分,每小题4分)1.故选:D .2.故选:A .3.故选:A .4故选:D .5故选:B .6.故选:C .7.故选:D .8.故选:D .9.故选:C .10.故选:C .二.填空题(共4小题,满分20分,每小题5分)11.故答案为:1.12.故答案为:﹣23.13.故答案为:﹣1,14.212019 . 三.解答题(共9小题,满分90分)15.【解答】解:(1)原式=1+5﹣2+1﹣5=0;16.【解答】解:长、宽、高不是无理数,理由如下:设长、宽、高分别为5x ,4x ,3x .由体积,得60x 3=1800,解得x=330,长、宽、高分别为5330,4330,3330是无理数.17【解答】解:(1)∵50÷6=8…2,∴第50个数是﹣1;(2)∵1+(﹣1)+2+(﹣2)+3+(﹣3)=0,2017÷6=336…1, ∴从第1个数开始的前2017个数相加,结果是1;∴从第18.【解答】解:(1)由题意,得5a ﹣1=32,3a +b ﹣1=23,解得a=2,b=3.(2)∵2a+4b=2×2+4×3=16,∴2a+4b的平方根16=±4.19.【解答】解:(1)(﹣3)※9=(﹣3+1)(9+1)﹣1=﹣21(2)a※b=(a+1)(b+1)﹣1b※a=(b+1)(a+1)﹣1,∴a※b=b※a,故满足交换律,故她判断正确;(3)由已知把原式化简得a※b=(a+1)(b+1)﹣1=ab+a+b∵(a※b)※c=(ab+a+b)※c=(ab+a+b+1)(c+1)﹣1=abc+ac+ab+bc+a+b+c∵a※(b※c)=a(bcv+b+c)+(bc+b+c)+a=abc+ac+ab+bc+a+b+c∴(a※b)※c=a※(b※c)∴运算“※”满足结合律故答案为:(2)正确;(3)abc+ac+ab+bc+a+b+c;abc+ac+ab+bc+a+b+c;(a※b)※c=a※(b※c)。

八年级数学上册《第二章实数》单元测试卷及答案-北师大版

八年级数学上册《第二章实数》单元测试卷及答案-北师大版

八年级数学上册《第二章实数》单元测试卷及答案-北师大版一、选择题1.下列各数中,为无理数的是( )A .327-B .0C 3D .3.524= ( )A .2B .±2C .-2D .43. -8的立方根是( )A .2-B .2C .2±D .不存在4.12 )A .点PB .点QC .点MD .点N5.2x -x 的值可以是( )A .0B .-1C .-2D .26.下列运算正确的是( )A 255=±B .0.40.2=C .()311--=-D .()22236m m n -=-7.7的值大概在( )A .-1到0之间B .0到1之间C .1到2之间D .2到3之间8.用我们数学课本上采用的科学计算器进行计算,其按键顺序如下,则计算结果为( )A .-5B .-1C .0D .59.如图,数轴上点A 表示的实数是( )A 51B 51C 31D 3110.已知12p <<()2212p p--=( )A .1B .3C .32p -D .12p -二、填空题11.25,-0.17与611和π4-中,无理数有 个. 1249的算术平方根为 ;比较大小:342 (用“>”,“<”或“=”连接)13.计算:()2021322-⎛⎫-÷-= ⎪⎝⎭.14.8x x 的最小正整数值为 .三、计算题15.计算:0|2|20234-+-四、解答题16.把下列各数的序号填在相应的大括号里:①12π,②16-,③0,9⑤5+,⑥227,8⑧ 3.24-,⑨3.1415926 整数:{ } 负分数:{ } 正有理数:{ } 无理数:{ }17.已知一个正数m 的两个平方根为37a -和3a +,求a 和m 的值.18.已知1a -的算术平方根是2,43a b +-的立方根是3,c 15ac b +的平方根.19.有一道练习题:对于式子2244a a a -+a 2.小明的解法如下:222442(2)2(2)222a a a a a a a a -+=-=--=+=.小明的解法对吗?如果不对,请改正.五、综合题20.已知m 是144的平方根,n 是125的立方根.(1)求m 、n 的值; (2)求()2m n +的平方根.21.阅读下面材料:.4692< 6<36的整数部分为26-2. 请解答下列问题;(122的整数部分是 ,小数部分是 ;(2)已知22的小数部分是m ,22的小数部分是n ,求m+n 的值.22.22的小数部分我们不可能全部写出来,但是由于12<<22的整数部分为12减去其整数部分1,差就是小数部分为21). 解答下列问题:(110的整数部分是 ,小数部分是 ;(26的小数部分为a 13b ,求a+b 6的值; (3)已知153+=x+y ,出其中x 是整数,且0<y <1,求x ﹣y 的相反数.23.定义:若两个二次根式a ,b 满足a b c ⋅=,且c 是有理数,则称a 与b 是关于c 的共轭二次根式.(1)若a 2是关于4的共轭二次根式,则a= (2)若33与63m +是关于12的共轭二次根式,求m 的值.参考答案与解析1.【答案】C【解析】【解答】解327-、0、3.53属于无理数.故答案为:C.【分析】无限不循环小数叫做无理数,对于开方开不尽的数,圆周率π都是无理数,据此判断. 2.【答案】A【解析】【解答】解:∵22=4∴4的算术平方根是242=.故答案为:A.【分析】一个正数x2等于a,则这个正数x就是a a x=(a、x都是正数).3.【答案】A【解析】【解答】解:∵(-2)3=-8∴-8的立方根为-2.故答案为:A.【分析】若a3=b,则a为b的立方根,据此解答.4.【答案】C【解析】【解答】解:91216<<91216<3124<<故答案为:C.【分析】被开方数的值越大,对应的算术平方根的值也越大,找到与被开方数相邻近的平方数是解题关键.5.【答案】D【解析】【解答】解:由题意得x-2≥0解得x≥2所以A、B、C三个选项都不符合题意,只有选项D符合题意.故答案为:D.【分析】根据二次根式的被开方数不能为负数列出不等式,求解得出x 的取值范围,从而即可一一判断得出答案.6.【答案】C【解析】【解答】A 255=,∴A 不符合题意;B 0.040.2=,∴B 不符合题意;C 、∵()311--=-,∴C 符合题意;D 、∵()2239m m -=,∴D 不符合题意; 故答案为: C.【分析】利用算术平方根、有理数的乘方和积的乘方的计算方法逐项判断即可。

北师大版八年级数学上册 第二章 实数 单元测试卷(有答案)

北师大版八年级数学上册 第二章 实数 单元测试卷(有答案)

北师大版八年级数学上册第二章实数单元测试卷一、选择题(本大题共10小题,共30分)1. 在实数√3,π,−37,3.5,√163,0,3.102100210002,√4中,无理数共有( )A. 3个B. 4个C. 5个D. 6个 2. 下列四种说法中:(1)负数没有立方根;(2)1的立方根与平方根都是1;(3)√83的平方根是±√2;(4)√8+183=2+12=212.共有多少个是错误的?( ) A. 1 B. 2 C. 3 D. 4 3. 在实数−2√5、0、−5、3中,最小的实数是( )A. −2√5B. 0C. −5D. 34. 估计√8+√18的值应在( )A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间5. 在二次根式√0.2a ,√28,√10x ,√a 2−b 2中,最简二次根式有( )A. 1 个B. 2 个C. 3 个D. 4 个6. 如图,数轴上A ,B 两点对应的实数分别是1和√3.若点A 与点C 到点B 的距离相等,则点C 所对应的实数为( )A. 2√3−1B. 1+√3C. 2+√3D. 2√3+1 7. 计算:(2019−π)0+(−2)2−(12)−1的值为( )A. 3B. −5C. 4.5D. 3.58. 已知a −b =14,ab =6,则a 2+b 2的值是( )A. 196B. 208C. 36D. 2029. 如果√2.373≈1.333,√23.73≈2.872,那么√23703约等于( )A. 28.72B. 0.2872C. 13.33D. 0.133310. 已知圆柱的底面半径为3cm ,母线长为5cm ,则圆柱的侧面积是( )A. 30cm 2B. 30πcm 2C. 15cm 2D. 15πcm 2二、填空题(本大题共5小题,共15分)11. 实数227,√7,−8,√23,√36,π3中的无理数是____________ .12. 用计算器计算:√2018≈______(结果精确到0.01)13. √4+(−3)2−20140×|−4|+(16)−1=______.14. 将实数√5,π,0,−6由小到大用“<”号连起来,可表示为______.15. 定义新运算“☆”:a ☆b =√ab +1,则2☆(3☆5)=______.三、计算题(本大题共1小题,共8.0分)16. 计算:(1)−√11125; (2)√0.09−√0.25.四、解答题(本大题共5小题,共55分)17. 按要求把下列各数填入相应的括号里:2.5,−0.5252252225…(每两个5之间依次增加一个2),−102,0,13,2π−6,3.(1)非负数集合:{};(2)非负整数集合:{};(3)有理数集合:{};(4)无理数集合:{}.18.求下列各式中x的值。

北师版八年级数学上册 第二章实数 综合测试卷(含答案)

北师版八年级数学上册 第二章实数  综合测试卷(含答案)

北师版八年级数学上册第二章实数综合测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.下列各数:3.141 59,364,1.010 010 001…(相邻两个1之间0的个数逐次加1),4.21··,π,227中,无理数有( )A .1个B .2个C .3个D .4个2.如果|a -2|+|b|=0,那么a ,b 的值为( )A .a =1,b =1B .a =-1,b =3C .a =2,b =0D .a =0,b =23.如果一个数的绝对值为a ,那么数a 在数轴上(如图)对应的点不可能是( )A .点MB .点OC .点PD .点N4.若(x +3)2=a -2,则a 的值可以是( )A .-1B .0C .1D .25.|1-2|=( )A .1- 2 B.2-1C .1+ 2D .-1-2 6. 若a -1+b 2-4b +4=0,则ab 的值等于( )A .-2B .0C .1D .27.有下列计算:①3×5=15;②3100=310;③3227=23;④16=4.其中错误的是( ) A .① B .② C .③ D .④ 8.如果1-a =b ,那么a 的取值范围是( )A .a >1B .a <1C .a =1D .a≤19.如图,在长方形ABCD 中,AB =3,AD =1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于点M ,则点M 表示的数为( )A .2 B. 5-1 C. 10-1 D. 510.如图,一只蚂蚁从点A 出发,沿数轴向右爬2个单位长度到达B 点,点A 表示- 2.设点B 所表示的数为m ,则|m -1|+(m +6)0的值为( )A .2- 2B .2+ 2 C. 2 D .-2二.填空题(共8小题,3*8=24)11.-64的立方根是________.12. 计算3÷6的结果是________.13. 已知二次根式x 2的值为3,那么x 的值是________.14.设a ,b 是一个等腰三角形的两条边长,且满足a -5+|3-b|=0,则该三角形的周长是____________.15.已知a 为有理数,则式子a +2+-a 2的值是__________.16.有边长为5厘米的正方形和长为8厘米,宽为18厘米的长方形,现要制作一个面积为这两个图形面积之和的正方形,则此正方形的边长应为________厘米.17.若3x -4-4-3x =⎝⎛⎭⎫x -13y 2,则3x -12y 的值为________. 18.已知x =3+1,y =3-1,则x 2+2xy +y 2的值是__________.三.解答题(共7小题, 66分)19.(8分) 若x -3与y +2互为相反数,求6x +y 的平方根.20.(8分)已知a ,b 满足b =a 2-4+4-a 2+2,求代数式|a -2b|+ab 的值.。

北师大版八年级数学上册《第二章实数》单元测试卷(带答案)

北师大版八年级数学上册《第二章实数》单元测试卷(带答案)

北师大版八年级数学上册《第二章实数》单元测试卷(带答案)一、选择题、1.8、π这4个数中,无理数有()1.在√6、32A.1个B.2个C.3个D.4个2.下列说法错误的是()A.4的算术平方根是2B.√2是2的平方根C.−1的立方根是−1D.−3是√(−3)2的平方根3.下列式子中,属于最简二次根式的是()A.√8B.√11C.√45D.√164.如图,√7在数轴上对应的点可能是()A.点E B.点F C.点M D.点P5.无理数−√10+1在()A.−3和−2之间B.−4和−3之间C.−5和−4之间D.−6和−5之间6.若使二次根式√x−3在实数范围内有意义,则x的取值范围是()A.x≤3B.x≥3C.x≠3D.x>37.下列计算正确的是()A.(2√2)2=4√2B.√2×√3=√6C.√2+√3=√5D.√12÷√3=48.如图,在数轴上点B表示的数为1,在点B的右侧作一个边长为1的正方形BACD,将对角线BC绕点B 逆时针转动,使对角线的另一端落在数轴负半轴的点M处,则点M表示的数是()A.√2B.√2 +1 C.1﹣√2D.﹣√2二、填空题9.若一个正数的两个平方根分别是5a+1和a+5,则a的值是.10.一个数的平方等于64,则这个数的立方根是 .11.若a 是√7的整数部分,b 是它的小数部分,则a ﹣b = .12.计算:|1−√3|+√14= . 13.若x ,y 是实数,且y =√x −4+√4−x +3,则12√xy 的值为 .三、解答题14.计算:(1)√−273+√(−3)2+√−13; (2)−12+√643−(−2)×√9.15.计算:(1)√27÷√3−2√15×√10+√8 (2) √3(√2−√3)−√24−|√6−3|16.把下列各实数填在相应的大括号内整 数{ …};分 数{ …};无理数{ …}.17.已知5a +2的立方根是3,4a +2b +1的平方根是±5,求a -2b 的算术平方根.18.如图,有一块长方形木板,木工沿虚线在木板上截出两个面积分别为12 dm 2和27 dm 2的正方形木板,求原长方形木板的面积.1.B2.D3.B4.C5.A6.B7.B8.C9.−110.±211.4−√712.√3−1213.√314.(1)解:√−273+√(−3)2+√−13 =﹣2+|﹣3|﹣1=﹣4+3﹣1=﹣5;(2)解:−12+√645−(−2)×√9=﹣5+4﹣(﹣2)×4=3﹣(﹣6)=3+6=9.15.(1)解:原式=3√3÷√3−25√5×√10+2√2=3−2√2+2√2=3(2)解:原式=√6−3−2√6−3+√6=−617.解:因为5a+2的立方根是3,4a+2b+1的平方根是±5,所以5a+2=27,4a+2b+1=25,解得a =5,b=2,所以a-2b=5-4=1,所以a-2b的算术平方根为118.解:∵两个正方形的面积分别为12 dm2和27 dm2∴这两个正方形的边长分别为√12 dm和√27 dm由题图可知,原长方形的长为(√12+√27) dm,宽为√27 dm∴原长方形的面积为:(√12+√27)×√27=18+27=45(dm2).。

北师大版数学八年级上册 第2章 实数 单元测试卷(含答案)

北师大版数学八年级上册 第2章 实数 单元测试卷(含答案)

第2 章测试卷(满分120分,时间90分钟)题号一二三总分得分合要求的)1.9的平方根是( )A.±3B.±1C.3D. -332.在-1.414,√2,π,2+√3,3.212212221…,3.14这些数中,无理数的个数为( )A.5个B.2个C.3个D.4个3.下列说法错误的是( )A.5是25的算术平方根B.1是1的一个平方根C.(-4)²的平方根是-4D.0的平方根与算术平方根都是04.下列各式中不是二次根式的是( )A.√x2+1B.√−4C.√0D.√(a−b)25.已知实数x,y满足√x−2+(y+1)2=0,,则x-y等于( )A.3B.-3C.1D.-16.估算√76−3的值在( )A.4与5之间B.5 与6 之间C.6 与 7 之间D.7 与8之间7.下列计算正确的是( )A.√18−√2=2√2B.√2+√3=√5C.√12÷√3=4D.√5×√6=√118.爸爸为颖颖买了一个密码箱,并告诉其密码(密码为自然数)是1、2、4、6、8、9六个数中的三个数的算术平方根,则这个密码箱的密码可能是( )A.123B.189C.169D.2489.将1、√2√3、√6、按如图所示的方式排列,若规定(m,n)表示第m排从左到右第n个数,则(4,2)与(21,2)表示的两数的积是( )A.1B.2C.2√3D.610.若6−√13的整数部分为x,小数部分为y,则((2x+√13)y的值是( )A.5−3√13B.3C.3√13−5D. -3二、填空题(本大题共8小题,每小题4分,共32分.本题要求把正确结果填在规定的横线上,不需要解答过程)11.写出一个比4 小的正无理数: .有意义,则实数x 的取值范围是 .12.若代数式√xx−113.a 是9的算术平方根,b的算术平方根是9,则a+b=. .14.若√x−2+(y+3)2=0,则x+y=. .15.若最简二次根式√5m−4与√2m+5可以合并,则m的值可以为 .16.若4<√a<10,,则满足条件的整数a有个.17.如果一个正数的平方根是a+3和2a-15,,则这个数为 .18.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式.即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=√1 4[a2b2−(a2+b2−c22)2].现已知△ABC的三边长分别为2,3,4,则△ABC的面积为 .三、解答题(本大题共6小题,满分58分.解答应写出文字说明、证明过程或演算步骤)19.(8分)计算:(1)(√12+√20)+(√3−√5)(2)(√7−√2)(√7+√2)20.(8分)求下列各式中x的值:(1)(x−2)²+1=17;(2)(x+2)³+27=0.21.(10分)如图,已知A,B,C三点分别对应数轴上的数a,b,c.(1)化简:|a−b|+|c−b|+|c−a|;,b=−z2,c=−4mn,且满足x与y互为相反数,z是绝对值最小的负整数,m,n互(2)若a=x+y4为倒数,试求98a+99b+100c的值;22.(10分)已知x=√5+2,y=√5−2,求下列各式的值.(1) xy;(2)x²−y².23.(10分)高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=√ℎ5(不考虑风速的影响).(1)从50m高空抛物到落地所需时间l₁₁是 s,从100m高空抛物到落地所需时间l₂是 s;(2)t₂是t₁的多少倍?(3)经过1.5s,高空抛物下落的高度是多少?24.(12 分)观察下列一组等式,解答后面的问题:√2(+1)(√2−1)=1,(√3+√2)(√3−√2)=1,(√4+√3)(√4−√3)=1,(√5+√4)(√5−√4) =1,…(1)根据上面的规律,计算下列式子的值:(√2+1+√3+√2+√4+√3+⋯+√2020+√2019)(√2020+1);(2)利用上面的规律,比较√12−√11与√13−√12的大小.第2 章测试卷1. A2. D3. C4. B5. A6. B7. A8. A9. D10. B11.答案不唯一,如√212. x≥0且x≠1 13.84 14. --115.3 16.83 17.49 18.3√154 19.解(1)(√12+√20)+(√3−√5)=2√3+2√5+√3−√5=3√3+√5(2)(√7−√2)(√7+√2)=7−2=5.20.解(1)(x−2)²=16,x−2=±4,x=6或--2,(2)(x+2)³=−27,x+2=−3,x=-5.21.解(1)由数轴,知(a−b>0,c−b<0,c−a<0,所以|a−b|+|c−b|+|c−a|=(a−b)−(c−b)−(c−a)=a−b−c+b−c+a=2a−2c.(2)由题意,知:x+y=0,z=−1,mn=1,所以a=0,b=−(−1)²=−1,c=−4.所以98a+99b+100c=−99−400=−499.22.解(1)原式=(√5+2)(√5−2)=5−4=1.(2)原式=(√5+2)2−(√5−2)2=5+4+4√5−5−4+4√5=8√5.23.解(1)√102√5(2)∵t2t1=√5√10=√2,∴t2是t₁的√2倍.(3)由题意得√ℎ5=1.5,即ℎ5=2.25,∴ℎ=11.25.答:经过1.5s,高空抛物下落的高度是11.25 m.24.解(1)根据规律,可得√n+1+√n =√n−1−√n(n≥1).(√2+1+√3+√2√4+√3+⋯+√2020+√2019)(√2020+1).=[(√2−1)+(√3−√2)+(√4−√3)+⋯+(√2020−√2019)](√2020+1) =(√2020−1)(√2020+1)=2019.(2)因为√12−√11=√12+√11,√13−√12=√13+√12,又0<√12+√11<√13+√12,所以√12−√11<√13−√12所以√12−√11>√13−√12.。

北师大版八年级数学上册 第二章 实数单元检测题(含答案)

北师大版八年级数学上册 第二章 实数单元检测题(含答案)

23.先阅读下面的解题过程,然后再解答: 形如 m 2 n 的化简,只要我们找到两个数 a、b,使 a b m , ab n ,即
( a ) 2 ( b ) 2 m , a b n ,那么便有:
m 2 n ( a b ) 2 a b ( a b) .
D.负数有一个平方根 二、填空题(本大题共 6 个小题,把答案填在题中的横线上. ) 11.当 x 满足 时,
1 x 在实数范围内有意义. x
12.若 2a-3 与 5-a 是一个正数 x 的平方根,则 a 是_________。 13.若两个连续的整数 a 、 b 满足 a < 14.计算
21 < b ,则
1 3
32 +
1 2
8-
1 5
50 ;
(2)(5-2 6 )×( 2 - 3 );
(3)(1+ 2 + 3 )(1- 2 - 3 );
(4)( 12 -4
1 1 )(2 -4 0.5 ). 8 3
18.计算 (1) 2 3 6

2
3 6 ;

(2)
2 3 1
27 ( 3 1) 0 .
a 2 a b 的结果为(
A. 2a+ b
B .- 2 a + b
C. b
D. 2a- b
9.如图,数轴上 A,B 两点表示的数分别为-1 和 3 ,点 B 关于点 A 的对称点为 C,则点 C 所表示 的数为( ) A.-2- 3 B.-1- 3 C.-2+ 3 D.1+ 3
10.下列说法正确的是( ) A.0.25 是 0.5 的一个平方根 B.72 的平方根是 7 C.正数有两个平方根,且这两个平方根之和等于 0

北师大版八年级上册数学第二章《实数》单元测试卷(含答案)

北师大版八年级上册数学第二章《实数》单元测试卷(含答案)

北师大版八年级上册数学第二章《实数》单元测试卷(含答案)一、选择题(每题3分,共30分)1.下列各数中,是无理数的是()A.3.141 5 B. 4 C.227D.62.在-4,-2,0,4这四个数中,最小的数是() A.4 B.0 C.- 2 D.-43.【中考·黄石】若式子x-1x-2在实数范围内有意义,则x的取值范围是()A.x≥1且x≠2 B.x≤1 C.x>1且x≠2 D.x<1 4.下列二次根式中,是最简二次根式的是()A.15B.10 C.50 D.0.55.已知a-3+|b-4|=0,则ab的平方根是()A.32B.±32C.±34D.346.【2020·重庆】下列计算中,正确的是()A.2+3= 5 B.2+2=2 2 C.2×3= 6 D.23-2=3 7.实数a,b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>b B.|a|<|b| C.a+b>0 D.a b<0(第7题) (第8题)8.【教材P39议一议变式】小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A 作AB⊥OA,使AB=3(如图).以O为圆心,OB长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于()A.1和2之间B.2和3之间C.3和4之间D.4和5之间9.【教材P15习题T6变式】已知a=3+22,b=3-22,则a2b-ab2的值为() A.1 B.17 C.4 2 D.-42 10.【教材P11习题T12变式】如图,长方形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A.2B.2C.2 2 D.6二、填空题(每题3分,共24分)11.实数-2的相反数是________,绝对值是________.12.计算:3-8=________.13.一个正数的平方根分别是x+1和x-5,则x=__________.14.【教材P34习题T2(1)改编】比较大小:10-13________23(填“>”“<”或“=”).15.【2020·青海】对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b =a +b a -b ,如:3⊕2=3+23-2=5,那么12⊕4=________. 16.【教材P 11习题T 12变式】若利用计算器求得 6.619≈2.573,66.19≈8.136,则估计6 619的算术平方根是________.17.如图,在△ABC 中,若AB =AC =6,BC =4,D 是BC 的中点,则AD 的长为________.(第17题) (第18题)18.已知a ,b ,c 在数轴上对应点的位置如图所示,化简a 2-(a +b )2+(c -a )2+(b +c )2的结果是________.三、解答题(19题16分,其余每题10分,共66分)19.计算下列各题:(1)(-5)2+(π-3)0+|7-4|; (2)⎝ ⎛⎭⎪⎫-12-1-214-3(-1)2 023;(3)(6-215)×3-612;(4)48÷3-215×30+(22+3)2.20.已知5是2a-3的算术平方根,1-2a-b的立方根为-4.(1)求a和b的值;(2)求3b-2a-2的平方根.21.一个正方体的表面积是2 400 cm2.(1)求这个正方体的体积;(2)若该正方体的表面积变为原来的一半,则体积变为原来的多少?22.已知7+5和7-5的小数部分分别为a,b,试求代数式ab-a+4b-3的值.23.拦河坝的横断面是梯形,如图,其上底是8 m,下底是32 m,高是 3 m.(1)求横断面的面积;(2)若用300 m3的土,可修多长的拦河坝?24.【教材P48习题T4拓展】先阅读材料,再回答问题.已知x=3-1,求x2+2x-1的值.计算此题时,若将x=3-1直接代入,则运算非常麻烦.仔细观察代数式,发现由x=3-1得x+1=3,所以(x +1)2=3.整理,得x2+2x=2,再代入求值会非常简便.解答过程如下:解:由x=3-1,得x+1=3,所以(x+1)2=3.整理,得x2+2x=2,所以x2+2x-1=2-1=1.请仿照上述方法解答下面的题目:已知x=5+2,求6-2x2+8x的值.参考答案一、1.D2.D3.A4.B5.B6.C7.D8.C9.C10.B二、11.2;212.-213.214.>15.216.81.3617.4218.-a点拨:原式=|a|-|a+b|+(c-a)+|b+c|=-a+(a+b)+(c-a)-(b +c)=-a+a+b+c-a-b-c=-a.三、19.解:(1)原式=5+1+4-7=10-7;(2)原式=-2-94-3-1=-2-32+1=-52;(3)原式=18-245-6×22=32-65-32=-65;(4)原式=16-26+11+46=15+26.20.解:(1)因为5是2a -3的算术平方根,1-2a -b 的立方根为-4,所以2a -3=25,1-2a -b =-64.所以a =14,b =37.(2)由(1)知a =14,b =37,所以3b -2a -2=3×37-2×14-2=81.所以3b -2a -2的平方根为±81=±9.21.解:(1)设这个正方体的棱长为a cm(a >0).由题意得6a 2=2 400,所以a =20.则体积为203=8 000(cm 3).(2)若该正方体的表面积变为原来的一半,则有6a 2=1 200.所以a =102.所以体积为(102)3=2 0002(cm 3). 因为2 00028 000=24,所以体积变为原来的24.22.解:因为5的整数部分为2,所以7+5=9+a ,7-5=4+b , 即a =-2+5,b =3-5.所以ab -a +4b -3=(-2+5)(3-5)-(-2+5)+4(3-5)-3=-11+55+2-5+12-45-3=0.23.解:(1)S=12(8+32)×3=12(22+42)×3=12×62×3=36(m2).答:横断面的面积为3 6 m2.(2)3003 6=1006=100 66×6=100 66=50 63(m).答:可修5063m长的拦河坝.24.解:由x=5+2得x-2=5,所以(x-2)2=5.整理,得x2-4x=1.所以6-2x2+8x=6-2(x2-4x)=6-2×1=4.。

第二章 实数数学八年级上册-单元测试卷-北师大版(含答案)

第二章 实数数学八年级上册-单元测试卷-北师大版(含答案)

第二章实数数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、下列各数中,是无理数的为()A. B. C. D.2、一个正偶数的算术平方根是a,那么与这个正偶数相邻的下一个正偶数的平方根( )A.a+2B.C.D.3、在3.14,,,,,,0.2020020002…,-,中,无理数有()A.1个B.2个C.3个D.4个4、下列叙述中,不正确的个数有()①所有的正数都是整数②|a|一定是正数③无限小数一定是无理数④(-2)3没有平方根⑤的平方根是⑥=2A.3个B.4个C.5个D.6个5、下列说法中正确的是()A. 是一个无理数B. 的平方根是±3C.8的立方根是±2 D.一个数的算术平方根一定是正数6、下列各数是无理数的是()A.﹣3B.0C.πD.7、下列各式中,正确是A. B. C. D.8、估算﹣的值在相邻整数()之间.A.4和5B.5和6C.6和7D.7和89、下列四个数中,无理数是()A. B. C.0 D.|﹣5|10、若M,N都是实数,且M= ,N= ,则M,N的大小关系是()A.M≤NB.N≥NC.M<ND.M>N11、在3.14,π,3.212212221,,,-5.121121112⋯⋯中,无理数的个数为()A.2B.3C.4D.512、下列式子中,正确的是()A. B. &nbsp; C. D.13、下列说法中,正确的是()A.﹣4的算术平方根是2B.﹣是2的一个平方根C.(﹣1)2的立方根是﹣1 D. =±514、﹣1的立方根为()A.-1B.±1C.1D.不存在15、下列各数中,无理数的个数有()0,,,,2π,3.7878878887…(两个7之间依次多一个8),A.2个B.3个C.4个D.5个二、填空题(共10题,共计30分)16、已知实数a、b、c在数轴上的位置如图所示,化简=________.17、如图所示,数轴上点A所表示的数为________.18、若x,y为实数,且则xy的立方根为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.6.1 实数(第1课时)知能提升作业(九)
(30分钟 50分)
一、选择题(每小题4分,共12分)
1.给出四个数0,2,-
12,0.3其中最小的是( ) (A)0 (B)2 (C)-12 (D)0.3
2.下列说法正确的是( ) (A)5π是分数
(B)227是无理数 (C)36是无理数 (D)两个无理数的和不一定是无理数
3.如图,数轴上点P 表示的数的相反数可能是( )
(A)7 (B)-7 (C)-3.2 (D)-10
二、填空题(每小题4分,共12分) 4.32
-的倒数的绝对值为_______. 5.要使()223x 27--是有理数,则x =_______. 6. 如图,在数轴上点A 和点B 之间的整数是______.
三、解答题(共26分)
7.(12分)如图,数轴上表示1,2的对应点为A 、B ,点B 关于点A 的对称点是点C ,设点C 所表示的数为x ,求x +2x 2的值.
【拓展延伸】
8.(14分)已知a ,b 互为相反数,|c |=8,求4(a +b )(a -b )3c.-
答案解析
1.【解析】选C .负数小于0,负数小于正数,所以C 最小.
2.【解析】选D .5π不是整数之比,当然不是分数,它是无理数;227
是分数,更是有理数;36=6是有理数;因为2+2=22,其结果是无理数,又2+(-2)=0,其结果是有理数,所以选D .
3.【解析】选B .设点P 表示的数是x ,则2<x <3,
则其相反数满足-3<-x <-2, 而39742,-=---=-<<
故P 点的相反数可能为7.-
4.【解析】-
32的倒数为-23,-23的绝对值为23. 答案:23
5.【解析】在开平方运算中被开方数必须是非负数,而本题中的被开方数是非正数,所以被开方数为0,即-(3x 2-27)2=0,解得x =±3.
答案:±3
6.【解析】因为1<2<2,2<7<3,所以在2与7之间的整数为2.
答案:2
7.【解析】∵点B 与点C 关于点A 对称,
∴AC =AB =OB -OA =2-1,
∴OC =OB -BC =OB -2AB =2-2(2-1)=2-2.
∵点C 在数轴的正半轴上,
∴x =2-2,
∴x+2x2=(2-2)+2(2-2)2=14-92.
8.【解析】由a,b互为相反数,可知a+b=0,
又因为|c|=8,则c=±8.
当c=8时,3c=2,则有4(a+b)(a-b)-3c=0-2=-2;
当c=-8时,3c=-2,则有4(a+b)(a-b)-3c=0-(-2)=2.
【归纳整合】对于有一些题目,所求的数据并未给出确定的情况,这时就需要运用分类讨论的思想,在分类讨论的过程中要做到不重不漏.。

相关文档
最新文档