1.7.1__简单几何体的侧面积

合集下载

1.7.1 简单几何体的侧面积

1.7.1  简单几何体的侧面积

h
d
b
h
h
b
a
a
d
S直棱柱侧=(a + b + d ) ⋅ h = ch
1 S正棱锥侧 = ch' 2
h'
h'
C′
h'
1 S正棱台侧 (c + c' )h' = 2
h'
C
思考:将直棱柱、正棱锥、正棱台的侧面积公式进行比较, 思考:将直棱柱、正棱锥、正棱台的侧面积公式进行比较, 你能发现它们的联系和区别吗? 你能发现它们的联系和区别吗?
2
答:锅炉的表面积约为 8.8m 2.
例2
圆台的上下底面半径分别是10cm和20cm,它的侧面 圆台的上下底面半径分别是10cm和20cm,它的侧面 10cm
展开图的扇环的圆心角是180° 展开图的扇环的圆心角是180°,那么圆台的侧面积是多 180 少?(结果中保留 π ) ?(结果中保留 解 如图,设上底面周长为c,因为扇环 如图,设上底面周长为c,因为扇环 c, 的圆心角是180° 所以c= 的圆心角是180°,所以c= π·SA 180
r1 = r2
S圆柱侧 = 2p rl
例1.一个无上盖圆柱形的锅炉,底面直径 d = 1m , 1.一个无上盖圆柱形的锅炉, 一个无上盖圆柱形的锅炉 求锅炉的表面积(保留2个有效数字) 高 h = 2.3m ,求锅炉的表面积(保留2个有效数字)
骣÷ çd ÷ 解: S = S侧面积 + 2S底面积 = p dh + 2p ç ÷ ç2 桫 1 = p 创 2.3 + 2p 椿 1 4 8.8 (m 2 )
又因为c=2 ,所以SA=20.同理 所以SA=20. 又因为c=2 π×10=20 π ,所以SA=20.同理 SB=40.所以,AB=SBSB=40.所以,AB=SB-SA=20,S圆台侧= 所以

简单几何体的定义及性质(7)(1)

简单几何体的定义及性质(7)(1)

高考专题:简单几何体的定义及性质一.多面体的定义及性质:棱柱的侧棱:棱柱中两个侧面的公共边叫做棱柱的侧棱正方体:各棱长都相等的长方体。

的底面和截面叫做棱台的下底面和上底面,其它各面叫做棱台的侧面,相邻侧面的公共边叫做棱台的侧棱,上、下底面之间的距离叫做棱台的高。

由正棱锥截得的棱台叫做正棱台。

二.旋转体的定义及性质。

1、圆柱是由矩形绕其一边旋转得到,圆锥是由直角三角形绕其直角边旋转得到,圆台是由直角梯形绕其直角腰旋转得到,球是由半圆绕其直径旋转得到.2.用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台,圆台同圆柱和圆锥一样也有轴、底面、侧面和母线3、圆柱的正视图和侧视图都是矩形,俯视图是圆;圆锥的正视图和侧视图都是等腰三角形,俯视图是圆和圆心;圆台的正视图和侧视图都是等腰梯形,俯视图是两个同心圆;球的三视图都是圆.【考点训练】1.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则S T 等于( ) A . B . C . D . 2. 对于四面体ABCD ,下列命题正确的是_________(写出所有正确命题的编号)。

91944131○1相对棱AB 与CD 所在的直线异面; ○2由顶点A 作四面体的高,其垂足是BCD 的三条高线的交点; ○3若分别作ABC 和ABD 的边AB 上的高,则这两条高所在直线异面; ○4分别作三组相对棱中点的连线,所得的三条线段相交于一点; ○5最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱。

3.下列命题中,正确的是( )A.有两个侧面是矩形的棱柱是直棱柱。

B.侧面都是等腰三角形的棱锥是正棱锥。

C.侧面都是矩形的直四棱柱是长方体。

D.底面是正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱。

4. 下列命题中,正确的是( )A.直角三角形绕其一边所在直线旋转一周得到的旋转体是圆锥。

2014版陕西北师版数学文复习方略课件:第七章 第六节空间几何体的面积与体积

2014版陕西北师版数学文复习方略课件:第七章 第六节空间几何体的面积与体积

(2)(2013·长春模拟)如图是一个空间几何体的三视图, 则该几何体的表面积是____.
【解析】由三视图可知原几何体是一个长方体中挖去半球体,
故所求表面积为S=4+8+4-π+2π=16+π.
答案:16+π
考向 2
空间几何体的体积
【典例2】(1)(2013·西安模拟)已知某几何体的三视图如
图所示,其中,主视图,左视图均是由三角形与半圆构成,俯
(4)正确.由于台体是由平行于锥体的底面的平面截锥体所得
的在截面与底面之间的几何体,故其体积可转化为两个锥体的
体积之差.
(5)错误.直径为1的球的半径为 1 , 故其表面积S=4πr2= 2 1 2 4( ) . 2 答案:(1)√ (2)× (3)× (4)√ (5)×
1.一个正方体的体积是8,则这个正方体的内切球的表面积是 ( (A )8 π (B )6 π (C )4 π (D )π )
视图由圆与内接三角形构成,根据图中的数据可得此几何体的
体积为(
)
2 1 4 1 (B) 3 2 3 6 2 1 2 1 (C) (D) 6 6 3 2 (2)(2013·亳州模拟)三视图如图所示的几何体的体积为 ____. (A)
(3)(2012·天津高考)一个几何体的三视图如图所示 (单位:m),则该几何体的体积为____m3.
3.直角三角形两直角边AB=3,AC=4,以AB为轴旋转一周所得的
几何体的体积为( (A)12π ) (C )9 π (D)24π
(B)16π
【解析】选B.由题意知,该几何体是底面半径为4,高为3的圆 锥,故其体积 V 1 42 3 16. 3
4.若某几何体的三视图(单位:cm)如图所示,则此几何体的 侧面积为____cm2.

简单几何体表面积体积

简单几何体表面积体积

简单几何体的表面积与体积1.柱、锥、台和球的侧面积和体积面积 体积圆柱 S 侧=2πrh V =Sh =πr 2h圆锥S 侧=πrlV =13Sh =13πr 2h =13πr 2l 2-r 2 圆台 S 侧=π(r 1+r 2)l V =13(S 上+S 下+S 上S 下)h=13π(r 21+r 22+r 1r 2)h 直棱柱 S 侧=Ch V =Sh 正棱锥 S 侧=12Ch ′ V =13Sh正棱台 S 侧=12(C +C ′)h ′V =13(S 上+S 下+S 上S 下)h球S 球面=4πR 2V =43πR 32.几何体的表面积(1)棱柱、棱锥、棱台的表面积就是各面面积之和.(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和. [难点正本 疑点清源] 1.几何体的侧面积和全面积几何体的侧面积是指(各个)侧面面积之和,而全面积是侧面积与所有底面积之和.对侧面积公式的记忆,最好结合几何体的侧面展开图来进行.要特别留意根据几何体侧面展开图的平面图形的特点来求解相关问题.如直棱柱(圆柱)侧面展开图是一矩形,则可用矩形面积公式求解.再如圆锥侧面展开图为扇形,此扇形的特点是半径为圆锥的母线长,圆弧长等于底面的周长,利用这一点可以求出展开图扇形的圆心角的大小. 2.等积法等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高,这一方法回避了具体通过作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.1.圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是________.2.设某几何体的三视图如下(尺寸的长度单位为m).则该几何体的体积为________m 3.3.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.4.一个球与一个正方体的各个面均相切,正方体的边长为a ,则球的表面积为________.5.如图所示,在棱长为4的正方体ABCD —A 1B 1C 1D 1中,P 是A 1B 1上一点,且PB 1=14A 1B 1,则多面体P —BB 1C 1C 的体积为________.题型一 简单几何体的表面积例1 一个空间几何体的三视图如图所示,则该几何体的表面积为( )A .48B .32+817C .48+817D .80思维启迪:先通过三视图确定空间几何体的结构特征,然后再求表面积.探究提高(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.一个几何体的三视图(单位:cm)如图所示,则该几何体的表面积是________cm2.题型二简单几何体的体积例2如图所示,已知E、F分别是棱长为a的正方体ABCD—A1B1C1D1的棱A1A、CC1的中点,求四棱锥C1—B1EDF的体积.思维启迪:思路一:先求出四棱锥C1—B1EDF的高及其底面积,再利用棱锥的体积公式求出其体积;思路二:先将四棱锥C1—B1EDF化为两个三棱锥B1—C1EF与D—C1EF,再求四棱锥C1—B1EDF的体积.解 方法一 连接A 1C 1,B 1D 1交于点O 1,连接B 1D ,EF ,过O 1作O 1H ⊥B 1D 于H .∵EF ∥A 1C 1,且A 1C 1平面B 1EDF ,∴A 1C 1∥平面B 1EDF .∴C 1到平面B 1EDF 的距离就是A 1C 1到平面B 1EDF 的距离. ∵平面B 1D 1D ⊥平面B 1EDF , 平面B 1D 1D ∩平面B 1EDF =B 1D ,∴O 1H ⊥平面B 1EDF ,即O 1H 为棱锥的高. ∵△B 1O 1H ∽△B 1DD 1, ∴O 1H =B 1O 1·DD 1B 1D =66a .∴VC 1—B 1EDF =13S 四边形B 1EDF ·O 1H=13·12·EF ·B 1D ·O 1H =13·12·2a ·3a ·66a =16a 3. 方法二 连接EF ,B 1D .设B 1到平面C 1EF 的距离为h 1,D 到平面C 1EF 的距离为h 2,则h 1+h 2=B 1D 1=2a . 由题意得,VC 1—B 1EDF =VB 1—C 1EF +VD —C 1EF =13·S △C 1EF ·(h 1+h 2)=16a 3. 探究提高 在求解一些不规则的几何体的体积以及两个几何体的体积之比时,常常需要用到分割法.在求一个几何体被分成两部分的体积之比时,若有一部分为不规则几何体,则可用整个几何体的体积减去规则几何体的体积求出其体积.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ) A.26 B.36 C.23 D.22题型三几何体的展开与折叠问题例3(1)如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去△AOB,将剩余部分沿OC、OD折叠,使OA、OB重合,则以A、B、C、D、O为顶点的四面体的体积为________.(2)有一根长为3π cm,底面直径为2 cm的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为________ cm.思维启迪:(1)考虑折叠后所得几何体的形状及数量关系;(2)可利用圆柱的侧面展开图.(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.如图,已知一个多面体的平面展开图由一边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是_______..方法与技巧1.对于基本概念和能用公式直接求出棱柱、棱锥、棱台与球的表面积的问题,要结合它们的结构特点与平面几何知识来解决.2.要注意将空间问题转化为平面问题.3.求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.4.一些几何体表面上的最短距离问题,常常利用几何体的展开图解决.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .182.已知高为3的直棱柱ABC —A ′B ′C ′的底面是边长为1的正三角形(如右图所示),则三棱锥B ′—ABC 的体积为( )A.14B.12C.36D.343.正六棱柱的高为6,底面边长为4,则它的全面积为( ) A .48(3+3) B .48(3+23) C .24(6+2) D .1444.某三棱锥的三视图如图所示,该三棱锥的表面积是( )A.28+65B.30+6 5C.56+125D.60+12 5二、填空题(每小题5分,共15分)5.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为________.6.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m3.7.已知三棱锥A—BCD的所有棱长都为2,则该三棱锥的外接球的表面积为________.三、解答题(共22分)8.(10分)如图所示,在边长为5+2的正方形ABCD中,以A为圆心画一个扇形,以O为圆心画一个圆,M,N,K为切点,以扇形为圆锥的侧面,以圆O为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.9.(12分)有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1.某几何体的三视图如图所示,其中俯视图是个半圆,则该几何体的表面积为( )A.32π B .π+3C.32π+ 3 D.52π+ 3 2.在四棱锥E —ABCD 中,底面ABCD 为梯形,AB ∥CD,2AB =3CD ,M 为AE 的中点,设E —ABCD 的体积为V ,那么三棱锥M —EBC 的体积为( ) A.25V B.13V C.23V D.310V 3.已知球的直径SC =4,A 、B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S -ABC 的体积为( )A .33B .2 3 C. 3 D .1 二、填空题(每小题5分,共15分)4.如图,已知正三棱柱ABC —A 1B 1C 1的底面边长为2 cm ,高为5 cm ,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点A 1的最短路线 的长为______ cm.5.已知一个几何体是由上、下两部分构成的组合体,其三视图如图所示,若图中圆的半径为1,等腰三角形的腰长为5,则该几何体的体积是________.6.如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2.若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是________.三、解答题7.(13分)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D—ABC,如图2所示.图1 图2(1)求证:BC⊥平面ACD;(2)求几何体D—ABC的体积.。

2011年高中数学必修2各个版本教材区别(终稿)

2011年高中数学必修2各个版本教材区别(终稿)

人教A 人教B 北师大苏教第一单元空间几何体第一章空间几何体1.1 空间几何体的结构1.1.1柱、锥、台、球的结构特征:棱柱、棱锥、四面体、棱台、圆柱、圆锥、圆台、球1.1.2简单组合体的结构特征1.2 空间几何体的三视图和直观图1.2.1中心投影与平行投影:投影、投影面、投影线、中心投影、平行投影1.2.2空间几何体的三视图:正视图、侧视图、俯视图1.2.3空间几何体的直观图:斜二测画法1.3 空间几何体的表面积与体积1.3.1柱体、锥体、台体的表面积与体积1.3.2球的体积和表面积探究与发现:祖暅原理与柱体、锥体、球体的体积备注:1.三视图的名称;2.人教A没有正(斜、直)棱柱、正棱锥(台的概念)、平行六面体的概念;北师大没斜棱柱、平行六面体的概念的概念;苏教在1.2.3提到平行六面体、直平行六面体。

在1.3.1提到正(直)棱柱、正棱锥(台的概念);3.北师大版和苏教版没几何体的体积和面积;4.人教B在1.1.2和1.1.3中涉及求基本量求解的题,特别是球.调整时注意增加这方面题5.邀人教B和北师大两个版本.第一单元空间几何体第一章立体几何初步1.1 空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥、棱台的结构特征:正(斜、直)棱柱、正棱锥、正棱台1.1.3圆柱、圆锥、圆台和球:球的大圆、小圆、直角三角形1.1.4投影与直观图:平行投影的性质、斜二测画法的规则、中心投影1.1.5三视图:主视图、俯视图、左视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7棱柱、棱锥、棱台和球的体积第一单元简单几何体、直观图、三视图第一章立体几何初步1.1简单旋转体:球、圆柱、圆锥、圆台1.2简单多面体:棱柱、棱锥、棱台2.1直观图、斜二测画法:中心投影与平行投影1.3三视图1.3.1简单组合体的三视图:①三视图中的虚线;②简单组合体;③简单组合体的三视图:主视图、俯视图、左视图1.3.2有三视图还原成实物图第一单元空间几何体第一章立体几何初步1.1空间几何体1.1.1棱柱、棱锥和棱台1.1.2圆柱、圆锥、圆台和球1.1.3中心投影和平行投影:1.投影与中心投影的含义与特征 2.视图:主视图(正视图)、俯视图、左视图1.1.4直观图的画法:1.消点的定义;2.斜二测画法的规则第二单元线、平面平行的判定及其性质(包含点、线、面间的位置关系第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.1平面:①公理1、2、3;②习题出现公理2(不共线的三点确定一个平面)的3个推论.2.1.2空间中直线与直线之间的位置关系①共面直线(相交直线,平行直线);②公理4(平行线的传递性);③等角定理;④异面直线及其夹角.2.1.3空间中直线与平面之间的位置关系①直线在平面内;②直线与平面相交;③直线与平面平行2.1.4平面与平面之间的位置关系①两个平面平行②两个平面相交2.2 直线、平面平行的判定及其性质2.2.1直线与平面平行的判定:判定定理2.2.2平面与平面平行的判定:判定定理2.2.3直线与平面平行的性质:性质定理2.2.4平面与平面平行的性质:性质定理备注:1.人教B没异面直线所成角的概念,北师大提到异面直线所成的角但不要求计算,能观察即可;2.人教B中的①⑤⑥和其他版本有区别.3.北师大和苏教版本单元还有垂直关系.4.人A、人B、苏教用,⊂⊄,北师大用⊂≠、/⊆5,邀人教A,北师大和苏教用人教A第2、3单元调整第二单元平面的基本性质和空间中的平行关系1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论:①点线基本性质:连接两点的线中,线段最短;过两点有且只有一条直线;②平面的三条基本性质(公理)及3条推论③共面与异面直线1.2.2空间中的平行关系:①平行公理②基本性质(公理)4(平行线的传递性);③等角定理;④直线与平面平行:判定定理与性质定理⑤平面与平面平行:判定定理及推论、性质定理.⑥两条直线被三个平行平面所截,截得的对应线段成比例第二单元空间图形基本关系与公理及平行、垂直关系1.4空间图形的基本关系与公理1.4.1空间图形基本关系的认识:①点与线的位置关系;②点与面的位置关系;③空间两条直线的位置关系:平行、相交、异面;④面面位置关系:平行、相交.1.4.2空间图形的公理①定理1、2、3、4②习题出现公理2(不共线的三点确定一个平面)的3个推论.③等角定理④异面直线所成的角1.5平行关系1.5.1平行关系的判定①直线与平面平行的判定:判定定理②平面与平面平行的判定:判定定理1.5.2平行关系的性质①直线与平面平行的性质:性质定理②平面与平面平行的性质:性质定理1.6垂直关系1.6.1垂直关系的判定①直线与平面垂直的判定:判定定理②平面与平面垂直的判定:①二面角,二面角的棱,二面角的面,二面角的平面角,直二面角②:判定定理1.6.2垂直关系的性质第二单元空间点、线、面的位置关系1.2点、线、面之间的位置关系1.2.1平面的基本性质①公理1、2、3;②公理3(不共线的三点确定一个平面)的3个推论.1.2.2 空间两条直线的位置关系①公理4:平行直线的传递性②等角定理;③异面直线及其所成的角1.2.3直线与平面的位置关系:①直线与平面平行:判定定理、性质定理;②直线与平面垂直:判定定理、性质定理、点到平面的距离、直线到平面的距离、直线与平面所成的角1.2.4平面与平面的位置关系:①两个平面平行的判定定理②两个平面平行的性质定理、公垂线、公垂线段、两个平行平面间的距离③半平面,二面角,二面角的棱,二面角的面,二面角的平面角,直二面角④平面与平面垂直的判定定理⑤平面与平面垂直的性质定理截式、两点式、截距式②.直线方程的一般形式2.2.3两直线的位置关系①两直线相交、平行与重合的条件:系数判断法、斜率判断法②两直线垂直的条件:系数判断法、斜率判断法2.2.4点到直线的距离①点到直线距离②平行线间的距离第五单元圆与方程第四章圆的方程4.1圆的方程4.1.1圆的标准方程4.1.2圆的一般方程4.2.1直线与圆的位置关系:①相交、相切、相离②判断方法:圆心到直线的距离和半径的关系; 判断4.2.2圆与圆的位置关系:①相离、外切、相交、内切、内含②判断方法:圆心距和半径和(差); 判断4.2.3直线与圆的方程的应用4.3.1空间直角坐标系4.3.2空间两点间的距离公式备注:邀人教A第五单元圆与方程2.3.1圆的标准版方程:)2.3.2圆的一般方程:)2.3.3直线与圆的位置关系:①相交、相切、相离②判断方法:圆心到直线的距离和半径的关系;判断2.3.4圆与圆的位置关系:①相离、外切、相交、内切、内含②判断方法:圆心距和半径和(差); 判断2.4.1空间直角坐标系2.4.2空间两点间的距离公式第五单元圆与圆的方程、空间直角坐标系2.2圆与圆的方程2.2.1圆的标准方程:中点坐标2.2.2圆的一般方程2.2.3直线与圆、圆与圆的位置关系2.3.1空间直角坐标系的建立2.3.2空间直角坐标系中点的坐标2.3.3空间两点间的距离公式第五单元圆与方程、空间直角坐标系2.2圆与方程2.2.1圆的方程:圆的标准方程、圆的一般方程2.2.2直线与圆的位置关系:①相交、相切、相离②判断方法:圆心到直线的距离和半径的关系;判断2.2.3圆与圆的位置关系:①相离、外切、相交、内切、内含②判断方法:圆心距和半径和(差);判断2.3.1空间直角坐标系2.3.2空间两点间的距离第六单元必修2综合测试。

简单几何体的表面积和体积(含答案)

简单几何体的表面积和体积(含答案)

简单几何体的表面积和体积[基础知识]1.旋转体的侧面积名称 图形侧面积公式 圆柱侧面积:S 侧=______圆锥侧面积:S 侧=______圆台侧面积:S 侧=________ 2.直棱柱、正棱锥、正棱台的侧面积S 直棱柱侧=______(c 为底面周长,h 为高) S 正棱锥侧=______(c 为底面周长,h ′为斜高)S 正棱台侧=12(c +c ′)h ′(c ′,c 分别为上、下底面周长,h ′为斜高)3.体积公式(1)柱体:柱体的底面面积为S ,高为h ,则V =____.(2)锥体:锥体的底面面积为S ,高为h ,则V =_____(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13(S ′+S ′S +S)h .[基础练习]1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( )A .8B .8πC .4πD .2π2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为( )A .1+2π2πB .1+4π4πC .1+2ππD .1+4π2π3.中心角为135°,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( )A .11∶8B .3∶8C .8∶3D .13∶84.已知直角三角形的两直角边长为a 、b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( )A .a ∶bB .b ∶aC .a 2∶b 2D .b 2∶a 25.有一个几何体的三视图及其尺寸如图(单位:cm ),则该几何体的表面积和体积分别为( )A .24π cm 2,12π cm 3B .15π cm 2,12π cm 3C .24π cm 2,36π cm 3D .以上都不正确 6.三视图如图所示的几何体的全面积是( )A .7+ 2B .112+ 2C .7+ 3D .32[典型例题]例1. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,求此三棱锥的体积.练1.如图,在正三棱柱ABC-A1B1C1中,D为棱AA1的中点,若截面△BC1D是面积为6的直角三角形,则此三棱柱的体积为________.例2.已知五棱台的上、下底面均是正五边形,边长分别是8 cm和18 cm,侧面是全等的等腰梯形,侧棱长是13 cm,求它的侧面积.练2.圆台上底的面积为16π cm2,下底半径为6 cm,母线长为10 cm,那么,圆台的侧面积和体积各是多少?例3.如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);(2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).练3.圆柱形容器内盛有高度为8 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是______cm.例4.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.练4.如图所示,一个圆锥形的空杯子上放着一个直径为8 cm的半球形的冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形的冰淇淋的直径,杯子壁厚忽略不计),使冰淇淋融化后不会溢出杯子,怎样设计最省材料?简单几何体的表面积和体积活页作业一、选择题1.圆柱的侧面展开图是一个边长为6π和4π的矩形,则圆柱的全面积为( )A .6π(4π+3)B .8π(3π+1)C .6π(4π+3)或8π(3π+1)D .6π(4π+1)或8π(3π+2)2.正棱锥的高缩小为原来的12,底面外接圆半径扩大为原来的3倍,则它的体积是原来体积的( )A.32B.92C.34D.943.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π34.如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为( )A .18πB .30πC .33πD .40π 5.(2011·福州质检)某几何体的三视图如图所示,则该几何体的体积等于( )A.283πB.163πC.43π+8 D .12π 6.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD =a ,则三棱锥D -ABC 的体积为( )A.a 36B. a 312C.312a 3D.212a 3 7.圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是( )A.233πB .23π C.736πD.733π8.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是323π,那么这个三棱柱的体积是( )A .96 3B .16 3C .24 3D .48 3二、填空题9.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,O 为底面正方形ABCD 的中心, 则三棱锥B 1-BCO 的体积为________.10.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是________.11.已知球O 的表面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC , DA =AB =BC =3,则球O 的体积等于________.12. 如图所示是一个几何体的三视图,根据图中标出的尺寸(单位:cm),可得该几何体的表面积为________cm 2. 三、解答题13.如图所示,以圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,则该圆锥与圆柱等底等高.若圆锥的轴截面是一个正三角形,求圆柱的侧面积与圆锥的侧面积之比.14如图,如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体15.有一个圆锥的侧面展开图是一个半径为5、圆心角为6π5的扇形,在这个圆锥中内接一个高为x 的圆柱.(1)求圆锥的体积.(2)当x 为何值时,圆柱的侧面积最大?16.如图所示,从三棱锥P -ABC 的顶点P 沿着三条侧棱P A 、PB 、PC 剪开成平面图形得到△P 1P 2P 3,且P 2P 1=P 2P 3.(1)在三棱锥P -ABC 中,求证:P A ⊥BC .(2)若P 1P 2=26,P 1P 3=20,求三棱锥P -ABC 的体积.简单几何体的表面积和体积答案[基础知识]1.旋转体的侧面积名称 图形侧面积公式 圆柱侧面积:S 侧=______圆锥侧面积:S 侧=______圆台侧面积:S 侧=________ 2.直棱柱、正棱锥、正棱台的侧面积S 直棱柱侧=______(c 为底面周长,h 为高) S 正棱锥侧=______(c 为底面周长,h ′为斜高)S 正棱台侧=12(c +c ′)h ′(c ′,c 分别为上、下底面周长,h ′为斜高)3.体积公式(1)柱体:柱体的底面面积为S ,高为h ,则V =____.(2)锥体:锥体的底面面积为S ,高为h ,则V =_____(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13(S ′+S ′S +S)h .答案:1.名称 图形 侧面积公式圆柱侧面积:S 侧=2πrl圆锥侧面积:S 侧=πrl 圆台侧面积:S 侧=π(r 1+r 2)l 2.ch 12ch ′ 3.(1)Sh (2)13Sh[基础练习]1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( )A .8B .8πC .4πD .2π2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为( )A .1+2π2πB .1+4π4πC .1+2ππD .1+4π2π3.中心角为135°,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( ) A .11∶8 B .3∶8 C .8∶3 D .13∶84.已知直角三角形的两直角边长为a 、b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( )A .a ∶bB .b ∶aC .a 2∶b 2D .b 2∶a 25.有一个几何体的三视图及其尺寸如图(单位:cm ),则该几何体的表面积和体积分别为( )A .24π cm 2,12π cm 3B .15π cm 2,12π cm 3C .24π cm 2,36π cm 3D .以上都不正确 6.三视图如图所示的几何体的全面积是( )A .7+ 2B .112+ 2C .7+ 3D .32答案:1.B [易知2πr =4,则2r =4π,所以轴截面面积=4π×2=8π.]2.A [设底面半径为r ,侧面积=4π2r 2,全面积为=2πr 2+4π2r 2,其比为:1+2π2π.] 3.A [设圆锥的底面半径为r ,母线长为l ,则2πr =34πl ,则l =83r ,所以A =83πr 2+πr 2=113πr 2,B =83πr 2,得A ∶B =11∶8.]4.B [以长为a 的直角边所在直线旋转得到圆锥体积V =13πb 2a ,以长为b 的直角边所在直线旋转得到圆锥体积V =13πa 2b .]5.A [该几何体是底面半径为3,母线长为5的圆锥,易得高为4,表面积和体积分别为24π cm 2,12π cm 3.]6.A [图中的几何体可看成是一个底面为直角梯形的直棱柱.直角梯形的上底为1,下底为2,高为1,棱柱的高为1.可求得直角梯形的四条边的长度为1,1,2,2,表面积S 表面=2S 底+S 侧面=12(1+2)×1×2+(1+1+2+2)×1=7+2.][典型例题]例1. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,求此三棱锥的体积.解析:折叠起来后,B 、D 、C 三点重合为S 点,则围成的三棱锥为S -AEF ,这时SA ⊥SE ,SA ⊥SF ,SE ⊥SF ,且SA =2,SE =SF =1,所以此三棱锥的体积V =13·12·1·1·2=13.练1. (2011·昆山模拟)如图,在正三棱柱ABC -A 1B 1C 1中,D 为棱AA 1的中点,若截面△BC 1D 是面积为6的直角三角形,则此三棱柱的体积为________.解析:由题意,设AB =a ,AA 1=b ,再由12BD ·DC 1=6可得a 2+b 24=12.又由BC 2+CC 21=BC 21, 得a 2+b 2=24, 可得a =22,b =4, ∴V =34×(22)2×4=8 3. 答案:8 3例2. 已知五棱台的上、下底面均是正五边形,边长分别是8 cm 和18 cm ,侧面是全等的等腰梯形,侧棱长是13 cm ,求它的侧面积.解析:如图所示的是五棱台的一个侧面,它是一个上、下底的边长分别为8 cm 和18 cm ,且腰长为13 cm 的等腰梯形,由点A 向BC 作垂线,垂足为点E ;由点D 向BC 作垂线,垂足为点F .∵四边形ABCD 为等腰梯形,∴BE =CF =12(BC -AD )=12(18-8)=5 cm.在Rt △ABE 中,AB =13 cm ,BE =5 cm ,∴AE =12 cm ,∴S 四边形ABCD =12(AD +BC )·AE =12×(8+18)×12=156(cm 2).∴S 五棱台侧=5×156=780(cm 2).即此五棱台的侧面积为780 cm 2.练2. 圆台上底的面积为16π cm 2,下底半径为6 cm ,母线长为10 cm ,那么,圆台的侧面积和体积各是多少?解析:首先,圆台的上底的半径为4 cm ,于是S 圆台侧=π(r +r ′)l =100π(cm 2). 其次,如图,圆台的高h =BC=BD 2-OD -AB 2=102-6-42=46(cm),所以V 圆台=13h (S +SS ′+S ′)=13×46×(16π+16π×36π+36π) =3046π3(cm 3). 例3. 如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S 平方米塑料片制成圆柱的侧面和下底面(不安装上底面). (1)当圆柱底面半径r 取何值时,S 取得最大值?并求出该最大值(结果精确到0.01平方米); (2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).解析:由题意可知矩形的高即圆柱的母线长为9.6-8×2r8=1.2-2r ,∴塑料片面积S =πr 2+2πr (1.2-2r ) =πr 2+2.4πr -4πr 2=-3πr 2+2.4πr =-3π(r 2-0.8r )=-3π(r -0.4)2+0.48π.∴当r =0.4时,S 有最大值0.48π,约为1.51平方米.(2)若灯笼底面半径为0.3米,则高为1.2-2×0.3=0.6(米).制作灯笼的三视图如图.练3. 圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是______cm .解析:设球的半径为r cm ,则πr 2×8+43πr 3×3=πr 2×6r .解得r =4 (cm 3).例4.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.解析:由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.根据切线性质知,当球在容器内时,水深为3r ,水面的半径为3r ,则容器内水的体积为V =V 圆锥-V球=13π·(3r )2·3r -43πr 3=53πr 3,而将球取出后,设容器内水的深度为h ,则水面圆的半径为33h ,从而容器内水的体积是V ′=13π·(33h )2·h =19πh 3,由V =V ′,得h =315r .即容器中水的深度为315r .练4. 如图所示,一个圆锥形的空杯子上放着一个直径为8 cm 的半球形的冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形的冰淇淋的直径,杯子壁厚忽略不计),使冰淇淋融化后不会溢出杯子,怎样设计最省材料?解析: 要使冰淇淋融化后不会溢出杯子,则必须V 圆锥≥V 半球,V 半球=12×43πr 3=12×43π×43,V 圆锥=13Sh =13πr 2h =13π×42×h .依题意:13π×42×h ≥12×43π×43,解得h ≥8.即当圆锥形杯子杯口直径为8 cm ,高大于或等于8 cm 时,冰淇淋融化后不会溢出杯子. 又因为S 圆锥侧=πrl =πrh 2+r 2,当圆锥高取最小值8时,S 圆锥侧最小,所以高为8 cm 时,制造的杯子最省材料.简单几何体的表面积和体积活页作业答案一、选择题1.圆柱的侧面展开图是一个边长为6π和4π的矩形,则圆柱的全面积为( )A .6π(4π+3)B .8π(3π+1)C .6π(4π+3)或8π(3π+1)D .6π(4π+1)或8π(3π+2)解析: 设圆柱的底面半径为r ,母线为l ,则⎩⎪⎨⎪⎧ 2πr =4πl =6π或⎩⎪⎨⎪⎧2πr =6πl =4π, ∴⎩⎪⎨⎪⎧ r =2l =6π或⎩⎪⎨⎪⎧r =3l =4π, ∴圆柱的全面积为24π2+8π或24π2+18π,即8π(3π+1)或6π(4π+3).答案: C2.正棱锥的高缩小为原来的12,底面外接圆半径扩大为原来的3倍,则它的体积是原来体积的( )A.32B.92C.34D.94解析: 设原棱锥高为h ,底面面积为S ,则V =13Sh ,新棱锥的高为h2,底面面积为9S ,∴V ′=13·9S ·h2,∴V ′V =92.答案: B3.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π3 答案: B解析: S 圆=πr 2=1⇒r =1,而截面圆圆心与球心的距离d =1,∴球的半径为R =r 2+d 2=2,∴V=43πR 3=82π3,故选B.4.如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为( )A .18πB .30πC .33πD .40π解析: 由三视图知该几何体由圆锥和半球组成.球半径和圆锥底面半径都等于3,圆锥的母线长等于5,所以该几何体的表面积S =2π×32+π×3×5=33π.答案: C 5.(2011·福州质检)某几何体的三视图如图所示,则该几何体的体积等于( )A.283πB.163πC.43π+8 D .12π解析: 由三视图可知,该几何体为底面半径是2,高为2的圆柱体和半径为1的球体的组合体,则该几何体的体积为π×22×2+43π=283π.答案: A6.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD =a ,则三棱锥D -ABC 的体积为( )A.a 36B. a 312C.312a 3D.212a 3 解析: 设正方形ABCD 的对角线AC 、BD 相交于点E ,沿AC 折起后,依题意得:当BD =a 时,BE ⊥DE ,∴DE ⊥面ABC ,∴三棱锥D -ABC 的高为DE =22a , ∴V D -ABC =13·12a 2·22a =212a 3.答案: D7.圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是( )A.233πB .23πC.736πD.733π解析:上底半径r =1,下底半径R =2.∵S 侧=6π,设母线长为l ,则π(1+2)·l =6π,∴l =2,∴高h =l 2-(R -r )2=3,∴V =13π·3(1+1×2+2×2)=733π.答案:D8.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是323π,那么这个三棱柱的体积是( )A .96 3B .16 3C .24 3D .48 3解析:由43πR 3=323π,∴R =2,∴正三棱柱的高h =4,设其底面边长为a ,则13·32a =2,∴a =43,∴V =34(43)2·4=48 3. 答案:D二、填空题9.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,O 为底面正方形ABCD 的中心,则三棱锥B 1-BCO 的体积为________.解析: V =13S △BOC ·B 1B =13×12BO ·BC ·sin 45°·B 1B =16×2×2×22×2=23.答案: 2310.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是________.解析: 由三视图可知,该几何体为底面半径为1,母线长为2的圆锥的一半,所以圆锥的高为3,因此所求体积V =12×13×π×12×3=36π.答案: 36π11.已知球O 的表面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =3,则球O 的体积等于________. 解析: 如图, 易知球心O 为DC 中点,由题意可求出CD =3,所以球O 的半径为32,故球O 的体积为43π×⎝⎛⎭⎫323=9π2. 答案: 9π212.如图所示是一个几何体的三视图,根据图中标出的尺寸(单位:cm),可得该几何体的表面积为________cm 2.答案 36解析 由三视图可知,此几何体是一个以AA ′=2,AD =4,AB =2为棱的长方体被平面A ′C ′B 截去一个角后得到的,在△A ′C ′B 中,因为A ′C ′=BC ′=25,BA ′=22,所以S △A ′C ′B =12×22×(25)2-(2)2=6,故几何体表面积为2×4×2+2×2+12×4×2×2+12×2×2+6=36.三、解答题13.如图所示,以圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,则该圆锥与圆柱等底等高.若圆锥的轴截面是一个正三角形,求圆柱的侧面积与圆锥的侧面积之比.解析: 设圆锥底面半径为r ,则母线为2r ,高为3r ,∴圆柱的底面半径为r ,高为3r ,∴S 圆柱侧S 圆锥侧=2πr ·3r πr ·2r = 3. 14如图,如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体解析:(1)如图所示.(2)所求多面体体积V =V 长方体-V 正三棱锥=446-131222⎛⎫⨯⨯ ⎪⎝⎭2=2843(cm 3).15.有一个圆锥的侧面展开图是一个半径为5、圆心角为6π5的扇形,在这个圆锥中内接一个高为x 的圆柱. (1)求圆锥的体积.(2)当x 为何值时,圆柱的侧面积最大?解析: (1)因为圆锥侧面展开图的半径为5,所以圆锥的母线长为5.设圆锥的底面半径为r ,则2πr =5×6π5,解得r =3. 所以圆锥的高为4.从而圆锥的体积V =13πr 2×4=12π.(2)右图为轴截面图,这个图为等腰三角形中内接一个矩形.设圆柱的底面半径为a ,则3-a 3=x 4,从而a =3-34x . 圆柱的侧面积S (x )=2π(3-34x )x =32π(4x -x 2) =32π[4-(x -2)2](0<x <4). 当x =2时,S (x )有最大值6π.所以当圆柱的高为2时,圆柱有最大侧面积为6π.16.如图所示,从三棱锥P -ABC 的顶点P 沿着三条侧棱P A 、PB 、PC 剪开成平面图形得到△P 1P 2P 3,且P 2P 1=P 2P 3. (1)在三棱锥P -ABC 中,求证:P A ⊥BC .(2)若P 1P 2=26,P 1P 3=20,求三棱锥P -ABC 的体积.解析: (1)证明:由题设知A 、B 、C 分别是P 1P 3,P 1P 2,P 2P 3的中点,且P 2P 1=P 2P 3,从而PB =PC ,AB =AC ,取BC 的中点D ,连AD 、PD ,则AD ⊥BC ,PD ⊥BC ,∴BC ⊥面P AD .故P A ⊥BC .(2)由题设有AB =AC =12P 1P 2=13,P A =P 1A =BC =10, PB =PC =P 1B =13,∴AD =PD =AB 2-BD 2=12,在等腰三角形DP A 中, 底边P A 上的高h =AD 2-⎝⎛⎭⎫12P A 2=119, ∴S △DP A =12P A ·h =5119,又BC ⊥面P AD , ∴V P -ABC =V B -PDA +V C -PDA=13BD ·S △DP A +13DC ·S △PDA =13BC ·S △PDA =13×10×5119 =503119.。

新课标高中数学教材目录大全

新课标高中数学教材目录大全

新课标高中数学教材目录大全新课标人教A版必修一第一章集合与函数的概念1.1 集合1.2 函数及其表示1.3 函数的基本性质本章小结与复习第二章基本初等函数(I)2.1 指数函数2.2 对数函数2.3 幂函数本章小结与复习第三章函数的应用3.1 函数与方程3.2 函数模型及其应用本章小结与复习必修二第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积本章小结与复习第二章点、直线、平面之间的位置关.2.1 空间点、直线、平面之间的位.2.2 直线、平面平行的判定及其性.2.3 直线、平面垂直的判定及其性.本章小结与复习第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式本章小结与复习第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系本章小结与复习必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例本章小结与复习第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量间的相关关系本章小结与复习第三章概率3.1 随机事件的概率3.2 古典概型3.3 几何概型本章小结与复习必修四第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ϕ)的图象1.6 三角函数模型的简单应用本章小结与复习第二章平面向量2.1 平面向量的实际背景及基本概.2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表.2.4 平面向量的数量积2.5 平面向量应用举例本章小结与复习第三章三角恒等变换3.1 两角和与差的正弦、余弦和正.3.2 简单的三角恒等变换本章小结与复习必修五第一章解三角形1.1 正弦定理和余弦定理1.2 应用举例1.3 实习作业本章小结与复习第二章数列2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和本章小结与复习第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的.3.4 基本不等式ab≤2ba+(a≥0,b≥0)本章小结与复习选修1——1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词本章小结与复习第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线本章小结与复习第三章导数及其应用3.1 变化率与导数3.2 导数的计算3.3 导数在研究函数中的应用3.4 生活中的优化问题举例本章小结与复习选修1——2第一章统计案例1.1回归分析的基本思想及其初步.1.2 独立性检验的基本思想及其初.本章小结与复习第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明本章小结与复习第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算本章小结与复习第四章框图4.1 流程图4.2 结构图本章小结与复习综合复习与测试选修2——1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词本章小结与复习第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线本章小结与复习第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法本章小结与复习选修2——2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用本章小结与复习第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法本章小结与复习第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算本章小结与复习选修2——3第一章计数原理1.1分类加法计数原理与分步乘法计.1.2排列与组合1.3二项式定理本章小结与复习第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布本章小结与复习第三章统计案例3.1回归分析的基本思想及其初步应.3.2独立性检验的基本思想及其初步.本章小结与复习新课标人教B版必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算本章小结与复习第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(I)2.4 函数与方程本章小结与复习第三章基本初等函数(I)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(II)本章小结与复习必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系本章小结与复习第二章平面解析几何初步2.1 平面直角坐标系中的基本公式2.2 直线方程2.3 圆的方程2.4 空间直角坐标系本章小结与复习必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例本章小结与复习第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性本章小结与复习第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用本章小结与复习必修四第一章基本初等函数(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数1.3 三角函数的图象与性质本章小结与复习第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用本章小结与复习第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化.本章小结与复习必修五第一章解斜角三角形1.1 正弦定理和余弦定理1.2 应用举例本章小结与复习第二章数列2.1 数列2.2 等差数列2.3 等比数列本章小结与复习第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线.本章小结与复习选修1——1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的.本章小结与复习第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线本章小结与复习第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用本章小结与复习选修1——2第一章统计案例,1.1独立性检验1.2回归分析本章小结与复习第二章推理与证明,2.1合情推理与演绎推理2.2直接证明与间接证明本章小结与复习第三章数系的扩充与复数的引入,3.1数系的扩充与复数的引入3.2复数的运算第四章框图,4.1流程图4.2结构图本章小结与复习选修2——1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的.本章小结与复习第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆2.3 双曲线2.4 抛物线2.5 直线与圆锥曲线本章小结与复习第三章空间向量与立体几何3.1 空间向量及其运算3.2 空间向量在立体几何中的应用本章小结与复习选修2——2第一章导数及其应用1.1 导数1.2 导数的运算1.3 导数的应用1.4 定积分与微积分基本定理本章小结与复习第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法本章小结与复习第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.2 复数的运算本章小结与复习选修2——3第一章计数原理1.1 基本计数原理1.2 排列与组合1.3 二项式定理本章小结与复习第二章概率2.1 离散型随机变量及其分布列2.2 条件概率与事件的独立性2.3 随机变量的数学特征2.4 正态分布本章小结与复习第三章统计案例3.1 独立性检验3.2 回归分析本章小结与复习北师大版必修一第一章集合1.1 集合的含义与表示1.2 集合的基本关系1.3 集合的基本运算本章小结与复习第二章函数2.1 生活中的变量关系2.2 对函数的进一步认识2.3 函数的单调性2.4 二次函数性质的再研究2.5 简单的幂函数本章小结与复习第三章指数函数和对数函数3.1 正整数指数函数3.2 指数概念的扩充3.3 指数函数3.4 对数3.5 对数函数3.6 指数函数、幂函数、对数函数.本章小结与复习第四章函数应用4.1 函数与方程4.2 实际问题的函数建模本章小结与复习必修二第一章立体几何初步1.1 简单几何体1.2 三视图1.3 直观图1.4 空间图形的基本关系与公理1.5 平行关系1.6 垂直关系1.7 简单几何体的面积和体积1.8 面积公式和体积公式的简单应用本章小结与复习第二章解析几何初步2.1 直线与直线的方程2.2 圆的圆的方程2.3 空间直角坐标系本章小结与复习必修三第一章统计1.1 统计活动:随机选取数字1.2 从普查到抽样1.3 抽样方法1.4 统计图表1.5 数据的数字特征1.6 用样本估计总体1.7 统计活动:结婚年龄的变化1.8 相关性1.9 最小二乘估计本章小结与复习第二章算法初步2.1 算法的基本思想2.2 算法的基本结构及设计2.3 排序问题2.4 几种基本语句本章小结与复习第三章概率3.1 随机事件的概率3.2 古典概型3.3 模拟方法--概率的应用本章小结与复习必修四第一章三角函数1.1 周期现象与周期函数1.2 角的概念的推广1.3 弦度制1.4 正弦函数1.5 余弦函数1.6 正切函数1.7 函数的图像1.8 同角三角函数的基本关系本章小结与复习第二章平面向量2.1 从位移、速度、力到向量2.2 从位移的合成到向量的加法2.3 从速度的倍数到数乘向量2.4 平面向量的坐标2.5 从力做的功到向量的数量积2.6 平面向量数量积的坐标表示2.7 向量应用举例本章小结与复习第三章三角恒等变形3.1 两角和与差的三角函数3.2 二倍角的正弦、余弦和正切3.3 半角的三角函数3.4 三角函数的和差化积与积化和.3.5 三角函数的简单应用本章小结与复习必修五第一章数列1.1 数列1.2 等差数列1.3 等比数列1.4 数列在日常经济生活中的应用本章小结与复习第二章解三角形2.1 正弦定理与余弦定理2.2 三角形中的几何计算2.3 解三角形的实际应用举例本章小结与复习第三章不等式3.1 不等关系3.2 一元二次不等式3.3 基本不等式3.4 简单线性规划本章小结与复习选修1——1第一章常用逻辑用语1.1 命题1.2 充分条件必要条件1.3 全称量词与存在量词1.4 逻辑联结词“且”或“非”本章小结与复习第二章圆柱曲线与方程2.1 椭圆2.2 抛物线2.3双曲线本章小结与复习第三章变化率与导数3.1 变化的快慢与变化率3.2 导数的概念及其几何意义3.3 计数导数3.4 导数的四则运算法则本章小结与复习第四章导数应用4.1 函数的单调性与极值4.2 导数在实际问题中的应用本章小结与复习选修1——2第一章统计案例1.1 回归分析1.2 独立性检验本章小结与复习第二章框图2.1 流程图2.2 结构图本章小结与复习第三章推理与证明3.1 归纳与类比3.2 数学证明3.3 综合法与分析法3.4 反证法本章小结与复习第四章数系的扩充与复数的引入4.1 数系的扩充与复数的引入4.2 复数的四则运算本章小结与复习选修2——1第一章常用逻辑用语1.1 命题1.2 充分条件必要条件1.3 全称量词与存在量词1.4 逻辑联结词“且”或“非”.本章小结与复习第二章空间向量与立体几何2.1 从平面向量到到空间向量2.2 空间向量的运算2.3 向量的坐标表表示和空间向量.2.4 用向量讨论垂直与平行2.5 夹角的计算2.6 距离的计算本章小结与复习第三章圆锥曲线与方程3.1 椭圆3.2 抛物线3.3 双曲线3.4 曲线与方程本章小结与复习选修2——2第一章推理与证明1.1 归纳与类比1.2 综合法与分析法1.3 反证法1.4 数学归纳法本章小结与复习第二章变化率与导数2.1 变换的快慢与变化率2.2 导数的概念及其几何意义2.3 计数导数2.4 导数的四则运算法则2.5 简单复合函数的求导法则本章小结与复习第三章导数应用3.1 函数的单调性与极值3.2 导数在实际问题中的应用本章小结与复习第四章定积分4.1 定积分的概念4.2 微积分基本定理4.3 定积分的简单应用本章小结与复习第五章数系的扩充与复数的引入5.1 数系的扩充与复数的引入5.2 复数的四则运算法则本章小结与复习苏教版必修一第一章集合1.1 集合的含义及其表示1.2 子集、全集、补集1.3 交集、并集第二章函数概念与基本初等函数I2.1 函数的概念和图像2.2 指数函数2.3 对数函数2.4 幂函数2.5 函数与方程2.6 函数模型及其应用必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系1.3 空间几何体的表面积和体积第二章平面解析几何初步2.1 直线与方程2.2 圆与方程2.3 空间直角坐标系必修三第一章算法初步1.1 算法的含义1.2 流程图1.3 基本算法语句1.4 算法案例第二章统计2.1 抽样方法2.2 总体分布的估计2.3 总体特征数的估计2.4 线性回归方程第三章概率3.1 随机事件及其概率3.2 古典概型3.3 几何概型3.4 互斥事件必修四第一章三角函数1.1 任意角、弧度1.2 任意角的三角函数1.3 三角函数的图象与性质第二章平面向量2.1 向量的概念与表示2.2 向量的线性运算2.3 向量的坐标表示2.4 向量的数量积2.5 向量的应用第三章三角恒等变换3.1 两角和与差的三角函数3.2 二倍角的三角函数3.3 几个三角恒等式必修五第一章解三角形1.1 正弦定理1.2 余弦定理1.3 正弦定理、余弦定理的应用第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系3.2 一元二次不等式3.3 二元一次不等式组与简单线性.3.4 基本不等式ab≤2ba(a≥0,b≥0)选修1——1第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑联结词1.3全称量词与存在量词本章小结与复习第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线与方程本章小结与复习第3章导数及其应用3.1导数的概念3.2导数的运算3.3导数在研究函数中的应用3.4导数在实际生活中的应用本章小结与复习选修1——2第1章统计案例1.1假设检验1.2独立性检验1.3线性回归分析1.4聚类分析本章小结与复习第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3公理化思想本章小结与复习第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义本章小结与复习第4章框图4.1流程图4.2结构图本章小结与复习选修2——1第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑连接词1.3全称量词与存在量词本章小结与复习第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线的统一定义2.6曲线与方程本章小结与复习第3章空间向量与立体几何3.1空间向量及其运算3.2空间向量的应用本章小结与复习选修2——2第一章导数及其应用1.1导数的概念1.2导数的运算1.3导数在研究函数中的应用1.4导数在实际生活中的应用1.5定积分本章小结与复习第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法本章小结与复习第三章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义本章小结与复习选修2——3第一章计数原理1.1两个基本原理1.2排列1.3组合1.4计数应用题1.5二项式定理本章小结与复习第二章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性2.4二项分布2.5离散型随机变量的均值与方差2.6正态分布本章小结与复习第三章统计案例3.1独立性检验3.2回归分析本章小结与复习湘教版必修一第一章集合与函数1.1 集合1.2 函数的概念和性质本章小结与复习第二章指数函数、对数函数和幂函数2.1 指数函数2.2 对数函数2.3 幂函数本章小结与复习必修二第三章三角函数3.1 弧度制与任意角3.2 任意角的三角函数3.3 三角函数的图象与性质3.4 函数y=Asin(ωx+ϕ)的图象与性质本章小结与复习第四章向量4.1 什么是向量4.2 向量的加法4.3 向量与实数相乘4.4 向量的分解与坐标表示4.5 向量的数量积4.6 向量的应用本章小结与复习第五章三角恒等变换5.1 两角和与差的三角函数5.2 二倍角的三角函数5.3 简单的三角恒等变换本章小结与复习必修三第六章立体几何初步6.1 空间的几何体6.2 空间的直线与平面本章小结与复习第七章解析几何初步7.1 解析几何初步7.2 直线的方程7.3 圆与方程7.4 几何问题的代数解法7.5 空间直角坐标系本章小结与复习必修四第八章解三角形8.1 正弦定理8.2 余弦定理8.3 解三角形的应用举例本章小结与复习第九章数列9.1 数列的概念9.2 等差数列9.3 等比数列9.4 分期付款问题中的有关计算本章小结与复习第十章不等式10.1 不等式的基本性质10.2 一元二次不等式10.3 基本不等式及其应用10.4 简单线性规划本章小结与复习必修五第十一章算法初步11.1 算法概念和例子11.2 程序框图的结构11.3 基本的算法语句本章小结与复习第十二章统计初步12.1 随机抽样12.2 数据表示和特征提取12.3 用样本估计总体12.4 变量的相关性本章小结与复习第十三章概率13.1 概率的意义13.2 互斥事件的概率加法公式13.3 古典概型13.4 随机数与几何概型本章小结与复习选修1——1第一章常用逻辑用语1.1 命题的概念和例子1.2 简单的逻辑联结词本章小结与复习第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线2.4 圆锥曲线的应用本章小结与复习第三章导数及其应用3.1 导数概念3.2 导数的运算3.3 导数在研究函数的应用3.4 生活中的优化问题举例本章小结与复习选修1——2第四章点数统计案例4.1 随机对照实验案例4.2 事件的独立性4.3 列联表独立性分析案例4.4 一员线性回归案例本章小结与复习第五章推理与证明5.1 合情推理和演绎推理5.2直接证明与间接证明本章小结与复习第六章框图6.1 知识结构图6.2 工序流程图6.3 程序框图本章小结与复习第七章数系的扩充与复数7.1 解方程与数系的扩充7.2 复数的概念7.3 复数的四则运算7.4 副数的几何表示本章小结与复习选修2——1第一章常用逻辑用语1.1 命题及其关系1.2 简单逻辑联结词本章小结与复习第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线2.4 圆锥曲线的应用2.5 曲线与方程本章小结与复习第三章空间向量与立体几何3.1 尝试用向量处理空间图形3.2 空间中向量的概念和运算3.3 空间向量的坐标3.4 直线的方向向量3.5 直线与平面的垂直关系3.6 平面的法向量3.7 直线与平面、平面与平面所成.3.8 点到平面的距离3.9 共面与平行本章小结与复习选修2——2第四章导数及其应用4.1 导数概念4.2 导数的运算4.3 导数在研究函数中的应用4.4 生活中的优化问题举例4.5 定积分与微积分基本定理本章小结与复习第五章数系的扩充与复数5.1 解方程与数系的扩充5.2 复数的概念5.3 复数的四则运算5.4 复数的几何表示本章小结与复习第六章推理与证明6.1 合情推理和演绎推理6.2 直接证明与间接证明6.3 数系归纳法本章小结与复习选修2——3第七章计数原理7.1 两个计数原理7.2 排列7.3 组合7.4 二项式定理本章小结与复习第八章统计与概率8.1 随机对照试验8.2 概率8.3 正态分布曲线8.4 列联表独立性分析案例8.5 一元线性回归案例本章小结与复习高中沪教版高一上册第一章集合和命题1.1 集合1.2 四种命题的形式1.3 充分条件和必要条件本章小结与复习第二章不等式2.1 不等式的基本性质2.2 一元二次不等式的解法2.3 其他不等式的解法2.4 基本不等式及其运用2.5 不等式的证明本章小结与复习第三章函数的基本性质3.1函数的概念3.2函数关系的建立3.3函数的运算3.4函数的基本性质本章小结与复习第四章幂函数、指函数和对数函数4.1 幂函数的性质和对数函数4.2 指数函数的图像与性质本章小结与复习高一下册第四章幂函数、指函数和对数函数4.1 对数4.2 反函数4.3 对数函数4.4 指数函数和对数函数本章小结与复习第五章三角比5.1 任意角的三角比5.2 三角恒等式5.3 解斜三角形本章小结与复习第六章三角函数6.1 三角函数的图像与性质6.1 反三角函数与最简三角方程本章小结与复习高二上册第七章数列与数学归纳法7.1 数列7.2 数学归纳法7.3 数列的极限本章小结与复习第八章平面向量的坐标表示8.1向量的坐标表示及其运算8.2向量的数量积8.3平面向量的分解定理8.4向量的应用本章小结与复习第九章矩阵和行列式初步9.1 矩阵9.2 行列式本章小结与复习第十章算法初步10.1算法的概念10.2程序框图本章小结与复习高二下册第十一章坐标平面上的直线11.1直线的方程11.2直线的倾斜角和斜率11.3两条直线的位置关系11.4点到直线的距离本章小结与复习第十二章圆锥曲线12.1曲线和方程12.2圆的方程12.3椭圆的标准方程12.4椭圆的性质12.5双曲线的标准方程12.6双曲线的性质12.7抛物线的标准方程12.8抛物线的方程本章小结与复习第十三章复数13.1复数的概念13.2复数的坐标表示13.3复数的加法与减法13.4复数的乘法与除法13.5复数的平方根与立方根13.6实系数一元二次方程本章小结与复习高三上册第十四章空间直线与平面14.1 平面及其基本性质14.2 空间直线与直线的位置关系14.3 空间直线与平面的位置关系14.4 空间平面与平面的位置关系本章小结与复习第十五章简单几何体15.1 多面体的概念15.2 多面体的直观图15.3 旋转体的概念15.4 几何体的表面积15.5 几何体的体积15.6 球面距离本章小结与复习第十六章排列组合和二项式定理16.1技术原理Ⅰ—乘法原理16.2排列16.3技术原理Ⅱ—加法原理16.4组合16.5二项式定理本章小结与复习高三下册第十七章概率论初步17.1古典概念17.2频率与概念本章小结与复习第十八章基本统计方法18.1总体和样本18.2抽样技术18.3统计估计18.4实例分析。

2020年高中数学第一章立体几何初步77.1柱、锥、台的侧面展开与面积课件北师大版必修2

2020年高中数学第一章立体几何初步77.1柱、锥、台的侧面展开与面积课件北师大版必修2

正四棱台 ABCD-A1B1C1D1 的两底面的边 长分别是 4 cm 和 16 cm,高是 12 cm.求这个棱台的侧面积.
解:如图,由题意得 O1M1=12×4=2 cm,
OM=12×16=8 cm,OO1=12 cm.
过点 M1 作 M1N⊥OM 交 OM 于 N 点. 在 Rt△M1NM 中, M1M= M1N2+NM2= 122+8-22=6 5 cm. 即该正四棱台的斜高 h′=6 5 cm.
答案:A
知识点三 组合体的表面积 4.如果一个几何体的三视图如图所示(单位长度:cm),则此 几何体的表面积是( ) A.(20+4 2) cm2 B.21 cm2 C.(24+4 2) cm2 D.24 cm2
解析:此几何体为四棱锥与正方体的组合体.
∴S=2×2×5+4×12×2×
2=20+4
【解】 如图,设正三棱锥底面边长为 a,斜高为 h′,过 O 作 OE⊥AB 于 E,连接 SE,则 SE⊥AB,即 SE=h′.
∵S 侧=2S 底, ∴12·3a·h′=2·43a2,a= 3h′. ∵SO⊥平面 ABC 且 OE 平面 ABC,
∴SO⊥OE,则 OS2+OE2=SE2,
∴32+13× 23a2=h′2,
∴该棱台的侧面积
S


1 2
(c

c′)h′

1 2
×(16

64)×6
5=
240 5 cm2.
已知一个圆锥的底面半径为 R,高为 H,在其中有 一个高为 x 的内接圆柱.
(1)求圆柱的侧面积; (2)x 为何值时,圆柱的侧面积最大?
【解】 (1)圆锥及圆柱的轴截面如图所示,设所求圆柱底面半 径为 r.由截面图可得线段成比例,即Rr =H-H x,

高中数学 第一章 立体几何初步 1.7.1 柱、锥、台的侧面展开与面积课件高一数学课件

高中数学 第一章 立体几何初步 1.7.1 柱、锥、台的侧面展开与面积课件高一数学课件
提示:这三种几何体侧面积之间的关系
12/13/2021
第十五页,共五十八页。
3.如何求简单多面体的侧面积? 提示:(1)关键:找到多面体的特征几何图形,如棱柱中的矩 形,棱台中的直角梯形,棱锥中的直角三角形,它们是联系高与 斜高、侧棱、底面边长间的桥梁,架起了求侧面积公式中未知量 与条件中已知几何元素间的桥梁. (2)策略:①正棱柱、正棱锥、正棱台的所有侧面的面积都相 等,因此求侧面积时,可先求一个侧面的面积,然后乘以侧面的 个数;②解决台体的问题,通常要补上截去的小棱锥,寻找上下 底面之间的关系.
B.100π
C.168π
4 4,母线长为 D.169π
解析:
12/13/2021
第三十五页,共五十八页。
先画轴截面,圆台的轴截面如图,则它的母线长 l= h2+r2-r12
= 4r12+3r12=5r1=10,∴r1=2,r2=8,∴S 侧=π(r2+ r1)l=π×(8+2)×10=100π,S 表=S 侧+πr12+πr22=100π+4π+64π =168π.
12/13/2021
第二十四页,共五十八页。
类型二 锥体的侧面积与表面积 【例 2】 正四棱锥底面边长为 4 cm,高和斜高的夹角为 30°,如图,求正四棱锥的侧面积.
12/13/2021
第二十五页,共五十八页。
【解】 正棱锥的高 PO、斜高 PE、底面边心距 OE 组成 Rt △POE.
∵OE=2 cm,∠OPE=30°, ∴PE=siOn3E0°=4 cm. 因此 S 棱锥侧=12ch′=12×4×4×4=32(cm2).
12/13/2021
第十页,共五十八页。
知识点二 直棱柱、正棱锥、正棱台的侧面积 [填一填]

高中数学第一章立体几何初步7简单几何体的再认识7.1柱、锥、台的侧面展开与面积课件北师大版必修2

高中数学第一章立体几何初步7简单几何体的再认识7.1柱、锥、台的侧面展开与面积课件北师大版必修2
第十六页,共43页。
【自主解答】 设正三棱锥底面边长为 a,斜高为 h′,如图所示,过 O 作 OE⊥AB,连接 SE,则 SE⊥AB,且 SE=h′.
因为 S 侧=2S 底, 所以12×3a×h′= 43a2×2,所以 a= 3h′. 因为 SO⊥OE,所以 SO2+OE2=SE2, 所以 32+ 63× 3h′2=h′2, 所以 h′=2 3,所以 a= 3h′=6,
图 1-7-2
第二十四页,共43页。
【提示】 几何体的表面积为 S=6×22-π×0.52×2+2π×0.5×2=24- 0.5π+2π=24+1.5π.
第二十五页,共43页。
探究 2 一个几何体的三视图如图 1-7-3 所示,请求出该几何体的表面积.
图 1-7-3
第二十六页,共43页。
【提示】 该几何体的直观图如图所示.
【答案】 6+2 3
第四十页,共43页。
5.如图 1-7-7 是一建筑物的三视图(单位:m),现需将其外壁用油漆粉刷一 遍,已知每平方米用漆 0.2 kg,问需要油漆多少千克?(无需求近似值)
图 1-7-7
第四十一页,共43页。
【解】 由三视图知,建筑物为一组合体,自上而下分别是圆锥和正四棱 柱,并且圆锥的底面半径为 3 m,母线长为 5 m,正四棱柱的高为 4 m,底面为 边长为 3 m 的正方形,圆锥的表面积为 πr2+πrl=9π+15π=24π(m2);四棱柱的 一个底面积为 9 m2,正四棱柱的侧面积为 4×4×3=48(m2),所以外壁面积为 24π -9+48=(24π+39)(m2),
大正棱锥侧
小正棱锥侧
=4×12×8×PE-4×12×4×PE1
=4×12×8×4 15-4×12×4×2 15

简单几何体的面积与体积

简单几何体的面积与体积

简单几何体的面积与体积教学目标:1.熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.2.学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题.知识点梳理1.多面体的面积和体积公式名称侧面积(S 侧)全面积(S 全)体 积(V)棱柱直截面周长×lhS h S ⋅=⋅直截面底棱柱直棱柱ch底侧S S 2+h S ⋅底棱锥各侧面积之和棱锥正棱锥'21ch 底侧S S +h S ⋅底31棱台各侧面面积之和棱台正棱台()''21h c c +下底上底侧S S S ++h(S 上底+S 下底+)31下底下底S S ⋅表中表示面积,、分别表示上、下底面周长,表斜高,表示斜高,表示侧棱长.S 'c c h 'h l 2. 旋转体的面积和体积公式名称圆柱圆锥圆台球侧S rl π2rl π()lr r 21+π全S ()r l r +π2()r l r +π()()222121r r l r r +++ππ24R πV(即)h r 2πl r 2πh r 231π()22212131r r r r h ++π334R π表中分别表示母线、高,表示圆柱、圆锥与球冠的底半径,分别表示圆台 上、下底面半径,表示半径.h l ,r 21,r r R 例题讲解题型1:柱体的体积和表面积例1.一个长方体全面积是20cm2,所有棱长的和是24cm ,求长方体的对角线长.评析:几何体的展开与折叠问题是近几年高考的一个热点内容,通过折叠与展开问题,可以很好地考查学生的空间想象能力以及推理能力点评:通过识图、想图、画图的角度考查了空间想象能力考从深层上考查空间想象能力的主要方向BCAA1平面AC中,=。

高中数学8.3 《简单几何体的表面积与体积》基础过关练习题目

高中数学8.3 《简单几何体的表面积与体积》基础过关练习题目

第八章8.3第1课时A级——基础过关练1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A.4πB.3πC.2πD.π【答案】C【解析】底面圆半径为1,高为1,侧面积S=2πrh=2π×1×1=2π.故选C.2.(2020年上海徐汇区月考)一个棱锥被平行于底面的平面所截,截面面积恰好是棱锥底面面积的一半,则截得的小棱锥与原棱锥的高之比是()A.1∶2B.1∶8C.2∶2D.2∶4【答案】C【解析】∵在棱锥中,平行于底面的平面截棱锥所得的截面与底面相似,相似比等于截得的小棱锥与原棱锥对应棱长之比.∵一个棱锥被平行于底面的平面所截截面面积恰好是棱锥底面面积的一半,∴相似比为1∶2=2∶2.则截得的小棱锥与原棱锥的高之比是2∶2.故选C.3.如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于()A.πB.2πC.4πD.8π【答案】B【解析】设圆柱的底面半径为r,则圆柱的母线长为2r,由题意得S圆柱侧=2πr×2r=4πr2=4π,所以r=1,所以V圆柱=πr2×2r=2πr3=2π.故选B.4.(2020年赤峰期末)南北朝时期的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平行平面的任意平面α所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.如图,夹在两个平行平面之间的两个几何体的体积分别为V1,V2,被平行于这两个平面的任意平面截得的两个截面面积分别为S1,S2,则()A.如果S1,S2总相等,则V1=V2B .如果S 1=S 2总相等,则V 1与V 2不一定相等C .如果V 1=V 2,则S 1,S 2总相等D .存在这样一个平面α使S 1=S 2相等,则V 1=V 2【答案】A 【解析】由题意可知如果S 1,S 2总相等,则V 1=V 2.故选A .5.(2020年赤峰期末)用边长分别为2与4的矩形作圆柱的侧面,则这个圆柱的体积为( )A .4πB .6πC .6π或8πD .4π或8π【答案】D 【解析】圆柱的侧面展开图是边长为2与4的矩形,当母线为2时,圆柱的底面半径是42π=2π,此时圆柱体积是π×⎝⎛⎭⎫2π2×2=8π;当母线为4时,圆柱的底面半径是22π=1π,此时圆柱的体积是π×⎝⎛⎭⎫1π2×4=4π.综上,所求圆柱的体积是4π或8π.故选D . 6.如图,ABC -A ′B ′C ′是体积为1的棱柱,则四棱锥C -AA ′B ′B 的体积是________.【答案】23 【解析】因为V C -A ′B ′C ′=13V ABC -A ′B ′C ′=13,所以V C -AA ′B ′B =1-13=23.7.表面积为3π的圆锥,它的侧面展开图是一个半圆面,则该圆锥的底面直径为________. 【答案】2 【解析】设圆锥的母线为l ,圆锥底面半径为r ,由题意可知,πrl +πr 2=3π,且πl =2πr ,解得r =1,即直径为2.8.圆台的上、下底面半径和高的比为1∶4∶4,若母线长为10,则圆台的表面积为________.【答案】168π 【解析】先画轴截面,再利用上、下底面半径和高的比求解.圆台的轴截面如图所示,设上底面半径为r ,下底面半径为R ,则它的母线长为l =h 2+(R -r )2=(4r )2+(3r )2=5r =10,所以r =2,R =8.故S 侧=π(R +r )l =π(8+2)×10=100π,S 表=S 侧+πr 2+πR 2=100π+4π+64π=168π.9.若圆锥的表面积是15π,侧面展开图的圆心角是60°,求圆锥的体积. 解:设圆锥的底面半径为r ,母线为l , 则2πr =13πl ,得l =6r .又S 锥=πr 2+πr ·6r =7πr 2=15π,得r =157, 圆锥的高h =35×157, V =13πr 2h =13π×157×35×157=2537π. 10.在长方体ABCD -A 1B 1C 1D 1中,截下一个棱锥C -A 1DD 1,求棱锥C -A 1DD 1的体积与剩余部分的体积之比.解:已知长方体可以看成直四棱柱,设它的底面ADD 1A 1的面积为S ,高为h ,则它的体积为V =Sh .而棱锥C -A 1DD 1的底面积为12S ,高为h ,故三棱锥C -A 1DD 1的体积VC -A 1DD 1=13·⎝⎛⎭⎫12S h =16Sh , 余下部分体积为Sh -16Sh =56Sh .所以棱锥C -A 1DD 1的体积与剩余部分的体积之比1∶5.B 级——能力提升练11.(2020年株洲期末)《九章算术》卷5《商功》记载一个问题“今有圆堡壔(dǎo),周四丈八尺,高一丈-尺,文积几何?”意思是:今有圆柱形土筑小城堡,底面周长为4丈8尺,高1丈1尺,问它的体积是多少立方尺?这个问题的答案是(π≈3,1丈=10尺)( )A .2 112B .2 111C .4 224D .4 222【答案】A 【解析】由已知,圆柱底面圆的周长为48尺,圆柱的高为11尺,∴底面半径r =482π=8(尺),∴它的体积V =11πr 2=2 112(立方尺).故选A .12.(2020年达州模拟)斗拱是中国古典建筑最富装饰性的构件之一,并为中国所特有.图1和图2是斗拱实物图,图3是斗拱构件之一的“斗”的几何体.本图中的斗是由棱台与长方体形凹槽(长方体去掉一个小长方体)组成.若棱台两底面面积分别是400 cm 2,900 cm 2,高为9 cm ,长方体形凹橹的体积为4 300 cm 3,那么这个斗的体积是( )A .5 700 cm 3B .8 100 cm 3C .10 000 cm 3D .9 000 cm 3【答案】C 【解析】由题意可知这个斗的体积V =13×(400+400×900+900)×9+4300=10 000(cm 3).故选C .13.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有________个面,其棱长为________.【答案】262-1 【解析】依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,因此题中的半正多面体共有26个面.设题中的半正多面体的棱长为x ,则22x +x +22x =1,解得x =2-1,故题中的半正多面体的棱长为2-1.14.用一张正方形的纸把一个棱长为1的正方体礼品盒完全包住,不将纸撕开,则所需纸的最小面积是________.【答案】8 【解析】如图1为棱长为1的正方体礼品盒,先把正方体的表面按图所示方式展开成平面图形,再把平面图形尽可能拼成面积较小的正方形,如图2所示,由图知正方形的边长为22,其面积为8.15.降水量是指水平平面上单位面积降水的深度,现用上口直径为38 cm 、底面直径为24 cm 、深度为35 cm 的圆台形水桶(轴截面如图所示)来测量降水量.如果在一次降雨过程中,此桶盛得的雨水正好是桶深的17,求本次降雨的降水量是多少毫米?(精确到1 mm)解:因为这次降雨的雨水正好是桶深的17,所以水深为17×35=5(cm).如图,设水面半径为r cm ,在△ABC 中,AC A ′C =CB C ′B ,所以7r -12=7,r =13.所以V 水=13×(π×122+π×122×π×132+π×132)×5=2 3453π(cm 3). 水桶的上口面积是S =π×192=361π(cm 2), 所以V 水S =2 3453π361π×10≈22(mm).故此次降雨的降水量约是22 mm.16.已知一个圆锥的底面半径为R ,高为H ,在其内部有一个高为x 的内接圆柱. (1)求圆柱的侧面积;(2)x 为何值时,圆柱的侧面积最大?解:(1)作圆锥的轴截面,如图所示.设圆柱底面半径为r , 因为r R =H -x H ,所以r =R -R H x .所以S 圆柱侧=2πrx =2πRx -2πR Hx 2(0<x <H ). (2)因为-2πR H <0,所以当x =2πR 4πR H=H2时,S 圆柱侧最大.故当x =H2时,即圆柱的高为圆锥高的一半时,圆柱的侧面积最大.C 级——探索创新练17.一个封闭的正三棱柱容器,高为3,内装水若干(如图1,底面处于水平状态).将容器放倒(如图2,一个侧面处于水平状态),这时水面所在的平面与各棱交点E ,F ,F 1,E 1分别为所在棱的中点,则图1中水面的高度为( )A .3B .2C .332D .94【答案】D 【解析】设正三棱柱的底面积为S ,则VABC -A 1B 1C 1=3S .∵E ,F ,F 1,E 1分别为所在棱的中点.∴S AEF S =14,即S AEF =14S .∴S BCEF =34S .∴VBCFE -B 1C 1F 1E 1=3×34S =94S .则图1中水面的高度为94.故选D .。

简单几何体的侧面积、体积

简单几何体的侧面积、体积

S rl 圆锥侧
1 / 正棱锥的侧面积 S ch 正棱锥侧 2
C
h/
A'''
简单几何体的侧面积---棱台、圆台
S ( r r ) l 1 2 圆台侧
r1
l
r2
正棱台的侧面积
1 / / S ( c c) h 正棱台侧 2
E D H A'' B F I G
h/
J
A'' '
简单几何体的侧面积---棱柱、圆柱
r
l
S 2 rl 圆柱侧
2r
二、直棱柱 直棱柱的侧面积 S直棱柱侧= Ch
A'' ' A'' ' A'' ' ' D A'' ' ' ' A'' ' A'
h
A'' ' A'' A'' ' ' A''
简单几何体的侧面积---棱锥、圆锥
l l
l
2rrr2 例3 一个正三棱台的上、下底面边长分别 是3cm和6cm,高是1.5cm,求三棱台的侧面积。
A1
O1
C1
A
27 3 2 cm 2
B1
O B
D1
C D
E
如图,O1,O分别是上、下底的中心, 则OO1= 1.5 ,连结A1O1并延长交B1C1于D1, 连结AO并延长交BC于D, 过 D1作 D E AD 于 E . 1
230.4m C
B
例2.一个容器形如倒置的等边圆锥(母线长 与底面直径相等),如图所示,当所盛水深 是容器高的一半时,将容器倒转,那么水 深是容器高的( )

北师大版必修二数学7.1简单几何体的侧面积

北师大版必修二数学7.1简单几何体的侧面积

安边中学高一年级1学期数学学科导学稿执笔人:王广青总第课时备课组长签字:包级领导签字:学生:上课时间:第周集体备课个人空间一、课题:7.1简单几何体的侧面积二、学习目标1、学会柱、锥、台、球的表面积计算公式,了解有关侧面积公式的推导过程及其主要思想,渗透把有关立体几何问题转化为平面几何问题的数学思想和类比的思想方法。

2、会用公式解决一些实际问题。

三、教学过程【温故知新】思考:在生产建设、科学实验及社会实践中,常常会遇到那些计算物体表面积与体积的问题?【导学释疑】1.填表:柱、锥、台、球的侧面或表面积圆柱S侧= S表=圆锥S侧= S表=圆台S侧= S表=直棱柱S侧= S表=正棱锥S侧= S表=正棱台S侧= S表=球S表=2.探究直棱柱、正棱锥、正棱台的侧面积公式之间的联系与区别。

【巩固提升】1.已知正六棱柱的高为2m,底面边长为3m,求它的表面积。

2.从长方体一个顶点出发的三个面的面积分别为3、4、12,求它的对角线的长。

3.正四棱台的上下两底面边长分别为3、6,其侧面积等于两底面积之和,则其高和斜高分别是多少?【检测反馈】1.若正三棱锥的斜高是高的332倍,则棱锥的侧面积是底面积的( ) A .32倍 B .2倍 C .38倍 D .3倍 2.若圆锥的侧面积展开图是圆心角为0120,半径为L 的扇形,则这个圆锥的表面积与侧面积的比是( )A.3:2B.2:1C.4:3D.5:33. 用长为6,宽为4的 矩形做侧面围成一个圆柱,则此圆柱的轴截面的面积为( )A.π24B. 24C.π12D. π6 【高考延伸】1.一个多面体的三视图如图所示,则此多面体的表面积为2.设计一个正四棱锥形的冷水塔塔顶,高是0.75m,底面边长是2m,制造这种塔顶需要多少平方米的铁板?反思栏。

高中数学 1.7.1 柱、锥、台的侧面展开与面积课件 北师大版必修2

高中数学 1.7.1 柱、锥、台的侧面展开与面积课件 北师大版必修2
第二十五页,共40页。
• 圆锥与圆台(yuántái)的侧面积
圆锥的中截面把圆锥侧面分成两部分,这两部分
侧面积的比为( )
A.1∶1
B.1∶2
C.1∶3
D.1∶4
• [思路分析(fēnxī)] 本题主要考查圆锥的侧面 积和圆台的侧面积,关键是利用比例的关系 求解.
• [答案] C
第二十六页,共40页。
• [规B1F范=(hg′u,īfBàFn=)解12(8答-4])=解2,法1:如图,在 RBt1△B=B81,FB中,
∴B1F= 82-22=2 15, ∴h′=B1F=2 15, ∴S 正棱台侧=12(4×8+4×4)·2 15 =48 15(cm2).
第二十页,共40页。
解法 2:正四棱台的侧棱延长后交于一点 P,设 PB1=x, 则x+x 8=24,得 x=8, ∴PB1=B1B=8. ∴E1 为 PE 的中点, ∴PE1= 82-22=2 15, PE=2PE1=4 15.
母线长.)
第六页,共40页。
• 2.直棱柱、正棱锥、正棱台的侧面积 • S直棱柱侧C=h ________ • (其中C为底面周长(zhōu chánɡ),h为高) • S正棱锥侧12=Ch_′_______________. • (其中C为底面周长(zhōu chánɡ),h′为斜高,
即侧面等腰三角形的高.) • S正棱台侧=12(C_+_C_′_)_h_′__________. • (其中C′,C分别为上、下底面周长(zhōu
第三十八页,共40页。
[错解二] 3 10 因为正四棱台的上、下底面面积分别为 4、16,所以上、下底面的边长分别为 2,4.
根据高、斜高和底面边心距得到的直角三角形,可求得斜 高 h′= 32+4-2 22= 10.

7.1简单几何体的侧面积

7.1简单几何体的侧面积

简单几何体侧面积公式:
S圆柱侧 =2 rl
1 ' ' S圆锥侧 = rl S圆台侧 = (c c )h 2 S圆台侧 = (r1 r2 )l S直棱柱侧 =ch
1 ' S正棱锥侧 = ch 2
检测题: 1. 已知底面为正方形,侧棱长 底边长均为5的四棱锥S-ABCD, 求其侧面积. 2. 若一个圆锥的轴截面是等 边三角形,其面积为 3 ,求 这个圆锥的表面积.
多少?
棱柱、棱锥、棱台的侧面积公式之间 有何关系,如何转化?
上底扩大 上底缩小
S直棱柱=
ch
c’=c
S正棱台=
c’=0
1 2 (c+c’)h’
S正棱锥=
1 2 ch’
动画
3. 一个圆台,上、下底面半径分别 为 10、20,母线与底面的夹角为 60°,求圆台的侧面积.
随堂巩固:
1、圆锥的底面圆半径是3ห้องสมุดไป่ตู้圆锥的 高是4,则圆锥的侧面积是———— 2、正六棱柱的高为h,底面边长为a, 则正六棱柱表面积是————。
作业: 必做题: 课本P45 1、2、3 选做题: 面积为2的菱形,绕其一 边旋转一周 所得几何体的表面积是
7.1 简单几何体的侧面积
学习目标: 掌握简单几何体的侧面积公式, 并会运用.
自学指导: 请认真看课本P43-P45练习前的内 容,注意以下几个方面: 1.结合展开图理解简单几何体的侧面 积公式,并牢记. 2.直棱柱、正棱锥、正棱台侧面积中 的高都是“斜高”吗 ? 3.回答“思考交流”中的问题. 4.学习三道例题如何运用公式的? 8分钟后检测,比谁能用本节知识 做对检测题。

高考理科第一轮课件(7.5空间几何体的面积与体积)

高考理科第一轮课件(7.5空间几何体的面积与体积)

【解析】由三视图可知该几何体是圆锥,其底面圆半径为3,
母线长l=5, ∴S侧= 1 2π×3×5 2 =15π (cm2). 答案:15π
5.如图是一个几何体的三视图,则这个几何体的体积是____.
【解析】由三视图知该几何体为组合体,由一个正四棱锥与一
个正方体叠加构成,其中正方体的棱长为3,正四棱锥的高为 1,底面正方形的边长为3,
名称
侧面展开图形状
侧面展开图
正n 棱台
n个全等的等腰梯形
(2)简单几何体的侧面积 2π rl ①S圆柱侧=_____(r为底面半径,l为侧面母线长). π rl ②S圆锥侧=____(r为底面半径,l为侧面母线长). π (r1+r2)l ③S圆台侧=_________(r1,r2分别为上、下底面半径,l为母线 长). ch ④S直棱柱侧=___(c为底面周长,h为高). 1 ch ⑤S正棱锥侧=_______(c为底面周长,h′为斜高). 2 1 c c h ⑥S正棱台侧=_____________(c′,c分别为上、下底面周长,h′ 2 为斜高).
2.旋转体的表面积的求法
圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将曲面展 为平面图形计算,而表面积是侧面积与底面圆的面积之和. 【提醒】解题中要注意表面积与侧面积的区别,对于组合体的 表面积还应注意重合部分的处理.
【变式训练】(1)一个空间几何体的三视图如图所示,则该 几何体的表面积为(
(A) 48 (C) 8 17 48
)
(B) 8 17 32 (D) 80
【解析】选C.由三视图知几何体的直观图如图所示:
为以四边形ABCD为底面的直四棱柱,且 AB 17, AD=4, BC=2,则其侧面积为 2 4 2 17) 4 24 8 17, 两底面 ( ( 面积为 2 4 2) 4 24,故几何体的表面积为 48 8 17. 2

高中数学简单几何体的面积与体积相关知识点、例题

高中数学简单几何体的面积与体积相关知识点、例题

高中数学简单几何体的面积与体积相关知识点、例题姓名:__________指导:__________日期:__________一、知识要点(一)圆柱、圆锥、圆台的侧面积将侧面沿母线展开在平面上,则其侧面展开图的面积即为侧面面积。

1、圆柱的侧面展开图——矩形圆柱的侧面积2、圆锥的侧面展开图——扇形圆锥的侧面积3、圆台的侧面展开图——扇环圆台的侧面积(二)直棱柱、正棱锥、正棱台的侧面积把侧面沿一条侧棱展开在一个平面上,则侧面展开图的面积就是侧面的面积。

1、柱的侧面展开图——矩形直棱柱的侧面积2、锥的侧面展开图——多个共点三角形正棱锥的侧面积3、正棱台的侧面展开图——多个等腰梯形正棱台的侧面积说明:这个公式实际上是柱体、锥体和台体的侧面积公式的统一形式①即锥体的侧面积公式;②c=c时即柱体的侧面积公式;(三)棱柱和圆柱的体积斜棱柱的体积=直截面的面积×侧棱长(四)棱锥和圆锥的体积(五)棱台和圆台的体积说明:这个公式实际上是柱、锥、台体的体积公式的统一形式:①时即为锥体的体积公式;②S上=S下时即为柱体的体积公式。

(六)球的表面积和体积公式(七)简单的组合几何体的表面积和体积——割补法的应用割——把不规则的组合几何体分割为若干个规则的几何体;补——把不规则的几何体通过添补一个或若干个几何体构造出一个规则的新几何体,如正四面体可以补成一个正方体,如图:二、考点与典型例题考点一几何体的侧面展开图【例1】有一根长为5cm,底面半径为1cm的圆柱形铁管,用一段铁丝在铁管上缠绕4圈,并使铁丝的两个端点落在圆柱的同一母线的两端A、D,则铁丝的最短长度为多少厘米?解:展开后使其成一线段AC=考点二求几何体的面积【例2】设计一个正四棱锥形的冷水塔顶,高是0.85m,底面的边长是1.5m,制造这种塔顶需要多少平方米铁板?(保留两位有效数字)解:答:略。

考点三求几何体的体积【例3】求棱长为的正四面体的体积。

分析:将正四面体通过补形使其成为正方体,然后将正方体的体积减去四个易求体积的小三棱锥的体积。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

r1l r2l (r1 r2)l
例1.一个无上盖圆柱形的锅炉,底面直径 d=1m, 高h=2.3m ,求锅炉的表面积?
(结果保留2个有效数字)
例2
圆台的上下底面半径分别是10cm和20cm,它
的侧面展开图的扇环的圆心角是180°,那么圆 台的侧面积是多少?(结果中保留 )
思考:把直棱柱、正棱锥、正棱台的侧面分
别沿着一条侧棱展开,分别得到什么图形?
h
d
b
h
h
b
a
a
d
S 直 棱 柱 侧= ( a b d ) h ch
h'
h'
1 S正 棱 锥 侧 = ch' 2
C′
h'
1 S正棱台侧= (c c' )h' 2
h'
C
例3:一个正三棱台的上、下底面边长分别是3cm和 6cm,高是3/2cm,求三棱台的侧面积.
7.1 简单几何体的侧面积
r
l
矩形
长= 2r
宽=
l
扇形
l
r
扇环
r1
r2
l
S
在S0A 和S0B 中 ∵
r1l 即 x= r2 - r1
2r1
x
S
扇 环
2r2
扇环
S 大扇形 - S 小扇形
r2(x l ) r1x
r o′ 1
A
l
r2
B
代入x
x(r2 r1 ) r2l
A1
O1 B1 C1 D1 C A O E D B
练习:
1.一个正三棱柱的底面是边长为5的正三角形,侧
棱长为4,则其侧面积为 ______ 答:60 2.正四棱锥底面边长为6 ,高是4,中截面把棱锥截 成一个小棱锥和一个棱台,求棱台的侧面积
答:45
Байду номын сангаас
相关文档
最新文档