6、分式方程

合集下载

讲义6:分式方程

讲义6:分式方程

七年级上:初一数学提高(1)班辅导讲义6:分式方程及整数指数幂姓名______________辅导时间______【知识要点】1、 分式方程:分母中含有未知数的方程。

.解分式方程的基本思想:去分母,把分式方程转化为整式方程解分式方程的一般步骤:(1) 去分母:在原方程的两边同时乘以最简公分母,把分式方程转化成整式方程(2) 解这个整式方程:得到整式方程的根(3) 验根:检验整式方程的根是否为原分式方程的根(把整式方程的根代入最简公分母检验,使最简公分母等于零的根是原方程的增根,必须舍去)(4) 写结论:原方程的根为……,或原方程无解列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。

2、整数指数幂:正整数、0、负整数都可以作指数;幂的有关运算法则依然成立(0和负整数作指数时要求底数不等于0)3、科学计数法的简单应用【基础自测】1、下列方程中是分式方程的是( )A.2413x x +-+ B. 5042x x -+= C. ()34243x x -= D. 142x x +=+ 2、1a =-是下列哪个方程的根?( )A. 21012a a -=++B. 2201a a-=- C. 21012a a +=-+ D. 2212a a =-+ 3、下列运算正确的是( )A. ()224--=B. 2124--=C. 22155x x -=D. ()122xy xy-= 4、下列等式正确的是( )A. ()311--=B. ()()236222-⨯-=C. ()()826555-÷-=-D. ()0241-=5、分式方程5231x x=-的解是______________ 6、 若分式方程()()2815x a a x +=--的解为15x =-,则a =____________; 7、x =1_________(是、不是)方程1111x x x +=--的根8、去分母解关于x 的方程3022x m x x --=--时会产生增根,则m = _______ 9、科学计数法表示:1340000= _________________;0.0001034= __________________10、写出原数:65.7110-⨯=______________;84.0310-⨯=______________; 11、大小比较:24--,20.2-,0133⎛⎫- ⎪⎝⎭,334-⎛⎫ ⎪⎝⎭:___________________________________ 12、用50克盐加水调制成浓度为25%的盐水,需要加水____________克13、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队恰好同时开工同时完工;甲队比乙队每天多安装2台,设乙队每天安装x 台空调,根据题意,可以列出方程为____________【例题选讲】:1、解方程 (1)21211x x =-- (2)3233x x x =+--(3)22254212343x x x x x -=-+-++ (4)23251x x x x x +-=+-2、(1)m 为何值时,关于x 的方程22432x mx x x -+-=+2会产生增根?(2)已知关于x 的方程323-=--x m x x 解为正数,求m 的取值范围.3、计算:(1)()11xy x y --+; (2)()()1122x y x y ----+÷-(3)2110162123733---⎛⎫⎛⎫⎛⎫⎛⎫⋅-+-⋅- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (4)()110111432232---⎡⎤⎡⎤⎛⎫⎛⎫-⨯÷+--⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦4、 应用题:(1)轿车和货车同时从上海出发,轿车行270千米到达南京时,货车才行120千米到达无锡,如果轿车每小时比货车多行50千米,那么求轿车的速度(2)一个分数的分母比它的分子大5;如果这个分数的分子加上14,分母减去1,那么所得的分数为原分数的倒数,去这个分数(3)某文具厂加工一种学生画图工具2500套,在加工了1000套后,采用了新技术,使每天的工作效率提高到原来的1.5倍,结果提前5天完成任务。

2014中考总复习第6讲一元一次方程与分式方程

2014中考总复习第6讲一元一次方程与分式方程

第一部分
复习目标
知识回顾
重点解析
探究拓展
真题演练
一、一元一次方程和分式方程的有关概念 1. 一元一次方程: 只含有 这样的方程叫做一元一次方程. 一元一次方程的一般形式为 2. 分式方程: 分母中含有 二、等式的性质 1. 性质 1 等式两边加( 或减) a± c= . , 结果仍相等. 用式子表示: 如果 a=b, 那么 . 的方程叫做分式方程. 未知数( 元) , 并且含有未知数的项的次数是 ,
第一部分
复习目标
2. 性质 2 等式两边乘 ac=
知识回顾
重点解析
探究拓展
真题演练
或除以 ( c≠0) .
, 结果仍相等. 用式子表示: 如果 a=b, 那么
c ; 如果 a=b, 那么 a =
三、解一元一次方程的一般步骤 1. 2. 3.
: 在方程两边都乘以各分母的最小公倍数, 注意别漏乘; : 注意括号前的系数与符号; : 把含有未知数的项移到方程的一边, 其他项移到方程的另一边, 注意移项要
第一部分
复习目标
知识回顾
重点解析
探究拓展
真题演练
9. (2013·三明中考)兴发服装店老板用 4 500 元购进一批某款 T 恤衫, 由于深受顾 客喜爱, 很快售完, 老板又用 4 950 元购进第二批该款式 T 恤衫, 所购数量与第一批 相同, 但每件进价比第一批多了 9 元. ( 1) 第一批该款式 T 恤衫每件进价是多少元?
=0,
则原方程可化为 y2- 2 y+ 2 =0, 解得 y=1 或 y= 2 , 若 若
x2 1 y=1, 则 x =1, 此方程无实数解;
5 y= 2
5
5
5

八年级数学分式方程

八年级数学分式方程

工程优化问题
通过设定工程目标函数和 约束条件,建立分式方程 求解最优方案或最大效益。
行程问题
相遇问题
根据两物体相对运动的速 度、时间和距离,建立分 式方程求解相遇时间或相 对速度。
追及问题
根据两物体同向运动的速 度、时间和距离,建立分 式方程求解追及时间或速 度差。
航行问题
根据船在静水和流水中的 速度、时间和距离,建立 分式方程求解船速、水速 或航行时间。
预测未来情况
通过建立分式方程模型并求解,可以预测未来某些情况的 发生或变化趋势,为决策提供依据。
实际问题中分式方程解的意义
1 2
解释现象
通过求解分式方程得到的解可以解释实际问题的 现象或结果,如相遇时间、工作效率等。
指导实践
根据分式方程的解可以指导实践操作或决策制定, 如合理安排工作时间、选择最佳方案等。
利用高次方程的判别式,判断方程的根的情况,从而求解方程。
多元分式方程组解法
消元法
通过消去一个或多个未知数,将多元分式方程组转化为一元或低 元方程求解。
代入法
将一个方程的解代入另一个方程,逐步求解出所有未知数的值。
整体法
将方程组中的某些项看作一个整体,通过整体代入或整体消元的 方法求解方程组。
分式方程与函数关系探讨
分式函数定义域与值域
分析分式函数的定义域和值域,理解函数的基本性质。
分式函数图像与性质
通过绘制分式函数的图像,探讨函数的单调性、奇偶性等性质。
分式方程与函数零点
利用分式方程的解,确定分式函数的零点,进一步分析函数的性质。
分式方程在数学竞赛中应用
复杂分式方程求解
在数学竞赛中,常常遇到复杂的分式方程,需要灵活运用各种方法求解。

初中数学之分式方程知识点汇总

初中数学之分式方程知识点汇总

初中数学之分式方程知识点汇总
分式方程的概念
分母中含有未知数的方程叫分式方程.
要点诠释:
(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.
(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.
(3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 初中数学分式方程的解法
解分式方程的基本思想:将分式方程转化为整式方程,转化方法是方程两边都乘以最简公分母,去掉分母。

在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根。

因为解分式方程时可能产生增根,所以解分式方程时必须验根。

解分式方程的一般步骤:
(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);
(2)解这个整式方程,求出整式方程的解;
(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.。

解方程的6个公式

解方程的6个公式

解方程的6个公式方程是数学中的一个基本概念,是指包含未知量的等式。

解方程是求解未知量的过程,是数学学习中的重要内容。

下面将介绍解方程的6个公式及其详细解释。

1. 一元一次方程一元一次方程是最基本的方程,形式为ax+b=c,其中a、b、c均为已知数,x为未知数。

其解法为:将方程两边减去b,得ax=c-b。

将方程两边除以a,得x=(c-b)/a。

特别地,若a=0,则b=c的情况下,方程有无数解;若a=0,b≠c的情况下,方程无解。

2. 一元二次方程一元二次方程是一个二次函数,形式为ax²+bx+c=0,其中a≠0,a、b、c 均为已知数,x为未知数。

其解法为:利用求根公式,令Δ=b²-4ac,x1=(-b+√Δ)/2a,x2=(-b-√Δ)/2a。

特别地,若Δ=0,则方程有两个相等的根;若Δ>0,则方程有两个不相等的实数根;若Δ<0,则方程有两个共轭复数根。

3. 二元一次方程二元一次方程有两个未知数,可以写为ax+by=c,dx+ey=f,其中a、b、c、d、e、f均为已知数,x、y为未知数。

其解法为:将上式中第一个方程的x消去,得到y=(cf-be)/(ae-bd)。

将上式中第二个方程的x消去,得到y=(af-cd)/(ae-bd)。

4. 多项式方程多项式方程是指包含多个项的方程,可表示为a0+a1x+a2x²+…+an-1x^n=0,其中ai为常数,n为方程的次数,x为未知数。

其解法为:实数情况下,可以采用根据方程次数和系数求解的方法。

另一种解法是复数情况下的代数方法,即使用复数根的概念求解。

5. 分式方程分式方程是含有分式的方程,可表示为f(x)/g(x)=a,其中f(x)、g(x)为多项式,x为未知数,a为已知数。

其解法为:将等式两边乘以g(x),得到f(x)=ag(x)。

将方程变形为f(x)-ag(x)=0。

将上式进行因式分解,得到[f(x)-ag(x)]/[g(x)]×[g(x)]/[g(x)-ag(x)]=0。

第6讲分式方程(讲义)解析版

第6讲分式方程(讲义)解析版

第6讲分式方程模块一:分式方程及其解法知识精讲1、分式方程的概念分母中含有未知数的方程叫做分式方程.2、解分式方程的方法通过去分母把分式方程转化为整式方程,再求解.3、增根的概念分式方程在化整式方程求解过程中,整式方程的解如果使得分式方程中的分母为0,那么这个解就是方程的增根.4、解分式方程的一般步骤(1)方程两边都乘以最简公分母,去分母,化成整式方程;(2)解这个整式方程,求出整式方程的根;(3)检验.有两种方法:①将求得的整式方程的根代入最简公分母,如果最简公分母等于0,则这个根为增根,方程无解;如果最简公分母不等于0,则这个根为原方程的根,从而解出原方程的解;②直接代入原方程中,看其是否成立.如果成立,则这个根为原方程的根,从而解出原方程的解;如果不成立,则这个根为增根,方程无解.5、分式方程组的概念由两个或两个以上的分式方程构成的方程组叫做分式方程组.6、解分式方程组的方法找出分式方程组中相同的分式进行换元,将分式方程组转化为整式方程组,解方程组,然后进行检验.例题解析例1.(1)下列方程中,是分式方程的为( )A .12x -=B 1=C 10-=D 1=【答案】C【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.【详解】A. 是整式方程,故选项错误;B. 是整式方程,故选项错误;分母中含有未知数x ,所以是分式方程,故选项正确;D. 是整式方程,故选项错误.故选C.【点睛】此题考查分式方程的判定,掌握分式方程的定义是解题的关键.(2)在3253x +=;11(1)(1)432x x ++-=;21x -=;2371x x x ++=-;1(37)x x-中,分式方程有().A .1个B .2个C .3个D .4个【难度】★【答案】B【解析】根据分式方程的定义,分母中含有未知数的方程是分式方程,(1)(2)两个方程分 母中不含未知数,(5)不是方程,(3)(4)满足定义,故选B .【总结】考查分式方程的定义,注意前提是方程,且方程分母中必含有字母.例2.(1)用换元法解分式方程251x x +21x x+-+1=0,如果设21x x +=y ,那么原方程可以化为( )A .2+y y -5=0B .2y -5y+1=0C .25y y 10++=D .25y 10y +-=【答案】D【分析】直接把21xx +换成y ,整理即可.【详解】解:设21xy x =+,则原方程化为1510y y -+=,去分母得,25y 10y +-=,故选:D .【点睛】本题考查的是换元法解分式方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.(2).用换元法解方程221165380x x x x æöæö+++-=ç÷ç÷èøèø,设1y x x =+,则方程变为()A .265380y y +-=B .265400y y +-=C .265260y y +-=D .265500y y +-=【难度】★【答案】D【解析】1y x x =+,则有22221122x x y x x æö+=+-=-ç÷èø,原方程即为()2625380y y -+-=,展开整理即为265500y y +-=,故选D .【总结】考查分式方程中换元法的应用,注意含有未知数部分的恒等变形转化.例3.分式方程2227381x x x x x +=+--的最简公分母是____________.【难度】★【答案】3x x -.【解析】分式方程中三个分母位置上分别为2x x +,2x x -,21x -,分解因式的结果分别为()1x x +,()1x x -,()()11x x +-,由此可得方程的最简公分母为()()311x x x x x +-=-.【总结】考查分式方程的最简公分母,将每个分母因式分解,取相同因式的最高次数乘积即为分式方程的最简公分母.例4.直接写出下列分式方程的根:(1)11211x x x -=---:_________________;(2)11111x x x -=---:_________________;(3)2121x x -=-:_________________;(4)2111x x -=-:_________________.【难度】★【答案】(1)2x =;(2)无解;(3)无解;(4)0x =.【解析】(1)根据等式性质,两边同时加上分式部分,即得2x =, 检验得2x =是原分式方程的根;(2)根据等式性质,两边同时加上分式部分,即得1x =,检验得1x =为方程的增根, 即方程无解;(3)约分得12x +=,解得1x =,检验得1x =为方程的增根,即方程无解;(4)约分得11x +=,解得0x =,检验得0x =是原分式方程的根.【总结】考查根据等式的性质求解简单的分式方程,注意求解结果是否是增根.例5.解方程:(1)3363142x x -=-+;(2)43252x xx x =++;(3)23312222x x x x x ++=--+-.【难度】★★【答案】(1)123x =,29x =-;(2)10x =,267x =-;(3)无解.【解析】(1)方程两边同乘()()43123x x -+,得()()()()42312831x x x x +--+=-,整理得2325180x x +-=,解得123x =,29x =-,经检验,123x =,29x =-都是原方程的根;(2)方程两边同乘()()3252x x ++,得()()52432x x x x +=+,整理得2760x x +=,解得:10x =,267x =-,经检验,10x =,267x =-都是原方程的根;(3)方程两边同乘()()212x x +-,得()()()63221x x x ++-=+,整理得220x x --=,解得:11x =-,22x =,经检验,11x =-,22x =都是原方程的增根,即原方程无解.例6.解方程:(1)2213211x x x x -=+--; (2)24221422x x x x =++--+;(3)23211214124x x x x++=+--.【难度】★★【答案】(1)13x =-;(2)6x =;(3)54x =.【解析】(1)方程两边同乘21x -,得()221213x x x x +=-+-,整理得23210x x --=, 解得:113x =-,21x =,经检验,21x =是原方程的增根,即原方程的根为13x =-;(2)方程两边同乘24x -,得()()2442222x x x x =--++-,整理得24120x x --=,解得:16x =,22x =-,经检验,22x =-是原方程的增根,即原方程的根为6x =;(3)两边同乘()2241x -,得()()()2621421241x x x x -+-+=-,整理得281450x x -+=,解得:112x =,254x =,经检验,112x =是原方程的增根,即原方程的根为54x =.【总结】考查分式方程的解法,注意检验所求是否为增根.例7.已知关于x 的方程22312x m x x x +-=-+-有增根,求m 的值.【难度】★★【答案】12m =或3m =.【解析】分式方程两边同乘22x x +-,得()223x m +=-,分式方程有增根,由220x x +-=,解得:11x =,22x =-,即为原分式方程的增根,代入相应整式方程得39m -=或30m -=,解得12m =或3m =.【总结】考查分式方程的增根,代入相应的整式方程可使得方程成立且使得分式分母为0的未知数的值.例8.已知关于x 的方程7155x m xx x--=---无解,求m 的值.【难度】★★【答案】3m =.【解析】分式方程两边同乘5x -,得()75x x m x -=---,整理解得:2x m =+,因为原分式方程无解,则相应解应为分式方程的增根,即得25x m =+=,解得3m =.【总结】考查分式方程的无解,即由相应整式方程求得的解是分式方程的增根.例9.已知关于x 的方程301a xx +-=+的根是负数,求a 的取值范围.【难度】★★【答案】3a <且1a ≠.【解析】分式方程两边同乘1x +,得()310a x x +-+=,整理解得:32a x -=,方程的根是 负数,则有302a x -=<,得3a <,同时分式方程的根不能为相应增根,即312a x -=≠-, 得1a ≠,由此即得3a <且1a ≠.【总结】考查分式方程的解满足条件的求解,注意方程的解不能为相应的增根.例10.解方程:(1)2220383x x x x+-=+;(2)2191502x x x x æöæö+-++=ç÷ç÷èøèø.【难度】★★【答案】(1)15x =-,22x =,31x =-,42x =-;(2)11x =,22x =,312x =.【解析】(1)令23x x a +=,原方程即为208a a-=,两边同乘a 整理得28200a a --=,解得:110a =,22a =-;由2310x x +=,解得:15x =-,22x =;由232x x +=-,解得:11x =-,22x =-;经检验,15x =-,22x =,31x =-,42x =-都是原方程的根;(2)令1x a x +=,原方程即为29502a a -+=,解得12a =,252a =;由12x x+=,整理得2210x x -+=,解得:121x x ==;由152x x +=,整理得22520x x -+=,解得12x =,212x =;经检验,11x =,22x =,312x =都是原方程的根.【总结】考查用换元法求解具有特殊形式的分式方程,注意对方法的总结.例11.解方程:(1)225(16(1)1711x x x x +++=++);(2)2216104()933x x x x+=-.【难度】★★【答案】(1)1x =2x =(2)13x =,23x =,32x =-,46x =.【解析】(1)令211x a x +=+,原方程即为6517a a +=,两边同乘a 整理得251760a a -+=,解得:125a =,23a =;由21215x x +=+,整理得25230x x -+=,方程无解;由2131x x +=+,整理得2320x x --=,解得:1x 2x =经检验,1x =2x = (2)令43x a x -=,则有2222164889333x x a x x æö+=-+=+ç÷èø,原方程即为281033a a +=,整理得231080a a -+=,解得:12a =,243a =;由423x x-=,整理得26120x x --=,解得:13x =,23x =;由4433x x -=,整理得24120x x --=,解得:12x =-,26x =;经检验,13x =+23x =-,32x =-,46x =都是原方程的根.【总结】考查用换元法求解有特殊形式的分式方程.例12.解方程组:(1)413538x y x y x y x y ì+=ï+-ïíï-=ï+-î;(2)132013251x y x y ì+=ï-ïíï-=-ï-î.【难度】★★【答案】(1)01x y =ìí=î;(2)565x y =ìïí=ïî.【解析】(1)令1a x y =+,1b x y =-,原方程组即为43538a b a b +=ìí-=î,解得:11a b =ìí=-î,由此可得11x y =+,11x y =--,由此得11x y x y +=ìí-=-î,解得:01x y =ìí=î,经检验,01x y =ìí=î是原分式方程的根;(2)令11a y =-,原方程组即为320235x a x a +=ìí-=-î,解得:55x a =ìí=î,由此可得:151y =-, 解得:65y =, ∴565x y =ìïí=ïî, 经检验,565x y =ìïí=ïî是原分式方程的根.【总结】考查利用换元法求分式方程组的解,注意解完之后要检验.例13.解方程组:(1)253489156x x x x +=+++++;(2)11212736x x x x x x ++-=-++++.【难度】★★【答案】(1)16x =,2334x =-;(2)92x =-.【解析】(1)对分式方程移项通分得()()()()()()()()21538495681569x x x x x x x x +-++-+=++++,展开即得2266231201554x x x x x x -+-+=++++,由此即得60x -+=或22231201554x x x x ++=++,解得:16x =,2334x =-, 经检验,16x =,2334x =-都是原分式方程的根; (2)对分式方程变形得1111112736x x x x --=--++++,由此得11112736x x x x +=+++++,两边分别通分即得222929914918x x x x x x ++=++++, 两边分母不同,则必有290x +=,解得92x =-,经检验,92x =-是原分式方程的根.【总结】考查特殊形式分式方程的解法,注意相应分母的关系,分组两边分别通分计算.例14.解方程:226205x x +-=+.【难度】★★【答案】11x =,21x =-.【解析】令25x a +=,则有25x a =-,原方程即为6520a a+--=,两边同乘a 整理,得2760a a -+=,解得:11a =,26a =;由251x +=,方程无解; 由256x +=,解得:11x =,21x =-;经检验,11x =,21x =-都是原方程的根.【总结】考查用换元法解分式方程,注意取值范围和增根.例15.a 为何值时,关于x 的方程211a a x +=+无解?【难度】★★【答案】12a =-或0a =.【解析】分式方程两边同乘1x +,得:()211a a x +=+,展开移项得1ax a =+,当0a =时,方程无解; 当0a ≠时,1a x a +=,方程无解,即得11a x a+==-,解得12a =-;综上,12a =-或0a =.【总结】考查分式方程的无解,即由相应整式方程求得的解是分式方程的增根,注意考虑未知项系数为0的情况.例16.已知关于x 的方程222022x x x k x x x x-+++=--只有一个解,求k 的值及这个解.【难度】★★★【答案】72k =-时,1212x x ==或4k =-时,1x =或8k =-时,1x =-.【解析】方程两边同乘22x x -,得()22220x x x k +-++=,展开整理得:22240x x k -++=,分式方程可能产生增根,即当相应整式方程有两解时,分式方程仅有一解,由此需进行 分类讨论:①当整式方程有两相等实数根时,()()224240k ∆=--⨯+=,解得:72k =-,此时方程为212202x x -+=,解得:1212x x ==,此时分式方程只有一个解,符合题意;②当整式方程有一根为分式方程增根0x =时,此时有40k +=,解得:4k =-,此时方程为2220x x -=,解得:10x =,21x =,此时分式方程只有一个解1x =,符合题意;③当整式方程有一根为分式方程增根2x =时,此时有2222240k ⨯-⨯++=,解得:8k =-,此时方程为22240x x --=,解得:12x =,21x =-,此时分式方程只有一个解1x =-,符合题意; 综上,72k =-或4k =-或8k =-.【总结】考查分式方程只有一个解的情况,方程为二次方程时,注意包含方程有一个根为分式方程的增根的情形.例17.解关于x 的方程:22112(3()1x x x x+-+= 【难度】★★★【答案】12x =,212x =.【解析】令1x a x +=,则有22221122x x a x x æö+=+-=-ç÷èø,原方程即为()22231a a --=,展开整理得22350a a --=,解得:11a =-,252a =;由11x x+=-,整理得210x x ++=,方程无解;由152x x +=,整理得22520x x -+=,解得:12x =,212x =; 经检验,12x =,212x =都是原方程的根.【总结】考查用换元法求解有特殊形式的分式方程,注意解完之后进行检验.例18.解关于x 的方程()()450b x a xa b b x a x+-=-+≠+-.【难度】★★★【答案】12a b x -=,245a bx -=.【解析】令a x kb x -=+,原方程即为45k k=-,两边同乘k 整理,得2540k k -+=,解得:11k =,24k =; 由1a x b x -=+,又0a b +≠,可解得:2a bx -=;由4a x b x -=+,又0a b +≠,可解得:45a bx -=;经检验,12a b x -=,245a bx -=都是原方程的根.【总结】考查用换元法求解有特殊形式的分式方程.例19.已知方程22222(1)21()x ax a a x a +-++=+有实数根,求实数a 的取值范围.【难度】★★★【答案】1122a -≤≤且0a ≠.【解析】展开得()()22222222121x ax a ax a a x a +--+++=+,根据等式性质移项得()()222220x ax a ax x a +-+=+,即为()20x a x a x a ⎡⎤+-=⎢⎥+⎣⎦,由此得()0xa x a x a+-=+, 移项得()2a x a x +=,展开整理得()223210ax a x a +-+=,当0a =时,方程有实数根0x =是分式方程的增根,应舍去;当0a ≠时,方程为一元二次方程,此时根据韦达定理可得2122112a x x a a a-+=-=-,可知1x 、2x 不可能同时为a -,分式方程有实数根,则相应的整式方程应满足()2232214410a a a a ∆=--⋅=-+≥,得1122a -≤≤;综上,实数a 的取值范围为:1122a -≤≤且0a ≠.【总结】考查分式方程有实数根的情形,对分式方程整理变形满足相应的条件即可.模块二分式方程应用题知识精讲1、列方程(组)解应用题时,如何找“相等关系”(1)利用题目中的关键语句寻找相等关系;(2)利用公式、定理寻找相等关系;(3)从生活、生产实际经验中寻找相等关系.例题解析例1.要在规定日期内完成一项工程,如甲队单独做,刚好按期完成;如乙队单独做,则要超过规定时间3天才能完成;甲、乙两队合作2天,剩下的工程由乙队单独做,则刚好按期完成.那么求规定日期为x天的方程是().A.2213xx x-+=+B.233x x=+C.2213xx x++=+D.213xx x+=+【难度】★【答案】D【解析】设工作总量为“1”,则甲工作量+乙工作量=1,根据工作总量=工作效率×工作天数,乙工作天数为x天,由此可知选D.【总结】考查工程问题中的单位“1”,注意分清对应的工作效率和工作时间.例2.某车间加工300个零件,在加工80个以后,改进了操作方法,每天能多加工15个,一共用6天完成了任务.如果设改进操作后每天加工x个零件,那么下列根据题意列出的方程中,错误的是()A.8030080615x x-+=-B.30080615x-=-C.80(6)8030015xx-+=-D.8015300806xx-=--【难度】★【答案】B 【解析】略【总结】考查根据题意列方程的应用,根据工作量和工作效率、工作时间之间的相互关系进行列方程的应用.例3.甲、乙两个工程队合做一项工程,6天可以完成.如果单独工作,甲队比乙队少用5天完成.两队单独工作各需多少天完成?【难度】★★【答案】甲单独需10天完成,乙单独需15天完成.【解析】设甲单独需用x天完成,则乙单独需用()5x+天完成,依题意可得11615x xæö+=ç÷+èø,整理得27300x x--=,解得:13x=-,210x=,经检验,13x=-,210x=都是原方程的根,但13x=-不合题意应舍去,即得10x=,即甲单独需10天完成,乙单独需10515+=天完成.【总结】考查工程问题中的列方程解应用题,把工作总量当作单位“1”解题.例4.登山比赛时,小明上山时的速度为a米/分,下山的速度是b米/分,已知上山和下山的路径是一样的,求小明在全程中的平均速度?【难度】★★【答案】2aba b+.【解析】设小明上山的路程为sm,则整个过程中小明总行程为2sm,根据平均速度=总行程÷总时间,即得平均速度22s abvs s a ba b==++.【总结】考查平均速度的求取,平均速度==总行程÷总时间,与行程远近无关,注意平均速度的求法.例5.甲、乙两人分别从相距9千米的A、B两地同时出发,相向而行,1小时后相遇.相遇后,各自继续以原有的速度前进,已知甲到B地比乙到A地早27分钟,求两人的速度各是多少?【难度】★★★【答案】甲速度为5/km h,乙速度为4/km h.【解析】设甲速度为/xkm h,则乙速度为()9/x km h-,927min20h=,依题意可得999920x x-=-,整理得2311800x x+-=,解得:136x=-,25x=,经检验,136x=-,25x=都是原方程的根,但136x=-不合题意应舍去,即得5x=,即甲速度为5/km h,乙速度为954/km h-=.【总结】考查行程问题中的列方程解应用题,根据相遇问题的基本关系一个条件作设一个条件列式进行求解.例6.甲、乙两辆车同时从A地出发开往距A地240千米的B地,结果甲车比乙车早到了60分钟;第二次,乙车提速30千米/时,结果比甲车早到了20分钟,求第一次甲、乙两车的速度各是多少?【难度】★★★【答案】甲速度为80/km h,乙速度为60/km h.【解析】设甲车xh到达B地,60min1h=,120min3h=,依题意可得24024030113xx-=+-,整理得232330x x+-=,解得1113x=-,23x=,经检验,111 3x=-,23x=都是原方程的根,但111 3x=-不合题意应舍去,即得3x=,可得甲速度为24080/3km h=,乙速度为24060/31km h=+.【总结】考查行程问题中的列方程解应用题,根据行程问题的基本等量关系一个条件作设一个条件列式进行求解,注意本题中用时间作设速度列式解题更方便.例7.某服装厂接到一宗生产13万套衣服的业务,在生产了4万套后,接到了买方急需货物的通知,为满足买方的要求,该厂改进了操作方法,每月能多生产1万套,一共5个月完成了这宗业务.求改进操作方案后每月能生产多少万套衣服?【难度】★★★【答案】3万套.【解析】设改进操作方案后每月能生产x 万套衣服,则改进之前每月生产()1x -万套,依题意可得413451x x -+=-,整理得251890x x -+=,解得:135x =,23x =,经检验,135x =,23x =都是原方程的根,但135x =不合题意应舍去,即得:3x =,即改进操作方案后每月能生产3万套衣服.【总结】考查工作总量问题,一个条件作设一个条件列式进行求解.随堂检测1.已知方程:(1)2412x x -=-;(2)221x x =-;(3)11x x x æö-=ç÷èø;(43x -=,其中是分式方程的有_____________.【难度】★【答案】(1)、(2)、(3).【解析】根据分式方程的定义,分母中含有未知数的方程是分式方程,(1)、(2)、(3)满足 条件,(4)方程中不含有分式,故答案为(1)、(2)、(3).【总结】考查分式方程的定义,注意前提是方程,且方程分母中必含有字母.2.当x 取何值时,分式方程1112x x x +=--的最简公分母的值等于0?【难度】★【答案】1x =或2x =.【解析】分式方程的最简公分母为()()12x x --,最简公分母值为0,即()()120x x --=,解得:1x =或2x =.【总结】考查分式方程的最简公分母,将每个分母因式分解,取相同因式的最高次数乘积即为分式方程的最简公分母.3.分式方程22228(2)331112x x x x x x +-+=-+,如果设2221x xy x +=-,那么原方程可以化为关于y 的整式方程为 .【难度】★【答案】281130y y -+=.【解析】2221x x y x +=-,则有22112x x x y-=+,原方程即为3811y y +=,整理化作关于y 的整式方 程即为281130y y -+=.【总结】考查利用换元法对复杂形式的分式方程进行转化,注意最终要化成整式方程的形式.4.解方程:(1)26531111x x x x =++--+;(2)22161242x x x x +-=--+; (3)243455121760x x x x x x --+=---+.【难度】★★【答案】(1)9x =;(2)5x =-;(3)12x =,29x =.【解析】(1)方程两边同乘21x -,得()()2615131x x x x =--++-,整理得2890x x --=,解得:11x =-,29x =,经检验,11x =-是原方程的增根,即原方程的根为9x =;(2)方程两边同乘24x -,得()22162x x +-=-,整理得23100x x +-=,解得:12x =,25x =-,经检验,12x =是原方程的增根,即原方程的根为5x =-;(3)两边同乘21760x x -+,得()()()4123545x x x x ----=-,整理得211180x x -+=,解得“”12x =,29x =,经检验,12x =,29x =都是原方程的根.【总结】考查分式方程的解法,注意检验所求是否为增根.5.解方程:221313x x x x ++=+.【难度】★★【答案】11x =,21x =+.【解析】令1x a x =+,原方程即为2133a a +=,整理即为231060a a -+=,解得:1a =2a =由1x x =+,解得:1x =;由1x x =+,解得:1x =+经检验11x =,21x =【总结】考查利用换元法解分式方程.6.解方程组311332412463324x y x y x y y x ì+=ï+-ïíï-=ï+-î【难度】★★【答案】1011711x y ì=ïïíï=ïî.【解析】令132a x y =+,14b x y =-,原方程组即为13312463a b a b ì+=ïíï+=î,解得:1413a b ì=ïïíï=ïî,由此可得113241143x y x y ì=ï+ïíï=ï-î, 去分母得32443x y x y +=ìí-=î,解得:1011711x y ì=ïïíï=ïî,经检验,1011711x y ì=ïïíï=ïî是原分式方程的根.【总结】考查用换元法解有特殊形式的分式方程组,注意验根.7.若分式方程22111x m x x x x x++-=++产生增根,求m 的值.【难度】★★【答案】2m =-或1m =.【解析】方程两边同乘2x x +,得()()22211x m x -+=+,展开整理得2220x x m ---=,分式方程产生增根,即当相应整式方程有两解时,分式方程仅有一解,由此需进行分类 讨论:①整式方程有一根为分式方程增根0x =时,此时有20m --=,解得:2m =-;②整式方程有一根为分式方程增根1x =-时,此时有()()212120m --⨯---=,解得:1m =;综上,2m =-或1m =.【总结】考查分式方程有增根的情况,即对应的整式方程有一个根为分式方程的增根.8.甲、乙两地间铁路长400千米,现将火车的行驶速度每小时比原来提高了45千米,因此,火车由甲地到乙地的行驶时间缩短了2小时.求火车原来的速度.【难度】★★【答案】75/km h .【解析】设火车原来的速度为/xkm h ,依题意可得400400245x x -=+,整理得24590000x x +-=,解得:1120x =-,275x =,经检验,1120x =-,275x =都是原方程的根,但1120x =-不合题意应舍去,即得75x =,即可得火车原来速度为75/km h .【总结】考查行程问题中的列方程解应用题,根据行程问题的基本等量关系一个条件作设一个条件列式进行求解.9.某市为了美化环境,计划在一定的时间内完成绿化面积200万亩的任务,后来市政府调整了原定计划,不但绿化面积要在原计划的基础上增加20%,而且要提前1年完成任务.经测算,要完成新的计划,平均每年的绿化面积必须比原计划多20万亩,求原计划平均每年的绿化面积.【难度】★★★【答案】原计划平均每年绿化面积40万亩.【解析】设原计划平均每年的绿化面积为x 万亩,则新计划每年()20x +万亩,依题意可得()200120%200120x x ⨯+-=+,整理得26040000x x +-=,解得:1100x =-,240x =,经检验,1100x =-,240x =都是原方程的根,但1100x =-不合题意应舍去,即得40x =,即原计划平均每年的绿化面积为40万亩.【总结】考查工作量的问题,根据相应的等量关系式列方程求解.10.解方程:221114(4)12()12433x x x -=-++.【难度】★★★【答案】11x =+,21x =,33x =+,43x =【解析】方程两边同乘12展开得22364881616x x x x-+=--+,根据等式的性质移项变形得2668120x x x x æöæö---+=ç÷ç÷èøèø,因式分解得:66260x x x x æöæö----=ç÷ç÷èøèø,由此可得620x x --=或660x x --=;由620x x--=,整理得2260x x --=,解得:11x =+21x =-;由660x x --=,整理得2660x x --=,解得:13x =+23x =经检验,11x =21x =-33x =43x =-都是原方程的根.【总结】考查用整体思想先对分式方程变形,然后求解分式方程的根,注意对方法的总结.11.解方程:596841922119968x x x x x x x x ----+=+----.【难度】★★★【答案】12314x =.【解析】对分式方程变形得1155514219968x x x x -++=++-----,根据等式的性质可变形得115519986x x x x -=-----,两边分别通分即得221010281711448x x x x =-+-+,由此可得22281711448x x x x -+=-+, 解得:12314x =,经检验,12314x =是原分式方程的根.【总结】考查特殊形式分式方程的解法,注意相应分母的关系,分组两边分别通分计算.12.已知关于x 的方程21221232a a x x x x ++=---+有增根,求a .【难度】★★★【答案】32a =-或2a =-.【解析】方程两边同乘232x x -+,得()2122x a x a -+-=+,展开整理得()134a x a +=+,当10a +≠,即1a ≠-时,得341a x a +=+,分式方程可能产生增根,由此进行分类讨论:①整式方程根为分式方程增根1x =时,此时有3411a a +=+,解得32a =-;②整式方程有一根为分式方程增根2x =时,此时有3421a a +=+,解得2a =-;综上,32a =-或2a =-.【总结】考查分式方程有增根的情况,即对应的整式方程根为分式方程的增根.13.已知:关于x 的方程227()72120a a x x a x x+--++=只有一个实数根,求a .【难度】★★★【答案】94a =或4a =.【解析】整理原方程得27120a a x x x x æöæö+-++=ç÷ç÷èøèø,因式分解得340a a x x x x æöæö+-+-=ç÷ç÷èøèø,由此可得30a x x +-=或40a x x +-=,分别整理得:230x x a -+=和240x x a -+=,两方程根的判别式分别为194a ∆=-,2164a ∆=-.因为方程仅有一实数根,所以940a -=或1640a -=,解得:94a =或4a =.【总结】考查分式方程的根与对应整式方程的根相结合的问题,根据实际题目进行问题的分析转化,解决问题.。

分式方程步骤教案

分式方程步骤教案

分式方程步骤教案。

第一步:将所有项移到一个侧面
我们要将所有项移到等式中的一侧,使得等式只剩下一个单独的分式。

例如,我们有一个方程 2/x + 3 = 4/2x,我们希望将其变成只有一个分式,就需要将3移到左边,其它项移到右边,如下所示:2/x = 4/2x - 3
第二步:将分母相同化简
下一步是将分母相同,这样可以使方程更容易解决。

为了使分母相同,我们需要找到两个分式的最小公倍数(LCM)。

例如,如果我们有一个方程:2/5 + 1/3x = 1/10x,我们需要将分母变成相同的数,这样可以使分式相加更容易。

在本例中,我们可以找到3和10的LCM,其为30。

我们需要修改原来的方程,使得分母为30,如下所示:
(12x + 30)/30 + (10 - 10x)/30 = 3/30
第三步:将分式相加
接下来,我们需要将分式相加,并将其化简。

为了将分式相加,我们需要计算Numerator的总和,并将其除以分母,如下所示:
22 - 13x = 1
第四步:解方程
最后一步是解方程,找到变量的值。

在本例中,我们可以将方程重组,得到如下结果:
13x - 21 = 0
然后我们可以将其解决,得到:x = 21/13.
分式方程可以是很复杂的,特别是当其中包含多个分式时。

但是,如果我们按照上述步骤解决,就可以很容易地解决这些方程。

由于每个方程都是独立的,因此每次解决问题时,我们需要花时间处理每个方程。

但是,当我们掌握了一些技巧时,这些方程就不再那么令人畏惧了。

分式方程的解

分式方程的解

分式方程的解分式方程是指方程中含有分数的方程,例如:$\frac{x}{2}+\frac{x}{3}=5$。

分式方程的解是指能够使得该方程成立的所有变量值。

下面将从以下几个方面详细介绍分式方程的解。

一、分式方程的基本概念1. 分式分式是指形如$\frac{a}{b}$的表达式,其中$a$和$b$都是实数,且$b\neq 0$。

2. 分式方程分式方程是指含有至少一个分式的等式或不等式。

例如:$\frac{x}{2}+\frac{x}{3}=5$就是一个分式方程。

3. 分母在一个分数中,下面那个数叫做分母。

例如,在$\frac{a}{b}$中,$b$就是分母。

二、解一元一次分式方程1. 消去分母首先要做的事情就是消去所有的分母。

具体方法为:将等号两边乘以所有项的公共倍数来消去所有项中的分母。

2. 移项将未知量移到等号同侧,常数移到另外一侧。

3. 合并同类项将同类项合并,并把未知量系数化为1。

4. 检验答案将求得的未知量代入原来的方程中,检验是否成立。

三、解二元一次分式方程1. 消去分母同样地,需要将所有的分母消去。

2. 变形将含有两个未知量的项移到等号同侧,常数移到另外一侧。

3. 将两个未知量分离将含有一个未知量的项移到等号同侧,另一个未知量移到另外一侧。

4. 求解根据已经得到的式子求解出某一个未知量。

5. 检验答案将求得的未知量代入原来的方程中,检验是否成立。

四、注意事项1. 在解分式方程时,需要注意不能除以0。

2. 在消去分母时,需要注意所有项都要乘以公共倍数。

3. 在检验答案时,需要注意代入原来的方程中进行检验。

4. 在解二元一次分式方程时,需要注意将两个未知量分离时要保持符号不变。

分式方程说课稿5篇

分式方程说课稿5篇

分式方程说课稿分式方程说课稿精选5篇(一)大家好,我今天要给大家讲解一下分式方程的概念和解题方法。

分式方程是一个含有分式的等式,它的未知数出现在分母中。

学习分式方程的目的是为了解决实际问题中涉及到分式的计算。

接下来,我将按照以下四个方面来进行讲解:第一部分,首先我们来了解一下分式方程的基本概念。

分式方程是指方程中含有一个或多个分式的等式,在这个等式中,分母中的未知数被称为该分式方程的解。

第二部分,接下来我们会讲解一下如何解决含有分式的方程。

解分式方程的关键在于寻找方程中未知数的值。

首先,我们可以通过消去分母的方法将方程转化为整式方程,然后求解整式方程得到未知数的值,最后再将此值代入分母中验证。

第三部分,我将给大家演示一些具体的例题,并详细解答每一步的思路。

通过这些例题的讲解,相信大家可以更好地理解分式方程的解题方法。

第四部分,最后我将列举一些常见的分式方程的应用场景,例如时间、速度、液体的混合等,希望大家能够在实际问题中运用所学的知识解决实际问题。

通过今天的讲解,大家应该对分式方程有了更深入的了解,掌握了解决分式方程的方法,并能够应用这些知识解决实际问题。

谢谢大家!分式方程说课稿精选5篇(二)大家好,今天我将对分式的乘除法进行讲解。

在初中数学中,我们经常会遇到分式的乘除运算,因此对于这一知识点的理解和掌握十分重要。

首先,我们先回顾一下分式的乘法。

分式的乘法遵循如下的规则:两个分式相乘,就是将分子与分子相乘,分母与分母相乘。

例如,$\\frac{a}{b} \\times \\frac{c}{d} = \\frac{a \\times c}{b \\times d}$。

这个规则非常简单,只需记住分子与分子相乘,分母与分母相乘即可。

接下来,我们再来看一下分式的除法。

分式的除法可以通过乘以被除数的倒数来实现。

具体来说,将除数的分子与被除数的分母相乘,除数的分母与被除数的分子相乘。

例如,$\\frac{a}{b} \\div \\frac{c}{d} = \\frac{a}{b} \\times \\frac{d}{c} = \\frac{a\\times d}{b \\times c}$。

6-一元一次方程、二元一次方程(组)分式方程总复习

6-一元一次方程、二元一次方程(组)分式方程总复习
一元一次方程、 二元一次方程组 、 分式方程的解法
1.什么叫一元一次方程 2.什么叫分式方程? 3.增根的概念:
共同记一记
1、一元一次方程的有关概念
1.方程:含有 未知数 的等式。 2.一元一次方程:化简后只含有 一 个未知 数,并且未知数的次数为 一 次的 整式方程。 3.方程的解:能 使方程左右两边的值相等 的未知 数的值。
x 2 ②已知 是关于x、y的方程2x-y+3k=0 y 1
ax +by 7 x 1 ③如果 是方程组 的解, y 2 ax-by=5 那么
a+b=_____;
的解,则 k=

4.一家商店将某种商品按成本价提高 50%后,标价为 450 元,又以 8 折出售,则售出 这件商品可获利润 元.
2.方程组的有关概念:
①二元一次方程的概念: 含有两个未知数,并且所含未知数的项的次 数都是1的方程叫做二元一次方程. A.一般形式:ax by c 0a 0,b 0 B.二元一方程的解:适合一个二元一次方程的每 一对未知数的值叫做二元一次方程的解. C.解个数:一般情况下,二元一次方程有无数个 解.
2.方程组的有关概念: ②二元一次方程组的概念: 含有两个未知数的两个一次方程方程所组成的 一组方程叫做二元一次方程组. 二元一方程组的解: 二元一次方程组中的每个方程的公共解叫做 二元一次方程组的解. 解二元一次方程组的基本思想:
二元一次方程组
转化
一 元 一 次 方 程ຫໍສະໝຸດ 解方程的依据------等式的性质
①去分母 ②去括号 ③移项 ④合并同类项 ⑤系数化为1
方程组的常用解法:
①代入消元法 ②加减消元法
1.分式方程及其解法: ①分母里含有未知数的方程叫做分式方程. ②分式方程的解法思想:把分式方程转化为 整式方程.即 ③增根的概念: 在方程变形时,有时可能产生不适合原方程 的根,这种根叫做方程的增根.解分式方程有 可能产生增根,所以解分式方程要验根.

(云南)数学中考总复习:第二单元 方程组与不等式组第6课时 分式方程

(云南)数学中考总复习:第二单元 方程组与不等式组第6课时 分式方程

考情分析
考点梳理
考向探究
当堂检测
第6课时 分式方程 B
考点2 分式方程的应用
2.某车间原计划在x天内生产120个零件,由于采用了新技 术,每天多生产零件3个,因此提前2天完成任务,则列方程为
120 120 _x__-__2_-___x__=__3_____.
考情分析
考点梳理
考向探究
当堂检测
第6课时 分式方程
正确的为( B ) A.5x+16=25x B.5x-16=25x C.5x+10=25x D.5x-10=25x
考情分析
考点梳理
考向探究
当堂检测
第6课时 分式方程
3.分式方程x+3 2=x--12的解为__x_=__1___.
4.某商场销售的一款空调机每台的标价是1635元,在一次 促销活动中,按标价的八折销售,仍可赢利9%.
考向探究
当堂检测
第6课时 分式方程
当堂检测
37
1.方程x-x+1=0的解是( B ) A.x=14 B.x=34 C.x=43 D.x=-1
考情分析
考点梳理
考向探究
当堂检测
第6课时 分式方程
2.小军家距学校5千米,原来他骑自行车上学,学校为保障 学生安全,新购进校车接送学生,若校车速度是他骑自行车速度 的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原 来到校的时间相同.设小军骑车的速度为x千米/时,则所列方程
考情分析
考点梳理
考向探究
当堂检测
考点梳理
【知识树】
考情分析
考点梳理
考向探究
当堂检测
第6课时 分式方程
考点1 分式方程的解法 1.方程x-1 2-x-2 1=0的根是( D ) A.x=-3 B.x=0 C.x=2 D.x=3

1(学生4份) 第6 讲分式方程应用题讲解

1(学生4份)   第6 讲分式方程应用题讲解

1第 6 讲 分式方程应用题知识精讲:分式方程的应用主要是列方程解应用题。

一般地,列分式方程解应用题按下列步骤进行:1审清题意:①找出已知量和未知量等基本量;②弄清基本量之间的关系;③仔细推敲体现等量关系的关键字句以及挖掘题目中所隐含的等量关系; 2设未知数;3利用等量关系列出分式方程; 4解这个分式方程;5检验,看所得的方程的解是否满足所列方程且符合题意; 6写出答案。

3. 列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。

列方程应用题的步骤是什么? (1)审:分析题意,找出研究对象,建立等量关系;(2)设:选择恰当的未知数,注意单位;(3)列:根据等量关系正确列出方程;(4)解:认真仔细;(5)检:不要忘记检验;(6)答:不要忘记写。

经典例题【行程中的应用性问题】例1 甲、乙两个车站相距96千米,快车和慢车同时从甲站开出,1小时后快车在慢车前12千米,快车比慢车早40分钟到达乙站,快车和慢车的速度各是多少?分析:等量关系:慢车用时=快车用时+ (小时)例2 甲、乙两地相距828km ,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍.直达快车比普通快车晚出发2h ,比普通快车早4h 到达乙地,求两车的平均速度.分析:这是一道实际生活中的行程应用题,基本量是路程、速度和时间,基本关系是路40602程= 速度×时间,应根据题意,找出追击问题总的等量关系,即普通快车走完路程所用的时间与直达快车由甲地到乙地所用时间相等.解:设普通快车车的平均速度为x km /h ,则直达快车的平均速度为1.5x km /h ,依题意,得x x 6828-=x5.1828,解得46x =, 经检验,46x =是方程的根,且符合题意. ∴46x =,1.569x =,即普通快车车的平均速度为46km /h ,直达快车的平均速度为69km /h .评析:列分式方程与列整式方程一样,注意找出应用题中数量间的相等关系,设好未知数,列出方程.不同之处是:所列方程是分式方程,最后进行检验,既要检验其是否为所列方程的解,要要检验是否符合题意,即满足实际意义.例3 A 、B 两地相距87千米,甲骑自行车从A 地出发向B 地驶去,经过30分钟后,乙骑自行车由B 地出发,用每小时比甲快4千米的速度向A 地驶来,两人在距离B 地45千米C 处相遇,求甲乙的速度。

分式方程教案 分式方程数学教案(精选6篇)

分式方程教案 分式方程数学教案(精选6篇)

分式方程教案分式方程数学教案(精选6篇)解分式方程练习题篇一分式方程的教学设计分式方程的教学设计教学目标1.使学生能分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的能力;2.通过列分式方程解应用题,渗透方程的思想方法。

教学重点和难点重点:列分式方程解应用题。

难点:根据题意,找出等量关系,正确列出方程。

教学过程设计一、复习例解方程:(1)2x+xx+3=1; (2)15x=2×15 x+12;(3)2(1x+1x+3)+x-2x+3=1.解(1)方程两边都乘以x(3+3),去分母,得2(x+3)+x2=x2+3x,即2x-3x=-6所以x=6.检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

(2)方程两边都乘以x(x+12),约去分母,得15(x+12)=30x。

解这个整式方程,得x=12.检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。

(3)整理,得2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,即2x+xx+3=1.方程两边都乘以x(x+3),去分母,得2(x+3)+x2=x(x+3),即2x+6+x2=x2+3x,亦即2x-3x=-6.解这个整式方程,得x=6.检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

二、新课例1 一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍。

若骑车的速度是队伍进行速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?请同学根据题意,找出题目中的等量关系。

答:骑车行进路程=队伍行进路程=15(千米);骑车的速度=步行速度的2倍;骑车所用的时间=步行的时间-0。

5小时。

请同学依据上述等量关系列出方程。

第6讲 分式方程及其应用

第6讲 分式方程及其应用

经检验,x=40 是分式方程的根.
∴B 采样点送检车的平均速度为 40×1.5=60(km/h),
∴B 采样点送检车的行驶时间为 45÷60=0.75(h).
∵3.2+0.75=3.95<4,∴B 采样点采集的样本不会失效.
1.(2021 恩施)分式方程
A.x=1

C.x=


+1=
-

的解是( D )



A.x=
B.x=
C.x=
D.x=






[变式 2](2021 连云港)解方程:
+
(x+1)2-4=(x+1)(x-1),
整理,得2x-2=0,解得x=1.
检验:当x=1时,(x+1)(x-1)=0,
∴原方程无解.

=1.
- -
解:方程两边同乘(x+1)(x-1),得
∴x=1是增根,应舍去.
-
8.(2021 潍坊)若 x<2,且

0
+|x-2|+x-1=0,则 x=
-
.
1 .
9.(2021 东营)某地积极响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展
荒山绿化,打造美好家园,促进旅游发展.某工程队承接了 90 万平方米的荒山绿化任务,为了迎接雨
季的到来,实际工作时每天的工作效率比原计划提高了 25%,结果提前 30 天完成了任务.设原计划每
1.(2022 方城期中)给出下列方程:
-

+


+

专题09 分式方程(归纳与讲解)(解析版)

专题09 分式方程(归纳与讲解)(解析版)

专题09 分式方程【专题目录】技巧1:分式的意义及性质的四种题型 技巧2:分式运算的八种技巧技巧3:巧用分式方程的解求字母的值或取值范围 技巧4:分式求值的方法 【题型】一、分式有意义的条件 【题型】二、分式的运算 【题型】三、分式的基本性质 【题型】四、解分式方程 【题型】五、分式方程的解 【题型】六、列分式方程 【考纲要求】1、理解分式、最简分式、最简公分母的概念,掌握分式的基本性质,能熟练地进行约分、通分.2、能根据分式的加、减、乘、除的运算法则解决计算、化简、求值等问题,并掌握分式有意义、无意义和值为零的约束条件.3、理解分式方程的概念,会解可化为一元一次(二次)方程的分式方程(方程中的分式不超过两个)。

4、了解解分式方程产生增根的原因,会检验和对分式方程出现的增根进行讨论. 【考点总结】一、分式形如AB(A 、B 是整式,且B 中含有字母,B ≠0)的式子叫做分式.A A【考点总结】二、分式方程【注意】1.约分前后分式的值要相等.2.约分的关键是确定分式的分子和分母的公因式.3.约分是对分子、分母的整体进行的,也就是分子的整体和分母的整体都除以同一个因式 分式混合运算的运算运算顺序:1.先把除法统一成乘法运算;2.分子、分母中能分解因式的多项式分解因式;3.确定分式的符号,然后约分;4.结果应是最简分式.【技巧归纳】分式乘以分式,用分子的积做积的分子,分母的积做积的分母,即a b ·c d =acbd .分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即a b ÷c d =a b ·d c =adbc在分式的加减乘除混合运算中,应先算乘除,进行约分化简后,再进行加减运算,遇到有括号的,先算括号里面的.运算结果必须是最简分式或整式.技巧1:分式的意义及性质的四种题型 【类型】一、分式的识别1.在3x 4x -2,-5x 2+7,4x -25,2m ,x 2π+1,2m 2m中,不是分式的式子有( )A .1个B .2个C .3个D .4个2.从a -1,3+π,2,x 2+5中任选2个构成分式,共有________个. 【类型】二、分式有无意义的条件3.若代数式1a -4在实数范围内有意义,则实数a 的取值范围为( )A .a =4B .a>4C .a<4D .a≠4 4.当x =________时,分式x -1x 2-1无意义. 5.已知不论x 为何实数,分式3x +5x 2-6x +m 总有意义,试求m 的取值范围.【类型】三、分式值为正、负数或0的条件6.若x +2x 2-2x +1的值为正数,则x 的取值范围是( )A .x <-2B .x <1C .x >-2且x≠1D .x >1 7.若分式3x -42-x 的值为负数,则x 的取值范围是________.8.已知分式a -1a 2-b 2的值为0,求a 的值及b 的取值范围.【类型】四、分式的基本性质及其应用 9.下列各式正确的是( )A .a b =a 2b 2B .a b =ab a +bC .a b =a +c b +cD .a b =ab b 2 10.要使式子1x -3=x +2x 2-x -6从左到右的变形成立,x 应满足的条件是( ) A .x >-2 B .x =-2 C .x <-2 D .x≠-2 11.已知 x 4=y 6=z7≠0,求 x +2y +3z 6x -5y +4z 的值.12.已知x +y +z =0,xyz≠0,求x |y +z|+y |z +x|+z|x +y|的值. 参考答案1.C 点拨:4x -25,2m ,x 2π+1不是分式.2.6 点拨:以a -1为分母,可构成3个分式;以x 2+5为分母,可构成3个分式,所以共可构成6个分式. 3.D 4.±15.解:x 2-6x +m =(x -3)2+(m -9).因为(x -3)2≥0,所以当m -9>0,即m >9时,x 2-6x +m 始终为正数,分式总有意义.6.C 点拨:x 2-2x +1=(x -1)2.因为分式的值为正数,所以x +2>0且x -1≠0.解得x >-2且x≠1. 7.x >2或x <438.解:因为分式a -1a 2-b 2的值为0,所以a -1=0且a 2-b 2≠0.解得a =1且b≠±1.9.D 10.D11.解:设x 4=y 6=z7=k(k≠0),则x =4k ,y =6k ,z =7k.所以x +2y +3z 6x -5y +4z =4k +2×6k +3×7k 6×4k -5×6k +4×7k =37k 22k =3722.12.解:由x +y +z =0,xyz≠0可知,x ,y ,z 必为两正一负或两负一正.当x ,y ,z 为两正一负时,不妨设x >0,y >0,z <0,则原式=x |-x|+y |-y|+z|-z|=1+1-1=1;当x ,y ,z 为两负一正时,不妨设x >0,y <0,z <0,则原式=x |-x|+y |-y|+z|-z|=1-1-1=-1.综上所述,所求式子的值为1或-1. 值的分式消元求值. 技巧2:分式运算的八种技巧 【类型】一、约分计算法 1.计算:a 2+6a a 2+3a -a 2-9a 2+6a +9.【类型】二、整体通分法 2.计算:a -2+4a +2.【类型】三、顺次相加法3.计算:1x -1+1x +1+2x x 2+1+4x 3x 4+1.【类型】四、换元通分法4.计算:(3m -2n)+(3m -2n )33m -2n +1-(3m -2n)2+2n -3m3m -2n -1.【类型】五、裂项相消法⎝⎛⎭⎫即1n (n +1)=1n -1n +15.计算:1a (a +1)+1(a +1)(a +2)+1(a +2)(a +3)+…+1(a +99)(a +100).【类型】六、整体代入法6.已知1a +1b =16,1b +1c =19,1a +1c =115,求abcab +bc +ac 的值.【类型】七、倒数求值法7.已知 x x 2-3x +1=-1,求x 2x 4-9x 2+1的值.【类型】八、消元法8.已知4x -3y -6z =0,x +2y -7z =0,且xyz≠0,求5x 2+2y 2-z 22x 2-3y 2-10z 2的值.参考答案1.解:原式=a (a +6)a (a +3)-(a +3)(a -3)(a +3)2=a +6a +3-a -3a +3=9a +3. 点拨:在分式的加减运算中,若分式的分子、分母是多项式,则首先把能因式分解的分子、分母分解因式,其次把分子、分母能约分的先约分,然后再计算,这样可简化计算过程. 2.解:原式=a -21+4a +2=a 2-4a +2+4a +2 =a 2a +2. 点拨:整式与分式相加减时,可以先将整式看成分母为1的式子,然后通分相加减. 3.解:原式=x +1x 2-1+x -1x 2-1+2x x 2+1+4x 3x 4+1=2x x 2-1+2x x 2+1+4x 3x 4+1=2x (x 2+1)+2x (x 2-1)(x 2-1)(x 2+1)+4x 3x 4+1=4x 3x 4-1+4x 3x 4+1=4x 3(x 4+1)+4x 3(x 4-1)(x 4-1)(x 4+1)=8x 7x 8-1. 点拨:此类题在计算时,采用“分步通分相加”的方法,逐步递进进行计算,达到化繁为简的目的.在解题时既要看到局部特征,又要全局考虑.4.解:设3m -2n =x ,则原式=x +x 3x +1-x 2-x x -1=x (x 2-1)+x 3(x -1)-x 2(x 2-1)-x (x +1)(x +1)(x -1)=-2x(x +1)(x -1)=4n -6m(3m -2n +1)(3m -2n -1).5.解:原式=1a -1a +1+1a +1-1a +2+1a +2-1a +3+…+1a +99-1a +100=1a -1a +100=100a (a +100).点拨:对于分子是1,分母是相差为1的两个整式的积的分式相加减,常用1n (n +1)=1n -1n +1进行裂项,然后相加减,这样可以抵消一些项. 6.解:1a +1b =16,1b +1c =19,1a +1c =115,上面各式两边分别相加,得⎝⎛⎭⎫1a +1b +1c ×2=16+19+115, 所以1a +1b +1c =31180.易知abc≠0,所以abc ab +bc +ac =11c +1a +1b =18031.7.解:由xx 2-3x +1=-1,知x≠0,所以x 2-3x +1x =-1.所以x -3+1x =-1.即x +1x =2.所以x 4-9x 2+1x 2=x 2-9+1x 2=⎝⎛⎭⎫x +1x 2-11=22-11=-7. 所以x 2x 4-9x 2+1=-17.8.解:以x ,y 为主元,将已知的两个等式化为⎩⎪⎨⎪⎧4x -3y =6z ,x +2y =7z.解得x =3z ,y =2z. 因为xyz≠0,所以z≠0.所以原式=5×9z 2+2×4z 2-z 22×9z 2-3×4z 2-10z 2=-13.点拨:此题无法直接求出x ,y ,z 的值,因此需将三个未知数的其中一个作为常数,解关于另外两个未知数的二元一次方程组,然后代入待求值的分式消元求值.技巧3:巧用分式方程的解求字母的值或取值范围 【类型】一、利用分式方程解的定义求字母的值1.已知关于x 的分式方程2x +4=m x 与分式方程32x =1x -1的解相同,求m 2-2m 的值.【类型】二、利用分式方程有解求字母的取值范围2.若关于x 的方程x -2x -3=mx -3+2有解,求m 的取值范围.【类型】三、利用分式方程有增根求字母的值 3.如果解关于x 的分式方程m x -2-2x 2-x=1时出现增根,那么m 的值为( ) A .-2 B .2 C .4 D .-44.若关于x 的方程m x 2-9+2x +3=1x -3有增根,则增根是多少?并求方程产生增根时m 的值.【类型】四、利用分式方程无解求字母的值5.若关于x 的分式方程x -ax +1=a 无解,则a =________.6.已知关于x 的方程x -4x -3-m -4=m3-x 无解,求m 的值.7.已知关于x 的分式方程x +a x -2-5x=1.(1)若方程的增根为x =2,求a 的值; (2)若方程有增根,求a 的值; (3)若方程无解,求a 的值. 参考答案1.解:解分式方程32x =1x -1,得x =3.经检验,x =3是该方程的解. 将x =3代入2x +4=mx ,得27=m 3.解得m =67. ∴m 2-2m =⎝⎛⎭⎫672-2×67=-4849.2.解:去分母并整理,得x +m -4=0.解得x =4-m.∵分式方程有解, ∴x =4-m 不能为增根. ∴4-m≠3.解得m≠1.∴当m≠1时,原分式方程有解. 3.D4.解:因为原方程有增根,且增根必定使最简公分母(x +3)(x -3)=0,所以x =3或x =-3是原方程的增根.原方程两边同乘(x +3)(x -3),得m +2(x -3)=x +3. 当x =3时,m +2×(3-3)=3+3,解得m =6; 当x =-3时,m +2×(-3-3)=-3+3, 解得m =12.综上所述,原方程的增根是x =3或x =-3. 当x =3时,m =6; 当x =-3时,m =12.点拨:只要令最简公分母等于零,就可以求出分式方程的增根,再将增根代入分式方程化成的整式方程,就能求出相应的m 的值.5.1或-16.解:原方程可化为(m +3)x =4m +8.由于原方程无解,故有以下两种情形:(1)若整式方程无实根,则m +3=0且4m +8≠0,此时m =-3;(2)若整式方程的根是原方程的增根,则4m +8m +3=3,解得m =1.经检验,m =1是方程4m +8m +3=3的解.综上所述,m 的值为-3或1.7.解:原方程去分母并整理,得(3-a)x =10.(1)因为原方程的增根为x =2,所以(3-a)×2=10.解得a =-2. (2)因为原分式方程有增根,所以x(x -2)=0.解得x =0或x =2.因为x =0不可能是整式方程(3-a)x =10的解,所以原分式方程的增根为x =2.所以(3-a)×2=10.解得a =-2.(3)①当3-a =0,即a =3时,整式方程(3-a)x =10无解,则原分式方程也无解; ②当3-a≠0时,要使原方程无解,则由(2)知,a =-2.综上所述,a 的值为3或-2.点拨:分式方程有增根时,一定存在使最简公分母等于0的整式方程的解.分式方程无解是指整式方程的解使最简公分母等于0或整式方程无解. 技巧4:分式求值的方法 【类型】一、直接代入法求值 1.先化简,再求值:⎝⎛⎭⎪⎫2a +1+a +2a 2-1÷a a -1,其中a =5.【类型】二、活用公式求值2.已知实数x 满足x 2-5x +1=0,求x 4+1x 4的值.3.已知x +y =12,xy =9,求x 2+3xy +y 2x 2y +xy 2的值.【类型】三、整体代入法求值4.已知x y +z +y z +x +z x +y =1,且x +y +z≠0,求x 2y +z +y 2z +x +z 2x +y 的值.【类型】四、巧变形法求值5.已知实数x 满足4x 2-4x +1=0,求2x +12x 的值.【类型】五、设参数求值6.已知x 2=y 3=z4≠0,求x 2-y 2+2z 2xy +yz +xz 的值.参考答案1.解:原式=[2a +1+a +2(a +1)(a -1)]·a -1a=2(a -1)+(a +2)(a +1)(a -1)·a -1a=3a +1. 当a =5时,3a +1=35+1=12.2.解:由x 2-5x +1=0得x≠0,∴x +1x=5.∴⎝⎛⎭⎫x +1x 2=25.∴x 2+1x 2=23. ∴x 4+1x 4=⎝⎛⎭⎫x 2+1x 22-2=232-2=527 点拨:在求解有关分式中两数(或两式)的平方和问题时,可考虑运用完全平方公式进行解答. 3.解:x 2+3xy +y 2x 2y +xy 2=x 2+2xy +y 2+xy xy (x +y )=(x +y )2+xyxy (x +y ).因为x +y =12,xy =9, 所以(x +y )2+xy xy (x +y )=122+99×12=1712.4.解:因为x +y +z≠0,所以等式的两边同时乘x +y +z ,得x (x +y +z )y +z +y (x +y +z )z +x +z (x +y +z )x +y=x +y +z ,所以x 2y +z +x (y +z )y +z +y 2z +x +y (z +x )z +x +z 2x +y +z (x +y )x +y =x +y +z.所以x 2y +z +y 2z +x +z 2x +y +x +y +z =x +y +z.所以x 2y +z +y 2z +x +z 2x +y=0.点拨:条件分式的求值,如需对已知条件或所求条件分式变形,必须依据题目自身的特点,这样才能收到事半功倍的效果.条件分式的求值问题体现了数学中的整体思想和转化思想. 5.解:∵4x 2-4x +1=0,∴(2x -1)2=0.∴2x =1. ∴2x +12x =1+11=2.6.解:设x 2=y 3=z4=k≠0,则x =2k ,y =3k ,z =4k.所以x 2-y 2+2z 2xy +yz +xz=(2k )2-(3k )2+2(4k )22k·3k +3k·4k +2k·4k=27k 226k 2=2726. 【题型讲解】【题型】一、分式有意义的条件例1x 的取值范围是( ) A .x≥4 B .x >4C .x≤4D .x <4【答案】D【分析】直接利用二次根式有意义的条件分析得出答案.4﹣x >0,解得:x <4 即x 的取值范围是:x <4故选D . 【题型】二、分式的运算 例2、分式222111a a a a++---化简后的结果为( ) A .11a a +-B .31a a +-C .1a a --D .2231a a +--【答案】B【分析】根据异分母分式相加减的运算法则计算即可.异分母分式相加减,先通分,再根据同分母分式相加减的法则计算. 【详解】解:222111a a a a++--- ()()()()()21221111a a a a a a ++=-+--+ ()()()222111a a a a +++=+-()()2222111a a a a a ++++=+-()()()()3111a a a a +=++- 31a a +=- 故选:B .【题型】三、分式的基本性质 例3、若b a b -=14,则ab的值为( ) A .5B .15C .3D .13【答案】A 【解析】因为b a b -=14, 所以4b=a -b .,解得a=5b① 所以a b ①55b b=. 故选A.【题型】四、解分式方程 例4、方程2152x x =+-的解是( ) A .1x =- B .5x =C .7x =D .9x =【答案】D【分析】根据题意可知,本题考察分式方程及其解法,根据方程解的意义,运用去分母,移项的方法,进行求解. 【详解】 解:方程可化简为()225x x -=+ 245x x -=+9x =经检验9x =是原方程的解 故选D【题型】五、分式方程的解 例5、关于x 的分式方程2mx -﹣32x-=1有增根,则m 的值( ) A .m =2 B .m =1C .m =3D .m =﹣3【答案】D【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可. 【详解】解:去分母得:m +3=x ﹣2, 由分式方程有增根,得到x ﹣2=0,即x =2,把x=2代入整式方程得:m+3=0,解得:m=﹣3,故选:D.【题型】六、列分式方程例6、随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.3000420080x x=-B.3000420080x x+=C.4200300080x x=-D.3000420080x x=+【答案】D【分析】设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,根据人数=投递快递总数量÷人均投递数量,结合快递公司的快递员人数不变,即可得出关于x的分式方程,此题得解.【详解】解:设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,根据快递公司的快递员人数不变列出方程,得:3000420080x x=+,故选:D.分式方程(达标训练)一、单选题1.(2022·广西·富川瑶族自治县教学研究室模拟预测)关于x的分式方程3122m xx x++=--有解,则实数m应满足的条件是()A.m=-1B.m≠-1C.m=1D.m≠1【答案】D【分析】解分式方程得:m + x-3=2-x即x=52m,由题意可知x≠2,即可得到m.【详解】解:31 22m xx x++= --方程两边同时乘以2-x得:m+x-3=2-x, 2x=5-m,x=52m①分式方程有解① x ≠2, 即52m≠2, ①m ≠1. 故选D .【点睛】本题主要考查了分式方程的解,熟练掌握分式方程的解法,理解分式方程有意义的条件是解题的关键.2.(2022·海南省直辖县级单位·二模)分式方程211x =+的解为( ) A .1- B .0 C .1 D .2【答案】C【分析】按照分式方程的解法求解判断即可. 【详解】①211x =+, 去分母,得2=x +1, 移项,得 x =2-1=1,经检验,x =1是原方程的根 故选C .【点睛】本题考查了分式方程的解法,熟练掌握分式方程的解法是解题的关键. 3.(2022·天津南开·二模)化简2222432x y x yx y y x -----的结果是( )A .5x y- B .5x y+ C .225x y -D .223x yx y +-【答案】B【分析】利用同分母分式的加法法则计算,约分得到最简结果即可.【详解】解:2222432x y x yx y y x ----- 2222432x y x yx y x y --=+--55()()x yx y x y -=+-5()()()x y x y x y -=+-5x y=+,【点睛】本题主要考查了分式的加减,解题的关键是掌握分式混合运算顺序和运算法则. 4.(2022·贵州贵阳·三模)计算222m m m ---的结果是( ) A .2 B .-2C .1D .-1【答案】C【分析】根据分式减法运算法则进行运算,化简即可. 【详解】解:221222m m m m m --==---, 故选:C .【点睛】本题考查了分式的减法,正确运算是解题关键,注意运算后需要约分化简. 5.(2022·江苏淮安·一模)若分式2xx +有意义,则x 的取值范围是( ) A .0x ≠ B .2x ≠- C .2x >- D .2x ≥-【答案】B【分析】根据分式有意义的条件:分母不为0即可得到. 【详解】要分式2xx +有意义,则20x +≠, 解得:2x ≠-. 故选:B【点睛】本题考查分式有意义的条件,掌握分式有意义的条件是解题的关键.二、填空题6.(2022·四川省遂宁市第二中学校二模)分式方程31311x x x -=-+的解为 ______. 【答案】x =-2【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:3x (x +1)-(x -1)=3(x +1)(x -1), 解得:x =-2,经检验x =-2是分式方程的解, 故答案为x =-2.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.(2022·湖南怀化·模拟预测)计算52x x ++﹣32x +=_____. 【答案】1【分析】根据同分母分式相加减,分母不变,把分子相加减计算即可. 【详解】解:52x x ++﹣32x +=532122x x x x +-+==++ 故答案为:1.【点睛】本题考查分式的加减,解题关键是熟练掌握同分母分式相加减时分母不变,分子相加减,异分母相加减时,先通分变为同分母分式,再加减.三、解答题8.(2022·浙江丽水·一模)解方程:13233x x-=--. 【答案】=5x【分析】这是一道可化为一元一次方程的分式方程,根据解分式方程的一般步骤:去分母,转化为求解整式方程,然后检验得到的解是否符合题意,最后得出结论. 【详解】两边同时乘以(3)x -,得132(3)x +=-, 去括号,得426x =-, 化简,得=5x ,检验:当=5x 时,30x -≠, ∴原分式方程的解为=5x .【点睛】此题考查可化为一元一次方程的分式方程,熟练掌握解分式方程的方法与步骤是解此题的关键,但是要特别注意:检验是不可少的环节.分式方程(提升测评)一、单选题1.(2022·辽宁葫芦岛·一模)2022年北京冬奥会的吉祥物“冰墩墩”和“雪容融”深受国内外朋友的喜爱.某特许零售店准备购进一批吉祥物销售.已知用600元购进“冰墩墩”的数量与用500元购进“雪容融”数置相同,已知购进“冰墩墩”的单价比“雪容融”的单价多10元,设购进“冰墩墩”的单价为x 元,则列出方程正确的是( )A .60050010x x=+ B .60050010x x =+ C .60050010x x=- D .60050010x x =- 【答案】D【分析】设“冰墩敏”的销售单价为x ,则 “雪容融”的销售单价为(x -10)元,然后根据用600元购进“冰墩墩”的数量与用500元购进“雪容融”数置相同即可列出方程.【详解】解:设“冰墩敏”的销售单价为x ,则 “雪容融”的销售单价为(x -10)元, 根据题意,得60050010x x =-。

【2014中考复习方案】(江西专版)中考数学复习权威课件:6分式方程

【2014中考复习方案】(江西专版)中考数学复习权威课件:6分式方程
解分式方程的一般步骤是:①方程两边都乘各个分母的
考点1
最简公分母 ,把分式方程转化为整式方程;②解这个整式方 ________________
程;③检验:把求得的未知数的取值代入最简公分母,看是否等于 0,使最简公分母为0的根是原方程的增根,增根必须舍去.
赣考解读 考点聚焦 赣考探究
第6讲┃分式方程
赣考解读
考点聚焦
赣考探究
第6讲┃分式方程
解 析
(1)首先把总工作量看作单位“1”,设出甲车、乙车单独运完此堆
垃圾所需的趟数,表示出甲车、乙车的工作效率,再表示出甲车、乙车12趟 完成的工作量,根据等量关系“甲车的工作量+乙车的工作量=总工作量”列 出方程. (2)根据“甲车12趟所需费用+乙车12趟所需费用=4800”求出甲车、乙 车每趟所需费用,再计算单独租用一种车所需车间原计划在x天内生产120个零件,由于采用了新技术,每天
120 120 - x =3 . 多生产零件3个,因此提前2天完成任务,则列方程为______________ x- 2
赣考解读
考点聚焦
赣考探究
第6讲┃分式方程
2.某校为了进一步开展“阳光体育”活动,购买了一批乒 乓球拍和羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵20 元,购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多 出的部分能购买25副乒乓球拍.若每副乒乓球拍的价格为x 元,购买的两种球拍数一样,求x.
赣考解读
考点聚焦
赣考探究
第6讲┃分式方程
探究三 分式方程的应用
例3 [2013·娄底] 为了创建全国卫生城市,某社区要清理 一个卫生死角内的堆垃圾,租用甲、乙两车运送,两车各运12趟 可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃 圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200 元. (1)求甲、乙两车单独运完此堆垃圾各需运多少趟? (2)若单独租用一台车,租用哪台车合算?

《分式方程》PPT教学课文课件

《分式方程》PPT教学课文课件
为多少?
【分析】这里的字母,s表示已知数据,设提速前列车的平均速
度为 /ℎ,那么提速前列车行驶s
s
所用时间为________ℎ,

s + 50
提速后列车的平均速度为______
/ℎ,

+ 50
50)所用时间为___________ℎ。
+
提速后列车行( +
根据行驶时间的等量关系可以列出方程。
解析
解: 设提速前这次列车的平均速度为 /ℎ,则提速前它行驶

所用时间为 h;提速后列车的平均速度为( + ) /ℎ ,

+50
50) 所用时间为
+
提速后它行驶( +
根据行驶时间的等量关系,得
方程两边乘( + ),得
+ 50
=

+
( + ) = ( + 50)
解:方程两边乘( − 1)( + 2),得
( + 2) − ( − 1)( + 2) = 3
解得
=1
检验,当 = 1时,( − 1)( + 2) = 0,
因此 = 1不是原方程的解。
所以,原分式方程无解。
归纳
解分式方程的一般步骤如下:
分式方程
去分母
目标
x= a
最简公分母不为0
分母)。方程①两边乘 (30 + )(30 − ) ,得到整式方程,它的解 =6。
当=6时,(30 + )(30 − ) ≠ 0,这就是说,去分母时,①两边乘了
同一个不为0的式子,因此所得整式方程的解与①的解相同。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课堂教学设计设计要素设计内容
内容分析
本节从小麦试验田为实例,引出分式方程的概念,再将分式方程转化为一元一次方程从而达到求解分式方程的目的,需要注意的是增根长生的原因,并学会验根。

教学目标知识

技能
1、正确理解分式方程的概念,掌握分式方程的特征。

2、理解分式方程有增根的概念及长生的原因。

3、学生学会转化的方法。

过程

方法
1、通过化分式方程为整式方程,学会转化的数学方法。

2、通过对分式方程产生增根和分式有意义的理解,使学生感知
数学知识具有普遍的联系性。

情感
态度
价值

1、感受数学知识来源于实际生活,又服务于实际生活。

2、培养学生与人合作,与人交流的品质。

学情分析
教学分析教学
重点
可化为一元一次方程的分式方程的解法
教学
难点
难点分式方程产生增根的原因
解决
办法
对分式分母不为零的理解




通过具体问题分析,对比以前所学知识,找出共同点和不同点,得出结论。

教学资源《教师用书》
《1+1教案》
《优化设计,成功演练》《网络资源》
板书设计
分式方程
1、定义:分母中含有未知数的方程
2、解分式方程的步骤和思路:
将分式方程转化为整式方程。

(1)找最简公分母(观察各个分母)
(2)去分母(方程两边同乘以最简公分母)(3)解整式方程
(4)检验:
(5)结论:分式方程是否有解。

教学过程
教学内容教学环节教师活动学生活动
教学媒体使用
预期效果
一、创设问题情境,引入新课。

二、探索新知
教师展示问题。

有两块面积相同的小麦
试验田,第一块使用原品种,
第二块使用新品种,分别收获
小麦9000kg和15000kg,已知
第一块试验田每公顷的产量
比第二块少3000kg,分别求这
两块试验田每公顷的产量。

问:这一问题中有哪些等量关
系?
若设第一块试验田每公顷产
量为x kg,那么第二块试验田
每公顷的产量为__kg。

根据
题意,可得方程。

1、分式方程的概念:分母中
含有未知数的方程。

2、你能解这个方程吗?
学生思考问题。

分组讨论,得出
结论。

900015000
3000
x x
=
+
区别:以前学过
的方程-----整式方
程。

观察后相互讨
论,争相发言,得出
结论。

教学过程
教学内容教学环节教师活动学生活动
教学媒体使用
预期效果
三、尝试反馈,巩固练习。

很好,这样的分式方程
我们可以通过去分母的方
式,在方程两边同时乘以分
母的最简公分母,约去分母,
化成整式方程。

900015000
3000
x x
=
+
示范解题格式:
解:方程两边同时乘以
(3000)
x x+,得:(去分母)
9000(3000)15000
x x
+=⋅
(化分式方程为整式方程)
解得4500
x=
检验:将4500
x=带入原方
程,得左边=2=右边。

所以,4500
x=是原分式方
程的根。

试一试:
(1)
13
2
x x
=
-
(2)
2
2162
242
x x
x x x
-+
-=
+--
议一议,方程(2)如何
解的?
甲:先交叉相乘,然后解方
程。

乙:先通分,然后移项。

丙:方程两边同乘以
(3000)
x x+,去掉分母再
解方程。

解方程:
1、5(2)2(51)
x x
+=-
2、12(1)13
x x x
+--=-
3、
321
1
23
x x
-+
-=
学生尝试完成,教师适
时点评。

小组讨论,各抒己见。

教学过程
教学内容教学环节教师活动学生活动
教学媒体使用
预期效果
四、课堂
小结
由于2
x=-时使原分式
方程分母为零,我们称它为原
分式方程的增根。

增根是整式
方程的根,不是分式方程的
根。

分析产生的原因:去分母
的时候方程两边同时乘了一
个可能使分母为零的整式。


此,解分式方程一定要检验。

验根的方法:将整式方程
的解代入最简公分母,如果最
简公分母的值为0,则整式方
程的解是原分式方程的解;否
则,这个解不是原方程的解。

1、分式方程的概念:
2、分式方程的解法,
一般步骤:
练一练:
1、解方程:
(1)
34
x x
=
-
(2)
5
4
2332
x
x x
+=
--
(3)
2
635
2555
x x x
=+
-+-
2、a为何值时,方程
2
33
x a
x x
=+
--
会产生增
根?
分母中含有未知数的方程。

将分式方程转化为整式方程。

教学流程图
分式方程导入新课
展示学习目标探究新知
当堂检测
课堂小结
布置作业
教学设计评价介绍新知识
展示学习目标
学习方法指导,巡视
出示检测题
引导组织小结
分层布置作业
介绍背景
了解学习任务
自主、合作学习
完成检测
小组交流补充
独立完成作业。

相关文档
最新文档