八年级下册数学书复习题16答案

合集下载

人教版初中八年级数学下册第十六章《二次根式》复习题(含答案解析)(2)

人教版初中八年级数学下册第十六章《二次根式》复习题(含答案解析)(2)

一、选择题1.下列是最简二次根式的是( )A B CD2.已知x+y =﹣5,xy =4,则 ) A .4 B .﹣4 C .2 D .﹣23. ) A .1 B .2 C .3 D .4 4.下列二次根式中是最简二次根式的是( )A BC D 5.下列计算正确的是( ). A .()()22a b a b b a +-=- B .224x y xy +=C .()235a a -=-D .=6.下列计算正确的是( )A 2=±B .22423x x x +=C .()326328a b a b -=-D .()235x x x -=÷ 7.下列算式中,正确的是( )A .3=B =C =D 4= 8.下列各式中,错误的是( )A .2(3=B .3=-C .23=D 3=- 9.下列四个数中,是负数的是( )A .2-B .2(2)-C . D10.已知y 3,则x y 的值为( ). A .43 B .43- C .34D .34- 11.下列各式不是最简二次根式的是( )A B C D12.估计- )A .0到1之间B .1到2之间C .2到3之间D .3到4之间 13.下列二次根式:4、12、50、12中与2是同类二次根式的个数为( ) A .1个 B .2个 C .3个 D .4个14.下列运算正确的是( ) A .628+= B .66-= C .623÷= D .()266-=15.计算-23的结果是( )A .-3B .3C .-9D .9二、填空题16.计算1248⨯的结果是________________.17.若53x =-,则()234x +-的值为__________.18.实数a ,b 在数轴上的位置如图所示,化简:|a +1|﹣22(1)()b a b -+-=_____.19.若224y x x =--,则y x 的平方根是__________.20.)3750a b b >=________.21.2210(15)=_____818+=______.22.已知a 、b 为有理数,m 、n 分别表示5721amn bn +=,则3a b +=_________.23.若最简二次根式132-+b a 与a b -4是同类二次根式,则a+b =___. 24.已知223y x x =--,则()x x y +的值为_________.25.使式子32xx -+有意义的x 的取值范围是______.26.220x y -=,则x y +=________.三、解答题27.先阅读,后回答问题:x ()x x 3-解:要使该二次根式有意义,需x(x-3)≥0,由乘法法则得030? x x ≥⎧⎨-≥⎩或0 30x x ≤⎧⎨-≤⎩,解得x 3≥或x 0≤,即当x 3≥或x 0≤体会解题思想后,解答:x 28.计算: (1)1301(2)(2)53π-⎛⎫+-⨯-+ ⎪⎝⎭;(2)21)-++-.29.计算:20201|1-30.计算(1)2)。

人教版数学八年级下册:16 复习题 学案(含答案)八年级下数学复习

人教版数学八年级下册:16 复习题  学案(含答案)八年级下数学复习

复习题16班级:_____________姓名:__________________组号:_________ 一、巩固训练 1.直接写出使下列各式有意义的字母的取值范围: (1)43-x (2)a 831- (3)42+m (4)x 1- _____________ _____________ _____________ _____________ 2.化简: (1))169()144(-⨯- (2)2531- (3)512821⨯- (4)n m 218 3.计算: (1)2232⎪⎪⎭⎫ ⎝⎛- (2)⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-12212713 (3)2484554+-+二、错题再现 1.下列式子一定是二次根式的是( ) A .2--x B .x C .22+x D .22-x 2.若b b -=-3)3(2,则( ) A .b >3 B .b <3 C .b ≥3 D .b ≤3 完成情况3.522132⨯+⨯的值在( ) A .6至7之间 B .7至8之间 C .8至9之间 D .9至10之间4.比较大小:32 13。

5.已知a 、b 为两个连续的整数,且28a b <<,则a b += 。

6.当=x 时,二次根式1+x 取最小值,其最小值为 。

7.三角形的三边长分别为20cm ,40cm ,45cm ,则这个三角形的周长为__________________________。

8.已知23,23x y =-=+,求下列代数式的值:(1)y x xy 22+ (2)22y x +三、精练反馈1.若13-m 有意义,则m 能取的最小整数值是( )A .0=mB .1=mC .2=mD .3=m2.下列二次根式中属于最简二次根式的是( )A .14B .48C .ba D .44+a 3.若1ab -+与24a b ++互为相反数,则()2005a b -=______________。

完整版华师大版八年级下册数学第16章 分式含答案

完整版华师大版八年级下册数学第16章 分式含答案

华师大版八年级下册数学第16章分式含答案一、单选题(共15题,共计45分)1、遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万kg,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万kg,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万kg?设原计划每亩平均产量x万kg,则改良后平均每亩产量为1.5x万kg,根据题意列方程为()A. ﹣=20B. ﹣=20C. ﹣=20 D. + =202、甲、乙两人分别从距目的地6km和10km的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前h到达目的地,设甲的速度为3xkm/h,下列方程正确的是()A. B. C. D.3、下列计算正确的是()A.a 2•a 3=a 6B.(﹣2xy 2)3=﹣8x 3y 5C.2a ﹣3=D.(﹣a)3÷(2a)2=﹣ a4、钓鱼岛是我国固有领土,位于我国东海,总面积约6340000平方米,数据6340000用科学记数法表示为()A.634×10 4B.6.34×10 6C.63.4×10 5D.6.34×10 75、函数中自变量x的取值范围是()A.x≠2B.C.D. 且x≠06、如果,,那么等于()A.1B.2C.3D.47、用科学记数法表示5700000,正确的是()A.5.7×10 6B.5.7×10 5C.570×10 4D.0.57×10 78、我市深入实施环境污染整治,某经济开发区的40家化工企业中已关停、整改32家,每年排放的污水减少了167000吨.将167000用科学记数法表示为()A.167×10 3B.16.7×10 4C.1.67×10 5D.0.167×10 69、若代数式+ 有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠110、下列函数中,自变量x的取值范围是x≥2的是()A. B. C. D.11、下列各式运算正确的是()A.a 2+a 3=a 5B.a 2•a 3=a 6C.(a 2)3=a 6D.a 0=112、新冠状病毒疫情发生以来,截止2月5日全国红十字会共接收社会捐赠款物约6.5993×109元.数据6.5993×109可以表示为()A.0.65993亿B.6.5993亿C.65.993亿D.659.93亿13、﹣()]=中,在()内填上的数是()A. B. C. D.14、若分式有意义,则x的取值范围是()A.x≠2B.x≠﹣2C.x>﹣2D.x>215、计算的结果是()A.x 2﹣1B.x﹣1C.x+1D.1二、填空题(共10题,共计30分)16、把1020000用科学记数法表示为________;2.236×107的原数是________;17、 ________.18、分式的最简公分母是________.19、化简分式的结果是________.20、计算:(﹣x2y)2=________(﹣2)﹣2=________﹣2x2•(﹣x)3=________(﹣0.25)2014×42015=________.(﹣1)2015+(﹣π)0+2﹣2=________.21、当x________时,分式无意义.22、要使代数式有意义,则的取值范围是________.23、分式有意义的条件是________.24、已知分式的值为零,那么x的值是________.25、第一季度,我国国民经济开局平稳,积极因素逐渐增多.社会消费品零售总额约为97790亿元,同比增长8.3%;网上零售额为22379亿元,同比增长15.3%.其中22379亿用科学记数法表示为________.三、解答题(共5题,共计25分)26、﹣(π﹣3)0﹣(﹣1)2017+(﹣)﹣2+tan60°+| ﹣2|27、列方程或方程组解应用题我区为缓解某景区的交通拥挤状况,区政府对通往景区的道路进行了改造.某施工队承包道路改造任务共3300米,为了减少施工对周边居民及交通的影响,施工队加快了速度,比原计划每天多改造10%,结果提前3天完成了任务,求原计划每天改造道路多少米?28、先化简,然后a在﹣1,1,2三个数中任选一个合适的数代入求值.29、列方程或方程组解应用题几个小伙伴打算去音乐厅看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话中的信息,请你求出这些小伙伴的人数.30、解分式方程:+1=参考答案一、单选题(共15题,共计45分)1、A2、B4、B5、A6、B7、A8、C9、D10、C11、C12、C13、D14、A15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

人教版八年级数学下册第十六章 二次根式习题(含答案)

人教版八年级数学下册第十六章 二次根式习题(含答案)

第十六章 二次根式一、单选题1.下列二次根式中,属于最简二次根式的是( )A B C D22得( ). A .2 B .44x -+C .-2D .44x -3有意义,a 的取值范围是( ) A .0a ≠B .且0a ≠C .2a >-. 或0a ≠D .2a ≥- 且0a ≠ 4.下列各式属于最简二次根式的有( )A B C D 5.下列运算正确的是( )A B )C =±3D .6( ) A .4至5之间B .5至6之间C .6至7之间D .7至8之间 7.下列运算正确的是( )A 5±B 2=-C =D .8.下列代数式能作为二次根式被开方数的是( )A .3﹣πB .aC .a 2+1D .2x+49.若x ≤0,则化简|1﹣x |﹣ 的结果是( )A .1﹣2xB .2x ﹣1C .﹣1D .110.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为S=△ABC 的三边长分别为1,2△ABC 的面积为( )A .1B .2C .3D .4二、填空题11.计算 的结果是_____.122(3)0b +=,则M (a ,b )点的坐标为________.13.若实数m 、n 满足|m ﹣0,且m 、n 恰好是Rt △ABC 的两条边长,则△ABC 的周长是_____.14.分母有理化:=_________.三、解答题15.化简计算:(1(22(1+-.16.已知:实数a ,b ﹣|a ﹣b|.17,等的式子,其实我1==.以上这种化简的步骤叫做分母有理化. (1(249++.答案1.C2.A3.D4.B5.D6.B7.C8.C9.D 10.A 11.12.(1,-3)13.12或14.215.(1)6;(2)+6 16.2a-3b+317.(1(2)3.。

人教版 八年级数学下册 第16章 二次根式 复习题(含答案)

人教版 八年级数学下册 第16章 二次根式 复习题(含答案)

人教版八年级数学第16章二次根式复习题一、选择题(本大题共10道小题)1. 下列二次根式中,与是可以合并的是()A.B.C.D.2. 下列选项中,正确的是( )A. x-1有意义的条件是x>1B. 8是最简二次根式C. (-2)2=-2D. 323-24=- 63. 计算:等于()A.B.C.D.4. 下列计算正确的是( )A. 12=23B. 32=32C. -x3=x-xD. x2=x5. 下列二次根式中,最简二次根式的个数是().,,,,,,,.A.1个B.2个C.3个D.4个6. 下列根式中式最简二次根式的有()A.2个B.3个C.4个D.5个7. 下列各式正确的是()A.B.C.D.8. 若为非负数,与是可以合并的二次根式,则的值是()A.B.C.或D.9. 已知最简根式是同类二次根式,则满足条件的,的值()A.不存在B.有一组C.有二组D.多于二组10. 已知,,,那么,,的大小关系是().A. B. C. D.二、填空题(本大题共8道小题)11. 若式子x+x-1在实数范围内有意义,则x的取值范围是________.12. 计算32-82=________.13. 在下列二次根式中,最简二次根式有____________________.14. 若最简二次根式与是可以合并的二次根式,则。

15. 计算:=_________.16. 计算:_______.17. 计算:_________.18. 方程的整数解有组.三、解答题(本大题共4道小题)19.20. 计算:(3-7)(3+7)+2(2-2).21. 计算:22. 计算:人教版 八年级数学 第16章 二次根式 复习题-答案一、选择题(本大题共10道小题) 1. 【答案】C2. 【答案】D【解析】∵x -1有意义,∴x -1≥0,∴x ≥1,∴选项A 错误;∵8=22,∴不是最简二次根式,∴选项B 错误;∵(-2)2=4=2≠-2,∴选项C 错误;323-24=9×23-26=6-26=-6,∴选项D 正确.3. 【答案】B【解析】,所以选B.选项 逐项分析正误 A 12=4×3=2 3 √B 32=32=62≠32C ∵-x 3≥0,∴x ≤0,-x3=x2·-x =-x -x ≠x -xD x2=|x |≠x5. 【答案】B【解析】此题的关键是看二次根式的被开方数是否满足最简二次根式的两个条件.中是分式,中是小数中的是分数,它们都不满足条件; 中有能开得尽方的因式,中有能开得尽方的因数,中含有能开得尽方的因式,它们都不满足条件2;只有满足最简二次根式的两个条件.答:B.点评:要牢记最简二次根式的两个条件,判断时只须看被开方数,注意当被开方数是多项式时要先分解因式,找一找有没有能开得尽方得因式和因数,特别要分清中虽有和,但和不是+的因式.6. 【答案】C.7. 【答案】D.8. 【答案】C9. 【答案】B【解析】根据同类二次根式定义可知:,解之得.10. 【答案】【解析】,,显然,所以.二、填空题(本大题共8道小题)11. 【答案】x≥1【解析】因为二次根式a中a必须满足a≥0,所以x-1中,x-1≥0,所以x≥1.12. 【答案】2【解析】32-82=42-222=222=2.13. 【答案】、、、、、.14. 【答案】4【解析】∵最简二次根式与是可以合并的二次根式∴,解得15. 【答案】14【解析】原式16. 【答案】【解析】根据题目,,,,所以且.如果,则,,原式.当时,原式.所以原式.另解:.17. 【答案】24【解析】原式18. 【答案】4【解析】∵为同类二次根式,,∴原方程为:.设,,∴,∴、的值有四组,即,,,故原方程的整数解有4组.三、解答题(本大题共4道小题)19. 【答案】【解析】20. 【答案】解:原式=9-7+22-2=2 2.21. 【答案】【解析】22. 【答案】【解析】。

人教版初中八年级数学下册第十六章《二次根式》经典复习题(含答案解析)

人教版初中八年级数学下册第十六章《二次根式》经典复习题(含答案解析)

一、选择题1.下列是最简二次根式的是( )A B CD2.下列说法:①带根号的数是无理数;③实数与数轴上的点是一一对应的关系;④两个无理数的和一定是无理数;⑤已知a =2b =2a 、b 是互为倒数.其中错误的个数有( )A .1个B .2个C .3个D .4个3.下列计算正确的是( )A =±B .=C =D 2=4.x 的取值范围为( )A .x 2≥B .x 2≠C .x 2>D .x 2<5.的结果估计在( ) A .10到11之间 B .9到10之间C .8到9之间D .7到8之间 6.当x在实数范围内有意义( ) A .1x > B .1≥x C .1x < D .1x ≤7.x 的取值范围是( )A .x <1B .x >1C .x≥1D .x≤18.( )A .B .C .D .无法确定 9.下列式子中无意义的是( )A .B .C .D . 10.下列算式中,正确的是( )A .3=B =C =D 4=11.下列计算正确的是( )A . 3B .1122+=C.3=D312.)A.1个B.2个C.3个D.4个13.下列各式中,一定是二次根式的个数为()10),232a a a⎫+<⎪⎭A.3个B.4个C.5个D.6个14.n为().A.2 B.3 C.4 D.515.)0a<得()A B.C D.二、填空题16.3+=__________.17.化简题中,有四个同学的解法如下:========他们的解法,正确的是___________.(填序号)18.________________.19.已知b>0=_____.20.23()a-=______(a≠0),2-=______,1-=______.21.如图,在长方形内有两个相邻的正方形A,B,正方形A的面积为2,正方形B的面积为6,则图中阴影部分的面积是__________.22.已知5ab =,则b a a b=__. 23.比较大小:310524.已知223y x x =--,则()x x y +的值为_________. 25.已知8817y x x =--,则x y +的平方根为_________.26.(1031352931643-⎛⎫++= ⎪⎝⎭__________. 三、解答题27.计算:(183(26)27+(211513(1)(0.5)2674÷; (3)52311x y x y +=⎧⎨+=⎩; (4)4(2)153123x y y x +=-⎧⎪+⎨=-⎪⎩. 28.(1232;(2)计算:122729.计算(1)3222(2333 30.计算:(11850(2)73)(73)。

新人教版初中数学八年级下册同步练习试题及答案第16章二次根式(19页)

新人教版初中数学八年级下册同步练习试题及答案第16章二次根式(19页)

第十六章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义 ,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时 ,12--x 有意义 ,当x ______时 ,31+x 有意义. 3.假设无意义2+x ,那么x 的取值范围是______. 4.直接写出以下各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.以下计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=- A .①、② B .③、④C .①、③D .②、④6.以下各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时 ,以下各式中 ,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时 ,以下式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算以下各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.411+=-+-y x x ,那么x y 的平方根为______. 14.当x =-2时 ,2244121x x x x ++-+-=________. 二、选择题15.以下各式中 ,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.假设022|5|=++-y x ,那么x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算以下各式:(1);)π14.3(2-(2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2 ,b =-1 ,c =-1时 ,求代数式aacb b 242-±-的值.拓广、探究、思考19.数a ,b ,c 在数轴上的位置如下列图:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.△ABC 的三边长a ,b ,c 均为整数 ,且a 和b 满足.09622=+-+-b b a 试求△ABC的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算 ,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立 ,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.以下计算正确的选项是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时 ,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.三角形一边长为cm 2 ,这条边上的高为cm 12 ,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算 "@〞的运算法那么为:,4@+=xy y x 那么(2@6)@6 =______.10.矩形的长为cm 52 ,宽为cm 10 ,那么面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.假设b a b a -=2成立 ,那么a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内 ,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.假设(x -y +2)2与2-+y x 互为相反数 ,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算 ,能把二次根式化成最||简二次根式.课堂学习检测一、填空题1.把以下各式化成最||简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最||简单的因式 ,使得它与所给二次根式相乘的结果为有理式 ,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.以下计算不正确的选项是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最||简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算以下各式 ,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________ 9.,732.13≈那么≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.13+=a ,132-=b ,那么a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.以下各式中 ,最||简二次根式是( ).A .yx -1 B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷(2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时 ,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征 ,会进行二次根式的加、减运算.课堂学习检测一、填空题1.以下二次根式15,12,18,82,454,125,27,32化简后 ,与2的被开方数相同的有______ ,与3的被开方数相同的有______ ,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后 ,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.以下说法正确的选项是( ). A .被开方数相同的二次根式可以合并 B .8与80可以合并 C .只有根指数为2的根式才能合并 D .2与50不能合并5.以下计算 ,正确的选项是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.二次根式b a b +4与b a +3是同类二次根式 ,(a +b )a 的值是______.13.3832ab 与ba b 26无法合并 ,这种说法是______的.(填 "正确〞或 "错误〞) 二、选择题14.在以下二次根式中 ,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+ 17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+ ,其中4=x ,91=y .20.当321-=x 时 ,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断以下各式是否成立?你认为成立的 ,在括号内画 "√〞 ,否那么画 "×〞.①322322=+( ) ②833833=+( )③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后 ,发现了什么规律?请用含有n 的式子将规律表示出来 ,并写出n的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算 ,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时 ,最||简二次根式12-a 与73--a 可以合并. 2.假设27+=a ,27-=b ,那么a +b =______ ,ab =______. 3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.以下各组二次根式化成最||简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.以下计算正确的选项是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b ) =|a -b | ,其中a ,b 为实数 ,那么=+7)3*7(_______.(2)设5=a ,且b 是a 的小数局部 ,那么=-baa ________. 二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.以下计算正确的选项是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘 ,如果它们的积不含有二次根式 ,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式. 试写以下各式的有理化因式: (1)25与______;(2)y x 2-与______;(3)mn 与______; (4)32+与______; (5)223+与______;(6)3223-与______.23.,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第十六章 二次根式测试11.a ≥-1.2.<1 , >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49. 5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1.19.0. 20.提示:a =2 ,b =3 ,于是1<c <5 ,所以c =2 ,3 ,4.测试2 1.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 8..cm 629..72 10.210. 11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1. 16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5);36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a 3.C . 4.C . 5.C . 6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577 ,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab+ 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时 ,a a a ==22)(;当a <0时 ,a a -=2 ,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x 3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x 12.1. 13.错误. 14.C . 15..12+ 16.⋅-423411 17..321b a + 18.0.19.原式,32y x+=代入得2. 20.1. 21.(1)都画 "√〞;(2)1122-=-+n n nn n n (n ≥2 ,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax - 4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D .16.⋅-4117.2. 18..21-19.ab 4(可以按整式乘法 ,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.第十六章 二次根式全章测试一、填空题 1.mnm 1+-有意义 ,那么在平面直角坐标系中 ,点P (m ,n )位于第______象限. 2.322-的相反数是______ ,绝||对值是______.3.假设3:2:=y x ,那么=-xy y x 2)(______.4.直角三角形的两条直角边长分别为5和52 ,那么这个三角形的周长为______. 5.当32-=x 时 ,代数式3)32()347(2++++x x 的值为______. 二、选择题6.当a <2时 ,式子2)2(,2,2,2-+--a a a a 中 ,有意义的有( ). A .1个 B .2个 C .3个 D .4个7.以下各式的计算中 ,正确的选项是( ). A .6)9(4)9()4(=-⨯-=-⨯- B .7434322=+=+C .9181404122=⨯=-D .2323= 8.假设(x +2)2=2 ,那么x 等于( ). A .42+B .42-C .22-±D .22± 9.a ,b 两数满足b <0<a 且|b |>|a | ,那么以下各式中 ,有意义的是( ). A .b a +B .a b -C .b a -D .ab10.A 点坐标为),0,2(A 点B 在直线y =-x 上运动 ,当线段AB 最||短时 ,B 点坐标( ).A .(0 ,0)B .)22,22(- C .(1 ,-1) D .)22,22(-三、计算题11..1502963546244-+- 12.).32)(23(--13..25341122÷⋅ 14.).94(323ab ab ab a aba b+-+15.⋅⋅-⋅ba b a ab ba 3)23(35 16.⋅÷+--+xy yx y x xy yx y )(四、解答题17.a 是2的算术平方根 ,求222<-a x 的正整数解.18.:如图 ,直角梯形ABCD 中 ,AD ∥BC ,∠A =90° ,△BCD 为等边三角形 ,且AD 2= ,求梯形ABCD 的周长.附加题19.先观察以下等式 ,再答复以下问题.①;211111*********2=+-+=++②;6111212113121122=+-+=++③⋅=+-+=++12111313114131122(1)请根据上面三个等式提供的信息 ,猜想2251411++的结果; (2)请按照上面各等式反映的规律 ,试写出用n (n 为正整数)表示的等式.20.用6个边长为12cm 的正方形拼成一个长方形 ,有多少种拼法?求出每种长方形的对角线长(精确到0.1cm ,可用计算器计算).答案与提示第十六章 二次根式全章测试1.三. 2..223,223-- 3..2665- 4..555+ 5..32+ 6.B . 7.C . 8.C . 9.C . 10.B . 11..68- 12..562- 13.⋅1023 14..2ab - 15..293ab b a - 16.0. 17.x <3;正整数解为1 ,2. 18.周长为.625+ 19.(1);2011141411=+-+(2).)1(111111)1(11122++=+-+=+++n n n nn n20.两种:(1)拼成6×1 ,对角线);cm (0.733712721222≈=+(2)拼成2×3 ,对角线3.431312362422≈=+(cm).。

人教版八年级下册数学第十六章 二次根式 含答案

人教版八年级下册数学第十六章 二次根式 含答案

人教版八年级下册数学第十六章二次根式含答案一、单选题(共15题,共计45分)1、使有意义的x的取值范围是()A.x>3B.x<3C.x≥3D.x≠32、化简﹣()2,结果是()A.6x﹣6B.﹣6x+6C.-4D.43、若,则化简4 等于()A. B.2 C. D.14、如图,长方形ABCD恰好可分成7个形状大小相同的小长方形,如果小长方形的面积是3,则长方形ABCD的周长是()A.7B.9C.19D.215、下列各式中,运算正确的是()A. B. C. D.6、下列各式中,不是二次根式的是()A. B. C. D.7、下列计算正确的是()A. B. C. D.8、若1<x<3,则|x﹣3|+ 的值为()A.2x﹣4B.﹣2C.4﹣2xD.29、下列计算正确的是( )A. B. C.D.10、若式子+(k-1)0有意义,则一次函数y=(1-k)x+k-1的图象可能是( )A. B. C. D.11、下列计算正确的是()A. =B. =C. =D.=12、下列各式计算正确的是()A.2 +4 =6B. ÷=3C.3 +3 =3D.=﹣513、已知+|b﹣1|=0,那么(a+b)2019的值为( )A.﹣1B.1C.3 2019D.﹣3 201914、函数中,自变量x的取值范围是()A. B. C. D. x为任意实数15、下列式子中,属于最简二次根式的是()A. B. C. D.二、填空题(共10题,共计30分)16、计算:=________.17、若+b2+2b+1=0,则a2+ ﹣|b|=________.18、已知最简二次根式可以合并,则a的值是________.19、计算6 ﹣10 的结果是________.20、计算________.21、已知,则=________.22、 ________.23、写出的一个有理化因式是________.24、若a= ,则a3-a+1=________。

八年级下册数学书复习题16答案

八年级下册数学书复习题16答案

一、定义一种新运算 a▽ b= a× b+ a,例如:3▽4=3×4+3=15,已知5▽ x=40,求 x=?二、在下面的□填上相同的数,使等式成立。

1.8×□+□×2.2=40三、要使等式“93-(16×△-△×9)×3=51”成立,“△”应当是多少?四、某数的8倍加上10等于它的10倍减去8,求这个数。

五、甲、乙、丙、丁四个数的和是135,甲数加上2,乙数减去2,丙数乘以2,丁数除以2,则这四个数相等,求甲、乙、丙、丁各是多少?参考答案一、解:5 +5=405 =40-55 =35=35÷5=7二、解:设□所表示的数为。

1.8 +2.2 =40(1.8+2.2) =404 =40=40÷4=10三、解:设△所表示的数用来表示。

93-(16 -9 )×3=51(16 -9 )×3=93-51(16 -9 )×3=4216 -9 =42÷37 =14=14÷7=2四、解:设这个数为。

8 +10=10 -82 =18=18÷2=9五、分析:设甲数加上2,乙数减去2,丙数乘以2,丁数除以2后这个相等的数为标准数。

把标准数设为,甲数为-2,乙数为+2,丙数为 ÷2,丁数为 ×2,可列方程如下:(-2)+(-2)+ ÷2+ ×2=135-2++2+0.5 +2 =1354.5 =135=135÷4.5=30-2=30-2=28 +2=30+2=32÷2=30÷2=15 ×2=30×2=60答:甲数是28,乙数是32,丙数是15,丁数是60。

最新华师版八年级数学下册第16章分式专题复习测试题及答案全套

最新华师版八年级数学下册第16章分式专题复习测试题及答案全套

最新华师版八年级数学下册第16章分式专题复习测试题及答案全套专训1 分式求值的方法名师点金:分式的求值既突出了式子的化简计算,又考查了数学方法的运用,在计算中若能根据特点,灵活选用方法,往往会收到意想不到的效果.常见的分式求值方法有:直接代入法求值、活用公式求值、整体代入法求值、巧变形法求值、设参数求值等.直接代入法求值1.(中考·鄂州改编)先化简,再求值:⎝ ⎛⎭⎪⎫2a +1+a +2a 2-1÷a a -1,其中a =5.活用公式求值2.已知x 2-5x +1=0,求x 4+1x 4的值.3.已知x +y =12,xy =9,求x 2+3xy +y 2x 2y +xy 2的值.整体代入法求值4.已知x y +z +y z +x +z x +y =1,且x +y +z≠0,求x 2y +z +y 2z +x +z 2x +y 的值.巧变形法求值5.已知实数x 满足4x 2-4x +1=0,求2x +12x的值.设参数求值6.已知x 2=y 3=z 4≠0,求x 2-y 2+2z 2xy +yz +xz 的值.专训2 全章热门考点整合应用名师点金:本章主要考查分式的概念、分式有意义的条件、分式的性质及运算,考试中题型以选择题、填空题为主,分式的化简求值主要以解答题的形式出现.分式方程是中考的必考内容之一,一般着重考查解分式方程,并要求会用增根的意义解题,考题常以解答题的形式出现,有时也会出现在选择题和填空题中.其主要考点可概括为:三个概念、一个性质、一种运算、一个解法、一个应用、四种思想.三个概念概念1 分式1.下列说法中,正确的是( )A .分式的分子中一定含有字母B .分母中含有字母的式子是分式C .分数一定是分式D .当A =0,分式AB的值为0(A ,B 为整式)2.若式子1x 2-2x +m不论x 取任何数总有意义,则m 的取值范围是( )A .m≥1B .m>1C .m≤1D .m<1 概念2 分式方程3.关于x 的方程:①x 2-x -13=6;②x 900=500x -30;③x 3+1=32x ;④a 2x =1x ;⑤320x -400x =4; ⑥x a =35-x.分式方程有____________(填序号). 4.(中考·遂宁)遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各是多少万千克?设原计划每亩平均产量为x 万千克,则改良后平均每亩产量为1.5x 万千克,根据题意列方程为( )A .36x -36+91.5x =20 B .36x -361.5x=20C .36+91.5x -36x =20D .36x +36+91.5x =20 概念3 增根5.若关于x 的方程x -4x -5-3=a x -5有增根,则增根为( )A .x =6B .x =5C .x =4D .x =36.已知方程21+x -k 1-x =6x 2-1有增根x =1,求k 的值.7.若关于x 的分式方程2m +x x -3-1=2x无解,求m 的值.一个性质——分式的基本性质8.不改变下列分式的值,将分式的分子和分母中的各项的系数化为整数.(1)15x -12y 14x +23y ; (2)0.1x +0.3y 0.5x -0.02y .一种运算——分式的运算9.先化简,再求值:⎝ ⎛⎭⎪⎫2ab 2a +b 3÷⎝ ⎛⎭⎪⎫ab 3a 2-b 22·⎣⎢⎡⎦⎥⎤12(a -b )2,其中a =-12,b =23.一个解法——分式方程的解法10.(中考·嘉兴)小明解方程1x -x -2x =1的过程如下.请指出他解答过程中的错误,并写出正确的解答过程.解:方程两边同乘x ,得1-(x -2)=1.……① 去括号,得1-x -2=1.……② 合并同类项,得-x -1=1.……③ 移项,得-x =2.……④ 解得x =-2.……⑤∴原方程的解为x =-2.……⑥一个应用——分式方程的应用11.某超市用3 000元购进某种干果销售,由于销售状况良好,超市又调拨9 000元购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量比第一次的2倍还多300 kg.如果超市按9元/kg的价格出售,当大部分干果售出后,余下的600 kg按售价的八折售完.(1)该种干果第一次的进价是多少?(2)超市销售这种干果共盈利多少元?四种思想思想1数形结合思想12.如图,点A,B在数轴上,它们所表示的数分别是-4,2x+23x-5,且点A,B到原点的距离相等,求x的值.(第12题) 思想2整体思想13.已知实数a满足a2+4a-8=0,求1a+1-a+3a2-1·a2-2a+1a2+6a+9的值.思想3 消元思想14.已知2x -3y +z =0,3x -2y -6z =0,且z≠0,求x 2+y 2+z 22x 2+y 2-z 2的值.思想4 类比思想15.化简:⎝ ⎛⎭⎪⎫2a -b a +b -b a -b ÷a -2b a -b .答案专训11.解:原式=[2a +1+a +2(a +1)(a -1)]·a -1a=2(a -1)+(a +2)(a +1)(a -1)·a -1a=3a +1. 当a =5时,原式=35+1=12.2.解:由x 2-5x +1=0得x≠0,∴x+1x=5.∴⎝ ⎛⎭⎪⎫x +1x 2=25.∴x 2+1x 2=23.∴x 4+1x 4=⎝⎛⎭⎪⎫x 2+1x 22-2=232-2=527.点拨:在求解有关分式中两数(或两式)的平方和问题时,可考虑运用完全平方公式进行解答.3.解:x 2+3xy +y 2x 2y +xy 2=x 2+2xy +y 2+xy xy (x +y )=(x +y )2+xyxy (x +y ).因为x +y =12,xy =9, 所以原式=122+99×12=1712.4.解:因为x +y +z≠0,所以等式的两边同时乘(x +y +z),得x (x +y +z )y +z +y (x +y +z )z +x +z (x +y +z )x +y=x +y +z ,所以x 2y +z +x (y +z )y +z +y 2z +x +y (z +x )z +x +z 2x +y +z (x +y )x +y =x +y +z.所以x 2y +z +y 2z +x +z 2x +y +x +y +z =x +y +z.所以x 2y +z +y 2z +x +z 2x +y=0.点拨:条件分式的求值,如需对已知条件或所求条件分式变形,必须依据题目自身的特点,这样才能收到事半功倍的效果.条件分式的求值问题体现了数学中的整体思想和转化思想.5.解:∵4x 2-4x +1=0, ∴(2x-1)2=0.∴2x=1. ∴原式=1+11=2.6.解:设x 2=y 3=z4=k≠0,则x =2k ,y =3k ,z =4k.所以x 2-y 2+2z 2xy +yz +xz=(2k)2-(3k)2+2(4k)2 2k·3k+3k·4k+2k·4k=27k226k2=2726.专训21.B2.B点拨:∵x2-2x+m=x2-2x+1+m-1=(x-1)2+m-1,∴当m-1>0,即m>1时,式子1x2-2x+m总有意义.3.②④⑤4.A 5.B6.解:方程两边同乘x2-1,得2(x-1)+k(x+1)=6.整理得(2+k)x+k-8=0.∵原分式方程有增根x=1,∴2+k+k-8=0.解得k=3.7.解:方程两边都乘x(x-3),得(2m+x)x-x(x-3)=2(x-3),即(2m+1)x=-6.①(1)当2m+1=0时,此方程无解,∴原分式方程也无解.此时m=-0.5;(2)当2m+1≠0时,要使关于x的分式方程2m+xx-3-1=2x无解,则x=0或x-3=0,即x=0或x=3.把x=0代入①,m的值不存在;把x=3代入①,得3(2m+1)=-6,解得m=-1.5.∴m的值是-0.5或-1.5.8.解:(1)原式=12x-30y15x+40y.(2)原式=5x +15y25x -y.9.解:原式=(2ab 2)3(a +b )3·(a 2-b 2)2(ab 3)2·14(a -b )2 =8a 3b 6(a +b )3·(a +b )2(a -b )2a 2b 6·14(a -b )2 =2aa +b. 当a =-12,b =23时,原式=2×⎝ ⎛⎭⎪⎫-12-12+23=-6.10.解:步骤①去分母时,没有在等号右边乘x ; 步骤②括号前面是“-”号,去括号时,没有变号; 步骤⑥前没有检验. 正确的解答过程如下:解:方程两边都乘x ,得1-(x -2)=x , 去括号,得1-x +2=x ,移项、合并同类项,得-2x =-3, 解得x =32.经检验x =32是原分式方程的解.11.解:(1)设该种干果第一次的进价是x 元/kg ,则第二次的进价是(1+20%)x 元/kg. 由题意,得9 000(1+20%)x =2×3 000x +300.解得x =5.经检验,x =5是原分式方程的解,且符合题意. 答:该种干果第一次的进价是5元/kg.(2)[3 0005+9 0005×(1+20%)-600]×9+600×9×80%-(3 000+9 000)=5 820(元).答:超市销售这种干果共盈利5 820元.12.解:由题意得2x +23x -5=4.去分母,得2x +2=4(3x -5).解得x =2.2.经检验,x =2.2是原方程的根.所以x 的值是2.2.点拨:本题运用了数形结合思想,通过观察数轴上A ,B 两点的位置情况并结合已知条件“点A ,B 到原点的距离相等”可知,A ,B 两点所表示的数互为相反数,于是可建立方程求出x 的值.13.解:原式=1a +1-a +3(a +1)(a -1)·(a -1)2(a +3)2=1a +1-a -1(a +1)(a +3)=4(a +1)(a +3)=4a 2+4a +3.由a 2+4a -8=0得a 2+4a =8,故原式=411.点拨:本题根据已知条件求出a 的值很困难,因此考虑将已知条件变形后整体代入化简后的式子.14.解:由2x -3y +z =0,3x -2y -6z =0,z≠0,得到⎩⎨⎧2x -3y =-z ,3x -2y =6z.解得⎩⎨⎧x =4z ,y =3z.所以原式=(4z )2+(3z )2+z22(4z )2+(3z )2-z 2=16z 2+9z 2+z 232z 2+9z 2-z 2=1320.点拨:本题先用含z 的式子分别表示出x 与y ,然后代入所求式子消去x ,y 这两个未知数,从而简化求值过程,体现了消元思想.15.解:原式=(2a -b )(a -b )-b (a +b )(a +b )(a -b )·a -b a -2b =2a 2-2ab -ab +b 2-ab -b 2(a +b )(a -2b )=2a 2-4ab (a +b )(a -2b )=2a (a -2b )(a +b )(a -2b )=2aa +b.点拨:本题是类比思想的典范,分式的性质、运算顺序、运算律都可以类比分数的相关知识.专训2 分式的意义及性质的四种题型名师点金:1.从以下几个方面透彻理解分式的意义:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零;(4)分式值为正数⇔分子、分母同号;(5)分式值为负数⇔分子、分母异号.2.分式的基本性质是约分、通分的依据,而约分、通分为分式的化简求值奠定了基础.)分式的识别1.在3x 4x -2,-5x 2+7,4x -25,2m ,x 2π+1,2m 2m中,不是分式的式子有( ) A .1个 B .2个 C .3个 D .4个2.从a -1,3+π,2,x 2+5中任选2个构成分式,共有________个.分式有无意义的条件3.无论a 取何值,下列分式总有意义的是( )A .a +1a 2B .a -1a 2+1C .1a 2-1D .1a +1 4.当x =________时,分式x -1x 2-1无意义. 5.已知不论x 为何实数,分式3x +5x 2-6x +m总有意义,试求m 的取值范围.分式值为正、负数或0的条件6.若x +2x 2-2x +1的值为正数,则x 的取值范围是( ) A .x <-2 B .x <1C .x >-2且x≠1D .x >17.若分式3x -42-x的值为负数,则x 的取值范围是________. 8.已知分式a -1a 2-b 2的值为0,求a 的值及b 的取值范围.分式的基本性质及其应用9.下列各式正确的是( )A.ab=a2b2B.ab=aba+bC.ab=a+cb+cD.ab=abb210.要使式子1x-3=x+2x2-x-6从左到右变形成立,x应满足的条件是( )A.x>-2 B.x=-2 C.x<-2 D.x≠-211.已知x4=y6=z7≠0,求x+2y+3z6x-5y+4z的值.12.已知x+y+z=0,xyz≠0,求x|y+z|+y|z+x|+z|x+y|的值.专训2 分式运算的八种技巧名师点金分式的加减运算中起关键作用的就是通分.但对某些较复杂或具有特定结构的题目,使用一般方法有时计算量太大,容易出错,有时甚至算不出来,若能结合题目结构特征,灵活运用相关性质、方法、解题技巧,选择恰当的运算方法与技能,常常能达到化繁为简、事半功倍的效果.约分计算法1.计算:a 2+6a a 2+3a -a 2-9a 2+6a +9.整体通分法2.计算:a -2+4a +2.顺次相加法3.计算:1x -1+1x +1+2x x 2+1+4x 3x 4+1.换元通分法4.计算:(3m -2n)+(3m -2n )33m -2n +1-(3m -2n)2+2n -3m 3m -2n -1.裂项相消法⎝ ⎛⎭⎪⎫即1n (n +1)=1n -1n +15.计算:1a (a +1)+1(a +1)(a +2)+1(a +2)(a +3)+…+1(a +99)(a +100).整体代入法6.已知1a +1b =16,1b +1c =19,1a +1c =115,求abc ab +bc +ac的值.倒数求值法7.已知 x x 2-3x +1=-1,求x 2x 4-9x 2+1的值.消元法8.已知4x -3y -6z =0,x +2y -7z =0,且xyz≠0,求5x 2+2y 2-z 22x 2-3y 2-10z 2的值.答案专训11.C 点拨:4x -25,2m ,x 2π+1不是分式. 2.6 点拨:以a -1为分母,可构成3个分式;以x 2+5为分母,可构成3个分式,所以共可构成6个分式.3.B 4.±15.解:x 2-6x +m =(x -3)2+(m -9).因为(x -3)2≥0,所以当m -9>0,即m >9时,x 2-6x +m 始终为正数,分式总有意义.6.C 点拨:x 2-2x +1=(x -1)2.因为分式的值为正数,所以x +2>0且x -1≠0.解得x >-2且x≠1.7.x >2或x <438.解:因为分式a -1a 2-b 2的值为0,所以a -1=0且a 2-b 2≠0.解得a =1且b≠±1. 9.D 10.D11.解:设x 4=y 6=z 7=k(k≠0),则x =4k ,y =6k ,z =7k. 所以x +2y +3z 6x -5y +4z =4k +2×6k+3×7k 6×4k-5×6k+4×7k =37k 22k =3722. 12.解:由x +y +z =0,xyz≠0可知,x ,y ,z 必为两正一负或两负一正.当x ,y ,z 为两正一负时,不妨设x >0,y >0,z <0,则原式=x |-x|+y |-y|+z |-z|=1+1-1=1;当x ,y ,z 为两负一正时,不妨设x >0,y <0,z <0,则原式=x |-x|+y |-y|+z |-z|=1-1-1=-1. 综上所述,所求式子的值为1或-1.专训21.解:原式=a (a +6)a (a +3)-(a +3)(a -3)(a +3)2=a +6a +3-a -3a +3=9a +3. 点拨:在分式的加减运算中,若分式的分子、分母是多项式,则首先把能因式分解的分子、分母分解因式,其次把分子、分母能约分的先约分,然后再计算,这样可简化计算过程.2.解:原式=a -21+4a +2=a 2-4a +2+4a +2=a 2a +2. 点拨:整式与分式相加减时,可以先将整式看成分母为1的式子,然后通分相加减.3.解:原式=x +1x 2-1+x -1x 2-1+2x x 2+1+4x 3x 4+1=2x x 2-1+2x x 2+1+4x 3x 4+1=2x (x 2+1)+2x (x 2-1)(x 2-1)(x 2+1)+4x 3x 4+1=4x 3x 4-1+4x 3x 4+1=4x 3(x 4+1)+4x 3(x 4-1)(x 4-1)(x 4+1)=8x 7x 8-1. 点拨:此类题在计算时,采用“分步通分相加”的方法,逐步递进进行计算,达到化繁为简的目的.在解题时既要看到局部特征,又要全局考虑.4.解:设3m -2n =x ,则原式=x +x 3x +1-x 2-x x -1= x (x 2-1)+x 3(x -1)-x 2(x 2-1)-x (x +1)(x +1)(x -1)=-2x (x +1)(x -1)=4n -6m (3m -2n +1)(3m -2n -1). 5.解:原式=1a -1a +1+1a +1-1a +2+1a +2-1a +3+…+1a +99-1a +100=1a -1a +100=100a (a +100).点拨:对于分子是1,分母是相差为1的两个整式的积的分式相加减,常用1n(n+1)=1 n -1n+1进行裂项,然后相加减,这样可以抵消一些项.6.解:1a+1b=16,1b+1c=19,1a+1c=115,上面各式两边分别相加,得⎝⎛⎭⎪⎫1a+1b+1c×2=16+19+115,所以1a+1b+1c=31180.易知abc≠0,所以abcab+bc+ac=11c+1a+1b=18031.7.解:由xx2-3x+1=-1,知x≠0,所以x2-3x+1x=-1.所以x-3+1x=-1.即x+1x=2.所以x4-9x2+1x2=x2-9+1x2=⎝⎛⎭⎪⎫x+1x2-11=22-11=-7.所以x2x4-9x2+1=-17.8.解:以x,y为主元,将已知的两个等式化为⎩⎨⎧4x-3y=6z,x+2y=7z.解得x=3z,y=2z.因为xyz≠0,所以z≠0.所以原式=5×9z2+2×4z2-z22×9z2-3×4z2-10z2=-13.点拨:此题无法直接求出x,y,z的值,因此需将三个未知数的其中一个作为常数,解关于另外两个未知数的二元一次方程组,然后代入待求值的分式消元求值.专训3 巧用分式方程的解求字母的值名师点金:巧用分式方程的解求字母的值主要体现在以下几方面:(1)利用方程解的定义求字母的值,解决这类问题的方法是将其解代入分式方程,即可求出待定字母的值;(2)利用分式方程有解、有增根、无解求字母的取值范围或值时,一般都是列出关于待定字母的不等式或方程,通过解不等式或方程得到字母的取值范围或值.利用分式方程解的定义求字母的值1.已知关于x 的分式方程2x +4=m x 与分式方程32x =1x -1的解相同,求m 2-2m 的值.利用分式方程有解求字母的取值范围2.若关于x 的方程x -2x -3=m x -3+2有解,求m 的取值范围.利用分式方程有增根求字母的值3.若分式方程x x -1-m 1-x=2有增根,则m =________. 4.若关于x 的方程m x 2-9+2x +3=1x -3有增根,则增根是多少?并求方程产生增根时m 的值.利用分式方程无解求字母的值5.(中考·东营)若分式方程x -a x +1=a 无解,则a =________. 6.已知关于x 的方程x -4x -3-m -4=m 3-x无解,求m 的值.7.已知关于x 的分式方程x +a x -2-5x=1. (1)若方程的增根为x =2,求a 的值;(2)若方程有增根,求a 的值;(3)若方程无解,求a 的值.答案专训1.解:解分式方程32x =1x -1,得x =3. 经检验,x =3是该方程的解.将x =3代入2x +4=m x, 得27=m 3.解得m =67. ∴m 2-2m =⎝ ⎛⎭⎪⎫672-2×67=-4849. 2.解:去分母并整理,得x +m -4=0.解得x =4-m.∵分式方程有解,∴x=4-m 不能为增根.∴4-m≠3.解得m≠1.∴当m≠1时,原分式方程有解.3.-14.解:因为原方程有增根,且增根必定使最简公分母(x +3)(x -3)=0,所以x =3或x =-3是原方程的增根.原方程两边同乘(x +3)(x -3),得m +2(x -3)=x +3.当x =3时,m +2×(3-3)=3+3,解得m =6;当x=-3时,m+2×(-3-3)=-3+3,解得m=12.综上所述,原方程的增根是x=3或x=-3.当x=3时,m=6;当x=-3时,m=12.点拨:只要令最简公分母等于零,就可以求出分式方程的增根,再将增根代入分式方程化成的整式方程,就能求出相应的m的值.5.1或-16.解:原方程可化为(m+3)x=4m+8.由于原方程无解,故有以下两种情形:(1)若整式方程无实根,则m+3=0且4m+8≠0,此时m=-3;(2)若整式方程的根是原方程的增根,则4m+8m+3=3,解得m=1.经检验,m=1是方程4m+8m+3=3的解.综上所述,m的值为-3或1.7.解:(1)原方程去分母并整理,得(3-a)x=10.因为原方程的增根为x=2,所以(3-a)×2=10.解得a=-2.(2)因为原分式方程有增根,所以x(x-2)=0.解得x=0或x=2.因为x=0不可能是整式方程(3-a)x=10的解,所以原分式方程的增根为x=2.所以(3-a)×2=10.解得a=-2.(3)①当3-a=0,即a=3时,整式方程(3-a)x=10无解,则原分式方程也无解;②当3-a≠0时,要使原方程无解,则由(2)知,此时a=-2.综上所述,a的值为3或-2.点拨:分式方程有增根时,一定存在使最简公分母等于0的整式方程的解.分式方程无解是指整式方程的解使最简公分母等于0或整式方程无解.。

人教版初二数学8年级下册 第16章(二次根式)拓展练习(附答案)

人教版初二数学8年级下册 第16章(二次根式)拓展练习(附答案)

人教版八下数学第16章《二次根式》一、选择题1. 下列式子为最简二次根式的是( )A.3B.4C.8D.12 2. 要使二次根式3−2x有意义,则x的取值范围是( ).A.x≥32B.x≤32C.x≥23D.x≤233. 下列计算正确的是( )A.8−2=2B.2+3=5C.2×3=5D.8÷2=4 4. 如果一个三角形的面积为12,一边长为3,则这条边上的高是( )A.4B.2C.2D.225. 计算8−2(2+2)得( )A.−2B.2−2C.2D.42−26. 8n是整数,正整数n的最小值是( )A.4B.3C.2D.07. 已知0<a<1,则a,a2,1a之间的大小关系为( )A.1a >a2>a B.a>1a>a2C.a2>a>1aD.1a>a>a28. 设10的小数部分为b,则b(10+3)的结果是( )A.1B.是一个无理数C.3D.无法确定9. 若a=b2−1+1−b2b−1+4,则a+b的值为( )A.±1B.3C.4D.3或5二、填空题10. 计算(2+3)(2−3)的结果为.11. 计算:13×27=.12. 计算:(22−18)−1=.13. 已知a+b=23+1,ab=3,则(a+1)(b+1)=.14. 如图,正方形ABCD被分成两个小正方形和两个长方形,如果两小正方形的面积分别是2和5,那么两个长方形(阴影部分)的面积之和为.三、解答题15. 计算:22×212÷418−316. 化简524x−6x9+3x1x,并将自己所喜欢的x值代入化简结果进行求值.17. 已知x=5−2,求(9+45)x2−(5+2)x+4的值.18. 先化简再求值:x2x2+4x+4÷xx+2−x−1x+2,其中x=2−1.19. 一个圆形的半径长为x,它的周长与长为20π,宽为365π的长方形的周长相等,求x的值.20. 如图,已知A(0,a),B(b,0),P(c,0)为坐标轴正半轴上三点,且满足a−2+b−2+(a−2c)2=0.的值;(1) 判断△AOB的形状,并求BPOP(2) 过点A作AQ⊥AP,且AQ=AP,点Q在第二象限,连接BQ交y轴于点M,请在图的值;上作出图形,并求OMOP(3) 如图,过点P作AP⊥PF,连接BF,若∠OAP+∠F=45∘,求BF的值.答案一、选择题1. 【答案】A2. 【答案】B3. 【答案】A4. 【答案】A5. 【答案】A6. 【答案】C【解析】 ∵8n =22n ,∴ 要使 8n 是整数,正整数 n 的最小值是 2.7. 【答案】D8. 【答案】A9. 【答案】B二、填空题10. 【答案】 −111. 【答案】 312. 【答案】 −2213. 【答案】 33+214. 【答案】 210三、解答题15. 【答案】 原式=23−66.16. 【答案】 6x ,当 x =1 时,原式 =6.17. 【答案】 4.18. 【答案】 1x +2,2−1.19. 【答案】 x =1655.20. 【答案】(1) △AOB 是等腰直角三角形,OB =2,OP =2,则 BP =2−2,则 BP OP =2−1;(2) 过点 Q 作 QN ⊥y 轴与点 N ,则 △AQN ≌△PAO , ∴AN =OP =2,证 △QNM ≌△BOM ,∴MN =OM ,则 ON =BP =2−2,则 OM =12(2−2),则 OMOP =12(2−2)2=12(2−1);(3) 连接 AB ,过点 P 作 PT ⊥OB 交 AB 于点 T ,证 △ATP ≌△FBP ,得 AP =PF ,BF =AT ,易求 AB =2OA =22,BT =2PB =2(2−2)=22−2,∴AT=AB−BT=2,∴BF=2.。

第16章二次根式期末综合复习知识点分类训练(附答案)2020-2021学年八年级数学人教版下册

第16章二次根式期末综合复习知识点分类训练(附答案)2020-2021学年八年级数学人教版下册

2021年人教版八年级数学下册《第16章二次根式》期末综合复习知识点分类训练(附答案)一.二次根式的定义及其意义1.下列各式中是二次根式的是()A.B.C.﹣D.22.下列各式一定是二次根式的是()A.B.C.D.3.若是二次根式,则a的值不可以是()A.4B.C.90D.﹣24.若代数式有意义,则实数x的取值范围是()A.x>2B.x≥2C.x<2D.x≤25.若式子有意义,则x的取值范围为()A.x>4B.x<4C.x≥4D.x≤46.使代数式有意义,则a的取值范围为()A.a≥﹣2且a≠1B.a≠1C.a≥﹣2D.a>﹣27.设x,y为实数,且,则|y﹣x|的值是()A.1B.9C.4D.58.若a,b为实数,且b=++4,则a+b的值为()A.﹣13B.13C.﹣5D.5二.二次根式的性质与化简9.下列各式中正确的是()A.=﹣2B.=2C.=2D.=±210.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.2与(﹣)2D.|﹣|与11.若,则a的取值范围是()A.a B.a>C.a<D.a12.若3<a<4,则﹣|a﹣4|等于()A.2a﹣7B.﹣1C.7﹣2a D.113.实数a,b在数轴上的位置如图所示,化简的结果是()A.﹣b B.b C.﹣2a﹣b D.﹣2a+b三.最简二次根式与二次根式的乘除14.下列二次根式中,是最简二次根式的是()A.B.C.D.15.下列式子是最简二次根式的是()A.B.C.D.16.化简:=;=;(2)2=.17.计算÷的结果是.18.计算:=.四.二次根式的加减19.计算﹣的结果是.20.计算﹣+2的结果是.21.如果最简二次根式与可以合并,则x=.22.若与最简二次根式3可以合并,则a=.23.如果最简二次根式和可以合并,则ab=.五.二次根式的混合计算与化简求值24.下列计算正确的是()A.=B.=2C.=D.(3﹣)2=7 25.下列计算:①()2=2,②=﹣2,③(﹣2)2=12,④=2,⑤﹣=,⑥()(﹣)=﹣1,其中结果正确的个数为()A.1B.2C.3D.426.下列各式计算正确的是()A.2﹣=2B.2×=2C.=2D.﹣=27.计算:=.28.计算(2﹣3)÷=.29.已知a=,b=,求ab的值为.30.已知a=3+,b=3﹣,则代数式的值是.31.已知x=﹣1,则代数式x2﹣5x﹣6=.32.已知(a﹣3)2+|b﹣4|=0,则a+的值是.33.已知m+n=10,则的最小值=.六.分母有理化与二次根式的应用34.分母有理化:=.35.已知长方形的面积为18,一边长为2,则长方形的另一边为.36.若x=+1,y=﹣1,则的值为.37.若直角三角形的边长分别是3,m,5.(1)求m;(2)先化简再求值.38.(1)已知a=3+2,b=3﹣2,求代数式a2b﹣ab2的值.(2)(﹣)÷,其中x=﹣2.39.阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①==;②===+1等运算都是分母有理化,根据上述材料,计算:+++…+=.40.阅读材料:如果一个三角形的三边长分别为a,b,c,记p=,那么这个三角形的面积为S=.这个公式叫“海伦公式”,它是利用三角形的三条边的边长直接求三角形面积的公式,中国秦九韶也得出了类似的公式,称三斜求积术,故这个公式又被称为“海伦﹣﹣秦九韶公式”.完成下列问题:如图,在△ABC中,a=5,b=3,c=4.(1)求△ABC的面积;(2)过点A作AD⊥BC,垂足为D,求线段AD的长.参考答案一.二次根式的定义及其意义1.解:A、是三次根式,不合题意;B、根号下部分是负数,无意义,不是二次根式,不合题意;C、﹣,符合二次根式的定义,符合题意;D、2不是二次根式,不合题意.故选:C.2.解:A、x<0时,不是二次根式,故A不符合题意;B、是二次根式,故B符合题意;C、二次根式的被开方数是非负数,故C不符合题意;D、,根指数不是2,不是二次根式,故D不符合题意;故选:B.3.解:∵是二次根式,∴a≥0,故a的值不可以是﹣2.故选:D.4.解:由题意得:x﹣2≥0,解得:x≥2,故选:B.5.解:∵式子有意义,∴x﹣4>0,解得x>4,即x的取值范围为x>4,故选:A.6.解:由题意得a+2≥0且a﹣1≠0,解得a≥﹣2且a≠1,故选:A.7.解:∵,∴5﹣x≥0,5﹣x≤0,∴5﹣x=0,解得x=5,∴y=4,∴|y﹣x|=|4﹣5|=1.故选:A.8.解:由题意得:,解得a=9,∴b=4,∴a+b=9+4=13.故选:B.二.二次根式的性质与化简9.A.算术平方根具有非负性,不符合题意;B.负数的立方根是负数,不符合题意;C.负数的平方等于正数,符合题意;D.算术平方根只有一个,不符合题意.故选:C.10.解:∵=2,2与﹣2互为相反数,故A选项符合题意;=﹣2,故B选项不符合题意;(﹣)2=2,故C选项不符合题意;|﹣|=,故D选项不符合题意.故选:A.11.解:∵,∴3﹣2a≥0,解得:a≤.故选:D.12.解:∵3<a<4,∴﹣|a﹣4|=a﹣3﹣(4﹣a)=a﹣3﹣4+a=2a﹣7.故选:A.13.解:由数轴可得:﹣2<a<﹣1,0<b<1,则a﹣b<0,故原式=﹣a+b﹣a=﹣2a+b.故选:D.三.最简二次根式与二次根式的乘除14.解:A,,被开方数含有分母,不是最简二次根式,故此选项不符合题意;B,,是最简二次根式,故此选项符合题意;C,被开方数不是整数,不是最简二次根式,故此选项不符合题意;D,=,被开方数含有开的尽方的因数,不是最简二次根式,故此选项不符合题意.故选:B.15.解:A.==,不符合题意;B.=2,不符合题意;C.是最简二次根式,符合题意;D.=,不符合题意.故选:C.16.解:=3;=;(2)2=12.故答案为:3,,12.17.解:÷===2,故答案为:2.18.解:原式=4÷5×=×==.故答案为:.四.二次根式的加减法19.解:原式=﹣2=﹣.故答案为:﹣.20.解:原式=(+2)﹣=3﹣.故答案为:3﹣.21.解:∵最简二次根式与可以合并,∴2x+1=5,∴x=2.故答案为:2.22.解:∵=2,∴3=4﹣2a,∴a=,故答案为:.23.解:最简二次根式和是同类二次根式,∴b+1=2且2a+3=a+3b,解得a=0,b=1,∴ab=0.故答案为:0.五.二次根式的混合计算与化简求值24.解:A、+=3+,故此选项错误;B、﹣=2,故此选项正确;C、==,故此选项错误;D、(3﹣)2=9+2﹣6=11﹣6,故此选项错误;故选:B.25.解:①()2=2,故①正确.②=2,故②错误.③(﹣2)2=12,故③正确.④=,故④错误.⑤与不是同类二次根式,故⑤错误,⑥()(﹣)=2﹣3=﹣1,故⑥正确.故选:B.26.解:A、原式=,故A错误.B、原式=2,故B正确.C、原式==,故C错误.D、与不是同类二次根式,故不能合并,故D错误.故选:B.27.解:原式=﹣2=2﹣2.故答案为2﹣2.28.解:原式=2﹣3=8﹣9=﹣1.故答案为﹣1.29.解:a=,b=,∴ab=()()=3﹣2=1.故答案为:1.30.解:∵a=3+,b=3﹣,∴a+b=(3+)+(3﹣)=6,ab=(3+)(3﹣)=9﹣5=4,∴===2,故答案为:2.31.解:∵x=﹣1,∴x2﹣5x﹣6=(x+1)(x﹣6)=(﹣1+1)(﹣1﹣6)=(﹣7)=5﹣7.故答案为5﹣7.32.解:由题意可知:a﹣3=0,b﹣4=0,∴a=3,b=4,∴原式=3+2=5,故答案为:5.33.解:如图,∠CAB=∠DBA=90°,AB=10,AC=5,BD=7,设AP=m,BP=n,则PC=,PD=,∵PC+PD≥CD(当且仅当C、P、D共线时取等号),∴PC+PD的最小值为CD,过D点作DE⊥AC于E,如图,易得四边形ABDE为矩形,∴AE=BD=7,DE=AB=10,在Rt△CDE中,CD===2,∴的最小值为2.故答案为2.六.分母有理化与二次根式的应用34.解:===2.故答案为:2﹣.35.解:∵长方形的面积为18,一边长为2,∴长方形的另一边为:18÷2=3.故答案为:3.36.解:∵x=+1,y=﹣1,∴x+y=(+1)+(﹣1)=2,则====,故答案为:.37.解:(1)当m为斜边时,m=;当m为直角边时,m==4.综上,m的值为4或;(2)原式==|m﹣3|﹣|m﹣7|,当m=4时,原式=m﹣3﹣7+m=2m﹣10=2×4﹣10=﹣2;当m=时,原式=m﹣3﹣7+m=2m﹣10=2×﹣10=2﹣10,综上原式的值为﹣2或2﹣10,38.解:(1)∵a=3+2,b=3﹣2,∴ab=(3+2)(3﹣2)=1,a﹣b=(3+2)﹣(3﹣2)=4,∴a2b﹣ab2=ab(a﹣b)1×4=4;(2)原式=(﹣)×=×=,当x=﹣2时,原式==.39.解:原式=﹣1+﹣+﹣+…+﹣=﹣1.故答案为:﹣1.40.解:(1)∵a=5,b=3,c=4,∴p==6,∴△ABC的面积S==6;(2)如图,∵△ABC的面积=BC•AD,∴×5×AD=6,∴AD=.。

人教版八年级数学下册`期末提优复习:第16--17章附答案

人教版八年级数学下册`期末提优复习:第16--17章附答案

第16章二次根式1.计算的结果为()A.B.C.2 D.2.下列计算正确的是()A.4﹣3=1 B.+=C.+=3D.3+2=53.下列各式①;②;③;④;⑤,其中二次根式的个数有()A.1个B.2个C.3个D.4个4.在二次根式,,,,,中,最简二次根式的个数是()A.1 B.2 C.3 D.45.函数y=++2,则x y的值为()A.0 B.2 C.4 D.86.已知a=15 -2,b=15 +2,则a2+b2+7 的值为()A、3B、4C、5D、67.如果ab>0,a+b<0,那么下面各式:①=,②×=1,③÷=﹣b,其中正确的是()A.①②B.②③C.①③D.①②③8.下列说法正确的是()A .的倒数B .C .的相反数是D .是分数9.把(2﹣x )的根号外的(2﹣x )移入根号内得( )A .B .C .﹣D .﹣10.已知方程+3=,则此方程的正整数解的组数是( )A .1B .2C .3D .411.化简﹣= .12.下列各式①,②,③,④,⑤,⑥,⑦(其中a <0)中,其中二次根式有________个.13.已知1<x <2,,则的值是 .14.若最简二次根式与的被开方数相同,则a 的值为 .15.计算:+-1+(2+1)(3-)=__________.16.若3)3(-•=-m m m m ,则m 的取值范围是 。

17.已知y=+﹣4,计算x﹣y2的值.18.若x,y都是实数,且y=+1,求+3y的值.19.已知实数x,y满足x2+y2﹣4x﹣2y+5=0,求的值.20.阅读材料,请回答下列问题.材料一:我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积,用现代式子表示即为:S=①(其中a,b,c为三角形的三边长,S为面积),而另一个文明古国古希腊也有求三角形面积的“海伦公式”;S=……②(其中p=)材料二:对于平方差公式:a2﹣b2=(a+b)(a﹣b)公式逆用可得:(a+b)(a﹣b)=a2﹣b2,例:a2﹣(b+c)2=(a+b+c)(a﹣b﹣c):(1)若已知三角形的三边长分别为4,5,7,请分别运用公式①和公式②,计算该三角形的面积;(2)你能否由公式①推导出公式②?请试试,写出推导过程.21.已知x=(+),y=(﹣),求下列各式的值.(1)x2﹣xy+y2;(2)+.22.已知二次根式.(1)当x =3时,求的值.(2)若x 是正数,是整数,求x 的最小值.23.已知长方形的长为a ,宽为b ,且a =,b =.(1)求长方形的周长;(2)当S 长方形=S 正方形时,求正方形的周长.24.已知:的值。

八下数学课本习题16答案

八下数学课本习题16答案

八下数学课本习题16答案八下数学课本习题16答案数学是一门需要不断练习和思考的学科,而习题是我们掌握数学知识和提高解题能力的重要途径。

在八年级数学课本中,习题16是一组关于代数式的题目。

本文将为大家提供习题16的答案,帮助大家更好地理解和掌握这一知识点。

题目一:计算下列各式的值。

1. 2x + 3y,当x = 4,y = 5时。

答案:2x + 3y = 2(4) + 3(5) = 8 + 15 = 23。

2. 3a - 2b,当a = 7,b = 2时。

答案:3a - 2b = 3(7) - 2(2) = 21 - 4 = 17。

3. 4m + 5n,当m = 3,n = 6时。

答案:4m + 5n = 4(3) + 5(6) = 12 + 30 = 42。

这一题目主要考察了代数式的计算能力。

我们可以根据给定的数值代入代数式中,然后进行简单的计算求得结果。

题目二:写出下列各式的值。

1. 2x,当x = 3时。

答案:2x = 2(3) = 6。

2. 3y,当y = 2时。

答案:3y = 3(2) = 6。

3. 4z,当z = 5时。

答案:4z = 4(5) = 20。

这一题目要求我们根据给定的数值写出代数式的值。

我们只需要将数值代入代数式中,然后进行计算即可。

题目三:计算下列各式的值。

1. 2x + 3y,当x = 2,y = 3时。

答案:2x + 3y = 2(2) + 3(3) = 4 + 9 = 13。

2. 3a - 2b,当a = 5,b = 4时。

答案:3a - 2b = 3(5) - 2(4) = 15 - 8 = 7。

3. 4m + 5n,当m = 6,n = 7时。

答案:4m + 5n = 4(6) + 5(7) = 24 + 35 = 59。

这一题目与题目一相似,也是考察了代数式的计算能力。

我们同样可以根据给定的数值代入代数式中,然后进行计算求得结果。

通过以上题目的解答,我们可以发现代数式的计算并不难,只需要将给定的数值代入代数式中,然后进行简单的计算即可得到答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、定义一种新运算 a▽ b= a× b+ a,例如:3▽4=3×4+3=15,已知5▽ x=40,求 x=?
二、在下面的□填上相同的数,使等式成立。

1.8×□+□×
2.2=40
三、要使等式“93-(16×△-△×9)×3=51”成立,“△”应当是多少?
四、某数的8倍加上10等于它的10倍减去8,求这个数。

五、甲、乙、丙、丁四个数的和是135,甲数加上2,乙数减去2,丙数乘以2,丁数除以2,则这四个数相等,求甲、乙、丙、丁各是多少?
参考答案
一、
解:5 +5=40
5 =40-5
5 =35
=35÷5
=7
二、解:设□所表示的数为。

1.8 +
2.2 =40
(1.8+2.2) =40
4 =40
=40÷4
=10
三、解:设△所表示的数用来表示。

93-(16 -9 )×3=51
(16 -9 )×3=93-51
(16 -9 )×3=42
16 -9 =42÷3
7 =14
=14÷7
=2
四、解:设这个数为。

8 +10=10 -8
2 =18
=18÷2
=9
五、
分析:设甲数加上2,乙数减去2,丙数乘以2,丁数除以2后这个相等的数为标准数。

把标准数设为,甲数为-2,乙数为+2,丙数为 ÷2,丁数为 ×2,可列方程如下:(-2)+(-2)+ ÷2+ ×2=135
-2++2+0.5 +2 =135
4.5 =135
=135÷4.5
=30
-2=30-2=28 +2=30+2=32
÷2=30÷2=15 ×2=30×2=60
答:甲数是28,乙数是32,丙数是15,丁数是60。

相关文档
最新文档