1.运动的合成与分解
运动的合成与分解
同时性
合运动所需时间和对应的每个分运动所 需时间相等
独立性
一个物体可以同时参与几个不同的分运 动,各个分运动独立进行,互不影响
等效性 同体性
合运动与分运动在效果上是等效替代的 关系
合运动与分运动必须对同一物体
例2:一艘小船在宽为 d 的河中横渡到对岸, 已知水流速度是V水,小船在静水中的速度 是V船,(V水>V船),求:
(1)船头垂直河岸,小船渡河需要多少时 间?到达对岸的位置在哪里?
分析1:船头垂直河岸
最短时间
v船
v
d
v水
t= d x= dv水
v船
v船
例1:一艘小船在宽为 d 的河中横渡到对岸, 已知水流速度是V水,小船在静水中的速度 是V船,(V水<V船),求:
(2)欲使船到达正对岸,船应该怎样渡 河,需要多少时间?
分析2:到达正对岸
最பைடு நூலகம்距离
v船 v
t= d
d
θ
v水
v船2 v水2
结论:当合速度V垂直河岸时,到达正对岸。
设船头指向与上游河岸成θ:cos v水
v船
拓展:
•1.在船头始终垂直对岸的情况下,在行驶到河中 间时,水流速度突然增大,过河时间如何变化?
答案:不变
•2.为了垂直到达河对岸,在行驶到河中间时,水 流速度突然增大,过河时间如何变化?
答案:变长 •3.如果小船船头垂直河岸,以初速度为零,匀加速 始向对岸,请画出大致的运动轨迹?
答案:抛物线
运动的合成与分解是指位移、速度、加速度的合成与分解。
二、运算法则: (1)两个分运动在同一直线上时,同向相加,反向相减。 (2)不在同一直线上,按照平行四边形定则合成或分解。
运动的合成与分解笔记
运动的合成与分解笔记运动是生命的基本特征之一,它是生命体与环境进行交互的重要方式。
运动可以分为两种类型:合成运动和分解运动。
合成运动是由多个小的动作组成,而分解运动则是将大的动作分解为多个小的动作。
在这篇文章中,我们将探讨运动的合成与分解的原理和应用。
一、合成运动合成运动是将多个小的动作组合成为一个大的动作。
这种运动的特点是需要多个肌肉协同工作,以产生一个复杂的动作。
例如,打篮球需要多个动作协调工作,包括跑步、跳跃、投球等等。
这些动作需要不同的肌肉组合来完成。
合成运动的原理是通过不同的肌肉组合来产生不同的动作。
这些肌肉组合需要在神经系统的控制下工作。
当我们执行一个动作时,神经系统会向肌肉发送信号,使得肌肉收缩或松弛。
这些信号可以通过大脑、脊髓和神经末梢来传递。
合成运动的应用非常广泛。
例如,运动员在进行训练时会使用合成运动来提高其技能水平。
此外,在康复治疗中,合成运动也可以帮助患者恢复肌肉功能。
二、分解运动分解运动是将一个大的动作分解为多个小的动作。
这种运动的特点是需要将一个复杂的动作拆分为多个简单的动作。
例如,打篮球时,将投球动作分解为抬手、弯腰、跳跃、投球等动作。
分解运动的原理是通过将一个大的动作分解为多个小的动作来减少运动的难度。
这些小的动作可以更容易地掌握和练习。
随着技能水平的提高,这些小的动作可以逐渐合成为一个大的动作。
分解运动的应用也非常广泛。
例如,在体育教学中,老师会将一个复杂的动作分解为多个小的动作,以帮助学生更好地掌握技能。
此外,在康复治疗中,分解运动也可以帮助患者逐步恢复肌肉功能。
三、结语运动是生命的基本特征之一,它对人类的身体健康和心理健康都有着重要的影响。
合成运动和分解运动是两种不同的运动类型,它们的原理和应用也不同。
了解这些原理和应用可以帮助我们更好地掌握和应用运动技能。
同时,也可以帮助我们更好地理解和利用运动对身体和心理健康的益处。
1.第一讲 运动基础 运动基础 运动的合成与分解
这一结论对运动参照系是相对于静止参照系作平动还是转动都成立。
当运动参照系相对静止参照系作平动时,加速度也存在同样的关系:
当运动参照系相对静止参照系作转动时,这一关系不成立。这一问题在牛顿运动定律中再做研究。
如果有一辆平板火车正在行驶,速度为 (脚标“火地”表示火车相对地面,下同)。一辆小汽车在火车上行驶,相对火车的速度为 ,那么汽车相对地面的速度为 :
③瞬时速度等物理量是指某一时刻的,故它们的合成分解要讲究瞬时性,即必须取同一时刻的速度。
已知物体的分运动求合运动称为运动的合成,已知物体的合运动求分运动称为运动的分解,二者是两个互逆的过程,其实质上是个等效替代的过程。因此合运动和分运动还具有等效性。
例1.如图示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D。一根轻绳一端固定在C点,并绕过B和D,且BC段水平。当以恒定水平速度v拉绳上的自由端时,A沿水平面前进。求当跨过B的两端绳子的夹角为a时,A的运动速度。
1.矢量的合成与分解
矢量的合成与分解的基本方法是平行四边形定则,即两分量构成平行四边形的两邻边,合矢量为该平行四边形与两分量共点的对角线。由平行四边形法则又衍生出三角形法则,多个矢量的合成又可推导出多边形法则。
同一直线上的矢量的合成与分解可以简化为代数运算,由此,不在同一直线上的矢量的合成与分解一般通过正交分解法进行运算,即把各个矢量向互相垂直的坐标轴投影,先在各轴上进行代数运算之后,再进行矢量运算。
例1.在光滑的水平轨道上有两个半径都是r的小球A和B。当两球球心间的距离大于L时,A球以速度 做匀速运动,B静止。当两球球心间的距离的等于或小于L时,A球做加速度大小为2a的匀减速运动,同时B开始向右做初速度为零的匀加速运动,加速度为a,如图所示。欲使两球不发生接触,则必须满足什么条件?
运动的合成与分解
运动的合成与分解1. 引言运动是物质存在的基本特征之一,在我们的日常生活中无处不在。
运动的合成与分解是物理学中一个重要的概念,它可以帮助我们更好地理解和描述物体的运动状态。
本文将介绍运动的合成与分解的概念、原理和应用。
2. 运动的合成运动的合成是指将两个或多个独立运动合成为一个总运动的过程。
在运动的合成过程中,我们需要考虑两个方面的因素:运动的方向和运动的速度。
2.1 运动的方向合成首先,我们来看运动的方向合成。
当两个运动的方向相同时,它们的合成就相对简单。
例如,当一个物体以向东方向匀速运动,同时另一个物体也以向东方向匀速运动,那么它们的合成运动也是向东方向匀速运动。
但是当运动的方向不同时,我们就需要考虑两个方向的夹角了。
为了方便计算,我们通常使用向北为正方向,向东为正方向。
当两个运动的方向夹角为90度时,它们的合成运动将形成一个直角三角形。
根据三角函数的定义,我们可以计算出合成运动的方向与两个运动方向的夹角,以及它相对向北和向东方向的夹角。
2.2 运动的速度合成除了考虑运动的方向合成外,我们还需要考虑运动的速度合成。
运动的速度合成可以通过向量的几何法进行分析。
具体而言,我们可以将两个运动的速度向量相加或相减,从而得到合成运动的速度向量。
在进行速度合成时,我们需要注意两个运动的速度单位要相同。
如果速度单位不同,我们需要首先进行单位转换。
例如,如果一个物体以每小时50千米的速度向东运动,另一个物体以每小时30千米的速度向北运动,那么我们可以将这两个速度向量进行合成。
使用向量的几何法,我们可以将速度向量按照合理的比例进行分解,从而得到合成运动的速度向量。
3. 运动的分解运动的分解是指将一个总运动分解为两个或多个独立运动的过程。
与运动的合成相反,运动的分解需要考虑合成物体的总运动在不同方向上的分解。
在进行运动的分解时,我们需要首先确定合成物体的总运动的方向和速度。
然后,根据需要我们可以选择将总运动分解为多个独立运动,或者将总运动分解为两个或多个运动的合成。
运动的合成和分解-
运动的合成和分解1. 引言运动是物质存在的一种最基本的状态之一,是自然界中普遍存在的现象。
在运动学中,我们对物体的运动进行描述和研究,其中一个重要的概念就是运动的合成和分解。
运动的合成是指将两个或多个运动合并在一起,形成一种新的运动;而运动的分解是指将一个运动分解为两个或多个单独的运动。
本文将对运动的合成和分解进行详细介绍,并通过示例来进一步说明其应用。
2. 运动的合成2.1 合成运动的概念在物体的运动中,如果一个物体同时具有两个或多个运动,这些运动叠加在一起就形成了合成运动。
合成运动中的每个分量运动都是原来各个运动独立进行的,互不干扰。
2.2 合成运动的特点合成运动具有以下几个重要特点:•合成运动的合成速度等于各个分量速度的矢量和。
即合成运动的速度等于各分量速度矢量相加所得矢量的矢量和。
•合成运动的合成位移等于各个分量位移的矢量和。
即合成运动的位移等于各分量位移矢量相加所得矢量的矢量和。
•合成运动的合成加速度等于各个分量加速度的矢量和。
即合成运动的加速度等于各分量加速度矢量相加所得矢量的矢量和。
2.3 合成运动的示例下面通过一个示例来具体说明合成运动的概念和特点。
示例:一辆汽车在东北方向以10 m/s的速度行驶,同时有一阵风以6 m/s的速度从东南方向吹向汽车。
请问汽车在实际行驶中的速度是多少?根据合成运动的概念和特点,我们可以将汽车的行驶速度和风的速度进行合成。
首先,我们可以用矢量的几何方法来计算合成速度。
假设汽车的行驶速度用向量A表示,风的速度用向量B表示,则合成速度用向量C表示。
根据矢量的几何方法,我们可以绘制向量A和向量B,然后将它们首尾相连,从起点到终点的向量就是合成速度的方向和大小。
根据题目中给出的数据,我们可以得到以下结果:合成运动示例合成运动示例根据图示,我们可以计算出合成速度的大小为14 m/s,并且合成速度与东北方向的夹角为37度。
因此,汽车在实际行驶中的速度是14 m/s,方向为东北方向。
运动的合成与分解
运动的合成与分解一、合运动与分运动1.合运动与分运动定义:如果物体同时参与了两种运动,那么物体实际发生的运动叫做那两种运动的合运动,那两种运动叫做这个实际运动的分运动。
2.在一个具体问题中判断哪个是合运动,哪个是分运动的关键是弄清物体实际发生的运动是哪个,则这个运动就是合运动。
物体实际发生的运动就是物体相对地面发生的运动,或者说是相对于地面上的观察者所发生的运动。
3.相互关系①运动的独立性:分运动之间是互不相干的,即各个分运动均按各自规律运动,彼此互不影响。
因此在研究某个分运动的时候,就可以不考虑其他的分运动,就像其他分运动不存在一样。
②运动的等时性:各个分运动及其合运动总是同时发生,同时结束,经历的时间相等;因此,若知道了某一分运动的时间,也就知道了其他分运动及合运动经历的时间;反之亦然。
③运动的等效性:各分运动叠加起来的效果与合运动相同。
④运动的相关性:分运动的性质决定合运动的性质和轨迹。
二、运动的合成和分解这是处理复杂运动的一种重要方法。
1.定义:已知分运动的情况求合运动的情况,叫做运动的合成。
已知合运动的情况求分运动的情况,叫做运动的分解。
2.实质(研究内容):运动是位置随时问的变化,通常用位移、速度、加速度等物理量描述。
所以,运动的合成与分解实质就是对描述运动的上述物理量的合成与分解。
3.定则:由于描述运动的位移、速度、加速度等物理量均是矢量,而矢量的合成与分解遵从“平行四边形定则”,所以运动的合成与分解也遵从“平行四边形定则”。
4.具体方法①作图法:选好标度,用一定长度的有向线段表示分运动或合运动的有关物理量,严格按照平行四边形定则画出平行四边形求解。
②计算法:先画出运动合成或分解的示意图,然后应用直角三角形等数学知识求解。
三、两个直线运动的合运动的性质和轨迹的判断方法1.根据平行四边形定则,求出合运动的初速度v0和加速度a后进行判断:①若a=0(分运动的加速度都为零),物体沿合初速度v0的方向做匀速直线运动。
运动的合成和分解
运动的合成和分解1. 引言运动是物质存在的一种基本属性,是物质存在的一种运动形态。
在物理学中,运动可以分为合成运动和分解运动。
本文将介绍运动的合成和分解的概念、原理及相关实例。
2. 合成运动合成运动是指物体在空间中同时具有两种或两种以上的运动的情况。
合成运动可以分为两种类型:直线运动的合成和曲线运动的合成。
2.1 直线运动的合成直线运动的合成是指在一定时间内,物体同时具有两种或两种以上在同一直线上的速度和方向的运动。
合成运动的速度可以通过矢量相加来得到。
例如,一个人同时向东走和向北走,他的合成速度就是东北方向的矢量和。
2.2 曲线运动的合成曲线运动的合成是指在一定时间内,物体具有两种或两种以上的曲线运动的情况。
曲线运动的合成可以通过将各个合成部分的速度矢量相加来得到。
例如,一个车辆同时进行直线运动和曲线转弯运动,可以通过将直线运动和曲线转弯运动的速度矢量相加,得到车辆的合成速度矢量。
3. 分解运动分解运动是指一个复杂的运动被分解为几个部分来考虑。
分解运动可以分为两种类型:平抛运动和斜抛运动的分解。
3.1 平抛运动的分解平抛运动是指物体在水平方向上作等速直线运动,而在竖直方向上作自由落体运动的情况。
平抛运动可以通过将水平运动和竖直运动分开来考虑。
例如,一个斜向上抛出的物体,在水平方向上具有匀速直线运动,在竖直方向上则受到重力加速度的影响而作自由落体运动。
3.2 斜抛运动的分解斜抛运动是指物体在水平方向上作匀速直线运动,而在竖直方向上作自由落体运动的情况。
斜抛运动可以通过将水平运动和竖直运动分开来考虑。
例如,一个以一定角度斜向上抛出的物体,在水平方向上具有匀速直线运动,在竖直方向上则受到重力加速度的影响而作自由落体运动。
4. 实例分析为了更好地理解运动的合成和分解,我们可以通过一些实例来进行分析。
4.1 合成运动的实例假设一个人同时向东走和向北走,他的合成速度就是东北方向的矢量和。
又如一个车辆同时进行直线运动和曲线转弯运动,可以通过将直线运动和曲线转弯运动的速度矢量相加,得到车辆的合成速度矢量。
运动的合成与分解
运动的合成与分解1.遵循的法则位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形定则. 2.合运动与分运动的关系(1)等时性:合运动和分运动经历的时间相等,即同时开始、同时进行、同时停止. (2)独立性:一个物体同时参与几个分运动,各分运动独立进行,不受其他运动的影响. (3)等效性:各分运动的规律叠加起来与合运动的规律有完全相同的效果. 3.合运动的性质判断⎩⎨⎧加速度(或合外力)⎩⎪⎨⎪⎧ 变化:非匀变速运动不变:匀变速运动加速度(或合外力)方向与速度方向⎩⎪⎨⎪⎧共线:直线运动不共线:曲线运动4.两个直线运动的合运动性质的判断标准:看合初速度方向与合加速度方向是否共线.题目1.(教科版必修2P4第2题)(多选)一质点做曲线运动,它的速度方向和加速度方向的关系是( )A.质点速度方向时刻在改变B.质点加速度方向时刻在改变C.质点速度方向一定与加速度方向相同D.质点速度方向一定沿曲线的切线方向答案AD2.(人教版必修2P7第2题改编)(多选)跳伞表演是人们普遍喜欢的观赏性体育项目,如图1所示,当运动员从直升机上由静止跳下后,在下落过程中将会受到水平风力的影响,下列说法中正确的是()图1A.风力越大,运动员下落时间越长,运动员可完成更多的动作B.风力越大,运动员着地速度越大,有可能对运动员造成伤害C.运动员下落时间与风力无关D.运动员着地速度与风力无关答案BC3.(多选)物体受到几个力的作用处于平衡状态,若再对物体施加一个恒力,则物体可能做()A.匀速直线运动或静止B.匀变速直线运动C.非匀变速曲线运动D.匀变速曲线运动答案BD4.(人教版必修2P6演示实验改编)小文同学在探究物体做曲线运动的条件时,将一条形磁铁放在桌面的不同位置,让小钢珠在水平桌面上从同一位置以相同初速度v0运动,得到不同轨迹.图2中a、b、c、d为其中四条运动轨迹,磁铁放在位置A时,小钢珠的运动轨迹是______(填轨迹字母代号),磁铁放在位置B时,小钢珠的运动轨迹是______(填轨迹字母代号).实验表明,当物体所受合外力的方向跟它的速度方向______(选填“在”或“不在”)同一直线上时,物体做曲线运动.图2答案 b c 不在5.(人教版必修2P4演示实验改编)如图3甲所示,在一端封闭、长约1 m 的玻璃管内注满清水,水中放置一个蜡块,将玻璃管的开口端用胶塞塞紧.然后将这个玻璃管倒置,在蜡块沿玻璃管上升的同时,将玻璃管水平向右移动.假设从某时刻开始计时,蜡块在玻璃管内每1 s 上升的距离都是10 cm ,玻璃管向右匀加速平移,每1 s 通过的水平位移依次是2.5 cm 、7.5 cm 、12.5 cm 、17.5 cm.图乙中,y 表示蜡块竖直方向的位移,x 表示蜡块随玻璃管运动的水平位移,t =0时蜡块位于坐标原点.图3(1)请在图乙中画出蜡块4 s 内的运动轨迹; (2)求出玻璃管向右平移的加速度大小; (3)求t =2 s 时蜡块的速度大小v . 答案 (1)见解析图 (2)5×10-2 m/s 2 (3)210m/s 解析 (1)蜡块在竖直方向做匀速直线运动,在水平方向向右做匀加速直线运动,根据题中的数据画出的轨迹如图所示.(2)由于玻璃管向右为匀加速平移,根据Δx =at 2可求得加速度,由题中数据可得:Δx =5.0 cm ,相邻时间间隔为1 s ,则a =Δx t 2=5×10-2 m/s 2(3)由运动的独立性可知,竖直方向的速度为 v y =yt=0.1 m/s水平方向做匀加速直线运动,2 s 时蜡块在水平方向的速度为v x =at =0.1 m/s2则2 s时蜡块的速度:v=v2x+v2y=10m/s.。
运动的合成和分解
解:1、当船头指向斜上游,与岸夹角为Ѳ时,合 运动垂直河岸,航程最短,数值等于河宽100米。 则cos Ѳ =
v1 v2 3 4
合速度: v 2 v 2 4 2 3 2 m 7 m v 2 1 s s
过河时间:t
d v
100 7
s
100 7
7
例1:一艘小船在100m宽的河中横渡 到对岸,已知水流速度是3m/s,小 船在静水中的速度是4m/s,求: (2)欲使船渡河时间最短,船应 该怎样渡河?最短时间是多少?船 经过的位移多大?
• 如果: 1、在船头始终垂直对岸的情况下,在行驶
到河中间时,水流速度突然增大,过河时 间如何变化?
答案:不变
2、为了垂直到达河对岸,在行驶到河中间 时,水流速度突然增大,过河时间如何变 化?
答案:变长
“绳+物”问题 【问题综述】 此类问题的关键是: 1.准确判断谁是合运动,谁是分运动;实际运动是合运动
vB
v B sin
v P x a v B a c tg v A
在竖直方向上:
v Py vA l al l
x al sin
y l al cos
消去θ
x
2
2 2
y
2 2
a l
l al
1
v Py 1 a v A
相对运动 【问题综述】 此类问题的关键是:
1.准确判断谁是合运动,谁是分运动;实际运动是合运动
2.根据运动效果寻找分运动; 3.根据运动效果认真做好运动矢量图,是解题的关键。 4.解题时经常用到的矢量关系式:
v 绝对 v 相对 v牵连
运动的合成与分解
重点:正交分解、解直角三角形等方法。
说明:(1)分运动合运动例1. 如图1所示,在河岸上用绳拉船,拉绳的速度是,当绳与水平方向夹角为θ时,船的速度为多大?际效果分别是:使绳子缩短和使绳子绕滑轮顺时针旋转,设船速为,沿绳子方向的分速度为,垂直绳子的分速度为,如图2所示。
=/cosθ, 而=得=/ cosθ点评:运动的合成是唯一的,而运动的分解是无限的,在实际问题中通常例2.有关运动的合成,以下说法中正确的是[ ]A.两个直线运动的合运动一定是直线运动B.两个不在一直线上的匀速直线运动的合运动一定是直线运动C.两个初速度为零的匀加速直线运动的合运动一定是匀加速直线运动D. 匀加速运动和匀速直线运动的合运动一定是直线运动解析:两个直线运动合成,其合运动的性质和轨迹由分运动的性质及合初速度与合加速度的方向关系来决定:两个匀速直线运动的合运动无论它们的方向如何,它们的合运动仍是匀速直线运动. 一个匀速直线运动和一个匀变速直线运动的合运动一定是匀变速运动——两者共线时为匀变速直线运动,两者不共线时为匀变速曲线运动。
两个匀变速直线运动的合运动仍为匀变速运动——当合初速度与合加速度共线时为匀变速直线运动,当合初速度与合加速度不共线时为匀变速曲线运动。
所以,正确选项为B、C点拨:判别两个分运动合成的合运动是否为直线运动,要看其合运动的初速度与合运动的加速度是否在同一条直线上。
三、小船过河专题:1.最短时间过河:水流只会将小船推向下游,要使过河时间最短,则船自身的速度v1全部用来过河,即船自身的速度v1垂直于河岸,船舷垂直于河岸,如图3最短时间为t m=s/v=d/v1此过程位移s=vd/v1 v=(1)v1>v2时,为使位移最小,合速度与河岸垂直,v1偏向上游(船舷偏向上游),与上游河岸的夹角为α,如图4。
cosα=v2/v1时间t=s/v=d/(2)v1<v2时,不可能构建图4中的平行四边形,为使路程最小,合速度与河岸夹角尽可能接近直角,如图5所示。
运动的合成与分解
运动的合成与分解本讲要点:1.知道合运动、分运动分别是什么,知道其同时性和独立性;2.知道运动的合成与分解,理解运动的合成与分解遵循平行四边形定则;3.会用作图和计算的方法,求解位移和速度的合成与分解问题;4.通过观察和思考演示实验,知道运动独立性.学习化繁为筒的研究方法。
同步课堂:一、合运动与分运动1、如果物体同时参与了几个运动,那么物体的实际运动就叫做那几个运动的合运动,那几个运动叫做这个实际运动的分运动。
2、合运动和分运动的关系:(1)等效性:各分运动的规律叠加起来与合运动规律有相同的效果。
(2)独立性:某个方向上的运动不会因为其他方向上是否有运动而影响自己的运动性质。
在运动中一个物体可以同时参与几种不同的运动,在研究时,可以把各个运动都看做是互相独立进行,互不影响。
(3)等时性:合运动通过合位移所需时间和对应的每个分运动通过分位移的时间相等,即各分运动总是同时开始,同时结束。
二、运动的合成与分解1、运动的合成与分解:已知分运动求合运动叫运动的合成,已知合运动求分运动叫运动的分解。
2、运动的合成与分解的运算法则:运动的合成与分解是指描述物体运动的各物理量位移、速度、加速度的合成与分解。
由于它们都是矢量,所以它们都遵循矢量合成与分解的法则,即平行四边形法则。
(1)两个分运动在同一直线上时,同向相加,反向相减。
(2)不在同一直线上,按照进行平行四边形合成或分解。
二、重点难点:1.运动的性质和轨迹的判断:两直线运动的合运动的性质和轨迹由各分运动的性质及合初速度与合加速度的方向和大小关系决定。
(1)两个匀速直线运动的合运动一定是匀速直线运动。
(2)一个匀速直线运动和一个匀变速直线运动的合运动仍然是匀变速运动,当两者共线时为匀变速直线运动,不共线时为匀变速曲线运动。
(3)两个匀变速直线运动的合运动一定是匀变速运动。
若合初速度方向与合加速度方向在同一条直线上时,则是直线运动;若合初速度方向与合加速度方向不在一条直线上时,则是曲线运动。
第1节《运动的合成与分解》 导纲
第三章第1节《运动的合成与分解》第一课时高一()班第()小组姓名号数一、导读提纲1、什么是合运动,什么是分运动?2、合运动与分运动的关系如何?3、什么是运动的合成,什么是运动的分解?4、运动的合成与分解遵守什么原则?5、物体运动的性质和轨迹与分运动之间的关系?6、知道什么是曲线运动,曲线运动的条件是什么?二、自主检测1、如果一个物体同时参与几个运动,那么物体的实际运动就叫做那几个运动的。
那几个运动就叫做这个实际运动的。
2、合运动与分运动之间的关系:①②③④3、已知分运动求合运动叫,已知合运动求分运动叫。
4、运动的合成与分解是指描述物体运动的各物理量如、、的合成与分解。
由于它们都是(矢量、标量),所以它们都遵循。
5、曲线运动是一种轨迹为的运动,曲线运动的条件是:的方向跟的方向不在一条直线上,而是有一定的夹角,产生的加速度的方向也跟的方向不在一条直线上,合力(合加速度)的方向偏向轨迹的(内、外)侧。
三、问题探究1、两个直线运动的合运动的性质和轨迹的判断方法及步骤(1)根据平行四边形定则,求出合运动的初速度v0和合加速度a;(2)根据a是否为零,判断物体是做匀速运动(静止)或匀变速运动;(3)根据合初速度v 0和合加速度a 是否共线判断物体是做直线运动还是曲线运动: ①、若a 与v 0的方向在同一直线上,物体就做直线运动;a 与v 0同向时做加速直线运动;a 与v 0反向时先做减速运动,当速度减为零后将沿a 的方向做加速运动;②、若a 与v 0的方向不在同一直线上,则合运动是曲线运动。
2、两个分运动的合运动的几种可能情况:(1)两分运动在同一直线上运动,则一定是(2)两个互成一定角度(不包括00和1800)的分运动的合成①、两个匀速直线运动的合成,一定是 ②、一个匀速直线运动和一个匀变速直线运动的合运动一定是 ③、两个初速度为零的匀加速直线运动的合运动一定是 ④、两个初速度不为零的匀变速直线运动的合运动可能是四、典例精讲1、物体从M 到N 做减速运动,下列选项图中能正确描述物体运动到P 点时的速度v 和加速度a 的方向关系的是 ( )2、关于合运动与分运动的关系,下列说法正确的是 ( )A .合运动的速度一定不小于分运动的速度B .合运动的加速度不可能与分运动的加速度相同C .合运动与分运动没有关系,但合运动与分运动的时间相等D .合运动的轨迹与分运动的轨迹可能重合3、某人站在电动扶梯上不动,经时间t 1,由一楼升到二楼.如果自动扶梯不动,人从一楼走到二楼的时间为t 2.现在电动扶梯正常运行,人也保持原来的速率沿扶梯向上走,则人从一楼到二楼的时间是 ( )A .t 2-t 1 B.t 1t 2t 2-t 1 C.t 1t 2t 1+t 2 D.t 21+t 2224、光滑的水平面上有一质量为2 kg 的物体,在几个共点力的作用下做匀速直线运动.现将与速度反方向的2 N 的力水平旋转90°,下列叙述正确的是 ( )A .物体做速度大小不变的曲线运动B .物体做加速度为 2 m/s 2的匀变速曲线运动C .物体做速度越来越大的匀变速直线运动D .物体做非匀变速曲线运动,其速度越来越大。
专题四:第1讲 运动的合成与分解
d 短,最短时间为 t= . v船
图4-1-1
(2)渡河的最短位移
①若 v 水<v 船,最短的位移为河宽 d,此时渡河所用时间 d t= ,船头与河岸的夹角 θ 满足 v 船 cosθ=v 水,如图 4-1 v船sinθ -2 所示.
图4-1-2
②若 v 水>v 船,这时无论船头指向什么方向,都无法使船垂 直河岸渡河,即最短位移不可能等于河宽 d,寻找最短位移的 方法是: 如图 4-1-3 所示,按水流速度和船在静水中的速度大小 的比例,先从出发点 A 开始作矢量 v 水,再以 v 水末端为圆心, v 船为半径画圆弧, 自出发点 A 向圆弧作切线即为船位移最小时 v船 的合运动的方向.这时船头与河岸的夹角 θ 满足 cosθ= ,最 v水 d d 短位移 s 短= ,过河时间 t= . cosθ v船sinθ
线的凹侧,物体的加速度也指向曲线的凹侧.
4.判断做曲线运动的物体的速率变化情况 (1)当合力方向与速度方向的夹角小于 90°时,物体运动的 速率增大. (2)当合力方向与速度方向的夹角等于 90°时,物体运动的 速率不变. (3)当合力方向与速度方向的夹角大于 90°时,物体运动的 速率减小.
考点2 运动的合成与分解
( )
A.物体受变力作用才可能做曲线运动
B.物体受恒力作用也可能做曲线运动
C.物体不受力也能做曲线运动
D.物体只要受到合外力就一定做曲线运动
解析:物体做曲线运动的条件是所受合外力的方向与它的 速度方向不在一条直线上,不论此外力是否为变力.故选项B 正确. 答案:B
2.(双选)关于曲线运动的说法正确的是( A.曲线运动是一种变速运动
B.绳子的拉力始终大于物体 A 所受的重力
C.物体 A 的速度大于物体 B 的速度
高一课件集第1节 运动的合成与分解
分运动
9
实验总结——运动性质 1.运动的独立性
分运动互相独立,互不影响
2.运动的等时性 分运动和合运动的运动时间相等。
3.运动的等效性 分运动、合运动的运动的效果相同。
10
【例题】一人游泳渡河以垂直河岸不变的速度(相对水)向对
岸游去,河水的流动速度恒定.下列说法中正确的是( D ) A.河水的流动速度对人渡河无任何影响
B.游泳渡河的路线与河岸垂直
C.由于河水流动的影响,人到达对岸的时间与静水中不同
D.由于河水流动的影响,人到达对岸的位置向下游方向偏移 【解析】河水的流动会影响人对河岸的速度,使人具有向 下游方向的分速度,选项A、B错误,D正确.由分运动独立 性可知河水的流动不影响垂直河岸的分速度,不影响渡河
②如果小船的路径要与河岸垂直,该如何行驶?消耗
的时间是多少? [分析]“船头”在这里的意思是船靠自己的动力在静水中要 行驶的方向,如果有水流,它不是船的实际运行方向。
15
( 1 )小船参与了两个方向的运动,垂直河岸到对岸和
顺水漂流,两个运动时间相等。小船渡河时间等于垂直河 岸运动的时间
小船顺水流方向的位移:s水=v水t=2m/s×50s=100m 也就是说,小船到达对岸后,已经沿水流方向向下游运 动了100米。 小船实际运行了:s=
水平方向的分运动和一个沿竖直方向的分运动的合运动。
7
运动的合成与分解的方法
演示实验
实验中腊块实际的运动称为什么?水平方向和竖直 方向的运动又称为什么呢? 概念介绍
8
基本概念
1.物体实际的运动叫合运动 2.物体同时参与合成的运动的运动 叫分运动 3.由分运动求合运动的过程称为运
物理一轮复习 专题14 运动的合成与分解(讲)(含解析)
专题14 运动的合成与分解1.掌握曲线运动的概念、特点及条件。
2。
掌握运动的合成与分解法则.1.曲线运动(1)速度的方向:质点在某一点的速度方向,沿曲线在这一点的切线方向.(2)运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是变速运动.(3)曲线运动的条件:物体所受合外力的方向跟它的速度方向不在同一条直线上或它的加速度方向与速度方向不在同一条直线上.2.运动的合成与分解(1)基本概念①运动的合成:已知分运动求合运动.②运动的分解:已知合运动求分运动.(2)分解原则:根据运动的实际效果分解,也可采用正交分解.(3)遵循的规律位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形定则.(4)合运动与分运动的关系①等时性合运动和分运动经历的时间相等,即同时开始、同时进行、同时停止.②独立性一个物体同时参与几个分运动,各分运动独立进行,不受其他运动的影响.③等效性各分运动的规律叠加起来与合运动的规律有完全相同的效果.考点一物体做曲线运动的条件及轨迹分析1.条件(1)因为速度时刻在变,所以一定存在加速度;(2)物体受到的合外力与初速度不共线.2.合外力方向与轨迹的关系物体做曲线运动的轨迹一定夹在合外力方向与速度方向之间,速度方向与轨迹相切,合外力方向指向曲线的“凹"侧.3.速率变化情况判断(1)当合外力方向与速度方向的夹角为锐角时,物体的速率增大;(2)当合外力方向与速度方向的夹角为钝角时,物体的速率减小;(3)当合外力方向与速度方向垂直时,物体的速率不变.★重点归纳★做曲线运动的规律小结:(1)合外力或加速度指向轨迹的“凹”(内)侧.(2)曲线的轨迹不会出现急折,只能平滑变化,且与速度方向相切.★典型案例★光滑水平面上有一质量为2kg的物体,在五个恒定的水平共点力的作用下处于平衡状态.现同时撤去大小分别为5N和15N的两个水平力而其余力保持不变,关于此后物体的运动情况的说法中正确的是:()A.一定做匀变速直线运动,加速度大小可能是5m/s2B.可能做匀减速直线运动,加速度大小可能是2m/s2C.一定做匀变速运动,加速度大小可能10m/s2D.可能做匀速圆周运动,向心加速度大小可能是10m/s2【答案】C【名师点睛】本题中物体原来可能静止,也可能做匀速直线运动,要根据物体的合力与速度方向的关系分析物体可能的运动情况。
运动的合成与分解的概念
运动的合成与分解的概念
运动的合成与分解的概念如下:
1. 运动的合成:从已知的分运动来求合运动,叫做运动的合成。
包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。
重点在于判断合运动和分运动,一般地,物体的实际运动就是合运动。
2. 运动的分解:求一个已知运动的分运动,叫运动的分解。
解题时应按实际效果分解,或正交分解。
合运动与分运动之间具有以下关系:
1. 等效性:合运动与分运动在效果上等同,也就是说,一个物体在实际运动中受到的合外力与其分力相同。
2. 等时性:合运动与分运动所用的时间相同。
这意味着,无论我们将物体的运动分解为多少个分运动,它们所花费的时间总和与物体实际运动所花费的时间相同。
3.独立性:合运动与分运动之间相互独立,互不干扰。
这意味着,物体在合运动过程中,各个分运动可以分别进行,而不会受到其他分运动的影响。
4.矢量性:合运动与分运动都是矢量,因此在合成和分解过程中需要遵循平行四边形定则。
物体的运动性质由加速度决定,而运动轨迹(直线还是曲线)则由物体的速度和加速度的方向关系决定。
例如,当物体的速度和加速度方向相同时,物体将沿直线运动;而当它们的方向不同时,物体将沿曲线运动。
掌握运动的合成与分解对于理解物体的运动规律至关重要。
通过学习这些概念,我们可以更好地分析物体的运动状态,并运用数学方法求解相关问题。
然而,要全面了解运动的合成与分解,还需查阅相关资料或咨询专业人士以获取更准确、更详细的信息。
希望本文能为大家提供一定的帮助。
运动的合成与分解知识点汇总
•&3.1运动的合成与分解知识点汇总互成角度的两个分运动的合运动的判断:合运动的情况取决于两分运动的速度的合速度与两分运动的加速度的合加速度,两者是否在同一直线上,在同一直线上作直线运动(a,v共线,做直线运动),不在同一直线上将作曲线运动(a,v不共线,做曲线运动)。
①两个直线运动的合运动仍然是匀速直线运动;②一个匀速直线运动和一个匀加速直线运动的合运动是曲线运动;③两个初速度为零的匀加速直线运动的合运动仍然是匀加速直线运动;④两个初速度不为零的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。
当两个分运动的初速度的合速度的方向与这两个分运动的合加速度方向在同一直线上时,合运动是匀加速直线运动,否则是曲线运动。
这四种情况能背下来就背下来。
我的建议是以理解为主,图的表示方法我写在笔记里了怎样确定合运动和分运动:①合运动一定是物体的实际运动;②如果选择运动的物体作为参照物,则参照物的运动和物体相对参照物的运动是分运动,物体相对地面的运动是合运动。
③进行运动的分解时,在遵循平行四边形定则的前提下,类似力的分解,要按照实际效果进行分解。
例如绳端速度的分解,通常有两个原则:按效果正交分解物体运动的实际速度,沿绳方向一个分量,另一个分量垂直于绳(效果:沿绳方向的收缩速度,垂直于绳方向的转动速度)。
(这种有绳子参与的速度方向分解很重要,原则就是两个:物体往哪里运动,那个方向就是实际速度,即合速度方向。
第二个原则就是:分解的时候,一个方向沿着绳子,另一个方向为垂直绳子。
然后做正交分解)小船渡河是典型的运动合成的问题。
一条宽度为L的河流,水流速度为V s,已知船在静水中的速度为V c,那么:①渡河时间最短:如图甲所示,设船上头斜向上游与河岸成任意角θ,这时船速在垂直于河岸方向的速度分量V1=V c sinθ,渡河所需时间为:。
可以看出:L、V c一定时,t随sinθ增大而减小;当θ=90°时,sinθ=1,所以,当船头与河岸垂直时,渡河时间最短,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.运动的合成与分解
一、基础知识
1.物体做曲线运动的条件:F合与v不共线.
2.研究曲线运动的方法:运动的合成与分解.
3.运动的合成与分解的运算法则:平行四边形定则或三角形定则.
4.合运动与分运动的三个特性:等时性、独立性、等效性.
5.特别注意:合运动就是物体的实际运动.
二、解决运动的合成与分解的一般思路
1.明确合运动或分运动的运动性质.
2.确定合运动是在哪两个方向上的合成或分解.
3.找出各个方向上已知的物理量(速度、位移、加速度等).
4.运用力与速度的关系或矢量的运算法则进行分析求解.
三、典型例题
考点1 运动的合成与分解的理解
[例1] 如图所示,一块橡皮用细线悬挂于O点,用钉子靠着线的左侧,沿与水平方向成θ角的斜面向右上以速度v匀速运动,运动中始终保持悬线竖直,橡皮的速度方向与水平方向的夹角为α,则( )
A.若θ=0,则α随钉尖的速度v的增大而增大
B.若θ=0,则α随钉尖的速度v的增大而减小
C.若θ=45°,钉尖的速度为v,则橡皮速度为22v
D.若θ=45°,钉尖的速度为v,则橡皮速度为2+2v
解析若θ=0,则橡皮的运动可视为水平方向随钉尖一起匀速,竖直方向细线的缩短长度等于水平方向细线增加的长度,即竖直方向也做与钉尖运动速率相同的匀速运动,所以橡皮的速度方向与水平方向的夹角α=45°,与钉尖的
速度v 无关,选项A 、B 错;若θ=45°,钉尖的速度为v ,则橡皮在水平方向的分速度为22v ,而在t 时间内沿竖直方向向上运动的距离为y =vt +22
vt ,即竖直方向的分速度为⎝
⎛⎭⎪⎫1+22v ,所以橡皮速度为2+2v ,C 错、D 对. 答案 D
考点2 小船渡河问题
[例2] (多选)甲、乙两船在同一条河流中同时开始渡河,河宽为H ,河水流速为v 0,划船速度均为v ,出发时两船相距23
3H ,甲、乙两船船头均与河岸成60°角,如图所示.已知乙船恰好能垂直到达对岸A 点.则下列判断正确的是
( )
A .甲、乙两船到达对岸的时间不同
B .v =2v 0
C .两船可能在未到达对岸前相遇
D .甲船也在A 点靠岸
解析 将两船的运动分解为垂直于河岸方向和沿河岸方向,在垂直于河岸方向上,两船的分速度相等,河宽一定,所以两船渡河的时间相等.故A 错误.乙船的合速度垂直于河岸,有v cos 60°=v 0,所以v =2v 0.故B 正确;两船渡河的
时间t =H
v sin 60°
,则甲船在沿河岸方向上的位移x =(v 0+v cos 60°)t =2v 0×H v sin 60°=233
H .知甲船恰好能到达河对岸的A 点.故C 错误,D 正确.故选B 、D.
答案 BD
考点3 关联速度问题
[例3] 质量为m 的物体P 置于倾角为θ1的固定光滑斜面上,轻细绳跨过
光滑定滑轮分别连接着P 与小车,P 与滑轮间的细绳平行于斜面,小车以速率v。