2016年福建省厦门市中考数学试卷-答案
厦门中考数学试题6-中考 (2).doc
:2016年厦门中考数学试题第6页-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
厦门中考数学试题及答案-中考 (2).doc
:2016年厦门中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
福建省厦门市2016届九年级上质量检测数学试卷有答案
2015—2016学年(上)厦门市九年级质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,27小题,试卷共4页,另有答题卡. .答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1. 在四个数3,2,1.7,2中,最大的是A . 3B . 2C .1.7D .2 2.下列图形中,属于中心对称图形的是A . 锐角三角形B . 直角三角形C . 菱形D . 对角互补的四边形 3. 关于x 的一元二次方程ax 2+bx +c =0(a ≠0,b 2-4ac >0)的根是A .b ±b 2-4ac 2aB .-b +b 2-4ac 2aC .-b ±b 2-4ac 2D .-b ±b 2-4ac 2a4. 如图1,已知AB 是⊙O 的直径,C ,D ,E 是⊙O 上的三个点,在下列 各组角中,相等的是A . ∠C 和∠DB .∠DAB 和∠CABC .∠C 和∠EBAD .∠DAB 和∠DBE5. 某公司欲招聘一名工作人员,对甲应聘者进行面试和笔试,面试成绩为85分,笔试成绩为90分.若公司分别赋予面试成绩和笔试成绩7和3的权,则下列算式表示甲的平均成绩的是A .85+902B .85³7+90³32C .85³7+90³310D .85³0.7+90³0.3106. 如图2,点D ,E 在△ABC 的边BC 上,∠ADE =∠AED ,∠BAD =∠CAE .则下列结论正确的是A .△ABD 和△ACE 成轴对称B .△ABD 和△ACE 成中心对称C .△ABD 经过旋转可以和△ACE 重合 D .△ABD 经过平移可以和△ACE 重合7. 若关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根,则a 的取值范围是A . a <-2B . a >-2C . -2<a <0D . -2≤a <08. 抛物线y =2(x -2)2+5向左平移3个单位长度,再向下平移2个单位长度,此时抛物线的对称轴是A . x =2B . x =-1C . x =5D . x =0ODCBA9. 如图3,点C 在︵AB 上,点D 在半径OA 上,则下列结论正确的是 A . ∠DCB +12∠O =180° B .∠ACB +12∠O =180°C .∠ACB +∠O =180°D .∠CAO +∠CBO =180°10. 某药厂2013年生产1t 甲种药品的成本是6000元.随着生产技术的进步,2015年生产1t 甲种药品的成本是3600元.设生产1t 甲种药品成本的年平均下降率为x ,则x 的值是 A .5-155 B .5+155 C .155 D .25二、填空题(本大题有6小题,每小题4分,共24分)11. 一个圆盘被平均分成红、黄、蓝、白、黑5个扇形区域,向其投掷一枚飞镖,且落在圆盘内,则飞镖落在白色区域的概率是 .12. 时钟的时针在不停地旋转,从下午3时到下午6时(同一天),时针旋转的角度是 .13. 当x = 时,二次函数 y =-2(x -1)2-5的最大值是 . 14. 如图4,四边形ABCD 内接于圆,AD =DC ,点E 在CD 的延长线上. 若∠ADE =80°,则∠ABD 的度数是 .15. 已知□ABCD 的顶点B (1,1),C (5,1),直线BD ,CD 的解析式分别是y =kx ,y =mx -14,则BC = ,点A 的坐标是 .16. 已知a -b =2,ab +2b -c 2+2c =0,当b ≥0,-2≤c <1时,整数a 的值是 .三、解答题(本大题有11小题,共86分) 17.(本题满分7分)计算:6³3-12+2.18.(本题满分7分)甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有2个小球,分别标有号 码1,2;这些球除数字外完全相同.从甲、乙两口袋中分别随机地摸出一个小球,则取 出的两个小球上的号码恰好相同的概率是多少?19.(本题满分7分)解方程x 2+4x +1=0.20.(本题满分7分)在平面直角坐标系中,已知点A (1,0),B (2,2),图3图4ABEDC请在图5中画出线段AB ,并画出线段AB 绕点O 顺时针旋转90°后的图形.21.(本题满分7分)画出二次函数y =-x 2的图象.22.(本题满分7分)如图6,在正方形ABCD 中,BC =2,E 是对角线BD 上的一点,且BE =AB ,求△EBC 的面积.23.(本题满分7分)如图7,在□ABCD 中,∠ABC =70°,半径为r 的⊙O 经过点A ,B ,D ,︵AD 的长是πr2,延长CB 至点P ,使得PB =AB .判断直线PA 与⊙O 的位置关系,并说明理由.24.(本题满分7分)甲工程队完成一项工程需要n 天(n >1),乙工程队完成这项工程的时间是甲工程队的2倍多1天,则甲队的工作效率可以是乙队的3倍吗?请说明理由.25.(本题满分7分)高斯记号[x ]表示不超过x 的最大整数,即若有整数n 满足n ≤x <n +1,则[x ] =n .当-1≤x <1时,请画出点P (x ,x +[x ])的纵坐标随横坐标变化的图象,并说明理由.26.(本题满分11分)已知锐角三角形ABC 内接于⊙O ,AD ⊥BC ,垂足为D .(1)如图8,︵AB =︵BC ,BD =DC ,求∠B 的度数;(2)如图9,BE ⊥AC ,垂足为E ,BE 交AD 于点F ,过点B 作BG ∥AD 交⊙O 于点G ,在AB图5图6 图7CE D B A OAB CDP边上取一点H ,使得AH =BG .求证:△AFH 是等腰三角形.27.(本题满分12分)已知抛物线y =x 2+bx +c 的对称轴l 交x 轴于点A .(1)若此抛物线经过点(1,2),当点A 的坐标为(2,0)时,求此抛物线的解析式;(2)抛物线y =x 2+bx +c 交y 轴于点B .将该抛物线平移,使其经过点A ,B ,且与x 轴交于另一点C .若b 2=2c , b ≤-1,比较线段OB 与OC +32的大小.2015—2016学年(上) 厦门市九年级质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10 选项DCDACACBBA二、填空题(本大题共6小题,每题4分,共24分)11. 15. 12. 90°. 13.1,-5. 14. 40°.15. 4,(3,7). 16. 2,3.三、解答题(本大题有11小题,共86分)17.(本题满分7分) 6³3-12+ 2=18-12+ 2 ……………………………1分 =32-23+ 2 ……………………………5分 =42-2 3 ……………………………7分18.(本题满分7分)P (两个小球的号码相同)=13. ……………………………7分图9 O H G F EDC B A19.(本题满分7分)解:∵a =1,b =4,c =1, ……………………………1分∴ △=b 2-4ac ……………………………2分=12. ……………………………3分 ∴ x =-b ±b 2-4ac2a=-4±122. ……………………………5分∴x 1=-2+3,x 2=-2-3. ……………………………7分20.(本题满分7分) ……………………………5分……………………………7分21.(本题满分7分) 解:……………………………7分22.(本题满分7分)解: 过点E 作EF ⊥BC 于F .∵四边形ABCD 是正方形,∴∠DBC =12∠ABC =45°,………………2分AB =BC . ……………………………3分 ∵BE =AB ,∴BE =2. ……………………………4分 在Rt △EFB 中,∵∠EFB =90°,∠EBF =45°, ∴∠BEF =45°.∴EF =FB . ……………………………5分 ∴EF 2+FB 2=BE 2x -2 -11 2 y-4-1 0-1 -4CEDBAFAB即2EF 2=BE 2.∴EF =2. ……………………………6分∴△EBC 的面积是 12³2³2=2. ……………………………7分23.(本题满分7分)证明:连接OA ,OD .∵ ︵AD 的长是πr2,∴∠AOD =90°. ……………………………1分 在⊙O 中, ∵OA =OD ,∴∠OAD =∠ODA =45°. …………………2分 ∵四边形ABCD 是平行四边形, ∴AD ∥BC .∴∠BAD +∠ABC =180°. ∵∠ABC =70°,∴∠BAD =110°. …………………………3分 ∴∠BAO =110°-45°=65°. ∵PB =AB ,∴∠PAB =∠P =12∠ABC =35°. …………………………4分∴∠PAO =100°. …………………………5分 过点O 作OE ⊥PA 于E ,则OE 为点O 到直线PA 的距离. ∵OE <OA . …………………………6分∴直线PA 与⊙O 相交. …………………………7分24.(本题满分7分)解:由题意得,甲的工效是1n ,乙的工效是12n +1,若甲工程队的工效是乙队的3倍, 则1n =3³12n +1…………………………3分解得n =1 …………………………4分 检验:当n =1时,2 n +1≠0 ∴n =1是原方程的解 ∵n >1∴n =1不合题意,舍去 …………………………6分 答:甲工程队的工效不可以是乙队的3倍 …………………………7分OAB CDP² º º25.(本题满分7分)解:当-1≤x <0时,[x ] =-1∴x +[x ] =x -1 ………………2分 记 y = x -1 当0≤x <1时,[x ] =0∴x +[x ] =x ………………4分记y = x …………7分26.(本题满分11分)(1)(本小题满分4分)证明:∵AD ⊥BC , BD =DC ,∴AB =AC . …………………………1分∵︵AB =︵BC ,∴AB =BC . ………………………2分∴AB =BC =AC .即△ABC 是等边三角形. ……………………3分 ∴∠B =60°. …………………………4分(2)(本小题满分7分) 解:连接AG . ∵AD ⊥BC , ∴∠ADC =90°.∵GB ∥AD ,∴∠GBC =∠ADC =90°.∴∠GAC =90°. ………………………7分 即GA ⊥AC . ∵BE ⊥AC , ∴GA ∥BE .∴四边形AGBF 是平行四边形. ………………………9分 ∴GB =AF . ………………………10分 ∵AH =BG ,∴AH =AF .即△AFH 是等腰三角形. ……………………11分27.(本题满分12分)(1)(本小题满分5分)解:∵抛物线经过点(1,2),∴1+b +c =2 ……………………………1分 即b +c =1 ∵点A 的坐标为(2,0)∴-b2=2 ……………………………3分ABCODOHGFEDC BA∴b =-4 ……………………………4分 ∴c =5,∴抛物线的解析式为y =x 2-4x +5 ……………………………5分 (2)(本小题满分7分) 解:由已知得点A (-b2,0), ………………………6分当b 2=2c 时,点B (0,b 22).设平移后的抛物线为y =x 2+qx +b 22.把A (-b 2,0)代入得q =3b2. ………………………7分∴y =x 2+3b 2x +b 22.当y =0时,x 2+3b 2x +b 22=0.解得x 1=-b2,x 2=-b .∴点C (-b ,0). ………………………8分∴OB =b 22,OC =-b .∴m -(n +32)=12( b 2+2b -3) .………………………9分设p =b 2+2b -3,∵抛物线p =b 2+2b -3开口向上,且当b =-3或1时,p =0,………………………10分∴当b <-3或b >1时,p >0; 当-3<b <1时,p <0.∵b ≤-1,∴当b ≤-3时,p ≥0,即m ≥n +32; …………………11分当-3<b ≤-1时,p <0,即m <n +32. …………………12分。
厦门中考数学试题4-中考.doc
:2016年厦门中考数学试题第4页-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
厦门中考数学试题2-中考.doc
:2016年厦门中考数学试题第2页-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
厦门中考数学试题6-中考.doc
:2016年厦门中考数学试题第6页-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
2016年福建省厦门市中考数学试卷
2016年福建省厦门市中考数学试卷一、选择题(本大题10小题,每小题4分,共40分)1. 1∘等于()A.12′B.10′C.60′D.100′【答案】此题暂无答案【考点】度分都注换算【解析】此题暂无解析【解答】此题暂无解答【点评】考查了度分秒的换算,具体换算可类比时钟上的时、分、秒来说明角的度量单位度、分、秒之间也是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.同时,在进行度、分、秒的运算时也应注意借位和进位的方法.2. 方程x2−2x=0的根是()A.x1=x2=2B.x1=x2=0C.x1=0,x2=−2D.x1=0,x2=2【答案】此题暂无答案【考点】解一较燥次延程抗因式分解法【解析】此题暂无解析【解答】此题暂无解答【点评】此题主要考查了因式分解法解方程,正确分解因式是解题关键.3. 如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=()A.∠AB.∠BC.∠AFBD.∠EMF此题暂无答案【考点】全等三来形的稳质【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了全等三角形的性质,熟记全等三角形的各种性质是解题关键.4. 不等式组{2x<6,x+1≥−4的解集是()A.−5<x<3B.−5≤x<3C.x<3D.x≥−5【答案】此题暂无答案【考点】解一元表次镜等式组【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5. 如图,DE是△ABC的中位线,过点C作CF // BD交DE的延长线于点F,则下列结论正确的是()A.EF=DEB.EF=CFC.EF>DED.CF<BD【答案】此题暂无答案【考点】三角形因位线十理全根三烛形做给质与判定【解析】此题暂无解析【解答】此题暂无解答本题考查了三角形中位线定理和全等三角形的判定与性质,解答本题的关键是根据中位线定理和平行线的性质得出AE=EC、∠ADE=∠F,判定三角形的全等.6. 已知甲、乙两个函数图象上部分点的横坐标x与对应的纵坐标y分别如表所示,两个函数图象仅有一个交点,则交点的纵坐标y是()甲乙0 C.3 D.2【答案】此题暂无答案【考点】函表的透象【解析】此题暂无解析【解答】此题暂无解答【点评】此题主要考查了函数图象,正确得出交点坐标是解题关键.7. 已知△ABC的周长是l,BC=l−2AB,则下列直线一定为△ABC的对称轴的是()A.∠ACB的平分线所在的直线B.△ABC的边AB的垂直平分线C.△ABC的边BC上的中线所在的直线D.△ABC的边AC上的高所在的直线【答案】此题暂无答案【考点】轴对验流性质【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查对称轴、三角形周长、等腰三角形的性质等知识,解题的关键是根据条件推出AB=AC,属于中考常考题型.8. 已知压强的计算公式是P=F,我们知道,刀具在使用一段时间后,就好变钝,如果S刀刃磨薄,刀具就会变得锋利.下列说法中,能正确解释刀具变得锋利这一现象的是()A.当受力面积一定时,压强随压力的增大而减小B.当受力面积一定时,压强随压力的增大而增大C.当压力一定时,压强随受力面积的减小而增大D.当压力一定时,压强随受力面积的减小而减小【答案】此题暂无答案【考点】反比例根数的性气【解析】此题暂无解析【解答】此题暂无解答【点评】考查了反比例函数的应用,本题是跨学科的反比例函数应用题,要熟练掌握物理或化学学科中的一些具有反比例函数关系的公式.同时体会数学中的转化思想.9. 动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是()A.0.75B.0.8C.0.48D.0.6【答案】此题暂无答案【考点】概使的钡义【解析】此题暂无解析【解答】此题暂无解答【点评】考查了概率的意义,用到的知识点为:概率=所求情况数与总情况数之比.注意在本题中把20岁时的动物只数看成单位1.10. 设681×2019−681×2018=a,2015×2016−2013×2018=b,√6782+1358+690+678=c,则a,b,c的大小关系是()A.a<c<bB.b<c<aC.c<b<aD.b<a<c【答案】此题暂无答案【考点】因式使钡的应用【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了因式分解的应用,熟记乘法分配律、完全平方公式的结构特点是解题的关键.注意整体思想的运用.二、填空题(本大题有6小题,每小题4分,共24分)11. 不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是________.【答案】此题暂无答案【考点】概水常式【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.12. 化简:x+1x −1x=________.【答案】此题暂无答案【考点】分式常加陆运算【解析】此题暂无解析【解答】此题暂无解答【点评】此题考查了同分母的分式加减运算法则.题目比较简单,注意结果需化简.13. 如图,在△ABC中,DE // BC,且AD=2,DB=3,则DEBC=________.【答案】此题暂无答案【考点】相验极角家的锰质与判定【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了相似三角形的判定与性质;由平行线证明三角形相似是解决问题的关键.14. 公元3世纪,我国古代数学家刘徽就能利用近似公式2+r ≈a +r 2a 得到的近似值.他的算法是:先将√2看出√12+1:由近似公式得到√2≈1+12×1=32;再将√2看成√(32)2+(−14),由近似值公式得到√2≈32+−142×32=1712;…依此算法,所得√2的近似值会越来越精确.当√2取得近似值577408时,近似公式中的a 是________,r 是________.【答案】此题暂无答案【考点】二次水较的应用【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了二次根式的应用:利用类比的方法解决问题.15. 已知点P(m, n)在抛物线y =ax 2−x −a 上,当m ≥−1时,总有n ≤1成立,则a 的取值范围是________.【答案】此题暂无答案【考点】二次常数图见合点的岸标特征【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是画出函数图象,依照数形结合得出关于a 的不等式组.本题属于基础题,难度不大,解决该题型题目时,根据二次函数的性质画出函数图象,利用数形结合解决问题是关键.16. 如图,在矩形ABCD 中,AD =3,以顶点D 为圆心,1为半径作⊙D ,过边BC 上的一点P 作射线PQ 与⊙D 相切于点Q ,且交边AD 于点M ,连接AP ,若AP +PQ =2√6,∠APB =∠QPC ,则∠QPC 的大小约为________度________分.(参考数据:sin 11∘32′=15,tan 36∘52′=34)【答案】此题暂无答案【考点】切表的木质矩来兴性质解直于三角姆【解析】此题暂无解析【解答】此题暂无解答【点评】本题综合考查了切线、矩形的性质,利用勾股定理求边长,并根据条件解直角三角形;在几何证明中,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.三、解答题(共86分)17. 计算:10+8×(−12)2−2÷15.【答案】此题暂无答案【考点】有理数三混合运臂【解析】此题暂无解析【解答】此题暂无解答【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18. 解方程组{x +y =14x +y =−8. 【答案】此题暂无答案【考点】二元一都接程组的解代入使碳古解革元一次方程组【解析】此题暂无解析【解答】此题暂无解答【点评】本题主要考查了解二元一次方程组的知识,解题的关键是掌握加减消元法解方程组,此题难度不大.19. 某公司内设四个部门,2015年各部门人数及相应的每人所创年利润如表所示,求该公司2015年平均每人所创年利润.【答案】此题暂无答案【考点】加水正均数【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查的是加权平均数的计算,掌握加权平均数的计算公式是解题的关键.20. 如图,AE与CD交于点O,∠A=50∘,OC=OE,∠C=25∘,求证:AB // CD.【答案】此题暂无答案【考点】平行线明判轮与性质等体三火暗服判定与性质【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了平行线的判定:熟练掌握平行线的判定方法是解决此类问题的关键.21. 已知一次函数y=kx+2,当x=−1时,y=1,求此函数的解析式,并在平面直角坐标系中画出此函数图象.【答案】此题暂无答案【考点】待定正数键求一程植数解析式一次射可的图象【解析】此题暂无解析【解答】此题暂无解答【点评】本题主要考查待定系数法求函数解析式和利用两点法作一次函数图象,根据两点确定一条直线作出图象是解答此题的关键.22. 如图,在△ABC中,∠ACB=90∘,AB=5,BC=4,将△ABC绕点C顺时针旋转90∘,若点A,B的对应点分别是点D,E,画出旋转后的三角形,并求点A与点D之间的距离.(不要求尺规作图)【答案】此题暂无答案【考点】作图三腔转变换【解析】此题暂无解析【解答】此题暂无解答【点评】此题考查了旋转的性质以及勾股定理.注意掌握旋转前后图形的对应关系是解此题的关键.23. 如图,在四边形ABCD中,∠BCD是钝角,AB=AD,BD平分∠ABC,若CD=3,BD=2√6,sin∠DBC=√3,求对角线AC的长.3【答案】此题暂无答案【考点】解直于三角姆【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了菱形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.24. 如图,是药品研究所所测得的某种新药在成人用药后,血液中的药物浓度y(微克/毫升)用药后的时间x(小时)变化的图象(图象由线段OA与部分双曲线AB组成).并测得当y=a时,该药物才具有疗效.若成人用药4小时,药物开始产生疗效,且用药后9小时,药物仍具有疗效,则成人用药后,血液中药物需要多长时间达到最大浓度?【答案】此题暂无答案【考点】反比例表数透应用【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了反比例函数的应用,直线与双曲线交点的求法,利用待定系数法求出关系式是解题的关键.25. 如图,在平面直角坐标系中xOy中,已知点A(1, m+1),B(a, m+1),C(3, m+ 3),D(1, m+a),m>0,1<a<3,点P(n−m, n)是四边形ABCD内的一点,且△PAD与△PBC的面积相等,求n−m的值.【答案】此题暂无答案【考点】坐标正测形性质三角表的病积角平较线的停质【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了三角形的面积以及解一元一次方程,解题的关键是根据三角形面积相等找出关于n−m的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据图形的面积相等找出方程是关键.26. 已知AB是⊙O的直径,点C在⊙O上,点D在半径OA上(不与点O,A重合).(1)如图1,若∠COA=60∘,∠CDO=70∘,求∠ACD的度数.(2)如图2,点E在线段OD上(不与O,D重合),CD、CE的延长线分别交⊙O于点F、G,连接BF,BG,点P是CO的延长线与BF的交点,若CD=1,BG=2,∠OCD=∠OBG,∠CFP=∠CPF,求CG的长.【答案】此题暂无答案【考点】圆因归合题【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了圆的综合运用、全等三角形的判定与性质以及勾股定理,解题的关键是:(1)找出△ACO为等边三角形;(2)找出△AGB、△OQB为等腰直角三角形.本题属于中档题,第(2)小问难度不小,解决该问时,利用相等的角对的弧度相等,找出点G为AB̂中点是关键.27. 已知抛物线y=−x2+bx+c与直线y=−4x+m相交于第一象限不同的两点,A(5, n),B(e, f)(1)若点B的坐标为(3, 9),求此抛物线的解析式;(2)将此抛物线平移,设平移后的抛物线为y=−x2+px+q,过点A与点(1, 2),且m−q=25,在平移过程中,若抛物线y=−x2+bx+c向下平移了S(S>0)个单位长度,求S的取值范围.【答案】此题暂无答案【考点】二水来数兴象触几何变换【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了二次函数的图象和图形变换,考查了利用待定系数法求二次函数的解析式,注意抛物线平移后的形状不变,故a不变;平移的距离要看二次函数的顶点坐标,所以求抛物线平移的距离时,只考虑平移后的顶点坐标即可.。
2016年福建省厦门市中考数学试卷含答案解析
2016年福建省厦门市中考数学试卷一、选择题(本大题 10小题,每小题4分,共40分)1. 1°等于( )A. 10' B . 12' C . 60' D . 100'22 .方程x - 2x=0的根是() A. x 1 =x 2=0 B . x 1=x 2=2 C. x 1=0, x 2=2 D. x 1=0, x 2= - 23.如图,点 E , F 在线段BC 上,△ ABF 与厶DCE 全等,点 A 与点D,点B 与点C 是对应顶点, AF 与过点C 作CF// BD 交DE 的延长线于点F ,则下列结论正确的是 (6.已知甲、乙两个函数图象上部分点的横坐标x 与对应的纵坐标y 分别如表所示,两个函数图象仅有一个交点,则交点的纵坐标y 是( ) 甲 B .- 5 V x w 3 C. x >- 5 D. x V 3/ AFB(2s<64 .不等式组(”,的解集是(A . - 5W x V 3 CF V BD D. EF > DEy 0 2A. 0B. 1C. 2D. 37 .已知△ ABC的周长是I , BC=l - 2AB,则下列直线一定为△ ABC的对称轴的是()A.\ ABC的边AB的垂直平分线B. Z ACB的平分线所在的直线C. A ABC的边BC上的中线所在的直线D. A ABC的边AC上的高所在的直线&已知压强的计算公式是段时间后,就好变钝,如果刀刃磨薄, 刀具就会变得锋利•下列说法中,能正确解释刀具变得锋利这一现象的是()A. 当受力面积一定时,压强随压力的增大而增大B. 当受力面积一定时,压强随压力的增大而减小C. 当压力一定时,压强随受力面积的减小而减小D. 当压力一定时,压强随受力面积的减小而增大9•动物学家通过大量的调查估计,某种动物活到现年20岁的这种动物活到25岁的概率是(A. 0.8B. 0.75 C . 0.6 D. 0.4820岁的概率为0.8,活到25岁的概率为0.6,则)10. 设681 X 2019- 681 X 2018=a, 2015X 2016- 2013 X 2018=b,呂?+[ 358+690+6T呂二£,贝a,b, c的大小关系是()A. b v c v aB. a v c v bC. b v a v cD. c v b v a、填空题(本大题有6小题,每小题4分,共24分)11. 不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是________,我们知道,刀具在使12.化简:13 .如图,在△ ABC中,DE// BC,且AD=2 DB=3 则近似值公式得到 U2 _x3 二 M 2屋12 iW —- + ;…依此算法, 所得 匸的近似值会越来越精确.当k 「I 取得近似值』一时,近似公式中的a 是15.已知点P (m n )在抛物线y=ax 2- x - a 上,当m >- 1时,总有nW 1成立,则a 的取值范围是16.如图,在矩形 ABCD 中,AD=3以顶点D 为圆心,1为半径作O D,过边BC 上的一点P 作射线PQ M 连接AP,若AP+PQ 駆|,/ APB=/ QPC 则/ QPC 的大小约 sin11 ° 32' 1 ,tan36° 52'=三、解答题(共86分)17 .计算: 伽鲜(尹剳牛片gL5 18 .解方程组丿d , _ .4買+y 二-呂19.某公司内设四个部门,2015年各部门人数及相应的每人所创年利润如表所示,求该公司 年平均每人所创年利润.2015部门 人数 每人所创年利润/ 14•公元3世纪,我国古代数学家刘徽就能利用近似公式 計备得到的近似值•他的算法 是:先将回看出心^寸:由近似公式得到 厉切朽打二;再将匝看成J (上,由与O D 相切于点Q,且交边AD 于点611y=1,求此函数的解析式,并在平面直角坐标系中画出此22.如图,在△ ABC 中,/ ACB=90 , AB=5, BC=4,将厶ABC绕点C 顺时针旋转 90°,若点 A , B 的对应点分别是点 D, E ,画出旋转后的三角形,并求点 A 与点D之间的距离.(不要求尺规作图)后的时间x (小时)变化的图象(图象由线段 O A 与部分双曲线AB 组成)•并测得当 y=a 时,该药物才具有疗效.若成人用药 4小时,药物开始产生疗效,且用药后 9小时,药物仍具有疗效,则成 万元3627 16OC=OE / C=25,求证:AB// CD/ BCD 是钝角,AB=AD BD 平分/ ABC 若 CD=3 BD=V] 24.如图,是药品研究所所测得的某种新药在成人用药后,血液中的药物浓度 y (微克/毫升) 用药 D 20 函数图象.3,sin / DB人用药后,血液中药物浓则至少需要多长时间达到最大度?25.如图,在平面直角坐标系中xOy中,已知点A (1, m+1 , B (a, m+1), C (3, m+3), D( 1,m+a , m> 0, 1v a v 3,点P (n - m n)是四边形ABCD内的一点,且△卩人。
厦门中考数学试题2-中考 (2).doc
:2016年厦门中考数学试题第2页-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
厦门中考数学试题3-中考 (2).doc
:2016年厦门中考数学试题第3页-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
2016年厦门市初中毕业及高中阶段各类学校招生考试数学参考答案及评分标准
2016年厦门市初中毕业及高中阶段各类学校招生考试数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表相应的要求评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11. 23 . 12. 1. 13. 25.14. 1712,-1144. 15. -12≤a <0.16. 64,40.三、解答题(本大题共9小题,共86分)17.(本题满分7分)解: 10+8×(-12)2-2÷15=10+8×14-2×5 ……………………………4分=10+2-10 …………………6分=2. …………………7分18.(本题满分7分)⎩⎨⎧x +y =1,4x +y =-8.解:②-①,得3x =-9 …………………………2分 x =-3 …………………………4分 将x =-3代入①,得y =4 …………………6分则这个方程组的解是⎩⎨⎧x =-3,y =4.…………………7分 19.(本题满分7分)解:1×36+6×27+8×16+11×201+6+8+11…………………………5分① ②=54626=21(万元)因此该公司2015年平均每人所创年利润为21万元 ………………7分 20.(本题满分7分)解:∵ OC =OE ,∴ ∠E =∠C =25°. ………………………3分∴ ∠DOE =∠C +∠E =50°. …………………6分 ∵ ∠A =50°,∴ ∠A =∠DOE .∴ AB ∥CD . ………………………7分 21.(本题满分7分)解:把x =-1,y =1代入y =kx +2,得1=(-1)k +2, ………………………2分 k =1 . ………………………3分 则函数解析式为 y =x +2 . ………………………4分 列表,得画图,得7分22.(本题满分7分)解:旋转后的图形如图所示. …………………3分∵ △ABC 中,∠ACB =90°,AB =5,BC =4, ∴ AC =52-42=3. ……………5分∵ △ABC 绕点C 顺时针旋转90°后得到△DCE ,∴ ∠ACD =∠ACB =90°,DC =AC =3, ……………6分 ∴ AD =32.∴ 点A 与点D 之间的距离为3 2 . …………………7分 23.(本题满分7分)解:如图,过点D 作DE 垂直BC 的延长线,垂足为E , ∴ ∠DEB =90°. 在Rt △DEB 中,DE =BD ×sin ∠DBC =2 2 . …………………2 ∴ BE =4.在Rt △DEC 中,x 0 -2y 2 0图5O ABCD EEC B A4321DC BAE∵ DE =22,DC =3,∴ CE =1 .∴ BC =3. …………………3分 ∵ CD =BC =3 , ∴ ∠1=∠2. ∵ AD =AB , ∴ ∠3=∠4.∵ BD 平分∠ABC , ∴ ∠1=∠3, ∴ ∠2=∠4. 又 BD =BD ,∴ △ABD ≌△CBD .∴ AB =BC =3,AD =CD =3. ∴ AB =BC =AD =CD .∴ 四边形ABCD 是菱形. …………………6分∴ S 菱形ABCD =12AC ×BD =BC ×DE .∴ 12AC ×26=3×22,∴ AC =23. ………………… 24.(本题满分7分)解:方法一: 由题可设直线OA 的解析式为 y =k 1·x . ∵ 当 x =4 时,y =a , …………………1 ∴ k 1=a4 .∴ y =a4x . …………………2分设成人用药后m 小时,血液中的药物浓度达到最大值b 微克/毫升,即A (m ,b ). 即当 x =m 时,y =b .∴ b =am4 . …………………3分由题可设双曲线AB 的解析式为 y =k 2x.∵ 当 x =m 时,y =b , ∴ k 2=mb .(1)若用药后9小时,血液中的药物浓度处于下降过程中, ∵ 当 x =9 时,y =mb9.又 b =am4,∴ y =am 249=am 236. …………………4分∵ 用药后9小时,药物仍具有疗效 ∴ 当 x =9 时,y ≥a .∴ am 236≥a . …………………5分∵ a >0, ∴ m 2≥36. ∵ m >0,∴ m ≥6 . …………………6分 (2)若用药后9小时,血液中的药物浓度处于上升过程中,则m ≥9 …………7分 综上,即该药物在成人用药后,至少需要6小时血液中的药物浓度可达到最大.方法二:设成人用药后m 小时,血液中的药物浓度达到最大值b 微克/毫升,即A (m ,b ). 由题可设双曲线AB 的解析式为 y =k 1x .∵ 当 x =m 时,y =b ,∴ k 1=mb .∴ y =mbx. …………………1分(1)若用药后9小时,血液中的药物浓度处于下降过程中, ∵ 对于双曲线AB 有:当 y =a 时,a =mbx .∴ x =mba.由题可设直线OA 的解析式为 y =k 2·x . 将点A (m ,b )代入得k 2=bm∴ y =bmx∵ 当 x =4 时,y =a , …………………2分 ∴ a =4bm∴ b =am4. …………………3分∴ 对于双曲线AB 有:当 y =a 时,x =mb a =m 24 …………………4分∵ 用药后9小时,药物仍具有疗效∴ 当 y =a 时,x ≥9. ∴ m 24≥9, …………………5分∴ m 2≥36∵ m >0,∴ m ≥6 . …………………6分(2)若用药后9小时,血液中的药物浓度处于上升过程中,则m ≥9 …………7分 综上,即该药物在成人用药后,至少需要6小时血液中的药物浓度达到最大.25.(本题满分7分)解:∵ A (1,m +1),B (a ,m +1), ∴ y A =y B .∴ AB ∥x 轴.又 a >1∴ AB =a -1.∵ A (1,m +1),D (1,a +m ),∴ x A =x D .∴ AD ∥y 轴.又 a >1∴ AD =a -1.∴ AD =AB . …………………3分 设直线AC 的解析式为y =kx +b , 将A (1,m +1),C (3,m +3)分别代入,可得k =1,b =m . ∴ y =x +m .∵ 当x =n -m 时,y =n -m +m =n , ∴ 点P (n -m ,n )在直线y =x +m 上. 又 点P 在四边形ABCD 内,∴ 点P 在线段AC 上. …………………5分如图,过点P 作PE ⊥x 轴,交AB 于点E ,作PF ⊥y 轴,交AD 于点F , 则PE =n -m -1,PF =n -m -1. ∴ PE =PF .∴ S △P AD =S △P AB . …………………6分 ∵ S △P AD =S △PBC , ∴ S △P AB =S △PBC .∴ S △P AB =12S △ABC .过点C 作CG ⊥x 轴,交AB 延长线于点G ,则CG =2. ∵ 12A B ·PE =12×12 A B ·CG .∴ PE =12CG .∴ n -m -1=1.∴ n -m =2. …………………7分7 26.(本题满分11分)(1)证明:∵ 在⊙O 中,OC =OA , …………………1分 又 ∠COA =60°,∴ △ACO 是等边三角形 . …………………2分 ∴ ∠CAO =60°. …………………3分∴ ∠ACD =10°. …………………4分(2)解:方法一:如图,延长OP 交BG 于点M ,连接OG ,OF .图9∵ OC=OB,∠OCD=∠OBM,∠COD=∠BOM,∴ △OCD≌△OBM.…………………6分∴ ∠CDO=∠BMO,BM=CD=1. …………………7分∵ BG=2又OB=OG,∴ ∠BMO=90°.∴ ∠CDO=90°. …………………8分∵ OB=OF,∴ ∠1=∠2.又∠CFP=∠3,∴ ∠COF=∠1+∠3=∠2+∠CFP=∠CDO=90°. …………………10分在△COF中,∵ OC=OF,∴ ∠OCD=45°.∴ OD=CD=1,OC=2.∴ OM=1.∴ CM=1+ 2 .又GM=BG-BM=1,∴ CG=4+2 2 .…………………11分方法二:如图,过点O作OM⊥BG于点M,连接OG,OF.在⊙O中,∵ OB=OG,BG=2,∴ BM=GM=1.…………………5分∵ OC=OB,∠OCD=∠OBM,CD=BM,∴ △OCD≌△OBM.∴ ∠CDO=∠BMO.∵ OM⊥BG.∴ ∠BMO=90°.∴ ∠CDO=90°. …………………7分∵ OB=OF,∴ ∠1=∠2.又∠CFP=∠3,∴ ∠COF=∠1+∠3=∠2+∠CFP=∠CDO=90°. …………………9分在△COF中,OC=OF,∴ ∠OCD=45°.∴ OD=CD=1,OC=2.∴ OM=1.图10B图10B∵ △OCD ≌△OBM . ∴ ∠COD =∠BOM .∴ C ,O ,M 在一条直线上. …………………10分 ∴ CM =1+ 2 .∴ CG =4+2 2 . …………………11分27.(本题满分12分)(1)解:将(3,9)代入y =-4x +m ,得9=-12+m ,m =21 . …………………2分则直线的解析式为y =-4x +21. 将(5,n )代入y =-4x +21,得n =1 . …………………3分 将A (5,1),B (3,9)分别代入y =-x 2+bx +c ,得 b =4,c =6.则抛物线的解析式为y =-x 2+4x +6. …………………4分 (2)解:将A (5,n )分别代入y =-x 2+bx +c ,y =-4x +m , 将A (5,n ),(1,2)分别代入y =-x 2+px +q ,得 -25+5b +c =n , -20+m =n , -25+5p +q =n ,1+p +q =2 . …………………5分又 m -q =25 , 解得m =22,n =2,p =6,q =-3, …………………7分c =27-5 b .∴ 直线的解析式为y =-4x +22,平移前抛物线的解析式为y =-x 2+bx +27-5 b ,平移后抛物线的解析式为y =-x 2+6x -3.设在平移过程中,抛物线向下平移了s 个单位长度,又 y =-x 2+6x -3=-(x -3)2+6,y =-x 2+bx +27-5b =-(x -b 2)2+(b 24-5b +27) , ∴ s =(b 24-5b +27)-6 …………………8分=14(b -10)2-4.当-x 2+bx +27-5b =-4x +22时,可得x 1=5,x 2=b -1.∴ B (b -1,-4b +26). …………………9分 ∵ A ,B 在第一象限且为不同两点,∴ b -1>0,-4b +26>0且b -1≠5.∴ 1<b <132且b ≠6. …………………10分对于s =14(b -10)2-4.∵ 14>0,∴ 当b <10时,s 随b 的增大而减小.∵ 1<b <132且b ≠6,∴ -1516<s <654且s ≠0. …………………11分∵ s >0, ∴ 0<s <654∴ 在平移过程中,抛物线y =-x 2+bx +c 向下平移的单位长度s 的取值范围是0<s <654. …………………12分。
2016年福建省厦门市中考数学试卷(含详细答案)
数学试卷 第1页(共30页) 数学试卷 第2页(共30页)绝密★启用前福建省厦门市2016年初中毕业及高中阶段各类学校招生考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.1=( ) A .10' B .12' C .60' D .100' 2.方程220x x -=的根是( )A .120x x ==B .122x x ==C .120,2x x ==D .120,2x x ==-3.如图,点,E F 在线段BC 上,ABF △与DCE △全等,点A 与点D ,点B 与点C 是对应顶点,AF 与DE 交于点M ,则DEC ∠=( )A .B ∠ B .A ∠C .EMF ∠D .AFB ∠ 4.不等式组26,14x x ⎧⎨+⎩<≥-的解集是( ) A 53x -≤< B .53x -<< C .5x -≥D .3x <5.如图,DE 是ABC △的中位线,过点C 作CF ∥BD 交DE 的延长线于点F ,则下列结论正确的是( ) A . EF CF = B .=EF DE C .CF BD <D .EF DE >6.已知甲、乙两个函数图象上部分点的横坐标x 与对应的纵坐标y 分别如下表所示.两个函数图象仅有一个交点,则交点的纵坐标y 是( )A .0B .1C .2D .37.已知ABC △的周长是l ,2BC l AB -=,则下列直线一定为ABC △的对称轴的 ( ) A .ABC △的边AB 的中垂线B .ACB ∠的平分线所在的直线C .ABC △的边BC 上的中线所在的直线D .ABC △的边AC 上的高所在的直线8.已知压强的计算公式是Fp S=.我们知道,刀具在使用一段时间后,就会变钝.如果刀刃磨薄,刀具就会变得锋利.下列说法中,能正确解释刀具变得锋利这一现象的是 ( ) A .当受力面积一定时,压强随压力的增大而增大 B .当受力面积一定时,压强随压力的增大而减小C .当压力一定时,压强随受力面积的减小而减小D .当压力一定时,压强随受力面积的减小而增大9.动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是( )A .0.8B .0.75C .0.6D .0.4810.设681 2 019681 2 018a ⨯-⨯=,2 015 2 016 2 013 2 018b ⨯-⨯=,c ,则a ,b ,c 的大小关系是( )A .b c a <<B .a c b <<C .b a c <<D .c b a <<第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填写在题中的横线上) 11.不透明的袋子里装有2个白球、1个红球,这些球除颜色外无其他差别.从袋子中随机摸出1个球,则摸出白球的概率是 . 12.计算11x x x+-= . 13.如图,在ABC △中,DE BC ∥,且=2AD ,=3DB ,则DEBC=. 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共30页) 数学试卷 第4页(共30页)14.公元3世纪,2ra a ≈+值.他的算法是:131212≈+=⨯;,1317421222-≈+=⨯;……依此算法,似值会越来越精确.当取得近似值577408时,近似公式中的a 是 ,r是 .15.已知点(),P m n 在抛物线2y ax x a =--上,当1m -≥时,总有1n ≤成立,则a 的取值范围是 .16.如图,在矩形ABCD 中,=3AD ,以顶点D 为圆心,1为半径作D .过边BC 上的一点P 作射线PQ 与D 相切于点Q ,且交边AD 于点M ,连接AP .若AP PQ +=,=APB QPC ∠∠,则QPC ∠的大小约为 度 分.(参考数据:13sin1132=,tan3652=54'').三、解答题(本大题共11小题,共86分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分7分)计算:211108()225+⨯--÷.18.(本小题满分7分)解方程组1,4.8x y x y +=⎧⎨+=-⎩19.(本小题满分7分)某公司内设四个部门,2015年各部门人数及相应的每人所创年利润如下表所示,求该公司20.(本小题满分7分)如图,AE 与CD 交于点O ,=50A ∠,=OC OE ,=25C ∠. 求证:AB CD ∥.21.(本小题满分7分)已知一次函数2y kx =+,当1x =-时,1y =.求此函数的解析式,并在平面直角坐标系中画出此函数图象.22.(本小题满分7分)如图,在ABC △中,=90ACB ∠,=5AB ,=4BC .将ABC △绕点C 顺时针旋转90,若点A ,点B 的对应点分别为点D ,点E ,画出旋转后的三角形,并求点A 与点D 之间的距离.(不要求尺规作图)数学试卷 第5页(共30页) 数学试卷 第6页(共30页)23.(本小题满分7分)如图,四边形ABCD 中,BCD ∠是钝角,=AB AD ,BD 平分ABC ∠.若=3CD,=BDin s DBC ∠求对角线AC 的长.24.(本小题满分7分)如图是药品研究所测得的某种新药在成人用药后,血液中的药物浓度y (微克/毫升)随用药后的时间x (小时)变化的图象(图象由线段OA 与部分双曲线AB 组成),并测得当y a ≥时,该药物才具有疗效.若成人用药后4小时,药物开始产生疗效,且用药后9小时,药物仍具有疗效,则成人用药后,血液中药物浓则至少需要多长时间达到最大?25.(本小题满分7分)如图,在平面直角坐标系中x Oy 中,已知点(1,1)A m +,(,1)B a m +,(3,3)C m +(1,)D m a +,0m >,13a <<.点(,)P n m n -是四边形ABCD 内的一点,且PAD △与PBC △的面积相等,求n m -的值.26.(本小题满分11分)已知AB 是O 的直径,点C 在O 上,点D 在半径OA 上(不与点O ,A 重合).(1)如图1,若60COA ∠=,= 70CDO ∠,求ACD ∠的度数;(2)如图2,点E 在线段OD 上(不与点O ,D 重合),CD ,CE 的延长线分别交O 于点F ,G ,连接BF ,BG ,点P 是CO 的延长线与BF 的交点.若=1CD ,=2BG ,=OCD OBG ∠∠,=CFP CPF ∠∠,求CG 的长.27.(本小题满分12分)已知抛物线2y x bx c =-++与直线4y x m =-+相交于第一象限不同的两点:(5,)A n ,(,)B e f .(1)若点B 的坐标为(3,9),求此抛物线的解析式;(2)将此抛物线平移.设平移后的抛物线为2y x px q =-++,过点A 与点(1,2),且25m q -=.在平移过程中,若抛物线2y x bx c =-++向下平移了(0)s s >个单位长度,求s 的取值范围.图1图2毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共30页)数学试卷 第8页(共30页)福建省厦门市2016年初中毕业及高中阶段各类学校招生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】C 【解析】1°等于60'.【提示】根据1=60'︒,换算单位即可求解. 【考点】度分秒的换算 2.【答案】C【解析】由22(2)0x x x x =-=-得10x =,22x =,所以答案选C. 【提示】直接利用因式分解法将方程变形进而求出答案. 【考点】一元二次方程的因式分解法 3.【答案】D【解析】由题意得ABF △与DCE △全等,点F 与点E 为对应点,所以DEC AFB ∠=∠,故选D. 【提示】根据全等的三角形的对应边和对应角分别相等即可得到结论. 【考点】三角形全等的性质 4.【答案】A【解析】由26x <得3x <,由14x +≥-得5x ≥-,所以原不等式组的解集为53x -≤<,故选A. 【提示】一般由两个一元一次不等式组成的不等式组有四种基本类型 【考点】一元一次不等式组的解法 5.【答案】B【解析】DE 是△ABC 的中位线,AE CE ∴=,CF ∥BD ,DAE FCE ∴∠=∠,AED CEF ∠=∠,AED CEF ∴≅△△,EF DE ∴=,故选B.【考点】三角形的中位线、两直角线平行的性质、三角形全等的判定和性质 6.【答案】D【解析】由题意得知两函数图象都经过点(4,3),又因为两函数图象有且仅有一个交点,所以交点只能为(4,3),交点的纵坐标为3,故选D.【提示】观察表格中的数据得到交点坐标是解题的关键. 【考点】函数图象上点的坐标5 / 15数学试卷第11页(共30页)数学试卷第12页(共30页)7 / 15【解析】该公司2015年平均每人所创年利润为:36127616820112116811⨯+⨯+⨯+⨯=+++答:该公司2015年平均每人所创年利润为21万元.【提示】利用加权平均数的计算公式计算即可.本题考查的是加权平均数的计算,掌握加权平均数的计算公式是解题的关键. 【考点】加权平均数20.【答案】证明:OC OE =,25E C ∴∠=∠=︒, 50DOE C E ∴∠=∠+∠=︒.50A ∠=︒,A DOE ∴∠=∠,AB CD ∴∥.【提示】先利用等腰三角形的性质得到25E C ∠=∠=︒,再根据三角形外角性质计算出50DOE ∠=︒,则有A DOE ∠=∠,然后根据平行线的判定方法得到结论.【考点】平行线的判定,等腰三角形的性质数学试卷 第15页(共30页)数学试卷 第16页(共30页)21.【答案】(1)将1x =-,1y =代入一次函数解析式:2y kx =+,可得12k =-+,解得1k =∴一次函数的解析式为:2y x =+(2)当0x =时,2y =;当0y =时,2x =-, 所以函数图象经过(0,2),(2,0)-【答案】解:如图,在将sin DBC∠2DE∴=3CD=,1CE∴=,3BC∴=,BD平分ABD∴∠=ABD∴∠=9 / 15数学试卷 第19页(共30页)数学试卷 第20页(共30页)故成人用药后,血液中药物则至少需要6小时达到最大浓度.【提示】利用待定系数法分别求出直线OA 与双曲线的函数解析式,再令它们相等得出方程,解方程即可求解.【考点】反比例函数的应用 25.【答案】2【解析】过点P 作x 轴的平行线PE 交BC 于点E ,如图所示. 设直线BC 的解析式为y kx b =+,将点(1)B a m +,、(33)C m +,代入中y kx b =+,得:133m ak b m k b +=+⎧⎨+=+⎩,解得:23333k a a b m a ⎧=⎪⎪-⎨-⎪=+⎪-⎩,∴直线BC 的解析式为23333a y x m a a -=++--. 当y n =时,(3)()3(1)2a n m a x --+-=,(3)()3(1)2a n m a E n --+-∴(,),(3)()3(1)2a n m a PE n m --+-=﹣(﹣)(1)(3)2a n m ---=. 11A m +(,),1B a m +(,),33C m +(,),1D m a +(,),P n m n -(,), 1AD a ∴=﹣,111122PADP A S AD x x a n m ∴==--(﹣)(﹣)(), 11(1)(3)2222PBCC B a n m SPE y y ---==⨯(﹣)(1)(3)2a n m ---=. PADPBC SS=,1112a n m =---()()112a n m ---=()(), 解得:2n m -=.【解析】(1)OA OC =,60COA ∠=︒,ACO ∴△为等边三角形,60CAD ∴∠=︒,又70CDO ∠=︒,∴10ACD CDO CAD ∠=∠-∠=︒.(2)连接AG ,延长CP 交BF 于点Q ,交圆O 于点H ,令CG 交BF 于点R ,如图所示.在COD △和BOQ △中,OCD OBD OC OBCOD BOQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()COD BOQ ASA ∴△≌△,1BQ CD ∴==,CDO BQO ∠=∠.2BG =,OQ BG ∴⊥,90CQG ∴∠=︒.180CGQ GCQ CQG ∠+∠+∠=︒,180RCP CPR CRP ∠+∠+∠=︒,CGQ CFP CPF ∠=∠=∠, 90CRP CQG ∴∠=∠=︒,CFP CPF ∠=∠,FCG HCG ∴∠=∠,FG GH ∴=.OCD OBG ∠=∠,FCG FBG ∠=∠,ABF GCH ∴∠=∠,GH AF ∴=.90CDO BQO ∠=∠=︒,AC AF BH ∴==,∴点G 为AB 中点,∴AGB △、OQB △为等腰直角三角形.1BQ =,1OQ BQ ∴==,OB在Rt CGQ 中,1GQ =,1CQ CO OQ =+,CG ∴=【提示】(1)由OA OC =,60COA ∠=︒即可得出ACO △为等边三角形,根据等边三角形的性质即可得出60CAD ∠=︒,再结合70CDO ∠=︒利用三角形外角的性质即可得出结论;(2)连接AG ,延长CP 交BF 于点Q ,交圆O 于点H ,令CG 交BF 于点R ,根据相等的边角关系即可证出()COD BOQ ASA △≌△,从而得出1BQ CD ==,CDO BQO ∠=∠,再根据2BG =即可得出OQ BG ⊥.利用三角形的内角和定理以及CFP CPF ∠=∠即可得出FCG HCG ∠=∠,结合交的计算以及同弧的圆周角相等即可得出FG GH =,GH AF =,AC AF BH ==,由此即可得出G 为AB 中点,进而得出AGB △、OQB △为等腰直角三角形,根据等腰直角三角形的性质以及勾股定理即可算出CG 的长度.【考点】圆的综合题【解析】解:(1)∵直线4y x m =-+过点B (3,9),943m ∴=⨯+﹣,解得:21m =,∴直线的解析式为421y x =-+,点A (5,)n 在直线421y x =-+上,45211n ∴=-⨯+=,∴点A (5,1),将点A (5,1)、B (3,9)代入2y x bx c =-++中,得:1255993b c b c =-++⎧⎨=-++⎩,解得:46b c =⎧⎨=⎩, ∴此抛物线的解析式为246y x x =-++;(2)由抛物线246y x x =-++与直线4y x m =-+交于A (5,n )点,得:255p q n -++=①,20m n +=-②,2y x px q =-++过(1,2)得:12p q -++= ③,则有255201225p q n m n p q m q -++=⎧⎪-+=⎪⎨-++=⎪⎪-=⎩①②③④解得:22263m n p q =⎧⎪=⎪⎨=⎪⎪=-⎩ ∴平移后的抛物线为263y x x=-+﹣, 一次函数的解析式为:422y x =-+,A (5,2),当抛物线在平移的过程中,a 不变,抛物线与直线有两个交点,如图所示,抛物线与直线一定交于点A ,所以当抛物线过点C 以及抛物线在点A 处与直线相切时,只有一个交点介于点A 、C 之间,①当抛物线2y x bx c =-++过A (5,2)、C (0,22)时,得22c =,1b =,抛物线解析式为:222y x x =-++,顶点189(,)24; ②当抛物线2y x bx c =-++在点A 处与直线相切时,2422y x bx c y x ⎧=-++⎨=-+⎩, 2422x bx c x ++=+﹣﹣,24220x b x c +++=﹣()﹣,424220b c ∆=+-⨯⨯+=()(-1)(-)①,∵抛物线过2y x bx c =-++点A (5,2),2552b c ++=﹣,527c b =+﹣,把527c b =+﹣代入①式得:212360b b -+=, 126b b ==,则56273c =⨯+=﹣﹣, ∴抛物线的解析式为:263y x x =+-﹣,2(3)6y x =--+,顶点坐标为(3,6),8965644-=; 则6504S <<.【提示】(1)根据点B 的坐标可求出m 的值,写出一次函数的解析式,并求出点A 的坐标,最后利用点A 、B两点的坐标求抛物线的解析式;(2)根据题意列方程组求出p、q、m、n的值,计算抛物线与直线最上和最下满足条件的解析式,并计算其顶点坐标,向下平移的距离主要看顶点坐标的纵坐标之差即可.【考点】二次函数图象与几何变换。
厦门中考数学试题3-中考.doc
:2016年厦门中考数学试题第3页-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
【中考数学试题及答案】福建中考数学试题及答案2016
【中考数学试题及答案】福建中考数学试题及答案2016
成功者永远不会放弃,放弃者永远不会成功。不要最后一秒钟,绝不放弃!福建中考数学试题及答案频道的小编会及时为广大考生提供2016年福建中考数学试题及答案,有需要的考生可以在考题公布后刷新本页面(按ctrl F5),希望对大家有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省厦门市2016年初中毕业及高中阶段各类学校招生考试数学答案解析第Ⅰ卷一、选择题1.【答案】C【解析】1°等于60'.【提示】根据1=60'︒,换算单位即可求解.【考点】度分秒的换算2.【答案】C【解析】由22(2)0x x x x =-=-得10x =,22x =,所以答案选C.【提示】直接利用因式分解法将方程变形进而求出答案.【考点】一元二次方程的因式分解法3.【答案】D【解析】由题意得ABF △与DCE △全等,点F 与点E 为对应点,所以DEC AFB ∠=∠,故选D.【提示】根据全等的三角形的对应边和对应角分别相等即可得到结论.【考点】三角形全等的性质4.【答案】A【解析】由26x <得3x <,由14x +≥-得5x ≥-,所以原不等式组的解集为53x -≤<,故选A.【提示】一般由两个一元一次不等式组成的不等式组有四种基本类型【考点】一元一次不等式组的解法5.【答案】B【解析】DE 是△ABC 的中位线,AE CE ∴=,CF ∥BD ,DAE FCE ∴∠=∠,AED CEF ∠=∠,AED CEF ∴≅△△,EF DE ∴=,故选B.【考点】三角形的中位线、两直角线平行的性质、三角形全等的判定和性质6.【答案】D【解析】由题意得知两函数图象都经过点(4,3),又因为两函数图象有且仅有一个交点,所以交点只能为(4,3),交点的纵坐标为3,故选D.【提示】观察表格中的数据得到交点坐标是解题的关键.【考点】函数图象上点的坐标【解析】该公司2015年平均每人所创年利润为:36127616820112116811⨯+⨯+⨯+⨯=+++ 答:该公司2015年平均每人所创年利润为21万元.【提示】利用加权平均数的计算公式计算即可.本题考查的是加权平均数的计算,掌握加权平均数的计算公式是解题的关键.【考点】加权平均数20.【答案】证明:OC OE =,25E C ∴∠=∠=︒,50DOE C E ∴∠=∠+∠=︒.50A ∠=︒,A DOE ∴∠=∠,AB CD ∴∥.【提示】先利用等腰三角形的性质得到25E C ∠=∠=︒,再根据三角形外角性质计算出50DOE ∠=︒,则有A DOE ∠=∠,然后根据平行线的判定方法得到结论.【考点】平行线的判定,等腰三角形的性质21.【答案】(1)将1x =-,1y =代入一次函数解析式:2y kx =+,可得12k =-+,解得1k = ∴一次函数的解析式为:2y x =+(2)当0x =时,2y =;当0y =时,2x =-,所以函数图象经过(0,2),(2,0)-【答案】解:如图,在将sin DBC∠∴=DE2 CD=,3∴=,BC3∴=BC CD BD平分∴∠=ABD AB∴∥CD故成人用药后,血液中药物则至少需要6小时达到最大浓度.【提示】利用待定系数法分别求出直线OA 与双曲线的函数解析式,再令它们相等得出方程,解方程即可求解.【考点】反比例函数的应用25.【答案】2【解析】过点P 作x 轴的平行线PE 交BC 于点E ,如图所示.设直线BC 的解析式为y kx b =+,将点(1)B a m +,、(33)C m +,代入中y kx b =+,得:133m ak b m k b +=+⎧⎨+=+⎩,解得:23333k a a b m a ⎧=⎪⎪-⎨-⎪=+⎪-⎩, ∴直线BC 的解析式为23333a y x m a a -=++--. 当y n =时,(3)()3(1)2a n m a x --+-=, (3)()3(1)2a n m a E n --+-∴(,),(3)()3(1)2a n m a PE n m --+-=﹣(﹣)(1)(3)2a n m ---=. 11A m +(,),1B a m +(,),33C m +(,),1D m a +(,),P n m n -(,), 1AD a ∴=﹣,111122PAD P A SAD x x a n m ∴==--(﹣)(﹣)(), 11(1)(3)2222PBC C B a n m S PE y y ---==⨯(﹣)(1)(3)2a n m ---=. PAD PBC S S = ,1112a n m =---()()112a n m ---=()(), 解得:2n m -=.【解析】(1)OA OC =,60COA ∠=︒,ACO ∴△为等边三角形,60CAD ∴∠=︒,又70CDO ∠=︒,∴10ACD CDO CAD ∠=∠-∠=︒.(2)连接AG ,延长CP 交BF 于点Q ,交圆O 于点H ,令CG 交BF 于点R ,如图所示.在COD △和BOQ △中,OCD OBD OC OBCOD BOQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()COD BOQ ASA ∴△≌△,1BQ CD ∴==,CDO BQO ∠=∠.2BG =,OQ BG ∴⊥,90CQG ∴∠=︒.180CGQ GCQ CQG ∠+∠+∠=︒,180RCP CPR CRP ∠+∠+∠=︒,CGQ CFP CPF ∠=∠=∠, 90CRP CQG ∴∠=∠=︒,CFP CPF ∠=∠,FCG HCG ∴∠=∠,FG GH ∴=.OCD OBG ∠=∠,FCG FBG ∠=∠,ABF GCH ∴∠=∠,GH AF ∴=.90CDO BQO ∠=∠=︒,AC AF BH ∴==,∴点G 为AB 中点,∴AGB △、OQB △为等腰直角三角形.1BQ =,1OQ BQ ∴==,OB ==在Rt CGQ 中,1GQ =,1CQ CO OQ =+,CG ∴【提示】(1)由OA OC =,60COA ∠=︒即可得出ACO △为等边三角形,根据等边三角形的性质即可得出60CAD ∠=︒,再结合70CDO ∠=︒利用三角形外角的性质即可得出结论;(2)连接AG ,延长CP 交BF 于点Q ,交圆O 于点H ,令CG 交BF 于点R ,根据相等的边角关系即可证出()COD BOQ ASA △≌△,从而得出1BQ CD ==,CDO BQO ∠=∠,再根据2BG =即可得出OQ BG ⊥.利用三角形的内角和定理以及CFP CPF ∠=∠即可得出FCG HCG ∠=∠,结合交的计算以及同弧的圆周角相等即可得出FG GH =,GH AF =,AC AF BH ==,由此即可得出G 为AB 中点,进而得出AGB △、OQB △为等腰直角三角形,根据等腰直角三角形的性质以及勾股定理即可算出CG 的长度.【考点】圆的综合题27.【答案】(1)抛物线解析式为246y x x =-++【解析】解:(1)∵直线4y x m =-+过点B (3,9),943m ∴=⨯+﹣,解得:21m =,∴直线的解析式为421y x =-+,点A (5,)n 在直线421y x =-+上,45211n ∴=-⨯+=,∴点A (5,1),将点A (5,1)、B (3,9)代入2y x bx c =-++中,得:1255993b c b c =-++⎧⎨=-++⎩,解得:46b c =⎧⎨=⎩, ∴此抛物线的解析式为246y x x =-++;(2)由抛物线246y x x =-++与直线4y x m =-+交于A (5,n )点,得:255p q n -++=①,20m n +=-②,2y x px q =-++过(1,2)得:12p q -++= ③,则有255201225p q n m n p q m q -++=⎧⎪-+=⎪⎨-++=⎪⎪-=⎩①②③④解得:22263m n p q =⎧⎪=⎪⎨=⎪⎪=-⎩ ∴平移后的抛物线为263y x x=-+﹣, 一次函数的解析式为:422y x =-+,A (5,2),当抛物线在平移的过程中,a 不变,抛物线与直线有两个交点,如图所示,抛物线与直线一定交于点A ,所以当抛物线过点C 以及抛物线在点A 处与直线相切时,只有一个交点介于点A 、C 之间,①当抛物线2y x bx c =-++过A (5,2)、C (0,22)时,得22c =,1b =,抛物线解析式为:222y x x =-++,顶点189(,)24;②当抛物线2y x bx c =-++在点A 处与直线相切时,2422y x bx c y x ⎧=-++⎨=-+⎩, 2422x bx c x ++=+﹣﹣,24220x b x c +++=﹣()﹣,424220b c ∆=+-⨯⨯+=()(-1)(-)①,∵抛物线过2y x bx c =-++点A (5,2),2552b c ++=﹣,527c b =+﹣,把527c b =+﹣代入①式得:212360b b -+=,126b b ==,则56273c =⨯+=﹣﹣,∴抛物线的解析式为:263y x x =+-﹣,2(3)6y x =--+,顶点坐标为(3,6),8965644-=; 则6504S <<.【提示】(1)根据点B 的坐标可求出m 的值,写出一次函数的解析式,并求出点A 的坐标,最后利用点A 、B 两点的坐标求抛物线的解析式;(2)根据题意列方程组求出p 、q 、m 、n 的值,计算抛物线与直线最上和最下满足条件的解析式,并计算其顶点坐标,向下平移的距离主要看顶点坐标的纵坐标之差即可. 【考点】二次函数图象与几何变换。