2011年秋八年级数学(平行班)
2010-2011 初二数学 参考答案及评分标准
2010~2011学年度第一学期初二数学期末试卷参考答案及评分标准命题:夏建平 审核:王晓峰一、 选择题(本大题共8小题,每小题3分,共24分)9.±6, 10.1,2 11.(-4,4), 12.2, 13.5, 14.11, 15.40°, 16.1, 17.4, 18.5.三、解答题:本大题共8小题,19—24题每题6分,25—26题每题10分,共计56分.19. (1)解:9x 2=16------------------------------------------1分x 2=169-----------------------------------------2分 x=±43-----------------------------------------3分 (2)=9÷(-3)-5------------------------------------------2分=-8 ------------------------------------------3分20. 解:∵△ABC 中,∠B =∠C =30°,∴AB=AC ----------------------------------------1分∵D 是BC 的中点,∴A D ⊥BC -----------------------------------------2分∴∠ADC =90°∠ADB =90°------------------------4分∴∠BAD=∠ADB -∠B=90°-30°=60°----------------------------------------6分-其它解法酌情给分21.解:(1)小莉认为:小颖成绩的众数是92,而自己成绩的众数是89,所以小颖的成绩好;小颖认为:两人成绩的中位数都是89,所以两人的成绩一样. ----------------------3分(2)还可以从平均数的角度来评价,因为 x 小莉=896789929686.65++++=, x 小颖=866289929284.25++++=, 所以,小莉的成绩较好些.---------------------------------6分22.解法(一):四边形AECF 是平行四边形------------1分理由如下:证明:连结AC 交BD 于点O -----------2分 四边形ABCD 为平行四边形OA OC OB OD ∴==,------------------4分 BE DF OE OF =∴=,------------------5分∴四边形AECF 为平行四边形---------------6分 解法(二):四边形AECF 是平行四边形---------------1分理由如下:∵四边形ABCD 是平行四边形,∴AD BC AD BC =,∥.∴ADF BC =∠∠E ---------------------2分在ADF △和CBE △中,∵AD BC ADF BC E DF ===,∠∠E ,B∴ADF CBE △≌△--------------------3分∴AF CE =∴∠BEC=∠AFD∴∠FEC=∠AFE -----------------------4分∴A F ∥CE ------------------------5分∴四边形AECF 为平行四边形------------6分其它解法酌情给分23.解(1)令y=0,得x =32- ∴A 点坐标为(32-,0). ---------------1分 令x =0,得y =3 ∴B 点坐标为(0,3). -----------------2分(2)设P 点坐标为(x ,0),依题意,得x=±3.∴P 点坐标为P 1(3,0)或P 2(-3,0). --------------------------4分 ∴S △ABP 1=13(3)322⨯+⨯=274S △ABP 2=13(3)322⨯-⨯=94. ∴△ABP 的面积为274或94.------------------------------------6分24.解:(1)15,154------------------------------------------2分(2)由图像可知,s 是t 的正比例函数设所求函数的解析式为kt s =(0≠k )代入(45,4)得:k 454= 解得:454=k∴s 与t 的函数关系式t s 454=(450≤≤t )------------4分 (3)由图像可知,小聪在4530≤≤t 的时段内s 是t 的一次函数,设函数解析式为n mt s +=(0≠m )(第22题) CDA B E F O代入(30,4),(45,0)得:⎩⎨⎧=+=+045430n m n m 解得:⎪⎩⎪⎨⎧=-=12154n m ∴12154+-=t s (4530≤≤t )----------------------------6分 令t t 45412154=+-,解得4135=t 当4135=t 时,34135454=⨯=S --------------------------------7分 答:当小聪与小明迎面相遇时,他们离学校的路程是3千米。
八年级数学下册平行四边形的性质练习题
八年级数学下册平行四边形的性质练习题(含答案解析)学校:___________姓名:___________班级:___________一、填空题1.在平行四边形ABCD 中,AB =3,BC =4,则平行四边形ABCD 的周长等于 _____.2.如图,等腰△ABC 中,△BAC =120°,点D 在边BC 上,等腰△ADE 绕点A 顺时针旋转30°后,点D 落在边AB 上,点E 落在边AC 上,若AE =2cm ,则四边形ABDE 的面积是__________.3.定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为______.4.如图,已知DG △BC ,AC △BC ,CD △AB ,EF △AB ,则DG 与AC 间的距离是线段________的长,CD 与EF 间的距离是线段________的长.5.如图,平行四边形的中心在原点,AD BC ∥,D (3,2),C (1,﹣2),则A 点的坐标为________,B 点的坐标为________.6.如图,在平面直角坐标系中,点()1,2A -,4OC =,将平行四边形OABC 绕点O 旋转90°后,点B 的对应点B '坐标是______.7.如图,菱形ABCD 中,∠ABD=30°,AC=4,则BD的长为_______.8.如图,在直角坐标系中,平行四边形ABCD的BC边在x轴上,点A(0,3),B(−1,0),若直线y=−2x+4恰好平分平行四边形ABCD的面积,则点D的坐标是______.二、单选题9.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE中点,且△ABC的面积等于4cm2,则阴影部分图形面积等于().A.1cm2B.2cm2C.0.5cm2D.1.5cm210.已知三角形的三边长分别为2、x、8,则x的值可能是()A.4B.6C.9D.1011.已知A、B、C三点不在同一条直线上,则以这三点为顶点的平行四边形共有()A .1个B .2个C .3个D .4个12.已知某点阵的第△△△个图如图所示,按此规律第( )个点阵图中,点的个数为2022个.A .1009B .2018C .2022D .2048三、解答题13.如图,PBD △和PAC △都是直角三角形,90DBP CAP ∠=∠=︒.(1)如图1,PA ,PB 与直线MN 重合,若45BDP ∠=︒,30ACP ∠=︒,求DPC ∠的度数;(2)如图2,若45BDP ∠=︒,30ACP ∠=︒,PBD △保持不动,PAC △绕点P 逆时针旋转一周.在旋转过程中,当PC BD ∥时,求APN ∠的度数;(3)如图3,()90180BPA a α∠=︒<<︒,点E 、F 分别是线段BD 、AC 上一动点,当PEF 周长最小时,直接写出EPF ∠的度数(用含α的代数式表示).14.在四边形ABCD 中,BAD ∠的平分线AF 交BC 于F ,延长AB 到E 使BE FC =,G 是AF 的中点,GE 交BC 于O ,连接GD .(1)当四边形ABCD 是矩形时,如图,求证:△GE GD =;△BO GD GO FC ⋅=⋅.(2)当四边形ABCD 是平行四边形时,如图,(1)中的结论都成立,请给出结论△的证明.15.如图,已知,AF DE AE FD ==,点B 、C 在AD 上,AB CD =,BF CE =.(1)图中共有__________对全等三角形;分别是__________;(2)我会说明__________≌△__________.(写出证明过程)参考答案:1.14【分析】由平行四边形的对边相等即可求得其周长.【详解】解:△四边形ABCD是平行四边形,△AB=CD,BC=AD,△平行四边形的周长为=2(AB+BC)=2×(3+4)=14,故答案为:14.【点睛】本题考查平行四边形的性质,熟知平行四边形的对边相等是解答的关键.22.【分析】如图,作AH△BC于H.证明四边形ABDE是平行四边形即可解决问题.【详解】解:如图,作AH△BC于H.由题意得:△EAD=△BAC=120°,△EAC=△C=30°,△AE△BC,△△ADH=△B+△BAD,△B=△BAD=30°,△△ADH=60°,BD=AD=AE=2cm,△AHcm),△BD=AE,BD△AE,△四边形ABDE是平行四边形,△SABCD=BD•AH cm2).2.故答案为【点睛】本题考查旋转变换,等腰三角形的性质,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.3.6【分析】分类讨论:AB =AC =2BC 或BC =2AB =2AC ,然后根据三角形三边关系即可得出结果.【详解】解:△△ABC 是等腰三角形,底边BC =3△AB =AC当AB =AC =2BC 时,△ABC 是“倍长三角形”;当BC =2AB =2AC 时,AB +AC =BC ,根据三角形三边关系,此时A 、B 、C 不构成三角形,不符合题意; 所以当等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为6.故答案为6.【点睛】本题考查等腰三角形,三角形的三边关系,涉及分类讨论思想,结合三角形三边关系,灵活运用分类讨论思想是解题的关键.4. CG DE【分析】根据平行线间的距离等于平行线间任意一条垂线段的长度即可解题.【详解】解:由题可知:DG△AC,CD△EF,△DG 与AC 间的距离是线段CG ,CD 与EF 间的距离是线段DE.【点睛】本题考查了平行线之间的距离,属于简单题,找到平行线之间的垂线段是解题关键.5. (﹣1,2) (﹣3,﹣2)【分析】根据“关于原点对称的点横坐标互为相反数,纵坐标也互为相反数”即可解答.【详解】解:因为平行四边形是中心对称图形,而平行四边形的中心在原点,则A 点的坐标为(﹣1,2),B 点的坐标为(﹣3,﹣2).故答案为:(﹣1,2),(﹣3,﹣2).【点睛】本题主要考查了关于原点对称的点的坐标特征,熟练掌握关于原点对称的点横坐标互为相反数,纵坐标也互为相反数是解题的关键.6.()2,3-或()2,3-【分析】根据旋转可得: BM = B 1M 1 = B 2M 2 = 3,△AOA 1 =△AOA 2 = 90°,可得B 1和B 2的坐标,即是B '的坐标.【详解】解:△A (-1,2), OC = 4,△ C (4,0),B (3,2),M (0,2), BM = 3,AB//x轴,BM= 3.将平行四边形OABC绕点O分别顺时针、逆时针旋转90°后,由旋转得:OM=OM1=OM2=2,△AOA1=△AOA2=90°BM=B1M1=B2M2=3,A1B1△x轴,A2B2△x轴,△B1和B2的坐标分别为:(-2,3),(2,-3),△B'即是图中的B1和B2,坐标就是,B' (-2,3),(2,-3),故答案为:(-2,3)或(2,-3).【点睛】本题考查了平行四边形的性质,坐标与图形的性质,旋转的性质,正确的识别图形是解题的关键.7.【分析】根据菱形的性质可得△ABO=30°,AO=12AC=2,根据含30°角的直角三角形的性质及勾股定理即可求得BO的长,从而得到结果.【详解】如图:在菱形ABCD中,AC、BD是对角线,设相交于O点,△ABD=30°,AC=4,△AC△BD,AO=12AC=2,△AB=2AO=4,△BO,22BD BO∴==⨯=故答案为:【点睛】本题考查的是菱形的性质,解答本题的关键是熟练掌握菱形的对角线互相垂直平分,对角线平分对角.8.(72,3)【分析】连接BD,设D(m,3),BD的中点为T.求出点T的坐标,利用的待定系数法,可得结论.【详解】解:连接BD,设D(m,3),BD的中点为T.△B(−1,0),△T(12m-,32),△直线y=−2x+4平分平行四边形ABCD的面积,△直线y=−2x+4经过点T,△32=−2×12m-+4,△m=72,△D(72,3),故答案为:(72,3).【点睛】本题考查中心对称,平行四边形的性质,一次函数的性质等知识,解题关键是理解题意,灵活运用所学知识解决问题.9.A【分析】根据三角形中线的性质可得S△EBC=12S△ABC,1124BEF BEC ABCS S S==,结合已知条件即可求解.【详解】解:△点D ,E 分别为边BC , AD 中点, 111,,222ABD ABC BED ABD CED ABD SS S S S S ∴===, 12BED DEC BEC ABC S S S S ∴+==,△F 是EC 的中点, 12BEF BEC S S =, 14BEF ABCS S ∴=, △ABC 的面积等于4cm 2,△S △BEF =1cm 2,即阴影部分的面积为1cm 2,故选:A .【点睛】本题主要考查了三角形的中线的性质,掌握三角形的中线的性质是解题的关键.10.C【分析】根据三角形任意两边的和大于第三边,进而得出答案.【详解】解:三角形三边长分别为2,8,x ,8282x ∴-<<+,即:610x <<,只有9符合,故选:C .【点睛】此题主要考查了三角形三边关系,解题的关键是正确把握三角形三边关系定理.11.C【详解】分析:由已知条件可知,顺次连接A 、B 、C 三点可得△ABC ,在分别以AB 、BC 和AC 为对角线各作出一个以点A 、B 、C 为顶点的平行四边形,如下图,由此即可得到本题答案了.详解:△点A 、B 、C 不在同一条直线上时,△顺次连接A 、B 、C 三点可得△ABC ,△分别以AB 、BC 和AC 为对角线各作出一个以点A 、B 、C 为顶点的平行四边形,如下图所示:△当A 、B 、C 三点不在同一条直线上,则以这三点为顶点的平行四边形共有3个.故选C.点睛:知道以三角形的每一条边为一条对角线都可以画出一个以该三角形的三个顶点为顶点的平行四边形,是解答本题的关键.12.A【分析】仔细观察图形变化,找到图形变化的规律,利用规律求解.【详解】解:第1个图里有6个点,6=4+2;第2个图有8个点,8=4+2×2;第3个有10个点,10=4+3×2;…则第n 个图中点的个数为4+2n ,令4+2n =2022, 解得n =1009.故选:A .【点睛】本题主要考查图形的变化规律,解题的关键是根据图形得出每往后一个图形,点的个数相应增加2个.13.(1)75DPC ∠=︒(2)30APN ∠=︒或150︒(3)2180α-︒【分析】(1)先算出9045DPB BDP ∠=︒-∠=︒,9060CPA ACP ∠=︒-∠=︒,然后根据平角的定义,求出75DPC ∠=︒即可;(2)分点C 在MN 上方和点C 在MN 下方两种情况进行讨论,根据平行线的性质,求出结果即可;(3)延长PB 截取BG =PB ,在MN 上截取AH =AP ,连接GH ,交BD 于点E ,交AC 于点F ,连接PE 、PF ,此时△PEF 的周长最小,根据三角形外角的性质和垂直平分线的性质,求出EPF ∠的度数即可.(1)解:△90DBP CAP ∠=∠=︒,45BDP ∠=︒,30ACP ∠=︒,△9045DPB BDP ∠=︒-∠=︒,9060CPA ACP ∠=︒-∠=︒,△PA ,PB 与直线MN 重合,△18075DPC DPB CPA ∠=︒-∠-∠=︒.(2)当点C 在MN 上方时,如图所示:PC BD ∥,45BDP ∠=︒,△45CDP BDP ∠=∠=︒,△45DPB ∠=︒,60CPA ∠=︒,△18030APN BPD CPD CPA ∠=︒-∠-∠-∠=︒;当点C 在MN 下方时,如图所示:△PC BD ∥,90DBP ∠=︒,△90BPC DBP ∠=∠=︒,18090CPN BPC ∴∠=︒-∠=︒,△6090150APN APC CPN ∠=∠+∠=︒+︒=︒;综上分析可知,30APN ∠=︒或150︒.(3)延长PB 截取BG =PB ,在MN 上截取AH =AP ,连接GH ,交BD 于点E ,交AC 于点F ,连接PE 、PF ,此时△PEF 的周长最小,如图所示:△90DBP CAP ∠=∠=︒,△DB GP ⊥,CA PH ⊥,△DB 垂直平分PG ,CA 垂直平分PH ,△EG =EP ,FP =FH ,△EGP EPG ∠=∠,PHF HPF ∠=∠,△△MPG 是△PGH 的外角,△MPG EGP PHF EPG FPH ∠=∠+∠=∠+∠,180MPG α∠=︒-,△180EPG FPH MPG α∠+∠=∠=︒-,△()EPF APB EPG FPH ∠=∠-∠+∠()180αα=-︒-2180α=-︒【点睛】本题主要考查了平行线的性质,垂直平分线的性质,等腰三角形的性质,直角三角形两锐角互余,根据题意作出图形,并进行分类讨论,是解题的关键.14.(1)证明见详解(2)证明见详解【分析】(1)△证明ADG AEG ≌△即可;△连接BG ,CG ,证明ADG BCG ≌△,BOE GOC ∽△△即可证明;(2)△的结论和(1)中证明一样,证明ADG AEG ≌△即可;△的结论,作DM BC GM ⊥,连接,证明BOE GOM ∽△△即可.(1)证明:△证明过程:四边形ABCD 为矩形,90ABC BAD ∴∠=∠=︒AF 平分BAD ∠45BAF DAF ∴∠=∠=︒ABF ∴为等腰直角三角形AB BF ∴=BE FC =AB BE BF CF AE BC AD ∴+=+==,即AG AG =∴ADG AEG ≌△∴GE GD =△证明:连接BG ,CG ,G 为AF 的中点,四边形ABCD 为矩形,90ABC BAD AD BC ∴∠=∠=︒=,BG AG FG ∴==AF 平分BAD ABF ∠,为等腰直角三角形,45BAF DAF ABG CBG ∴∠=∠=︒=∠=∠∴ADG BCG ≌△∴ADG BCG ∠=∠ADG AEG ≌△E ADG ∴∠=∠E BCG ∴∠=∠BOE GOC ∠=∠BOE GOC ∴∽△△BO GO GO BOBE GC GD CF ∴===∴BO GD GO FC ⋅=⋅(2)作DM BC BC M GM GN DM DM N ⊥⊥交于,连接,作交于点,如图所示90DMB GNM GND DMC ∴∠=︒=∠=∠=∠由(1)同理可证:ADG AEG ≌△E ADG ∴∠=∠四边形ABCD 为平行四边形AD BC ∴∥90ADM DMC ∴∠=∠=︒BC GN AD ∴∥∥G 为AF 的中点,由平行线分线段成比例可得DN MN =DG MG ∴=,,GDM GMDADG BMG EBOE GOM ∠=∠BOE GOM ∴∽△△BO GO GO BO BE GM GD CF∴=== ∴BO GD GO FC ⋅=⋅【点睛】本题考查了以矩形与平行四边形为桥梁,涉及全等三角形的证明,相似三角形的证明,正确作出辅助线并由此得到相应的全等三角形和相似三角形是解题的关键.15.(1)3对;,,AED DFA AEC DFB AFB DEC ≌≌≌;(2)AED DFA ≌,证明见解析.【分析】根据已知条件,结合三角形全等的判定定理,推理即可得到正确答案.【详解】解:(1)3对;,,AED DFA AEC DFB AFB DEC ≌≌≌;(2)我会说明AED DFA ≌.证明:在AED 和DFA 中,△,,,DE AF DA AD AE DF =⎧⎪=⎨⎪=⎩△()AED DFA SSS ≌.【点睛】本题考查三角形全等的判定定理,根据定理内容找到全等条件是解题关键.。
人教版初中初二八年级上册数学:12.1.2线段的垂直平分线(平行班)
线段垂直平分线性质:
• 若MA=MB,则M在线段AB的垂直平分线上吗?
结论:与一条线段两个端点距离相等的 点,在这条线段的垂直平分线上。
线段的垂直平分线可以看成是与线段两端点 距离相等的所有点的集合.
练习一
1、因为 AD是BC的垂直平分线 ,所以AB=AC.
理由:线段垂直平分线上的点与这条线段两个端点的距离相等
A.4
B.2
C.3
D. 1
2
A D
B
EC
练习
A
3.如图,AB垂直平分CD,若AC=1.6cm,
BC=2.3cm,则四边形ABCD的周长
C
D
是( B )cm.
A.3.9 B.7.8 C.4 D.4.6
MB D
4.如右图所示,直线MN和DE分别是线段
P
AB、BC的垂直平分线,它们交于P点,
C
请问PA和 PC相等吗?为什么?
直线称为这条线段的垂直平分线.(又叫中垂线)
C
M
A
B
D
演示
轴对称的性质:
直线MN垂直 平分线段AF、
CD、BE
如果两个图形关于某条直
A
线对称,那么对称轴是任何一
对对称点所连线段的垂直平分
线。
即对称点的连线被对称轴垂直
平分。
B
类似地,轴对称图形的对称轴P,.
是任何一对对称点所连线段的 垂直平分线。
M
因为:PA=PB=PC
A
B
E
N
画图想一想
5.在△ABC中,用刻度尺和量角器画出线段AB、BC、CA的垂直
平分线,看看三条垂直平分线的位置有什么关系.
A
P
八年级数学下册期末考试卷(附带有答案)
八年级数学下册期末考试卷(附带有答案)(满分: 120 分 考试时间: 120 分钟)一、选择题1、 以下问题,不适合用普查的是( )A. 了解全班同学每周体育锻炼的时间B. 旅客上飞机前的安检C. 学校招聘教师,对应聘人员面试D. 了解全市中小学生每天的零花钱 2、 下列图案中,不是中心对称图形的是( )3A. 全体实数B.x≠1C.x=1D. x >14、 把 118化为最简二次根式得( )1 1 1 1A. 18 18B. 18C. 2D.18 6 3 25、 若反比例函数y = (2m 1)x m 2-2 的图象在第二,四象限,则 m 的值是( )A. −1 或 1B. 小于 12 的任意实数C. −1D. 不能确定k6、 如图,在同一直角坐标系中,正比例函数 y=kx+3 与反比例函数 y = 的图象位置可能是( )x第 1 页 共 12 页3、 如果分式 有意义,则 x 的取值范围是( ) x 1第 2 页 共 12 页A. 1B. 2C. 一、填空题9、 当 x 时,分式 3 D. 4x 1的值为 0. x10、 若 x = 5 3 ,则 x 2 + 6x + 5 的值为 .12、 袋子里有 5 只红球,3 只白球,每只球除颜色以外都相同,从中任意摸出 1 只球,是红球的可能性 (选 填“大于”“小于”或“等于”)是白球的可能性。
13、 矩形 ABCD 的对角线 AC 、BD 交于点 O , ∠AOD =120 ,AC =4,则△ABO 的周长为 .14、 若关于 x 的分式方程 有增根,则.15、 某校高一年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分 100 分,学生成绩取整数),则成绩在 90.5 95.5 这一分数段的频率是a + 3b c11、 若 a:b:c=1:2:3,则 =a 3b + c第 3 页 共 12 页2 和 y =x△PAB 的面积是 3,则 k = .17、 图 1 所示矩形 ABCD 中, BC =x ,CD =y ,y 与 x 满足的反比例函数关系如图 2 所示,等腰直角三角形 AEF 的斜边 EF 过 C 点, M 为 EF 的中点,则下列结论正确的序号是 . ①当 x =3 时, EC <EM③当 x 增大时, EC ⋅CF 的值增大18、 如图 1,边长为 a 的正方形发生形变后成为边长为 a 的菱形,如果这个菱形的一组对边之间的距离为h , a我们把 的值叫做这个菱形的“形变度”。
2011(完整)人教版八年级下册全数学教案
目录第十六章分式 ........................................ 错误!未定义书签。
16.1分式 ......................................... 错误!未定义书签。
16.1.1从分数到分式............................ 错误!未定义书签。
16.1.2分式的基本性质.......................... 错误!未定义书签。
16.2分式的运算 ................................... 错误!未定义书签。
16.2.1分式的乘除(一)....................... 错误!未定义书签。
16.2.2分式的乘除(二) ........................ 错误!未定义书签。
16.2.3分式的乘除(三) ........................ 错误!未定义书签。
16.2.4分式的加减(一)...................... 错误!未定义书签。
16.2.5分式的加减(二)...................... 错误!未定义书签。
16.2.6整数指数幂............................ 错误!未定义书签。
16.3分式方程 ..................................... 错误!未定义书签。
16.3.1分式方程(一) ............................ 错误!未定义书签。
16.3.2分式方程(二) ........................... 错误!未定义书签。
第十七章反比例函数..................................... 错误!未定义书签。
17.1反比例函数的意义 .............................. 错误!未定义书签。
初中数学_ 平行线分线段成比例教学设计学情分析教材分析课后反思
八年级下册——第九章《图形的相似》第二节《平行线分线段成比例》教学设计课标要求:掌握基本事实“两条直线被一组平行线所截,所得的对应线段成比例”.学习目标:1、探索并掌握基本事实“平行线分线段成比例”及其推论.2、经历上述探究过程,体会由特殊到一般的归纳推理的思想与方法.3、通过交流合作,体会到其重要性,感悟几何价值,培养良好的学习习惯.教材分析:本节内容是八年级下册第九章第二节,是2011版新课标新增内容,按照《标准》规定,将“平行线分线段成比例”内容作为基本事实,它是证明相似三角形判定定理的基础.在学习平行线分线段成比例时,教材呈现的顺序是:特殊→一般→特殊.具体来说,教材首先借助方格纸这一工具,引导学生通过观察、计算,由特殊到一般地逐步归纳、猜想,进而明确“平行线分线段成比例”的基本事实;然后把这一基本事实特殊化(应用在三角形中),得到它的一个推论,从而为后面证明相似三角形判定作准备.由于基本事实不需要推理证明,所以本节内容在学生通过一系列的探索活动,直观归纳出结论即可,所以重点就是能找出对应线段,掌握“平行线分线段成比例”及推论,并能简单应用.学情分析:由于学生通过对相交线、平行线、三角形、四边形(主要是平行四边形)等图形的学习,已经积累了一定的数学活动经验,几何直观与推理能力都得到了一定的培养,而通过对前面两课时的学习,对相似图形有了直观的印象,体会到可以用对应线段长度的比来描述两个形状相同的平面图形的大小关系,从而认识了线段的比及成比例线段,通过方格纸的直观性,合作探究,了解了合比性质、等比性质,并通过对其进行证明,发展了学生的逻辑推理的能力,为后面相似的学习奠定了良好的基础,而“平行线分线段成比例”正好是建立在成比例线段基础上来学习的.所以本节课的难点就是如何理解对应线段成比例及其变式应用.评价设计:1.通过学生动手操作,自主思考及课堂展示环节二三,检测目标1的达成。
2.通过环节二、三、四检测目标2的达成。
2010—2011学年下学期八年级期末数学试卷及参考答案
2010—2011学年度第二学期期末试卷八年级数学(满分:150分 测试时间:120分钟)题号 一 二 三 总分 合分人1-8 9-18 19 20 21 22 23 24 25 26 27 28 得分一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请把你认为正确的答案前的字母填 入下表相应的空格 )1、若分式25x -有意义...,则x 的取值范围是 ( ) A .5x > B .5x ≠ C .5x ≠- D .5x >-2、一个不透明的布袋装有4个只有颜色不同的球,其中2个红球,1个白球,1个黑球,搅匀后从布袋里摸出1个球,摸到红球的概率是 ( ) A .12 B .13 C .14 D .163、下列命题是假命题的是 ( ) A .等角的余角相等 B .直角三角形斜边上的中线等于斜边的一半 C .对顶角相等 D .三角形的一个外角等于两个内角之和4、不等式26x -≤0的自然数解的个数为 ( ) A .1个 B .2个 C .3个 D .4个5、已知反比例函数xky =的图象过点P (1,3),则该反比例函数图象位于( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第三、四象限 6、小刚身高1.7m ,测得他站立在阳光下的影长为0.85m ,紧接着他把手臂竖直举起 测得影长为1.1m ,那么小刚举起手臂超出头顶 ( ) A .0.5m B .0.55m C .0.6m D .2.2m7、进入防汛期后,某市对4800米的河堤进行了加固。
施工队每天比原计划多修80米,结题号 1 2 3 4 5 6 7 8 答案2011.06果提前2天完成任务,问原计划每天加固多少米?若设原计划每天加固x 米,则所列方程正确的是 ( )A .48004800280x x -=+ B .48004800280x x -=+ C .48004800280x x -=- D .48004800280x x -=- 8、如图,在矩形ABCD 中,AB=4cm ,AD=12cm ,点P 在AD 边上以每秒lcm 的速度从点A 向点D 运动,点Q 在BC 边上,以每秒4cm 的速度从点C 出发,在CB 间往返..运动,两个点同时出发,当点P 到达点D 时停止(同时点Q 也停止),在这段时间内,线段PQ 有多少次平行于AB : ( )A .1B .2C .3D .4二、填空题(本大题共10小题,每小题3分,共30分,把答案填在题目中的横线上) 9、命题“对顶角相等”的逆命题是 。
2010—2011学年度八年级下学期期末考试数学试题
2010— 2011学年度八年级下学期期末考试数学试题 标准、选择题:(每小题3分,共24分)C B A B D C A D 、填空题:(每小题3分,共18分)1 3点C (3,丄)在反比例函数y 2的图象上.(5分)1.8;2. 16;3. — 8, — 12;4. —1 V x V 0,或 x >2;- 2 5. 2.7 ; 6. (3,3三、解答题:(每小题5分,共25 分) 1 解: 原式=4 3 - 13+11. (3分) 2. 3. =4 — 1+1 =5.2解:两边同乘以(x2x 7 (3 分)4),(4分) (5分)得 x (x 2) 3x -(4 分) 2x 24经检验x(2分)—是方程的解.(5分) 2解:⑴将点A (-1,1.5)的坐标代入y•••反比例函数的解析式为 y k得iz得k x 22x .(2分)(3分) ⑵: 当x=2时,y 3 4,当x=3时,4(4分)参考答案暨评分 32 2x4. 证明: T AE 丄 BD, CF 丄 BD,二 / AEB= / CFD=90 . (1 分)•••四边形ABCD 是平行四边形,二AB=CD.(2分) ••• AB // CD,二 / ABE= / CDF 。
(2.5 分) ••• △ ABE ◎△ CDF 。
(3 分) 二 AE=CF.(3.5 分) / AED= / CFB=90 ,二 AE / CF. (4 分)在四边形 AECF 中AE=CF , AE //CF , •••四边形AECF 是平行四边形.(5分)5. 解:在直角三角形 ABC 中CD 是斜边AB 上的中线,1••• AB=2CD=4cm. (1.5 分) T / A=30°,二 BC =— AB=2cm. (3 分)2AC .AB 2 BC 2 ,42 22 2、3 (cm ) . (5 分)四、解答题:(每小题6分,共18分)=(a 2)(a 1) (3 分)••• DE // AC,EF // AB 。
2010~2011学第二学期初二年级数学答案.doc
2010~2011学年度第二学期初二年级数学答案一、选择题(本题共24分,每小题3分)1.点P (—4,5)关于 y 轴的对称点坐标是(B )A .(—4,—5) B.(4,5) C.(4,—5) D.(5,—4) 2.下列不是一次函数的是(A )A .x x y +=1 B.)1(21-=x y C.1-=πxy D.2π+=x y 3. 已知:如图,若□ABCD 的对角线AC 长为3,△ABC 的周长为10,□ABCD 的周长是(B ) A .17 B .14 C .13 D . 74.已知:如图,在平行四边形ABCD 中,4=AB ,7=AD ,∠ABC 的平分线交AD 于点E ,交CD 的延长线于点F ,则DF 的长为(D )A .6B . 5C .4 D.3 5.关于x 的方程052=-+kx x 的根的情况为 (C )A . 没有实数根B . 有两个相等的实数根C . 有两个不相等的实数根D . 不能确定6.若2-=x 是关于x 的方程0122=---a ax x 的一个根,则a 的值是(C ) A . 3 B . 1- C .3或1- D .1或3-7.若一个多边形的内角和等于1080°,则这个多边形的边数是(C ) A .6B .7C .8D .98. 已知:如图,已知点A 的坐标为(1,0),点B 在直线x y -=上运动,当线段AB 最短时,点B 的坐标为(D )A .(0,0)B .⎪⎭⎫⎝⎛-21,21 C .⎪⎪⎭⎫⎝⎛-22,22 D .⎪⎭⎫ ⎝⎛-21,21 F E AB C D第4题图DCB A 第3题图第8题图二、填空题(20分,每小题4分) 9.方程x x =2的根是1021==x x ,. 10.函数x y -=1的定义域为1≤x11.关于x 的一元二次方程0122=+-x mx 有两个不等实根,则实数m 的取值范围是01≠<m m 且.12.已知),(111y x P 、),(222y x P 是正比例函数kx y =(0≠k )图象上的点且当21x x <时,21y y <,则k 的取值范围是0>k .13.在平面直角坐标系中, ),3,0(),0,4(),0,1(C B A -若以D C B A 、、、为顶点的四边形是平行四边形,则D 点坐标是()()()333535--,,,,,. 三、解答题(本题共15分,每小题5分)14.用配方法解方程:01422=--x x 15.解方程:0)2(4)2(2=-+-x x x解:2122=-x x 解:()()02422=-+-x x x 23122=+-x x ()()0252=--x x()2312=-x ()()0252=--x x261±=-x ()()0252=--x x 26126121-=+=x x , 52221==x x , 16.已知:一次函数b x k y +=1,正比例函数x k y 2=的图像都经过点)1,2(-,且点)4,0(- 在一次函数图象上,分别求出这两个函数的解析式 解:由题意:把点()12-,代人x k y 2=得 221k =- 解得:212-=k 由题意⎩⎨⎧-=-=+4121b b k 解得:⎪⎩⎪⎨⎧-==4231b k所以所求一次函数的解析式为:423-=x y 所求正比例函数的解析式为x y 21-=四、证明与计算题(本题共15分,每小题5分)17.已知m 是方程0522=-+x x 的一个根,求95223--+m m m 的值. 解: ∵ m 是方程2250x x +-=的一个根,∴ 2250m m +-=. ∴ 32259m m m +-- = 2(25)9m m m +-- = 9-.18.求证:关于x 的一元二次方程0)2(2)1(2=-+++a x a x 一定有两个不相等的实数根. 证明:)2(214)1(2-⨯⨯-+=∆a a168122+-++=a a a 1762+-=a a0832>+-=)(a .∴ 方程一定有两个不相等的实数根.19.在平行四边形ABCD 中,点F E ,是对角线上两点,且BF DE =,求证:四边形AECF 是平行四边形证明:连结AC AC ∩BD=O 因为四边形ABCD 是平行四边形 所以AO=OC ,OD=OB因为DE=BF 所以 OD-DE=OB-OF即 OE=OF又因为 AO=OC 所以四边形AECF 是平行四边形 五、解答题(本题共10分,每题各5分) 20.列方程解应用题市政府为了解决市民看病难贵的问题,决定下调药品的价格,某种药品经过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率是多少?解:设这种药品平均每次降价的百分率是x.依题意,得 2200(1)128x -=解得 10.2x =,2 1.8x =(不合题意,舍去). 答:这种药品平均每次降价的百分率是20%.B21.某地电话拨号入网有两种收费方式,用户可以任选其一: (A )计时制:0.05元/分.; (B )包月制:50元/月(限一部个人住宅电话上网)。
北师大版初中数学八年级上册《第七章 平行线的证明 3 平行线的判定》 优课教学设计_0
7.3平行线的判定(教学设计)【教材分析】本课是义务教育北师大版数学8年级上册第7章《平行线的证明》第3节。
课程内容是7年级下册已学过的《平行线与相交线》的继续,也是后继学习、探究平移及几何推理等内容的基础,是空间与图形的重要组成部分。
教学中,要引导学生区分哪些结论可以作为证明的依据,哪些结论不可以作为证明的依据,要注重引导学生分析命题的条件和结论,并据此准确画出图形,并用符号语言来描述命题的条件和结论。
由于学生第一次学习命题的证明,教师要借助规范的板书进行示范,让学生初步掌握命题证明的一般步骤、格式。
【学情分析】学生在七年级下册已经认识了平行线,并初步探究了两直线平行的条件,并具备了初步的作图能力,对平行线的理解也比较充分,能较顺利的解决相关简单的实际问题,但对问题的分析还处于简单的说理层面。
同时,在本章的学习中,学生已认识并了解了命题的条件和结论,以及公理、定理等相关概念,已具备学习本节课的知识基础。
但对于命题的证明,不论是问题形式还是解决方法,学生都还非常陌生,更缺乏通过合情推理来判断结论正确与否的能力。
【教学目标】1.通过观摩和亲手操作,让学生学会用平行公理证明“内错角相等,两直线平行”、“同旁内角互补,两直线平行”,并能简单应用这些结论.2.使学生经历命题证明的一般步骤和书写格式的训练过程,感受推理的严谨性,发展初步的演绎推理能力.【教学重点、难点】1.重点:使经历命题证明的一般步骤,根据命题的条件和结论,将命题的文字语言转化成图形语言和符号语言.2.难点:根据命题的条件和结论,准确画出图形,写出已知和求证.【教学方法】示范讲解与讨论探究相结合.【教学过程】环节1:复习引入教师活动:同学们,在七年级的学习中,我们认识了平行线,并对平行线的条件和特征做了初步的探究。
请问,什么是平行线(定义)?学生活动:举手口答老师的提问。
教师活动:对学生的回答作适当的评价,并继续追问:那么,除了平行线的定义外,我们还有哪些方法判断两条直线平行呢?学生活动:举手发言(并互相补充)。
18.1.1勾股定理(平行班) 初中八年级下册数学教案教学设计课后反思 人教版
以a、b为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于 .把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.
∵RtΔEAD≌RtΔCBE,
∴∠ADE =∠BEC.
∵∠AED +∠ADE = 90º,
∴∠AED +∠BEC = 90º.
∴∠DEC = 180º―90º= 90º.
S正方形=C
S正方形=4ab+(a-b)
方法二;
已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
求证:a2+b2=c2。
分析:左右两边的正方形边长相等,则两个正方形的面积相等。
左边S=4× ab+c2
右边S=(a+b)2
左边和右边面积相化简可得。
情感态度与价值观
培养学生严谨的数学学习态度,体会勾股定理的应用价值。
重点
勾股定理的内容及证明。
难点
勾股定理的证明。
学情分析
八年级学生对几何图形的观察,几何证明的思维能力已初步形成。勾股定理是在学生已经熟知的直角三角形的特点后引入的边的关系,学生从认知和思维习惯都比较容易接受。但用面积法探索一个定理的发现过程,以前学生没有见过,感到陌生。
3、4、5
32+42=52
5、12、13
52+122=132
7、24、25
72+242=252
9、40、41
92+402=412
……
……
19,b、c
192+b2=c2
3.在△ABC中,∠BAC=120°,AB=AC= cm,一动点P从B向C以每秒2cm的速度移动,问当P点移动多少秒时,PA与腰垂直。
2010—2011学年度第二学期期末考试八年级数学试卷2
2010—2011学年度第二学期期末考试八年级数学试卷2温馨提示:1. 本试卷共8页,三大题,24小题,满分120分;考试时间120分钟. 2. 答题前,请先将密封线内的项目填写清楚、完整.3. 答题时,请认真审题,看清要求,沉着自信,冷静解答. 祝你成功! 一、 精心选一选(本大题共8小题,每小题3分,满分24分)每小题给出的4个选项中,有且只有1个是符合题意的,请你将所选选项的字母代号写在该题后的括号内.1.下列各式计算正确的是 【 】 A . x -3+x -3=2x -6 B . x -3·x -3= x -6C .(x -2)-3=x 5 D .(3x )-2=-9x 22.数据1,2,3,0,1 的平均数与中位数之和为 【 】 A .1 B .2 C .3 D .43. 当x =-a 时,对于x +a3x -1 ,下列结论正确的是 【 】A .分式的值为零B .当a =13 时,分式的值为零C .分式无意义D .当a ≠-13时,分式的值为零4.已知三点P 1(x 1,y 1), P 2(x 2,y 2), P 3(1,-2)都在反比例函数y=kx 的图象上,若x 1<0<x 2,则下列结论成立的是 【 】 A .y 1<y 2<0 B . y 1<0<y 2 C . y 1>0>y 2 D . y 1>y 2>05.A、B两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多20kg , A 型机器人搬运1000kg 所用时间与B 型机器人搬运800kg 所用时间相等,两种机器人每小时分别搬运多少化工原料?若设A 型机器人每小时搬运x kg 化工原料,根据题意可列方程为 【 】 A .1000 x =800 x +20 B .1000 x =800 x -20 C .1000 x +20 =800 x D .1000 x -20 =800 x总 分题号 得分一 二三 1-8 9-16 1718192021222324评卷人得 分6.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:其中成绩的众数是【 】A .4B .1.75C .1.70D .1.677.如图,在直角梯形ABCD 中,AD ∥BC ,点E 是边CD 的中点,若AB =AD +BC ,BE =52,则梯形ABCD 的面积为 【 】A .254B .252C .258D .258.如图,在矩形ABCD 中,AB =3,BC =4,点P 在BC 上运动,连接DP ,过点A 作AE ⊥DP 于E ,设DP =x ,AE =y ,则下列能反映y 与x 之间函数关系的大致图象是【 】A B二、细心填一填(本大题共8小题,每小题3分,满分24分)请把答案直接写在题中横线上.9.某城市四季的平均气温分别为春季-4℃、夏季19℃、秋季9℃、冬季-10℃,则这座城市四季平均最大温差是 .10.如图,已知□ABCD 中,∠ABC 的平分线交AD 于E ,且AE =2,DE =1,则□ABCD 的周长等于 . 11.计算 (3x 24y )2·2y 3x ÷x 22y2 的结果是 .成绩/m 1.50 1.60 1.65 1.70 1.75 1.80 人数232341评卷人得 分 (第7题)ABCD E Oxy125 4 3 5 (第8题)ABCDPEOxy125 4 3 5 O x y 1254 35 O x y125 43 5 (第10题)ABE DC12.如果关于x的方程ax-2+3=1-x2-x有增根,则a的值是.13.小明想把一根70㎝的木条放入一个长、宽、高分别为50㎝、40㎝、30㎝的木箱中,你认为他放进去.(填“能”或“不能”)14.如图,菱形ABCD的两条对角线长分别为6和8,点P是对角线AC上的一动点,M、N分别是边AB、BC的中点,则PM+PN的最小值是.15.已知梯形上底长为2,下底长为5,一腰长为4,则另一腰x的取值范围是.16.如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后,折痕分别交AB、AC于点E、G,连接GF.下列结论:①∠AGD=112.5°;②S△AGD=S△OGD;③四边形AEFG是菱形;④BE=2OG其中正确结论的序号是.(把你认为正确的结论的序号都填上).三、用心解一解(本大题共8小题,满分72分),解答题应写出文字说明,推理过程或演算步骤.17.先化简分式(aa+1+2a+1)÷a2+2aa2-1,再对a取一个你喜爱的数代入求值.(第14题)A CMANPDABA(第16题)ABEGFODC得分评卷人(本题满分6分)18.(1) P (a ,b ),Q (b ,c )是反比例函数y =3x 的图象在第一象限内的点,求(1a -b )(1b-c )的值.(2)解方程:x x -1 -1=3(x -1)(x -2)19.某一工程,在工程招标时,接到甲、乙两个工程队的投标书,甲工程队施工一天需付工程款1.2万元,乙工程队工程款0.5万元,工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲方单独完成这项工程刚好如期完成; (2)乙队单独完成这项工程要比规定日期多6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.得分 评卷人(本题满分8分)得分评卷人(本题满分8分)ABECD图1ABCD图220.如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.如,平行四边形的一条对线所在的直线就是平行四边形的一条面积等分线.(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的 有________;(2)如图1,梯形ABCD 中,AB ∥DC ,如果延长DC 到E ,使CE =AB ,连接AE ,那么有S梯形ABCD=S △ABE .请你给出这个结论成立的理由,并过点A 作出梯形ABCD的面积等分线(不写作法,保留作图痕迹);(3)如图,四边形ABCD 中,AB 与CD 不平行,S △ADC >S △ABC ,过点A 能否作出四边形ABCD 的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由.21.如图,已知△ABC 的面积为3,且AB =AC ,现将△ABC 沿CA 方向平移CA 长度得到△EF A.(1)求四边形CEFB 的面积;(2)试判断AF 与BE 的位置关系,并说明理由; (3)若∠BEC =15°,求AC 的长.得分 评卷人(本题满分9分)得分 评卷人(本题满分9分) (第22题)AC B FE22. 亲爱的同学,你去过陆水水库中的“水泊梁山”吗?在游览“水泊梁山”的山路上,有一些断断续续的台阶路,右图是其中的甲、乙两段台阶路的示意图,图中的数据表 示每一级台阶的高度(单位:cm ),下表是相关数据统计表.(1)填空:m = ,n = ,p = ;(2)请你用所学过的有关统计知识:平均数、中位数、方差和极差回答下列问题: ① 哪段台阶路走起来更舒服?为什么?② 为方便游客行走,需要重新整修上山的小路,对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(本题满分10分)甲路段 乙路段 (第21题)151513.5 13.5 16.5 16.5 1213 20 19 1125平均数 中位数极差 方差 甲路段各阶高度 m 1531.50 乙路段各阶高度15n p25.6723.阅读理解: 阅读材料1:如图在△ABC 中,若点E,F 分别为AB,AC 的中点,则EF 为三角形的中位线,它有如下性质:EF//BC 且BC EF 21.用文字叙述为:“三角形的中位线平行于第三边且等于第三边的一半”这就是三角形的中位线定理。
2011年长宁区第二学期八年级数学(含答案)
2011年长宁区第二学期八年级数学(考试时间90分钟,满分100分)一.填空题:(每题3分,3分×14题=42分) 1.方程x x -=-2的根是_________2.一次函数)4(21-=x y 的图像在y 轴上的截距为_________。
3.已知一次函数的图像与直线x y 2-=平行,且过点(1-,3),那么这个一次函数的解析式为________________。
4.若函数2||)1(--=m x m y 是关于x 的一次函数,且y 随x 的增大而减小,则=m _________。
5.已知函数13)(-=x x f ,8)(=a f ,则=a _________。
6.用换元法解方程311222=-+-x x x x 时,设y x x =-12,那么方程可化为关于y 的整式方程为_________________。
7.直线y=-2x+3沿着x 轴向左平一个单位所的直线的函数解析式为 。
8.已知在四边形ABCD 中,对角线AC 与BD 相交于O ,如果0OA OC +=,0OB OD +=,那么四边形ABCD 是_______________。
9.某型号手机连续两次降价,售价由原来的1185元降到了580元,设平均每次降价的百分率为x ,则可列出方程______________________________。
10.在四边形ABCD 中,AC ⊥BD 于O ,AB=AD ,要使四边形是菱形,需要再添加一个条件,这个条件可以是___________。
(只需要填写一个满足要求的条件即可) 11.如图梯形ABCD 中,AD ∥BC ,AD=cm 3, BC=cm 9,则ADC S ∆∶=∆ABC S _________。
12.等腰梯形的中位线长为15,一条对角线平分一个 60的底角,该等腰梯形的腰长为_________。
13.从1-,1,2这三个数中任取两个不同的数作为一次函数b kx y +=的系数k ,b ,在DB CA这些一次函数中,图像不经过第四象限的概率是________。
2011年八年级下册期末数学试卷及答案
2010-2011学年度第二学期期末试卷初二数学班级初二( _____)学号______ 姓名_______ 成绩_______一、填空:(每题2分,共20分)1.当x ________时,分式11x +有意义,当_______时,分式2341x x x --+的值为0.2.如果最简二次根式3x =_______.3.当k =________时,关于x 的方程()11270k k xx +-+-=是一元二次方程.4.命题“矩形的对角线相等”的逆命题是____________________________________.5.若点(2,1)是反比例221m m y x+-=的图象上一点,则m =_______.6.一次函数y =ax +b 图象过一、三、四象限,则反比例函数aby x = (x >0)的函数值随x 的增大而_______.7.如图,已知点A 是一次函数y =x +1与反比例函数2y x=图象在第一象限内的交点,点B 在x 轴的负半轴上,且OA =OB ,那么△AOB 的面积为________.8.如图,在正方形ABCD 中,E 为AB 中点,G 、F 分别是AD 、BC 边上的点,若AG =1,BF =2,∠GEF =90°,则GF 的长为________.9.如图,小明设计用手电来测量某古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB =1.2米,BP =1.8米,PD =12米,那么该古城墙的高度是__米.10.数据-2,-3,4,-1,x 的众数为-3,则这组数据的极差是________,方差为________. 二、选择题:(每题2分,共20分)11.下列二次根式中,最简二次根式是( )A 12.分式:①223a a ++,②22a b a b --,③()412a a b -,④12a -中,最简分式有( )A .1个B .2个C .3个D .4个13.一组数据x 1,x 2,x 3,x 4,x 5,x 6的平均数是2,方差是5,则2x 1+3,2x 2+3,2x 3+3,2x 4+3,2x 5+3,2x 6+3的平均数和方差分别是( )A .2和5B .7和5C .2和13D .7和20 14.若关于x 的方程232x m x -=+的解是正数,则一元二次方程m x 2=1的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .没有实数根 D .只有一个实数根 15.下列命题的逆命题是真命题的是( )A .面积相等的两个三角形是全等三角形B .对顶角相等C .互为邻补角的两个角和为180°D .两个正数的和为正数 16.若函数y =(m +2)x3m -是反比例函数,则m 的值是( )A .2B . -2C .±2D .≠217.如图,正比例函数y =x 与反比例2y x=的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD ⊥x 轴于D ,则四边形ABCD 的面积 为( )A .1B .2C .4D .1218.如图,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是△ABC 的面积的 ( ) A .19 B .29 C . 13D .4919.如图,△ABC 中,∠BAC =90°,AD ⊥BC 于D ,若AB =2,BC =3,则CD 的长是( ) A .83 B .23 C .43 D .5320.已知函数y =x -6,令x =1,2,3,4,5,6可得函数图像上的五个点,在这五个点中随机抽取两个点P(x 1,y 1)、Q (x 2,y 2),则P 、Q 两点在同一反比例函数图像上的概率是 ( ) A .15 B . 25 C .215 D .415二、解答题:(共60分) 21.计算:(每题3分,共12分)(1)()()()2111-(3)32122x x x x --- (4)()()221111a b a b a b a b ⎡⎤⎡⎤-÷+⎢⎥⎢⎥-+⎣⎦-+⎢⎥⎣⎦22.解方程:(每题3分,共12分)(1)(x +4)2=5(x +4) (2)2x 2-10x =3(3)542332x x x +=-- (4)242111x x -=--23.(5,把它们的背面朝上洗匀后,小丽先从中抽取一张,然后小明从余下的卡片中再抽取一张.(1)______________;(2)小刚为他们设计了一个游戏规则:若两人抽取卡片上的数字之积是有理数,则小丽获胜;否则小明获胜.你认为这个游戏规则公平吗?若不公平,则对谁有利?请用画树状图或列表法进行分析说明.24.(5分)已知:如图,△ABC中,∠ABC=2∠C,BD平分∠ABC.求证:AB²BC=AC²CD25.(6分)如图,在△ABC中,AB=8,BC=7,AC=6,有一动点P从A沿AB移动到B,移动速度为2单位/秒,有一动点Q从C沿CA移动到A,移动速度为l单位/秒,问两动点同时出发,移动多少时间时,△PQA与△ABC相似.26.(5分)某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若甲工程队独做a天后,再由甲、乙两工程队合作________天(用含a的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?27.(7分)如图1,已知,CE是Rt△ABC的斜边AB上的高,点P是CE的延长线上任意一点,BG⊥AP,求证:(1)△AEP∽△DEB(2) CE2=ED²EP若点P 在线段CE 上或EC 的延长线上时(如图2和图3),上述结论CE 2=ED ²EP 还成立吗?若成立,请给出证明;若不成立,请说明理由.(图2和图3挑选一张给予说明即可)28.(8分)已知反比例函数2ky x和一次函数y =2x -1,其中一次函数的图象经过(a ,b ),(a +k ,b +k+2)两点.(1)求反比例函数的解析式;(2)求反比例函数与一次函数两个交点A 、B 的坐标: (3)根据函数图像,求不等式2kx>2x -1的解集; (4)在(2)的条件下, x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出 来;若不存在,请说明理由.参考答案1.x ≠-1; x=4 2.2 3.-1 4.对角线相等的四边形是矩形。
2011学年第二学期期末八年级数学试卷
2011学年第二学期期末八年级数学试卷(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】 1.在平面直角坐标系中,一次函数b kx y +=的图像如图1所示, 那么下列判断正确的是( )(A )0>k ,0>b ; (B )0<k ,0>b ; (C )0>k ,0<b ; (D )0<k ,0<b .2.用换元法解方程31122=-+-x x x x 时,如果设y x x =-12,那么可以 得到一个关于y 的整式方程,该方程是( )(A )0132=--y y ; (B )0132=-+y y ; (C )0132=+-y y ; (D )0132=++y y . 3.如图2,已知四边形ABCD 的对角线互相垂直,若适当添加一个条件, 就能判定该四边形是菱形.那么这个条件可以是( ) (A )BC BA =; (B )BD AC =; (C )CD AB ∥; (D )BD AC 、互相平分. 4.顺次联结等腰梯形各边中点所得到的四边形一定是( ) (A )等腰梯形; (B )矩形; (C )菱形; (D )正方形.5.根据你对向量的理解,下列判断中,不正确的是 ( )(A )0=+; (B )如果== (C )a b b a +=+; (D) b a c b a +=++)()(6.我们知道“必然事件和不可能事件称为确定事件”.那么从平行四边形、矩形、菱形、等腰梯形中任选一个图形,下列事件中,确定事件是( )(A )选出的是中心对称图形; (B )选出的既是轴对称图形又是中心对称图形; (C )选出的是轴对称图形; (D )选出的既不是轴对称图形又不是中心对称图形. 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.方程83=x 的根是 ▲ . 8.方程132=+x 的根是 ▲ .9.将直线12+=x y 向下平移2个单位,所得直线的表达式是 ▲ .10.已知一个一次函数的图像经过点(3-,2)和(1,1-),那么该一次函数的函数值y 随着自变量x 的增大而 ▲ (填“增大”或“减小”).11.化简:BD CD AB +-= ▲ .12.某单位在两个月内将开支从25000元降到16000元,如果每月降低开支的百分率相同,设为x ,则由题意可以列出关于x 的方程是 ▲ .13.甲乙两个同学做“石头、剪刀、布”的游戏,在一个回合中能分出胜负的概率是 ▲ .14.学习概率有关知识时,全班同学一起做摸球实验.布袋里装有红球和白球共5个,它们除了颜色不同其他都一样.每ABD(图2)次从袋中摸出一个球,记下颜色后放回摇匀,一共摸了100次,其中63次摸出红球,由此可以估计布袋中红球的个数是 ▲ .15.如果一个多边形的每一个内角都等于140°,那么这个多边形是 ▲ 边形.16.如图3,平行四边形ABCD 中,已知AB=3,AD=5,∠BAD 的平分线交BC 于点E ,则CE = ▲ .17.某地区采用分段计费的方法计算电费,月用电量x (度)与应缴纳电费y (元)之间的函数关系如图4所示.那么当用电量为260度时,应缴电费 ▲ 元.18.如图5,梯形ABCD 中,AB ∥CD ,且AB CD BC =+,设∠A =︒x ,∠B =︒y ,那么y 关于x 的函数关系式是 ▲ . 三、简答题:(本大题共3题,每题8分,满分24分)19.解方程组:⎩⎨⎧-=-=--203222x y y xy x )2()1(.20.如图6,已知一次函数42+=x y 的图像与x 轴、y 轴分别交于点A 、B ,且BC ∥AO ,梯形AOBC 的面积为10. (1)求点A 、B 、C 的坐标; (2)求直线AC 的表达式.21.如图7,平面直角坐标系xOy 中,O 为原点,已知点A (2-,1)、B (0,1)、C (2,0)、D (0,3),(1)画出向量、CD ,并直接写出= ▲ ,= ▲ ;(2)画出向量AB四、解答题:(本大题共4题,每题10分,满分40分)22.如图8,已知梯形ABCD 中,AD ∥BC ,AB ⊥BC ,点E 、F 分别是边BC 、CD 的中点,直线EF 交边AD 的延长线于点M ,联结BD .(1)求证:四边形DBEM 是平行四边形;(2)若BD =DC ,联结CM ,求证:四边形ABCM 为矩形.(图4)(图5)D CBADCBA(图3)E(图6)(图7)ABCDEFM(图8)23.为了改善部分经济困难家庭的居住条件,某市计划在一定时间内完成100万平方米的保障房建设任务.后来市政府调整了计划,不仅保障房建设任务比原计划增加了20%,而且还要提前1年完成建设任务.经测算,要完成新的计划,平均每年需要比原计划多建设10万平方米的保障房,那么按新的计划,平均每年应建设多少万平方米的保障房?24.如图9,已知平行四边形ABCD ,E 是对角线AC 延长线上的一点, (1)若四边形ABCD 是菱形,求证BE =DE ; (2)写出(1)的逆命题,并判断其是真命题还是假命题, 若是真命题,试给出证明;若是假命题,试举出反例.25.如图10,直线102+-=x y 与x 轴交于点A ,又B 是该直线上一点,满足OA OB =, (1)求点B 的坐标;(2)若C 是直线上另外一点,满足AB=BC ,且四边形OBCD 是平行四边形,试画出符合要求的大致图形,并求出点D 的坐标.五、探究题:(本题满分14分,第(1)、(2)题每小题5分,第(3)小题题4分) 26.已知正方形ABCD 和正方形AEFG ,联结CF ,P 是CF 的中点,联结EP 、DP . (1)如图11,当点E 在边AB 上时,试研究线段EP 与DP 之间的数量关系和位置关系;(2)把(1)中的正方形AEFG 绕点A 逆时针方向旋转90°,试在图12中画出符合题意的图形,并研究这时(1)中的结论是否仍然成立;(3)把(1)中的正方形AEFG 绕点A 任意旋转某个角度(如图13),试按题意把图形补画完整,并研究(1)中的结论是否仍然成立. D CBAE(图9)(图10)DCBACBC Array B(图13)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年9月八年级数学摸底考试(T )
一、选择题(每题3分,共30分)
1、下面的四个命题中,真命题有( )
○1 两条直线被第三条直线所截,同位角相等 ○2 任何n 边的内角和都为)2(1800
-n
○
3 三角形的外角大于三角形的每个内角 ○
4 三角形的中线将三角形的面积平分 A 1个 B 2个 C 3个 D 4个
2、朱格和孔鸣两位小朋友为了学好英语,两人开始互背单词比赛,看谁在单位时间内背得单词多谁就赢,已知两人一小时之内背熟了60个,而孔鸣背得单词量是朱格2倍少9个.则孔鸣与朱格每小时分别背( )
A 37,23
B 23 27
C 23,37
D 33,27
3、线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,-1),则点B (1,1)的对应点D 的坐标为( )
A (-1,-3)
B (5,3)
C (5,-3)
D (0,3) 4、华泰中学每学期期末都会举行乒乓球比赛,比赛规定采取积分制:赢一局得3分,负一局扣1分. 在7局比赛中,积分超过10分的就可以晋级下一轮比赛,李胜进入了下一轮比赛,问李胜输掉的比赛最多是( )
A 2局
B 3局
C 4局
D 5局
5、尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交O A 、O B 于C 、D ,再分别以点C 、D 为圆心,以大于
1
2
C D 长为半径画弧,两弧交于点P ,作射线O P ,由作法得O C P O D P
△≌△的根据是( ) A .SAS B .ASA C .AAS D .SSS
6.下列的条件中,能使△ABC ≌△DEF 的是( )
A .AB=DF ∠A=∠D BC=EF B.AB=BC ∠B=∠ED E=EF C.AB=EF ∠A=∠D AC=DF D.BC=EF ∠C=∠F AC=DF
7、如图,△ABC ≌△ADE ,∠DAC=60°,∠BAE=100°,BC 、DE 相交于点F ,则∠DFB 的度数是( ) A 、15° B 、20° C 、25° D 、30°
第7题 第8题 第9题
8、如图,AE ⊥AB 且AE=AB ,BC ⊥CD 且BC=CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是( )
A 、50
B 、62
C 、65
D 、68 9、如图,在△ABC 中,∠BAC=45度,AD ⊥BC ,C
E ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,且EH=EB .小马虎在研究时得到四个结论:①∠ABC=45°; ②AH=BC ; ③AE-BE=CH ; ④△AEC 是等腰直角三角形.你认为正确的序号是( )
A 、①②③④
B 、②③④
C 、①②③
D 、②③
10.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB=90°,点C 的坐标分别为(1,4),将△ABC 沿
x 轴向右平移,当点C 落在直线y=2x -6上时,线段BC 扫过的面积为( ) A.4 B.8 C.16 D.82
第10题图 A B C O y
x
二、填空题(每题3分,共24分)
11、9月初9尊敬老人的重阳节,小玲想买双鞋孝敬他爷爷,而爷爷只告诉他自己的脚长2
124cm ,那
么小强该买 码的鞋。
(已知用x 表示脚长,用y 表示鞋码,则有102=-y x ). 12、同学们每个星期都会听着国歌升国旗,但国歌歌词有多少个可能大家都不知道.已知歌词数量是一个两位数,十位数是个位数的两倍,且十位数比个位数大4,则国歌歌词数有 个。
13.一个等腰三角形有两边分别为5和11厘米,则周长是__________厘米.
14、在坐标平面内,若点)2,3(+-x x P 在第二象限,则x 的取值范围 .
15、将直线y =2x -4平移,使其经过点(-1,1),那么以平移后直线为图象的函数解析式是_______________ .
16、下表为某校八(1)班学生将自己的零花钱捐给“春雷计划”的数目,老师将学生捐款数目按10元组距分段,统计每个分数段出现的频数,则a= ,b= ,全班总人数为 个
17.正方形ABCD 中,AC 、BD 交于O,∠EOF =90o ,已知AE =3,CF =4, 则正方形的面积为
18、华泰中学校园内有一块直角梯形草地,测量AB=20米,∠DEC=90°, ∠ECD=45°,则该草地面积为________平方米.
三、解答题(共46分 )
19、(5分)解不等式组:⎪⎩⎪
⎨⎧-+>->--1
225
123
)2(32x x x x
20、(6分)某学生发现学校的电动伸缩门从完全收拢到完全打开的过程中,电动伸缩门伸缩后的总长度l (米)与按电钮开关的时间t (秒)之间存在某种函数关系(电动伸缩门初始状态是完全收拢的).经几次试验后,得到一组对应数据如下:
t (秒)
0 1 2 3 4 5 …
l (米)
1
1.4
1.8
2.2
2.6
3.0
…
(1)请你在已建立的平面直角坐标系中,通过①描点、连线,②猜测l 与t 之间的函数关系,③求出函数的解析式,④验证,这四个步骤确定l 与t 之间的函数关系;
(2)已知学校的大门宽为5米,问将校门从完全收拢到完全打开共用多少秒?
钱数目
(元) 155<≤x 2515<≤x 3525<≤x 4535<≤x
5545<≤x 频数 2 a 20 14 6
百分比 0.040 0.220 b 0.280 0.120
21、2008年毕业于武汉大学的李爱民,参加工作后试用期第一个月领到3000元工资,自己留下500元作为生活费,剩下2500元全部用来做以下事情:他决定拿出大于500元但小于550元的资金为他父母买礼品,感谢他们对自己的养育之恩,其余资金用于资助家乡汶川大地震中受灾的50名小朋友,每位小朋友买一身衣服或一双鞋作为对他们的关爱和鼓励。
已知每身衣服比每双鞋贵20元,用300元恰好可以买到5身衣服和3双鞋。
(1)求每身衣服和每双鞋的价钱分别是多少?(4分)
(2)有几种买衣服和鞋的方案?分别为哪几种?(4分)
22、(7分)课外活动时,八(1)班和八(13)班两位同学在一个四边形场地ABCD上进行一个赛跑的小游戏,小军由A跑向C,小明则从B到C再到D,同时起跑,且速度相同。
经测量AB=AD=30米,且∠BAD=60°,∠BCD=120°。
聪明的同学们,你能用所学的知识判断谁先到各自的终点吗?
23、如图,在平面直角坐标系中,点A,B分别在x轴,y轴上,线段OA=6,OB=12,C是线段AB 的中点,点D在线段OC上,OD=CD.
(1)C点坐标为__________ ;(2分)
(2)求直线AD的解析式;(4分)
(3)直线OC绕点O逆时针旋转90°,求出点D的对应点D′的坐标.(4分)
24、如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.
(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A 运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3分)
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?(4分)
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,则经过_______秒后,点P与点Q第一次在△ABC的 AC边上相遇?(在横线上直接写出答案,不必书写解题过程)(3分)。