广东省海珠区2014届高三上学期综合测试(二)数学文答案PDF版

合集下载

广东省广州市海珠区2014届高三上学期综合测试二文科数学试卷(解析版)

广东省广州市海珠区2014届高三上学期综合测试二文科数学试卷(解析版)

广东省广州市海珠区2014届高三上学期综合测试二文科数学试卷(解析版)一、选择题1.若复数()()12bi i ++是纯虚数(i 是虚数单位,b 是实数),则b =( ) A.2- B.12- C.12D .2【答案】B 【解析】 试题分析:()()()()12112bi i b b i ++=-++是纯虚数,则有10120b b -≠⎧⎨+=⎩,解得12b =-,故选B.考点:1.复数的乘法运算;2.复数的概念2.设集合{}22A x x x =<,{}2log 0B x x =>,则AB =( )A.{}2x x < B.{}0x x > C.{}02x x << D.{}12x x << 【答案】D 【解析】 试题分析:{}{}2202A xx x x x =<=<<,{}{}2log 01B x x x x =>=>,{}12AB x x ∴=<<,故选D.考点:1.不等式的解法;2.集合的交集运算3.已知a 、b 、c 分别为ABC ∆的三个内角A 、B 、C 所对的边,若1a =,b =2A C B +=,则 ( )A.12 B.12- C.2D.【答案】A 【解析】试题分析:2A C B +=,且33A B C B B ππ++==⇒=,由正弦定理得sin sin a bA B=,可得sin A =sin 11sin 1322a Bb π=⨯=⨯=,故选A. 考点:1.三角形的内角和定理;2.正弦定理4.在各项都为正数的等比数列{}n a 中,13a =,前三项的和为21,则345a a a ++=( )A.33B.72C.84D.189 【答案】C 【解析】试题分析:设等比数列{}n a 的公比为q ,则0q >,由于13a =,212333321a a a q q ++=++=,化简得260q q +-=,解得2q =,23423434533332323284a a a q q q ∴++=++=⨯+⨯+⨯=,故选C.考点:等比数列的性质5.“1a =-”是“直线260a x y -+=与直线()4390x a y --+=互相垂直”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件 【答案】A 【解析】试题分析:若直线260a x y -+=与直线()4390x a y --+=互相垂直,则()()24130a a ⨯+-⨯--=⎡⎤⎣⎦,即2430a a +-=,即()()4310a a -+=,解得1a =-或34a =,故“1a =-”是“直线260a x y -+=与直线()4390x a y --+=互相垂直”的充分不必要条件,故选A.考点:1.两直线的位置关系;2.充分必要条件6.在ABC ∆中,已知D 是AB 边上的一点,若2AD DB =,13CD CA CB λ=+,则λ=( ) A.23 B.13 C.13- D.23-【答案】A 【解析】试题分析:2AD DB =,即()2C D C A C B C D -=-,解得1233CD CA CB =+,23λ∴=,故选A.考点:平面向量的线性表示7.阅读如图程序框图,若输入的100N =,则输出的结果是( )A.50B.1012C.51D.1032【答案】A 【解析】试题分析:1i =,100N =,i N >不成立,执行第一次循环,011S =+=,112i =+=; i N >不成立,执行第二次循环,123S =+=,213i =+=; i N >不成立,执行第三次循环,123S =++,314i =+=;;i N >不成立,执行第一百次循环,1001011231002S ⨯=++++=,1001101i =+=; i N >成立,输出1001011502101S i ⨯=⨯=,故选A. 考点:1.数列求和;2.算法与程序框图8.某校300名高三学生期中考试数学成绩的频率分布直方图如图所示,由图中数据估计此次数学成绩平均分( )A.69B.71C.73D.75【答案】C 【解析】试题分析:由频率分布直方图知()21010.040.030.02100.10.005a a ⨯=-++⨯=⇒=,故此次数学成绩的平均分为()550.005650.04750.03850.02950.0051073x =⨯+⨯+⨯+⨯+⨯⨯=,故选C.考点:1.频率分布直方图;2.平均数9.已知x 、y 满足2y x x y x a ≥⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最大值是最小值的4倍,则a 的值是( )A.34 B.14 C.211 D.4【答案】B 【解析】试题分析:作出不等式组2y xx y x a≥⎧⎪+≤⎨⎪≥⎩所表示的可行域如下图所示,联立x a y x =⎧⎨=⎩得点(),A a a ,联立2y xx y =⎧⎨+=⎩得点()1,1B ,作直线:2l z x y =+,则z 为直线l 在y 轴上的截距,当直线l 经过可行域上的点A 时,此时直线l 在y 轴上的截距最小,此时z 取最小值,即min 23z a a a =⨯+=;当直线l 经过可行域上的点B 时,此时直线l 在y 轴上的截距最大,此时z 取最大值,即max 2113z =⨯+=,由题意知,max min 4z z =,即343a =⨯,解得14a =,故选B. 考点:线性规划10.若a 、b 是方程lg 4x x +=,104xx +=的解,函数()()22,02,0x a b x x f x x ⎧+++≤=⎨>⎩,则关于x 的方程()f x x =的解的个数是( )A.1B.2C.3D.4【答案】C 【解析】试题分析:由题意知,a 、b 是方程lg 4x x =-,104xx =-的实数根,作出函数()lg f x x =,()10x g x =与函数()4h x x =-的图象如下图所示,则函数()lg f x x =与函数()4h x x =-交于点(),lg A a a ,函数()10xg x =与函数()4h x x =-交于点(),10bB b ,由于函数()lg f x x =与函数()10xg x =关于直线y x =对称,且直线y x =与4y x =-垂直,且交于点()2,2C ,故点A 、B 也关于直线y x =对称,且其中点为点()2,2C ,因此4a b +=,当0x ≤时,()242f x x x =++,解方程()f x x =,即2320x x ++=,解得2x =-或1x =-;当0x >时,()2f x =,解方程()2f x x x =⇒=,故关于x 的方程()f x x =的实根个数为3,故选C.考点:1.函数的零点;2.函数的图象;3.分段函数二、填空题11.已知双曲线221x y m-=的离心率是2,则m 的值是 . 【答案】13. 【解析】试题分析:由题意知,双曲线的离心率2e ==,解得13m =.考点:双曲线的离心率12.如图是一个空间几何体的三视图,则该几何体的体积为 .【答案】23. 【解析】试题分析:由三视图可知,该几何体是一个三棱锥,且底面是一个等腰直角三角形,腰长为其面积为2112S =⨯=,三棱锥的高为2,故该三棱锥的体积为121233V =⨯⨯=.考点:1.三视图;2.三棱锥的体积13.给出下列四个命题: ①函数()xx f x ee -=+有最小值是2;②函数()4sin 23f x x π⎛⎫=-⎪⎝⎭的图象关于点,06π⎛⎫⎪⎝⎭对称; ③若“p 且q ”为假命题,则p 、q 为假命题;④已知定义在R 上的可导函数()y f x =满足:对x R ∀∈,都有()()f x f x -=-成立, 若当0x >时,()0f x '>,则当0x <时,()0f x '>. 其中正确命题的序号是 .【答案】①②④. 【解析】试题分析:对于命题①,0x e >,()2xx f x ee -=+≥=,当且仅当21x x x e e e -=⇒=,即当0x =时,上式取等号,即函数()x x f x e e -=+有最小值2,故命题①正确;对于命题②,由于6f π⎛⎫=⎪⎝⎭4sin 2063ππ⎛⎫⨯-= ⎪⎝⎭,故函数()4sin 23f x x π⎛⎫=- ⎪⎝⎭的图象关于点,06π⎛⎫⎪⎝⎭对称,故命题②正确;对于命题③,若“p 且q ”为假命题,则p 、q 中至少有一个是假命题,故命题③错误;对于命题④,由于函数()f x 是奇函数,当0x >时,()0f x '>,即函数()f x 在区间()0,+∞上单调递增,由奇函数的性质知,函数()f x 在(),0-∞上也是单调递增的,即当0x <时,仍有()0f x '>,故命题④正确,综上所述,正确命题的序号是①②④. 考点:1.基本不等式;2.三角函数的对称性;3.复合命题;4.函数的奇偶性与单调性14.在极坐标中,圆4cos ρθ=的圆心C 到直线s i n 24πρθ⎛⎫+= ⎪⎝⎭的距离为 .【解析】试题分析:圆4cos ρθ=的直角坐标方程为224x y x +=,化为标准式得()2224x y -+=,圆心C 坐标为()2,0,直线s i n 4πρθ⎛⎫+= ⎪⎝⎭的直角坐标方程为4x y +=,即40x y +-=,故圆心C 到直线40x y +-=的距离d ==考点:1.极坐标方程与直角坐标方程的互化;2.点到直线的距离15.如图,平行四边形ABCD 中,:1:2AE EB =,AEF ∆的面积为21cm ,则平行四边形ABCD 的面积为 2cm .【答案】24. 【解析】试题分析:由于四边形ABCD 为平行四边形,//AB CD ∴,且12AE EB =,13AE AE AE CD AB AE EB ∴===+,219AEF CDF S AE S CD ∆∆⎛⎫∴== ⎪⎝⎭,299CDF AEF S S cm ∆∆∴==,同理13EF AE DF CD ==,13AEF ADF S EF S DF ∆∆∴==,ADF S ∆∴ 233AEF S cm ∆==,故23912ACD ADF CDF S S S cm ∆∆∆=+=+=,因此四边形ABCD 的面积2ACD S S ∆== 221224cm ⨯=.考点:相似三角形三、解答题16.设向量(6cos ,a x =,()cos ,sin 2b x x =,0,2x π⎡⎤∈⎢⎥⎣⎦.(1)若23a =,求x 的值;(2)设函数()f x a b =⋅,求()f x 的最大、最小值.【答案】(1)3x π=;(2)函数()f x 的最小值为3-,最大值为6.【解析】试题分析:(1)先由平面向量模的计算公式由条件23a =得出cos x 的值,结合角x 的取值范围求出x 的值;(2)先由平面向量数量积的坐标运算求出函数()f x 的解析式,并将函数()f x 的解析式化简为()f x =236x π⎛⎫++ ⎪⎝⎭,先由02x π≤≤得出26x π+的取值范围,再利用余弦曲线确定函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值与最小值.试题解析:(1)23a =,=21cos 4x ∴=,1cos 2x ∴=±, 0,2x π⎡⎤∈⎢⎥⎣⎦,cos 0x ∴>,1cos 2x ∴=,3x π∴=;(2)()21cos 26cos 2622xf x a b x x x +=⋅=-=⨯13cos 2232sin 232326x x x x x π⎫⎛⎫=+=-+=++⎪ ⎪⎪⎝⎭⎭,当0,2x π⎡⎤∈⎢⎥⎣⎦时,72666x πππ≤+≤,1cos 262x π⎛⎫∴-≤+≤ ⎪⎝⎭,即函数()f x 的最小值为3-,最大值为6.考点:1.平面向量模的计算;2.平面向量的数量积;3.二倍角公式;4.辅助角公式;5.三角函数的最值17.在一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀,统计成绩后,得到如下的22⨯列联表,且已知在甲、乙两个文科班全部110人中随机抽取人为优秀的概率为3.(2)根据列联表的数据,能否有99%的把握认为成绩与班级有关系? (3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号,试求抽到9号或10号的概率. 【答案】(1)详见解析;(2)按99%的可靠性要求,能认为“成绩与班级有关系”;(3)抽到9或10号的概率为736. 【解析】 试题分析:(1)先根据题中条件确定乙班优秀的人数,然后根据甲乙两班的总人数将表中其它的数据补充上;(2)先提出假设“成绩与班级无关”,根据表中数据求出2K 的值,然后利用临界值表确定犯错误的概率,进而确定是否有99%的把握认为成绩与班级有关系;(3)先把事件空间中的基本事件全部列出,并计算基本事件的总数,然后将问题中涉及的事件所包含的基本事件找出,利用古典概型的概率公式计算所求事件的概率.(2)假设成绩与班级无关,根据列联表中的数据,得到()22110103020507.487 6.63560503080K ⨯⨯-⨯=≈>⨯⨯⨯,因此按99%的可靠性要求,能认为“成绩与班级有关系”;(3)先后两次抛掷一枚均匀的骰子,出现的点数为(),x y ,所有的基本事件有:()1,1、()1,2、()1,3、()1,4、、()6,6,共36个,设“抽到9或10号”为事件A ,事件A 包含的基本事件有:()3,6、()4,5、()5,4、()6,3、()4,6、()5,5、()6,4,共7个, 所以()736P A =,即抽到9或10号的概率为736. 考点:1.独立性检验;2.古典概型18.如图,已知矩形ABCD 中,10AB =,6BC =,将矩形沿对角线BD 把ABD ∆折起,使A 移到1A 点,且1A 在平面BCD 上的射影O 恰好在CD 上.(1)求证:1BC A D ⊥;(2)求证:平面1A BC ⊥平面1A BD ; (3)求三棱锥1A BCD -的体积.【答案】(1)详见解析;(2)详见解析;(3)三棱锥1A BCD -的体积为48. 【解析】试题分析:(1)利用折叠后点1A 在平面BCD 内的射影点在棱CD 上得到1AO ⊥平面BCD ,从而得到1AO BC ⊥,再结合BC CD ⊥即可证明BC ⊥平面1ACD ,进而证明1BC A D ⊥;(2)由(1)中的结论BC ⊥平面1ACD 并结合平面与平面垂直的判定定理即可证明平面1A BC ⊥平面1A BD ;(3)先利用等面积法求出1AO 的值,利用(1)中的结论1AO ⊥平面BCD ,以及BCD ∆的面积利用锥体的体积公式即可计算出三棱锥1A BCD -的体积;或者(1)中的结论1A D ⊥平面1A BC ,利用等体积法三棱锥1A BCD -的体积转化为三棱锥1D A BC -的体积进行计算.试题解析:(1)1A 在平面BCD 上的射影O 在CD 上,1AO ∴⊥平面BCD , 又BC ⊂平面BCD ,1BC AO ∴⊥, 又BC CO ⊥,1AO CO O =,BC ∴⊥平面1ACD , 又1A D ⊂平面1ACD ,1BC A D ∴⊥; (2)四边形ABCD 是矩形,11A D A B ∴⊥,由(1)知1A D BC ⊥,1A B BC B =,1A D ∴⊥平面1A BC ,又1A D ⊂平面1A BD ,∴平面1A BC ⊥平面1A BD ; (3)1A D ⊥平面1A BC ,11A D AC ∴⊥, 在1Rt A BD ∆中,由16AD =,10CD =,得18AC =,111245A D A C A O CD ⨯∴==,1AO ⊥平面BCD ,且116103022BCD S BC CD ∆=⋅=⨯⨯= , 故三棱锥1A BCD -的体积为1111243048335A BCD BCD V AO S -∆=⋅=⨯⨯=; 另解:1A D ⊥平面1A BC ,11A D AC ∴⊥,16A D =,10CD =,18AC ∴=,11116864832A BCD D A BC V V --⎛⎫∴==⋅⋅⋅⋅= ⎪⎝⎭.考点:1.直线与平面垂直;2.直线与直线垂直;3.平面与平面垂直;4.三棱锥的体积 19.在数列{}n a 中,11a =,23a =,()2130n n n a a ka k ++=-≠对任意n N *∈成立,令1n n n b a a +=-,且{}n b 是等比数列.(1)求实数k 的值;(2)求数列{}n a 的通项公式; (3)求和:12323n n S b b b nb =++++.【答案】(1)2k =;(2)21n n a =-;(3)()1122n n S n +=-⨯+.【解析】试题分析:(1)先利用题中的定义,利用数列{}n b 的前三项成等比数列求出k 的值,然后就k 的值进行检验,即对数列{}n b 是否为等比数列进行检验;(2)根据等比数列{}n b 的通项12n n n n b a a +=-=选择累加法求数列{}n a 的通项公式;(3)根据数列{}n nb 的通项公式2n n nb n =⋅,选择错位相减法求数列{}n nb 的前n 项和n S .试题解析:(1)11a =,23a =,39a k =-,4276a k =-,12b ∴=,26b k =-,3185b k =-,数列{}n b 为等比数列,2213b b b ∴=⋅,即()()262185k k -=⨯-,解得2k =或0k =(舍),当2k =时,2132n n n a a a ++=-,即()2112n n n n a a a a +++-=-,12n nb b +∴=,所以2k =满足条件; (2)12b =,数列{}n b 为等比数列,1222n n n b -∴=⨯=,1212a a ∴-=,2322a a -=,,112n n n a a ---=,()()()2112132122222n n n n n a a a a a a a a --∴-=-+-++-=+++=-,21n n a ∴=-;(3)1231222322n n S n =⨯+⨯+⨯++⨯,()23121222122n n n S n n +∴=⨯+⨯++-⨯+⨯,上式减下式得()12312122222212n n n n n n n S n n n ++++--=++++-⨯=-⨯=-⨯--, ()1122n n S n +∴=-⨯+.考点:1.等比数列的定义;2.累加法求数列的通项公式;3.错位相减法20.已知椭圆()222210x y a b a b +=>>的离心率为e =y x =心、椭圆C 的短半轴长为半径的圆O 相切.(1)求椭圆C 的方程;(2)如图,A 、B 、D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m ,求证:2m k -为定值.【答案】(1)椭圆C 的方程为2214x y +=;(2)详见解析. 【解析】 试题分析:(1)先根据题中条件求出a 、b 、c ,进而可以求出椭圆C 的方程;(2)先由直线BP 的方程()2y k x =-与椭圆的方程联立求出点P 的坐标,然后由D 、P 、N 三点共线,利用平面向量共线进行等价转化,求出点N 的坐标,于是得到直线MN 的斜率m ,最终证明2m k -为定值.试题解析:(1)由直线y x =222x y b +=得1b ==,由c e a ==,得2222234c a b a a -==,所以2a =, 所以椭圆C 的方程为2214x y +=;(2)因为()2,0B ,P 不为椭圆定点,即BP 的方程为()1202y k x k k ⎛⎫=-≠≠± ⎪⎝⎭且,①②将①代入2214x y +=,解得222824,4141k k P k k ⎛⎫-- ⎪++⎝⎭, 又直线AD 的方程为112y x =+, ② 由()0,1D 、222824,4141k k P k k ⎛⎫-- ⎪++⎝⎭、(),0N x 三点共线可得42,021k N k -⎛⎫⎪-⎝⎭, 所以MN 的斜率为214k m +=,则211222k m k k +-=-=(定值). 考点:1.椭圆的方程;2.直线与椭圆的公共点的求解;3.直线的斜率;4.三点共线 21.设a R ∈,函数()ln f x x ax =-.(1)若2a =,求曲线()y f x =在点()1,2P -处的切线方程; (2)求函数()f x 的单调区间;(3)当0a >时,求函数()f x 在[]1,2上的最小值.【答案】(1)切线方程为10x y ++=;(2)详见解析;(3)详见解析. 【解析】试题分析:(1)将2a =代入函数()f x 的解析式,利用导函数的几何意义,结合直线的点斜式求出切线的方程;(2)先求出函数()f x 的导数()f x ',并求出方程()0f x '=的根1x a =,对1x a=是否在定义域内进行分类讨论,从而确定函数()f x 的增区间和减区间;(3)对1x a=是否在区间[]1,2内进行分类讨论,从而确定函数()f x 的最小值,注意112a <<时,函数()f x 最小值的可能值为()1f 或()2f ,这时可对两式的值作差确定大小,从而确定两者的大小,从而确定函数()f x 在[]1,2上的最小值. 试题解析:在区间()0,+∞上,()11ax f x a x x-'=-=, (1)当2a =时,()1121f '=-=-,则切线方程为()21y x -=--,即10x y ++=; (2)①当0a ≤时,()10f x a x'=->,故函数()f x 为增函数,即函数()f x 的单调递增区间为()0,+∞;②当0a >时,令()10f x a x '=-=,可得1x a=, 当10x a <<时,()10ax f x x -'=>;当1x a >,()10axf x x-'=<, 故函数()f x 的单调递增区间为10,a ⎛⎫ ⎪⎝⎭,单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭; (3)①当11a≤时,即当1a ≥时,函数()f x 在区间[]1,2上是减函数, ()f x ∴的最小值是()2ln22f a =-;②当12a ≥时,即当102a <≤时,函数()f x 在区间[]1,2上是增函数, ()f x ∴的最小值是()1f a =-;③当112a <<时,即当112a <<时,函数()f x 在11,a ⎡⎤⎢⎥⎣⎦上是增函数,在1,2a ⎡⎤⎢⎥⎣⎦上是减函数,所以()f x 的最小值产生于()1f 与()2f 之间,又()()21ln2f f a -=-, 当1ln 22a <<时,最小值为()1f a =-; 当ln 21a ≤<时,最小值为()2ln22f a =-,综上所述,当0ln 2a <<时,函数()f x 的最小值是()min f x a =-, 当ln 2a ≥时,函数()f x 的最小值是()min ln 22f x a =-.考点:1.利用导数求切线方程;2.函数的单调区间;3.函数的最值;4.分类讨论.。

广东省广州市海珠区2014届高三上学期综合测试(二)(数学文)解析版

广东省广州市海珠区2014届高三上学期综合测试(二)(数学文)解析版

文科数学第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.若复数()()12bi i ++是纯虚数(是虚数单位,b 是实数),则b = ( )A.2-B.12-C.12D .2 【答案】B2.设集合{}22A x x x =<,{}2log 0B x x =>,则A B = ( ) A.{}2x x < B.{}0x x > C.{}02x x << D.{}12x x << 【答案】D 【解析】试题分析:{}{}2202A x x x x x =<=<< ,{}{}2log 01B x x x x =>=>,{}12A B x x ∴=<< ,故选D.考点:1.不等式的解法;2.集合的交集运算3.已知a 、b 、c 分别为ABC ∆的三个内角A 、B 、C 所对的边,若1a =,b =,2A C B +=,则 ( )A.12 B.12-【答案】A 【解析】4.在各项都为正数的等比数列{}n a 中,13a =,前三项的和为21,则345a a a ++=( )A.33B.72C.84D.189 【答案】C 【解析】试题分析:设等比数列{}n a 的公比为q ,则0q >,由于13a =,212333321a a a q q ++=++=,化简得260q q +-=,解得2q =,23423434533332323284a a a q q q ∴++=++=⨯+⨯+⨯=,故选C.考点:等比数列的性质5.“1a =-”是“直线260a x y -+=与直线()4390x a y --+=互相垂直”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.在ABC ∆中,已知D 是AB 边上的一点,若2AD DB = ,13CD CA CB λ=+,则λ=( ) A.23 B.13 C.13- D.23- 【答案】A 【解析】试题分析:2AD DB = ,即()2CD CA CB CD -=- ,解得1233CD CA CB =+ ,23λ∴=,故选A.考点:平面向量的线性表示7.阅读如图程序框图1,若输入的100N =,则输出的结果是( )A.50B.1012 C.51 D.10328.某校300名高三学生期中考试数学成绩的频率分布直方图如图2所示,由图中数据估计此次数学成绩平均分为()A.69B.71C.73D.759.已知x 、y 满足2y x x y x a ≥⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最大值是最小值的4倍,则a 的值是( ) A.34 B.14 C.211D.4 【答案】B 【解析】试题分析:作出不等式组2y xx y x a≥⎧⎪+≤⎨⎪≥⎩所表示的可行域如下图所示,联立x a y x =⎧⎨=⎩得点(),A a a ,B 1,1()A a,a ()z=2x+yO yxx+y=2y=x x=a10.若a 、b 是方程lg 4x x +=,104xx +=的解,函数()()22,02,0x a b x x f x x ⎧+++≤=⎨>⎩,则关于x 的方程()f x x =的解的个数是 ( ) A. B.2 C.3 D.4(),10b B b ,由于函数()lg f x x =与函数()10x g x =关于直线y x =对称,且直线y x =与4y x =-垂直,且交于点()2,2C ,故点A 、B 也关于直线y x =对称,且其中点为点()2,2C ,因此4a b +=,当0x ≤时,()242f x x x =++,解方程()f x x =,即2320x x ++=,Oyxy=xh x ()=4-xg x ()=10x f x ()=lgx CB b,10b ()A a,lga ()解得2x =-或1x =-;当0x >时,()2f x =,解方程()2f x x x =⇒=,故关于x 的方程()f x x =的实根个数为3,故选C.考点:1.函数的零点;2.函数的图象;3.分段函数第Ⅱ卷(共90分)二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.已知双曲线221x y m-=的离心率是2,则m 的值是 .【答案】13. 【解析】试题分析:由题意知,双曲线的离心率2e ==,解得13m =.考点:双曲线的离心率12.如图3是一个空间几何体的三视图,则该几何体的体积为 .13.给出下列四个命题: ①函数()xx f x ee -=+有最小值是2;②函数()4sin 23f x x π⎛⎫=-⎪⎝⎭的图象关于点,06π⎛⎫⎪⎝⎭对称; ③若“p 且q ”为假命题,则p 、q 为假命题;④已知定义在R 上的可导函数()y f x =满足:对x R ∀∈,都有()()f x f x -=-成立, 若当0x >时,()0f x '>,则当0x <时,()0f x '>. 其中正确命题的序号是 . 【答案】①②④. 【解析】(二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标中,圆4cos ρθ=的圆心C 到直线sin 4πρθ⎛⎫+= ⎪⎝⎭的距离为 .15.如图4,平行四边形ABCD 中,:1:2AE EB =,AEF ∆的面积为21cm ,则平行四边形ABCD 的面积为 2cm .三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)16.设向量(6cos ,a x = ,()cos ,sin 2b x x = ,0,2x π⎡⎤∈⎢⎥⎣⎦.(1)若a =x 的值;(2)设函数()f x a b =⋅,求()f x 的最大、最小值.【答案】(1)3x π=;(2)函数()f x 的最小值为3-,最大值为6.【解析】试题分析:(1)先由平面向量模的计算公式由条件a = cos x 的值,结合角x 的取17.在一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀,统计成绩后,得到如下的22列联表,且已知在甲、乙两个文科班全部110人中随机抽取人为优秀的概率为3 11.(1)请完成上面的列联表;(2)根据列联表的数据,能否有99%的把握认为成绩与班级有关系?(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号,试求抽到9号或10号的概率.【答案】(1)详见解析;(2)按99%的可靠性要求,能认为“成绩与班级有关系”;(3)抽到9或10号的概率为7 36.【解析】试题分析:(1)先根据题中条件确定乙班优秀的人数,然后根据甲乙两班的总人数将表中其它的数据补充上;(2)先提出假设“成绩与班级无关”,根据表中数据求出2K 的值,然后利用临界值表确定犯错误的概率,进而确定是否有99%的把握认为成绩与班级有关系;(3)先把事件空间中的基本事件全部列出,并计算基本事件的总数,然后将问题中涉及的事件所包含的基本事件找出来,利用古典概型的概率公式计算所求事件的概率. 试题解析:(1)列联表如下表所示:(2)假设成绩与班级无关,根据列联表中的数据,得到()22110103020507.487 6.63560503080K ⨯⨯-⨯=≈>⨯⨯⨯,因此按99%的可靠性要求,能认为“成绩与班级有关系”;(3)先后两次抛掷一枚均匀的骰子,出现的点数为(),x y ,所有的基本事件有:()1,1、()1,2、()1,3、()1,4、 、()6,6,共36个,设“抽到9或10号”为事件A ,事件A 包含的基本事件有:()3,6、()4,5、()5,4、()6,3、()4,6、()5,5、()6,4,共7个, 所以()736P A =,即抽到9或10号的概率为736. 考点:1.独立性检验;2.古典概型18.如图5,已知矩形ABCD 中,10AB =,6BC =,将矩形沿对角线BD 把ABD ∆折起,使A 移到1A 点,且1A 在平面BCD 上的射影O 恰好在CD 上.图5A 1ODCBA(1)求证:1BC A D ⊥;(2)求证:平面1A BC ⊥平面1A BD ; (3)求三棱锥1A BCD -的体积.19.在数列{}n a 中,11a =,23a =,()2130n n n a a ka k ++=-≠对任意n N *∈成立,令1n n n b a a +=-,且{}n b 是等比数列.(1)求实数k 的值;(2)求数列{}n a 的通项公式;(3)求和:12323n n S b b b nb =++++ .【答案】(1)2k =;(2)21n n a =-;(3)()1122n n S n +=-⨯+.【解析】试题分析:(1)先利用题中的定义,利用数列{}n b 的前三项成等比数列求出k 的值,然后试题解析:(1)11a = ,23a =,39a k =-,4276a k =-,12b ∴=,26b k =-,3185b k =-,数列{}n b 为等比数列,2213b b b ∴=⋅,即()()262185k k -=⨯-,解得2k =或0k =(舍),当2k =时,2132n n n a a a ++=-,即()2112n n n n a a a a +++-=-,12n nb b +∴=,所以2k =满足条件; (2)12b = ,数列{}n b 为等比数列,1222n n n b -∴=⨯=,1212a a ∴-=,2322a a -=, ,112n n n a a ---=,()()()2112132122222n n n n n a a a a a a a a --∴-=-+-++-=+++=- ,21n n a ∴=-;(3)1231222322n n S n =⨯+⨯+⨯++⨯ ,()23121222122n n n S n n +∴=⨯+⨯++-⨯+⨯ ,上式减下式得()123111121222222222212n n n n n n n S n n n ++++--=++++-⨯=-⨯=-⨯-- ,()1122n n S n +∴=-⨯+.考点:1.等比数列的定义;2.累加法求数列的通项公式;3.错位相减法20.已知椭圆()222210x y a b a b +=>>的离心率为e =,直线y x =+与以原点为圆心、椭圆C 的短半轴长为半径的圆O 相切. (1)求椭圆C 的方程;(2)如图6,A 、B 、D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m ,求证:2m k-为定值.将①代入2214x y +=,解得222824,4141k k P k k ⎛⎫-- ⎪++⎝⎭, 又直线AD 的方程为112y x =+, ② 由()0,1D 、222824,4141k k P k k ⎛⎫-- ⎪++⎝⎭、(),0N x 三点共线可得42,021k N k -⎛⎫⎪-⎝⎭, 所以MN 的斜率为214k m +=,则211222k m k k +-=-=(定值). 考点:1.椭圆的方程;2.直线与椭圆的公共点的求解;3.直线的斜率;4.三点共线21.设a R ∈,函数()ln f x x ax =-.(1)若2a =,求曲线()y f x =在点()1,2P -处的切线方程; (2)求函数()f x 的单调区间;(3)当0a >时,求函数()f x 在[]1,2上的最小值.。

广东省海珠区等四区2015届高三联考数学(文)

广东省海珠区等四区2015届高三联考数学(文)

-海珠区2014学年高三综合测试(二)数学(文科)2014.11参考公式:锥体体积公式Sh V 31=,其中S 为锥体的底面积,h 为锥体的高. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}4),(,2),(=-==+=y x y x B y x y x A ,那么集合A B 为A .(){}1,3-B .()3,1-C .{}3,1-D .(){}3,1-2.若复数z 满足()1i z i -=,则z 在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.函数2x y =(x ∈R )的反函数为 A .2log y x =(0x >) B .2log y x =(1x >) C .log 2x y =(0x >)D .log 2x y =(1x >)4.已知向量,a b 的夹角为120,2a =,且8a b ⋅=-,则b = A .6B .7C .8D .95.函数cos 2sin 2y x x =-的一条对称轴为 A .4x p =B .8x p =C .8x p =-D .4x p=- 6.根据如下样本数据:得到的回归方程为y bx a =+,则A .0,0a b ><B .0,0a b >>C .0,0a b <<D .0,0a b <> 7.函数ln y x =与y =-8.阅读如图所示的程序框图,输出的结果S 的值为A .0BC D .9.已知椭圆2219x y +=与双曲线22221x y a b-=共焦点12,F F ,设它们在第一象限的交点为P ,且120PF PF ⋅=,则双曲线的渐近线方程为A .y =B .7y x =±C .y x =D .y = 10.若实数1122,,,x y x y 满足22211122(3ln )(2)0y x x x y +-+-+=,则221212()()x x y y -+-的最小值为A .8B .C .2D二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11. 已知{}n a 是等差数列,125a a +=,91021a a +=,则该数列前10项和10S =________. 12. 一个几何体的正(主)视图和侧(左)视图都是边长为2的等边三角形,俯视图如图所示,则这个几何体的体积为________. 13.给出下列四个命题:①函数()f x =2;②“2450x x --=”的一个必要不充分条件是“5x =”;③命题:,tan 1p x x ∃∈=R ;命题2:,10q x x x ∀∈-+>R .则命题“()p q ∧⌝”是假命题;④函数()3132f x =x x +-在点()()2,2f 处的切线方程为3y =-.其中正确命题的序号是________.(二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标中,圆4sin ρθ=与直线(sin cos )4ρθθ+=相交所得的弦长为________.15.(几何证明选讲选做题) 如图,⊙O 是ABC ∆的外接圆,AB AC =,延长BC 到点D ,使得CD AC =,连结AD 交⊙O于点E ,连结BE ,若035D ∠=,则ABE ∠的大小为________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)在ABC ∆中,内角,,A B C 所对的边长分别是,,a b c ,已知4A π=,4cos 5B =. (1)求cos C 的值;(2)若10a =,D 为AB 的中点,求CD 的长.随着社会的发展,网上购物已成为一种新型的购物方式.某商家在网上新推出,,,A B C D 四款商品,进行限时促销活动,规定每位注册会员限购一件,并需在网上完成对所购商品的质量评价.以下为四款商品销售情况的条形图和用分层抽样法选取100份评价的统计表:(1)若会员甲选择的是A 款商品,求甲的评价被选中的概率;(2)在被选取的100份评价中,若商家再选取2位评价为差评的会员进行电话回访,求这2位中至少有一位购买的是C 款商品的概率.18.(本小题满分14分)如图所示,已知PD 垂直以AB 为直径的圆O 所在平面,点D 在线段AB 上,点C 为圆O 上一点,且3,22BD AC AD ===. (1)求证:PA ⊥CD ;(2)求点B 到平面PAC 的距离.19.(本小题满分14分)已知{}n a 是首项为2,公差不为零的等差数列,且1517,,a a a 成等比数列. (1)求数列{}n a 的通项公式; (2)设13nn n a b -=,求数列{}n b 的前n 项和n S .20. (本小题满分14分)在平面直角坐标系xOy 中,A 、B 两点的坐标分别为()0,1、()0,1-,动点P 满足直线AP 与直线BP 的斜率之积为14-,直线AP 、BP 与直线2y =-分别交于点M 、N . (1)求动点P 的轨迹方程; (2)求线段MN 的最小值;(3)以MN 为直径的圆是否经过某定点?若经过定点,求出定点的坐标;若不经过定点,请说明理由.已知函数1(0)()e (0)x x f x x x ⎧>⎪=⎨⎪≤⎩,()()F x f x kx =+ (k ∈R ).(1)当1k =时,求函数()F x 的值域;(2)试讨论函数()F x 的单调性.海珠区2014学年高三综合测试(二)文科数学参考答案与评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查共10小题,每小题5分,满分50分.二、填空题:本大题共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题. 11. 65 12.313. ③④ 14. 15. 035 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16. 解:(1)4cos ,5B =且(0,)B π∈,∴3sin 5B ==.………………1分 ∴3cos cos()cos()4C A B B ππ=--=- ………………2分 33coscos sin sin 44B B ππ=+ ………………4分432525=-+ ………………5分=. ………………6分 (2)由(1)可得sin C === ………………7分 由正弦定理得sin sin a cA C=c=, ………………8分17. 解:(1)由条形图可得,选择,,,A B C D 四款商品的会员共有2000人,……1分其中选A 款商品的会员为400人,由分层抽样可得A 款商品的评价抽取了 400100202000⨯=份. ………………2分 设 “甲的评价被选中” 为事件M ,则201()00540020.P M ===. ………………3分 答:若甲选择的是A 款商品,甲的评价被选中的概率是0.05. ………………4分 (2) 由图表可知,选,,,A B C D 四款商品的会员分别有400,500,600,500人, ………5分用分层抽样的方法,选取评价的人数分别为20,25,30,25人,其中差评的人数分别为1,0,3, 2人,共6人. ………………6分记对A 款商品评价为差评的会员是a ;对C 款商品评价为差评的会员是,,b c d ;对D 款商品评价为差评的会员是,e f .从评价为差评的会员中选出2人,共有15个基本事件:(),,a b ()()()(),,,,,,a c a d a e af ,(),b c ,()()(),,,,,,b d b e b f ()()(),,,,,,c d c e c f ()()(),,,,,d e d f e f . ………………9分设“至少有一人选择的是C 款商品” 为事件N ,事件N 包含有12个基本事件:(),,a b ()(),,,,a c a d (),b c ,()()(),,,,,,b d b e b f ()()(),,,,,,c d c e c f ()(),,,d e d f .由古典概率公式知()124155P N ==. ………………11分 答:至少有一人选择的是C 款商品的概率为45. ………………12分 18.解:(1)由3BD =, 1AD =,知4AB =,2AO =,点D 为AO 的中点.……1分连接OC .∵2AO AC OC ===,∴AOC ∆为等边三角形, ………………2分 又点D 为AO 的中点,∴CD AO ⊥. ………………3分 又∵PD ⊥平面ABC ,又CD ⊂平面ABC ,∴PD CD ⊥, ………………4分PD AO D ⋂=,PD ⊂平面PAB ,AO ⊂平面PAB ,∴CD ⊥平面PAB , ………………5分 又PA ⊂平面PAB ,∴PA ⊥CD . ………………6分19.解:(1)设数列{}n a 的公差为d ,∴12a =,524a d =+,17216a d =+,由1517,,a a a 成等比数列, ∴()()2242216d d +=+, ………………3分 即2d d =.∵0d ≠,∴1d =. ………………5分 ∴()2111n a n n =+-⨯=+. ………………6分 (2)由(1)知,113n n n b -+=, ………………7分 ∴01212341...3333n n n S -+=++++, ………………8分 12312341 (33333)n n n S +=++++, ………………9分 两式相减得:012312211111 (3333333)n n n n S -+=++++-, ………………11分 ∴11112133213313n n nn S -⎛⎫- ⎪+⎝⎭=+--, ………………12分∴25253223n nn S +=-⨯, ………………13分 ∴11525443n n n S -+=-⨯. ………………14分另解:由(1)知113n n n b -+=,.………………7分 设()12111333n n n n A n B n An B b ---++++==-=1223n An B A-+-, 利用待定系数法2121A B A =⎧⎨-=⎩,解得13,24A B ==, ∴()2113131242433n n n n n b --+++=-2123254343n n n n --++=-⨯⨯. ………………10分 ∴123...n n S b b b b =++++12112221212132152232252325 (434343434343)n n n n ------⨯+⨯+⨯+⨯+++=-+-++-⨯⨯⨯⨯⨯⨯ 11525443n n -+=-⨯. ………………14分20. 解:(1)已知()()0,1,0,1A B -,设动点P 的坐标(),x y ,∴直线AP 的斜率11y k x -=,直线BP 的斜率21y k x+=(0x ≠), ………2分 又1214k k ⨯=-,∴1114y y x x -+⨯=-, ………………3分 即()22104x y x +=≠. ………………4分(2)设直线AP 的方程为的()110y k x -=-,直线BP 的方程为的()210y k x +=-,………………6分由112y k x y -=⎧⎨=-⎩,得132x k y ⎧=-⎪⎨⎪=-⎩, ∴13,2M k ⎛⎫-- ⎪⎝⎭; ………………7分 由212y k x y +=⎧⎨=-⎩,得212x k y ⎧=-⎪⎨⎪=-⎩,∴21,2N k ⎛⎫-- ⎪⎝⎭, ………………8分 由1214k k ⨯=-,∴11213134MN k k k k =-=+≥=,………9分当且仅当1134k k =,即1k =时,等号成立, ∴线段MN长的最小值 ………………10分 (3)设点(),Q x y 是以MN 为直径的圆上的任意一点,则0QM QN =,即()()1231220x x y y k k ⎛⎫⎛⎫+++++= ⎪⎪⎝⎭⎝⎭, ………………11分又1214k k ⨯=-, 故以MN 为直径的圆的方程为:()2211342120x k x y k ⎛⎫+-++-= ⎪⎝⎭, ………………12分令0x =,得()2212y +=,解得2y =-± ………………13分 ∴以MN为直径的圆经过定点(0,2-+或(0,2--. ………………14分21.解:(1)当1=k 时,1(0)()e (0)x x x F x xx x ⎧+>⎪=⎨⎪+⎩≤, ………………1分 当0>x 时,1()2=+F x x x≥,当且仅当1=x 时,()F x 取最小值2. …………2分 当0x ≤时,()e x F x x =+,()e 10x F x '=+>, ()F x 在()0,∞-上单调递增,所以()(0)1=F x F ≤. ………………3分所以当1=k 时,()F x 的值域为(,1][2,)-∞+∞. ………………4分(2)由1(0)()e (0)x kx x F x x kx x ⎧+>⎪=⎨⎪+⎩≤,得21(0)()e (0)x k x F x x k x ⎧->⎪'=⎨⎪+⎩≤, ………………5分 ①当0=k 时,21(0)()e (0)x x F x x x ⎧->⎪'=⎨⎪⎩≤,当0>x 时,()0F x '<,()F x 在区间(0,)+∞上单调递减, ………………6分 当0x ≤时,()0F x '>,()F x 在区间(,0]-∞上单调递增. ………………7分②当0>k 时,21(0)()e (0)x k x F x x k x ⎧->⎪'=⎨⎪+⎩≤, 当0x ≤时,()e 0x F x k '=+>,()F x 在区间(,0]-∞上单调递增.………………8分 当0>x 时,令21()0F x k x '=-=,解得x =,舍去负值,得x =,当0x k <<时,()0F x '<,()F x在区间(0,k上单调递减, ………………9分当x >时,'()0>F x ,()F x在区间)+∞上单调递增. ………………10分 ③当0k <时,21(0)()e (0)x k x F x x k x ⎧->⎪'=⎨⎪+⎩≤, 当0>x 时,21()0F x k x'=-<,()F x 在区间(0,)+∞上单调递减.……………11分 当0x ≤时,令()e 0x F x k '=+=,得ln()=-x k , 下面讨论ln()=-x k 是否落在区间(,0)-∞上,令ln()0k -≥,解得1-k ≤,令ln()0k -<,解得10-<<k ,当1-k ≤时,当0x ≤时,()0F x '<,()F x 在(),0-∞上单调递减.……………12分 当10-<<k 时,在(),0-∞上存在极值点ln()=-x k ,当ln()0-<<k x 时,()0F x '>,()F x 在(ln(),0]-k 上单调递增,当ln()<-x k 时,()0F x '<,()F x 在(,ln())-∞-k 上单调递减.……………13分 综上所述:当0>k 时,()F x 在(,0]-∞和)+∞上单调递增,在上单调递减; 当0=k 时,()F x 在(,0]-∞上单调递增,在(0,)+∞上单调递减;当10-<<k 时,()F x 在(ln(),0]-k 上单调递增,在(,ln())-∞-k 和(0,)+∞上 单调递减;当1-k ≤时,()F x 在(],0-∞和()0,+∞上单调递减. ……………14分。

广东省广州市2014年普通高中毕业班综合测试(二)数学文试题(word版)

广东省广州市2014年普通高中毕业班综合测试(二)数学文试题(word版)

试卷类型:A2014年广州市普通高中毕业班综合测试(二) 数学(文科)2014.4 本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式: 锥体的体积公式是13V Sh=,其中S 是锥体的底面积,h 是锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足 i 2z =,其中i 为虚数单位,则z 等于A .2-iB .2iC .2-D .2 2.已知集合{}}{20,1,2,3,0A B x x x ==-=,则集合A B 的子集个数为A .2B .4C .6D .8 3.命题“对任意x ∈R ,都有32x x >”的否定是A .存在0x ∈R ,使得3200x x >B .不存在0x ∈R ,使得3200x x >C .存在0x ∈R ,使得3200x x ≤ D .对任意x ∈R ,都有32x x ≤4. 下列函数中,既是偶函数又在()0,+∞上单调递增的是A.y = B .21y x =-+ C .cos y x = D .1y x =+ 5.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3, 将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是图1俯视图侧视图正视图33422A .16B .13C .12D .386.一个几何体的三视图如图1,则该几何体 的体积为A .12πB .6πC .4πD .2π 7.设n S 是等差数列{}n a 的前n 项和,公差0d ≠, 若113132,24k S a a =+=,则正整数k 的值为A .9B .10C .11D .128.在△ABC 中,60ABC ︒∠=,1AB =,3BC =, 则sin BAC ∠的值为ABCD9.设12,F F 分别是椭圆()2222:10x y C a b a b +=>>的左、右焦点,点P 在椭圆C 上,线段1PF的中点在y 轴上,若1230PF F ︒∠=,则椭圆C 的离心率为ABC .13D . 1610.将正偶数2,4,6,8, 按表1的方式进行 排列,记ija 表示第i 行第j 列的数,若2014ij a =,则i j +的值为A .257B .256C .254D .253表1二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题) 11.不等式()()120x x +-<的解集为 .12. 已知四边形ABCD 是边长为3的正方形,若2,2DE EC CF FB == ,则AE AF ⋅ 的值为 .13.设,x y 满足约束条件220,840,0,0.x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩若目标函数()0,0z ax by a b =+>>的最大值为8,则ab 的最大值为 . (二)选做题(14~15题,考生从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,直线,(x a t t y t =-⎧⎨=⎩为参数)与 圆1cos ,(sin x y θθθ=+⎧⎨=⎩为参数)相切,切点在第一象限,则实数a 的值为 .15.(几何证明选讲选做题)在平行四边形ABCD 中,点E 在线段AB 上,且12AE EB =,连接,DE AC ,AC 与DE 相交于点F ,若△AEF 的面积为1 cm 2,则△AFD 的面积为 cm 2.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数()4f x x π⎛⎫=+ ⎪⎝⎭,x ∈R . (1) 求函数()f x 的最小正周期和值域;(2)若0,2πθ⎛⎫∈ ⎪⎝⎭,且()12f θ=,求sin 2θ的值.17.(本小题满分12分)某校高三年级一次数学考试之后,为了解学生的数学学习情况, 随机抽取n 名学生的数 学成绩, 制成表2所示的频率分布表. (1) 求a ,b ,n 的值;(2) 若从第三, 四, 五组中用分层抽样方法抽取6名学生,并在这6名学生中随机抽取2HFEDCBA名与张老师面谈,求第三组中至少有1名学生与张老师面谈的概率.表218.(本小题满分14分) 如图2,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形,EF ∥平面ABCD , 1EF =,,90FB FC BFC ︒=∠=,AE =H 是BC 的中点.(1)求证:FH ∥平面BDE ; (2)求证:AB ⊥平面BCF ; (3)求五面体ABCDEF 的体积.图2 19.(本小题满分14分)已知等差数列{}n a 的前n 项和为n S 2(,n pn q p q =++∈R ),且235,,a a a 成等比数列. (1)求,p q 的值; (2)若数列{}n b 满足22log log n n a n b +=,求数列{}n b 的前n 项和n T .20.(本小题满分14分) 已知函数()2ln f x x x ax=++,a ∈R .(1)若函数()f x 在其定义域上为增函数,求a 的取值范围;(2)当1a =时,函数()()1f x g x x x =-+在区间[),t +∞(t ∈N *)上存在极值,求t 的最大 值.( 参考数值: 自然对数的底数e ≈2.71828)21.(本小题满分14分) 已知点()2,1A 在抛物线2:E x ay =上,直线1:1(l y kx k =+∈R ,且0)k ≠与抛物线E 相交于,B C 两点,直线,AB AC 分别交直线2:1l y =-于点,S T .(1)求a 的值;(2)若ST =,求直线1l的方程;(3)试判断以线段ST 为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若 不是,说明理由.2014年广州市普通高中毕业班综合测试(二) 数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题共10小题,每小题5分,满分50分.二、填空题:本大题共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题.11.()1,2- 12.9 13.4 141+ 15.3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(1)解:∵()4f x x π⎛⎫=+ ⎪⎝⎭, ∴ 函数()f x 的最小正周期为2π. ……………2分∵x ∈R ,[]cos 1,14x π⎛⎫+∈- ⎪⎝⎭, ……………3分∴4x π⎛⎫⎡+∈ ⎪⎣⎝⎭. ……………4分∴ 函数()f x的值域为⎡⎣. ……………5分 (2)解法1:∵()12f θ=,∴142πθ⎛⎫+=⎪⎝⎭. ……………6分∴cos 4πθ⎛⎫+=⎪⎝⎭. ……………7分 ∴sin 2cos 22πθθ⎛⎫=-+ ⎪⎝⎭ ……………9分212cos 4πθ⎛⎫=-+ ⎪⎝⎭ ……………11分212=-⨯34=. ……………12分 解法2:∵()12f θ=,∴142πθ⎛⎫+=⎪⎝⎭. ……………6分∴1cos cos sin sin 442ππθθ⎫-=⎪⎭. ……………7分E∴1cos sin 2θθ-=. ……………8分两边平方得221cos 2cos sin sin 4θθθθ-+=. ……………10分∴3sin 24θ=. ……………12分17.(本小题满分12分)(1) 解:依题意,得5200.05,0.35,a b n n n ===,解得,100n =,35a =,0.2b =. ……………3分 (2) 解:因为第三、四、五组共有60名学生,用分层抽样方法抽取6名学生,则第三、四、五组分别抽取306360⨯=名,206260⨯=名,106160⨯=名. …………6分第三组的3名学生记为123,,a a a ,第四组的2名学生记为12,b b ,第五组的1名学生记为1c ,则从6名学生中随机抽取2名,共有15种不同取法,具体如下:{}12,a a ,{}13,a a ,{}11,a b ,{}12,a b ,{}11,a c ,{}23,a a ,{}21,a b ,{}22,a b ,{}21,a c ,{}31,a b ,{}32,a b ,{}31,a c ,{}12,b b ,{}11,b c ,{}21,b c . ……………8分其中第三组的3名学生123,,a a a 没有一名学生被抽取的情况共有3种,具体如下:{}12,b b ,{}11,b c ,{}21,b c . ……………10分故第三组中至少有1名学生与张老师面谈的概率为310.815-=. ……………12分18.(本小题满分14分)(1)证明:连接AC ,AC 与BD 相交于点O ,则点O 是AC 的中点,连接,OH EO , ∵H 是BC 的中点,∴OH ∥AB ,112OH AB ==. ……………1分∵EF ∥平面ABCD ,EF ⊂平面ABFE ,平面ABCD 平面ABFE AB =,∴EF ∥AB . ……………2分 ∵1EF =,∴OH ∥EF ,OH EF =. ∴四边形EOHF 是平行四边形.∴EO ∥FH ,EO =FH . ……………3分 ∵EO ⊂平面BDE ,FH ⊄平面BDE , ∴FH ∥平面BDE . ……………4分(2)证法1:取AB 的中点M ,连接EM ,则1AM MB ==, 由(1)知,EF ∥MB ,且EF =MB , ∴四边形EMBF 是平行四边形.∴EM ∥FB ,EM FB =. ……………5分在Rt △BFC 中,2224FB FC BC +==,又FB FC =,得FB =∴EM =……………6分在△AME 中,AE =1AM =,EM =∴2223AM EM AE +==.∴AM EM ⊥. ……………7分 ∴AM FB ⊥,即AB FB ⊥. ∵四边形ABCD 是正方形,∴AB BC ⊥. ……………8分 ∵FB BC B = ,FB ⊂平面BCF ,BC ⊂平面BCF ,∴AB ⊥平面BCF . ……………9分 证法2:在Rt △BFC 中,H 为BC 的中点,OHFEDCBA∴112FH BC ==.在△AEO中,112AE AO AC EO FH =====,∴222AO EO AE +=.∴AO EO ⊥. ……………5分 ∵FH ∥EO ,∴AO FH ⊥. ……………6分∵,FH BC BC ⊥⊂平面ABCD , AO ⊂平面ABCD , AO BC C = , ∴FH ⊥平面ABCD . ∵AB ⊂平面ABCD ,∴FH ⊥AB . ……………7分 ∵四边形ABCD 是正方形,∴AB BC ⊥. ……………8分∵BC ⊂平面BCF , FH ⊂平面BCF , BC FH H = ,∴AB ⊥平面BCF . ……………9分 (3)解:连接EC ,在Rt △BFC 中,112FH BC ==,∴1EO FH ==.由(2)知AB ⊥平面BCF ,且EF ∥AB ,∴EF ⊥平面BCF . ……………10分 ∵FH ⊥平面ABCD , EO ∥FH ,∴EO ⊥平面ABCD . ……………11分∴四棱锥E ABCD -的体积为113ABCD V EO S =⋅⋅正方形2141233=⨯⨯=. ………12分 ∴三棱锥E BCF -的体积为213BCF V EF S =⋅⋅∆21111323=⨯⨯⨯=. ………13分∴五面体ABCDEF 的体积为1253V V V =+=. ……………14分19.(本小题满分14分) (1)解法1:当1n =时,111a S p q ==++, ……………1分当2n ≥时,1n n n a S S -=- ……………2分()()221121n pn q n p n q n p⎡⎤=++--+-+=-+⎣⎦. ………3分∵{}n a 是等差数列,∴1211p q p ++=⨯-+,得0q =. ……………4分 又2353,5,9a p a p a p =+=+=+, ……………5分∵235,,a a a 成等比数列,∴2325a a a =,即()()()2539p p p +=++, ……………6分 解得1p =-. ……………7分 解法2:设等差数列{}n a 的公差为d ,则()2111222n n n d d S na d n a n-⎛⎫=+=+- ⎪⎝⎭. ……………1分 ∵2n S n pn q =++, ∴12d =,12d a p-=,0q =. ……………4分∴2d =,11p a =-,0q =.∵235,,a a a 成等比数列,∴2325a a a =, ……………5分即()()()2111428a a a +=++.解得10a =. ……………6分∴1p =-. ……………7分 (2)解法1:由(1)得22n a n =-. ……………8分∵22log log n n a n b +=,∴221224n a n n n b n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++ ()0122142434144n n n n --=+⨯+⨯++-⋅+⋅ ,①……………10分()1231442434144n nn T n n -=+⨯+⨯++-⋅+⋅ ,② ……………11分①-②得0121344444n n n T n --=++++-⋅ 14414n nn -=-⋅-()13413n n -⋅-=.……………13分∴()131419nn T n ⎡⎤=-⋅+⎣⎦. ……………14分解法2:由(1)得22n a n =-. ……………8分∵22log log n n a n b +=,∴221224n a n n n b n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++ ()0122142434144n n n n --=+⨯+⨯++-⋅+⋅ .……………10分由()12311n nx x x x x x x x +-++++=≠- , ……………11分两边对x 取导数得,012123n x x x nx-++++=()()12111n n nx n x x +-++-. …………12分令4x =,得()()0122114243414431419n n nn n n --⎡⎤+⨯+⨯++-⋅+⋅=-⋅+⎣⎦ .∴()131419n n T n ⎡⎤=-⋅+⎣⎦. ……………14分20.(本小题满分14分) (1)解法1:函数()f x 的定义域为()0,+∞, ……………1分∵()2ln f x x x ax=++, ∴()12f x x a x '=++. ……………2分∵ 函数()f x 在()0,+∞上单调递增,∴ ()0f x '≥, 即120x a x ++≥对()0,x ∈+∞都成立. ……………3分∴12a x x -≤+对()0,x ∈+∞都成立. ……………4分当0x >时, 12x x +≥=, 当且仅当12xx =,即x =时,取等号. ……………5分∴a -≤即a ≥-.∴a的取值范围为)⎡-+∞⎣. ……………6分解法2:函数()f x 的定义域为()0,+∞, ……………1分∵()2ln f x x x ax =++, ∴()21212x ax f x x a x x ++'=++=.……………2分方程2210x ax ++=的判别式28a ∆=-. ……………3分当0∆≤,即a -≤≤时, 2210x ax ++≥,此时, ()0f x '≥对()0,x ∈+∞都成立,故函数()f x 在定义域()0,+∞上是增函数. ……………4分当0∆>,即a <-或a >, 要使函数()f x 在定义域()0,+∞上为增函数, 只需2210x ax ++≥对()0,x ∈+∞都成立.设()221h x x ax =++, 则()010,0,4h a ⎧=>⎪⎨-<⎪⎩得0a >.故a > ……………5分综合①②得a的取值范围为)⎡-+∞⎣. ……………6分 (2)解:当1a =时,()()2ln ln 111f x x x x x g x x x x x x ++=-=-=+++. ()()211ln 1x x g x x +-'=+. ……………7分∵ 函数()g x 在[),t +∞(t ∈N *)上存在极值,∴ 方程()0g x '=在[),t +∞(t ∈N *)上有解,即方程11ln 0x x +-=在[),t +∞(t ∈N *)上有解. ……………8分 令()11ln x x xϕ=+-()0x >, 由于0x >, 则()2110x x x ϕ'=--<,∴函数()x ϕ在()0,+∞上单调递减. ……………9分∵()413ln 3ln33ϕ=-=4e 2741 2.5ln 0327>>, ……………10分()514ln 4ln44ϕ=-=5e 256513ln 04256<<, ……………11分∴函数()x ϕ的零点()03,4x ∈. ……………12分∵方程()0x ϕ=在[),t +∞(t ∈ N *)上有解, t ∈N *∴3t ≤. ……………13分 ∵t ∈N *,∴t 的最大值为3. ……………14分21.(本小题满分14分) (1)解:∵点()2,1A 在抛物线2:E x ay =上, ∴4a =. ……………1分 第(2)、(3)问提供以下两种解法:解法1:(2)由(1)得抛物线E 的方程为24x y =.设点,B C 的坐标分别为()()1122,,,x y x y ,依题意,2211224,4x y x y ==, 由21,4,y kx x y =+⎧⎨=⎩消去y 得2440x kx --=,解得1,22x k ==±.∴12124,4x x k x x +==-. ……………2分直线AB 的斜率2111111124224ABx y x k x x --+===--, 故直线AB 的方程为()12124x y x +-=-. ……………3分令1y =-,得1822x x =-+,∴点S 的坐标为182,12x ⎛⎫-- ⎪+⎝⎭. ……………4分 同理可得点T 的坐标为282,12x ⎛⎫-- ⎪+⎝⎭. ……………5分 ∴()()()121212888222222x x ST x x x x -⎛⎫=---=⎪++++⎝⎭()()()121212121288248x x x x x xx x x x k k---===+++. ……………6分∵ST =, ∴12x x -=由()221212124x x x x x x -=+-,得22201616k k =+,解得2k =, 或2k =-, …………… 7分 ∴直线1l的方程为21y x =+,或21y x =-+. ……………9分 (3)设线段ST 的中点坐标为()0,1x -,则()()()12012124418822222222x x x x x x x ++⎛⎫=-+-=- ⎪++++⎝⎭()()()1212444444222248k k x x x x k k++=-=-=-+++. ……………10分而2ST =()()()2221212122221614k x x x x x x k k k +-+-==, ……………11分∴以线段ST 为直径的圆的方程为()2222114x y ST k ⎛⎫+++= ⎪⎝⎭()2241k k +=.展开得()()22222414414k x x y k k k ++++=-=. ……………12分令0x =,得()214y +=,解得1y =或3y =-. ……………13分∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分解法2:(2)由(1)得抛物线E 的方程为24x y =.设直线AB 的方程为()112y k x -=-,点B 的坐标为()11,x y ,由()112,1,y k x y ⎧-=-⎨=-⎩解得122,1.x k y ⎧=-⎪⎨⎪=-⎩∴点S 的坐标为122,1k ⎛⎫-- ⎪⎝⎭. ……………2分 由()1212,4,y k x x y ⎧-=-⎨=⎩消去y ,得2114840x k x k -+-=, 即()()12420x x k --+=,解得2x =或142x k =-.∴1142x k =-,22111114414y x k k ==-+.∴点B 的坐标为()211142,441kk k --+. ……………3分同理,设直线AC 的方程为()212y k x -=-,则点T 的坐标为222,1k ⎛⎫-- ⎪⎝⎭,点C 的坐标为()222242,441k k k --+. …………4分∵点,B C 在直线1:1l y kx =+上,∴()()()()()()22222211212121214414414242k k k k k k k k k k k k k -+--+---==----121k k =+-.∴121k k k +=+. ……………5分又()211144142k k k k -+=-1+,得()21111214442412k k kk k k k k k -=-=+--,化简得122kk k =. ……………6分()12121222222k k ST k k k k -⎛⎫⎛⎫=---=⎪ ⎪⎝⎭⎝⎭, (7)分∵ST =,∴()12122k k k k -=.∴()()2212125k k k k -=.由()()()2221212121212454k k k k k k k k k k +=-+=+,得()225124k k k +=+,解得2k =±. ……………8分 ∴直线1l的方程为21y x =+,或21y x =-+. …………… 9分 (3)设点(),P x y 是以线段ST 为直径的圆上任意一点,则0SP TP ⋅=, ……………10分 得()()122222110x x y y k k ⎛⎫⎛⎫-+-++++= ⎪⎪⎝⎭⎝⎭, ……………11分整理得,()224410x x y k +-++=. ……………12分令0x =,得()214y +=,解得1y =或3y =-. (13)分∴ 以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分。

广东省广州市海珠区2014届高三入学摸底考试数学文试题 含答案

广东省广州市海珠区2014届高三入学摸底考试数学文试题 含答案

绝密★启用前2013学年高三调研测试(一)数学(文科) 2013.8本试卷共6页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁。

考试结束后,将答题卡一并交回。

参考公式:锥体体积公式Sh V 31=,其中S 为锥体的底面积,h 为锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z 满足()()21i 2z --=(i 为虚数单位),则z 的共轭复数z 为A.1i -B.1+ iC.3i -D.3+ i2.已知集合,A B 均为全集{}12U =,,3,4的子集,且()C UA B ⋃={}4,{}1B =,2,则C U A B ⋂=A .{}3B.{}4C. {}34,D.∅3.已知等差数列{}na 满足244aa +=,3510a a +=,则它的前10项和10S=A.85B.135C.95D.234.设0.220.20.2log2,log 3,2,0.2a b c d ====,则这四个数的大小关系是A.a b c d <<<B.d c a b <<<C.b a c d <<<D.b a d c <<<5.对于平面α、β、γ和直线a 、b 、m 、n ,下列命题中真命题是A.若,,,,a m a n m n αα⊥⊥⊂⊂,则a α⊥ ks5uB.若//,,,a b αβαγβγ==则//a bC.若//,a b b α⊂,则//a αD.若,,//,//a b a b ββαα⊂⊂,则//βα6.已知向量()2,1=→a ,()1,0=→b ,()2,-=→k c ,若(2+→a →b )⊥→c ,则k =A.2B. 2-C.8D.8-7.给出下列四个结论:ks5u①若命题200:,10p xx x ∃∈++<R ,则2:,10p x x x ⌝∀∈++≥R ;② “()()340x x --=”是“30x -=”的充分而不必要条件; ③命题“若0m >,则方程20x x m +-=有实数根”的逆否命题为:“若方程20x x m +-=没有实数根,则m ≤0”;④若0,0,4a b a b >>+=,则ba 11+的最小 值为1.其中正确结论的个数为A.1B.2C. 3D.48.将函数()sin(2)6f x x π=+的图像向右平移 6π个单位,那么所得的图像所对应的函数解析式是A.sin 2y x =B.cos 2y x =C.2sin(2)3y x π=+ D.sin(2)6y x π=-9.某程序框图如图1所示,若该程序运行后输 出的值是95,则A.4a =B.5a =C.6a =D.7a =10.已知函数)(x f 是定义在(,)-∞+∞上的奇函数,若对于任意的实数0≥x ,都有)()2(x f x f =+,且当[)2,0∈x 时,)1(log )(2+=x x f ,则)2012()2011(f f +-的值为A.1-B. 2-C. 2D.1二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)11.在区间[]-33,上随机取一个数x ,使得函数()1f x =有意义的概率为 。

广东省广州市海珠区2014学年高三综合测试(二)数学(理科)

广东省广州市海珠区2014学年高三综合测试(二)数学(理科)

-广东省广州市海珠区2014学年高三综合测试(二)数学(理)2014.11本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁。

考试结束后,将答题卡交回。

参考公式:锥体体积公式Sh V 31=,其中S 为锥体的底面积,h 为锥体的高.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}4),(,2),(=-==+=y x y x B y x y x A ,那么集合A B 为 A .(){}1,3-B .()3,1-C .{}3,1-D .(){}3,1-2.若复数z 满足()1i z i -=,则z 在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.函数cos 2sin 2y x x =-的一条对称轴为 A. 4x p =B. 8x p =C. 8x p =-D. 4x p =- 4.已知向量,a b 的夹角为120,2a =,且8a b ⋅=-,则b = A .6B .7C .8D .95.函数ln y x =与y =-6.阅读如图所示的程序框图,输出的结果S 的值为A .0 BCD .3 7.已知椭圆2219x y +=与双曲线22221x y a b-=共焦点12,F F ,设它们在第一象限的交点为P , 且120PF PF ⋅=,则双曲线的渐近线方程为 A.y = B.y x =C.3y x =±D.7y x =±8.若实数,,,a b c d 满足222(3ln )(2)0b a a c d +-+-+=,则22()()a c b d -+-的最小值为 A .8 B. C .2D.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.已知{}n a 是等差数列,124a a +=,91028a a +=,则该数列前10项和10S = . 10.一个几何体的正(主)视图和侧(左)视图都是边长为2的等边三角形,俯视图如图所示,则这个几何体的体积为 . 11.不等式13x x +-≤的解集是 .12.从5种不同的书中买3本送给3名同学,每人各1本,则不同的送法有种(用数字作答). 13.给出下列四个命题:①已知ξ服从正态分布()2,0σN ,且()4.022=≤≤-ξP ,则()2.02=>ξP ; ②“2450x x --=”的一个必要不充分条件是“5x =”;③函数()3132f x =x x +-在点()()2,2f 处的切线方程为3y =-;④命题:,tan 1p x x ∃∈=R ;命题2:,10q x x x ∀∈-+>R .则命题“()p q ∧⌝”是假命题.其中正确命题的序号是 .(二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标中,圆4sin ρθ=与直线(sin cos )4ρθθ+=相交所得的弦长为 . 15.(几何证明选讲选做题)如图,⊙O 是ABC∆的外接圆,A B A C =,延长BC 到点D ,使得CD AC =,连结AD 交⊙O于点E ,连结BE ,若035D ∠=,则ABE ∠的大小为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)在ABC ∆中,内角,,A B C 所对的边长分别是,,a b c ,已知4A π=,4cos 5B =. (1)求cos C 的值;(2)若10a =,D 为AB 的中点,求CD 的长.17.(本小题满分12分)甲、乙两种元件的质量按测试指标划分为:指标大于或等于85为正品,小于85为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:(2)生产一件元件甲,若是正品可盈利50元,若是次品则亏损10元;生产一件元件乙,若是正品可盈利100元,若是次品则亏损20元. 在(1)的前提下,记X 为生产1件元件甲和1件元件乙所得的总利润,求随机变量X 的分布列和数学期望.18.(本小题满分14分)如图所示,已知PD 垂直以AB 为直径的圆O 所在平面,点D 在线段AB 上,点C 为圆O 上一点,且3BD PD ==,22AC AD ==, (1)求证:PA ⊥CD ;(2)求二面角C PB A --的余弦值.19.(本小题满分14分)已知数列}{n a 的前n 项和为n S ,满足12()n n nS a n S N *++= . (1)求123,,S S S ; (2)求n S ;(3)设()221n n b n a =+,求证:对任意正整数n ,有121n b b b +++<L .20.(本小题满分14分)在平面直角坐标系xOy 中,,A B 两点的坐标分别为()0,1、()0,1-,动点P 满足直线AP 与直线BP 的斜率之积为14-,直线AP 、BP 与直线2y =-分别交于点,M N . (1)求动点P 的轨迹方程; (2)求线段MN 的最小值;(3)以MN 为直径的圆是否经过某定点?若经过定点,求出定点的坐标;若不经过定点,请说明理由.21.(本小题满分14分)已知函数1(0)()e (0)x x f x x x ⎧>⎪=⎨⎪≤⎩,()()F x f x kx =+(k ∈R ).(1)当1k =时,求函数()F x 的值域; (2)试讨论函数()F x 的单调性.海珠区2014学高三综合测试(二)理科数学参考答案与评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16. 解:(1)4cos ,5B =且(0,)B π∈,∴3sin 5B ==.………………1分∴3cos cos()cos()4C A B B ππ=--=- ………………2分 33coscos sin sin 44B B ππ=+ ………………4分432525=-⨯+ ………………5分10=-. ………………6分(2)由(1)可得sin C === ………………7分 由正弦定理得sin sin a cA C=2c=, ………………8分………………12分17.解:(1)在分别抽取的100件产品中,为正品的元件甲有80件,为正品的元件乙有75件. ………………1分 所以元件甲、乙为正品的频率分别为5410080=,4310075=. ………………3分 根据频率可估计元件甲、乙为正品的概率分别为45,34. ………………4分(2)随机变量X 的所有取值为150,90,30,-30, ………………5分 则433(150)545P X ==⨯=,133(90)5420P X ==⨯=, 411(30)545P X ==⨯=,111(30)5420P X =-=⨯=. ………………9分 所以X 的分布列为:10分X 的数学期望为EX 3311150903030108520520=⨯+⨯+⨯-⨯=.……………12分(3,设平面PBA CPB 的法向量分别为0,22330330x y y z -=⎪⎨-=⎪⎩,解得 ⎪⎨⎪⎩(3,1,1123n n =∴二面角C PB A --的余弦值为19.解:(1)当1n =时,11112S S S ++=,∴112S =-, ……………1分 当2n ³时,112n n n n S S S S -++=-,∴112n n S S -=-+, ……………2分∴2323,34S S =-=-. ……………4分 (2)由(1)猜想:1n nS n =-+. ……………5分 下面用数学归纳法证明:当1n =,112S =-显然成立; 假设当n k =时命题成立,即1k kS k =-+,那么当1n k =+时, 11112221k k k S k S k k ++=-=-=-++-+, 即1n k =+时命题也成立, 综上可知,1n nS n =-+. ……………9分 (3)由(2)知()1121n n n a S S n n =++=-+, ……………10分∴()()()()()2222222221211121111n n n n n b n a n n n n n n +-+=+===-+++, ………11分 1111111∴121n b b b +++<L . ……………14分 20. 解:(1)已知()()0,1,0,1A B -,设动点P 的坐标(),x y ,∴直线AP 的斜率11y k x -=,直线BP 的斜率21y k x+=(0x ≠), ………2分 又1214k k ⨯=-,∴1114y y x x -+⨯=-, ………………3分即()22104x y x +=≠. ………………4分 (2)设直线AP 的方程为的()110y k x -=-,直线BP 的方程为的()210y k x +=-,………………6分由112y k x y -=⎧⎨=-⎩,得132x k y ⎧=-⎪⎨⎪=-⎩, ∴13,2M k ⎛⎫-- ⎪⎝⎭; ………………7分 由212y k x y +=⎧⎨=-⎩,得212x k y ⎧=-⎪⎨⎪=-⎩,∴21,2N k ⎛⎫-- ⎪⎝⎭, ………………8分 由1214k k ⨯=-,∴11213134MN k k k k =-=+≥=9分当且仅当1134k k =,即1k =∴线段MN长的最小值 ………………10分 (3)设点(),Q x y 是以MN 为直径的圆的任意一点,则0QM QN =,即()()1231220x x y y k k ⎛⎫⎛⎫+++++= ⎪⎪⎝⎭⎝⎭, ………………11分又1214k k ⨯=-,故以MN 为直径的圆的方程为:()2211342120x k x y k ⎛⎫+-++-=⎪⎝⎭, ………………12分 令0x =,得()2212y +=,解得2y =-± ………………13分 ∴以MN为直径的圆经过定点(0,2-+或(0,2--. ………………14分21.解:(1)当1=k 时,1(0)()e (0)x x x F x xx x ⎧+>⎪=⎨⎪+⎩≤, ………………1分 当0>x 时,1()2=+F x x x≥,当且仅当1=x 时,()F x 取最小值2. …………2分 当0x ≤时,()e x F x x =+,()e 10x F x '=+>, ()F x 在()0,∞-上单调递增,所以()(0)1=F x F ≤. ………………3分所以当1=k 时,()F x 的值域为(,1][2,)-∞+∞. ………………4分(2)由1(0)()e (0)x kx x F x x kx x ⎧+>⎪=⎨⎪+⎩≤,得21(0)()e (0)x k x F x x k x ⎧->⎪'=⎨⎪+⎩≤, ………………5分 ①当0=k 时,21(0)()e (0)x x F x xx ⎧->⎪'=⎨⎪⎩≤, 当0>x 时,()0F x '<,()F x 在区间(0,)+∞上单调递减, ………………6分 当0x ≤时,()0F x '>,()F x 在区间(,0]-∞上单调递增. ………………7分②当0>k 时,21(0)()e (0)x k x F x x k x ⎧->⎪'=⎨⎪+⎩≤, 当0x ≤时,()e 0x F x k '=+>,()F x 在区间(,0]-∞上单调递增.………………8分 当0>x 时,令21()0F x k x '=-=,解得x =,舍去负值,得x =,当0x <<时,()0F x '<,()F x在区间上单调递减, ………………9分当x k >时,'()0>F x ,()F x在区间()k+∞上单调递增. ………………10分 ③当0k <时,21(0)()e (0)x k x F x x k x ⎧->⎪'=⎨⎪+⎩≤, 当0>x 时,21()0F x k x '=-<,()F x 在区间(0,)+∞上单调递减.……………11分 当0x ≤时,令()e 0x F x k '=+=,得ln()=-x k ,令ln()0k -≥,解得1-k ≤,令ln()0k -<,解得10-<<k ,当1-k ≤时,当0x ≤时,()0F x '<,()F x 在(),0-∞上单调递减.……………12分 当10-<<k 时,在(),0-∞上存在极值点ln()=-x k ,当ln()0-<<k x 时,()0F x '>,()F x 在(ln(),0]-k 上单调递增,当ln()<-x k 时,()0F x '<,()F x 在(,ln())-∞-k 上单调递减.……………13分 综上所述:当0>k 时,()F x 在(,0]-∞和)+∞上单调递增,在上单调递减; 当0=k 时,()F x 在(,0]-∞上单调递增,在(0,)+∞上单调递减;当10-<<k 时,()F x 在(ln(),0]-k 上单调递增,在(,ln())-∞-k 和(0,)+∞上 单调递减;当1-k ≤时,()F x 在(],0-∞和()0,+∞上单调递减. ……………14分。

广东省海珠区2014届高三上学期综合测试理综试题(二)(扫描版).pdf

广东省海珠区2014届高三上学期综合测试理综试题(二)(扫描版).pdf

(2)C
3分(选对得3分,错一个倒扣3分,到0分为止.)
(3)BC
4分(选对一个给2分,全对4分,错一个倒扣2分,到0分为止.)
(4 )①2H++2e-=H2↑
3分
②Cr2O72-+ Fe2++14H+=6Fe3++2Cr3++7H2O
3分
32.(15分)
(1)3Ni+8HNO3=3 Ni(NO3)2+2NO↑+4H2O
大量存在Cl-
物 理
34.(18分)
(1)(共8分)4(2分),0.436(3分),偏大(3分)
(2)①(共4分)作图如图,k=54(评分:作图正确2分;求得k值给2分。53±2可以)
②(2分)2.00(评分:有效数字正确给2分, ±0.02可以)
③(共4分)作图如图,[评分:作图正确给2分,求得F合给2分;要求:在同一力的图示中使用相同比例标尺,做
则小物块处在距离木板右端L=S0-S=0.75m
(1分)
36.解:(1)A下滑,有
(2分)
在最低点时有牛顿第二定律有:FN-mAg= (2分)
解得:FN=
据牛顿第三定律有:物块A第一次经过圆弧低端时对圆弧轨道的压力大小 (1分)
(2)A从传送带左端滑至右端,有 解得 (2分)
3分
(2)向有滤渣的漏斗中注入蒸馏水至水面没过滤渣,待水自然流完后,重复几次,至最后一次流出的洗涤液合格
为止。
3分[来源:Z。xx。]
(3)3H2O2+ 2Fe2++2H+ = 2Fe3++4H2O+O2↑ 3分

2014珠海二模(文数)【含答案--全WORD--精心排版】

2014珠海二模(文数)【含答案--全WORD--精心排版】

广东省珠海市2014届高三第二学期学业质量监测数学(文)试题一、选择题:本大题共10小题,每小题5 分,满分 50分.每小题给出的四个选项中,只有一项符合题目要求 1.已知集合{0,1,2,3}A =,集合{|||2}B x N x =∈≤,则A B =( )A .{3}B .{0,1,2}C .{1,2}D .{0,1,2,3}2.设复数11z i =+,22z xi =+(x R ∈),若 12.z z R ∈,则x =( )A .2-B .1-C .1D .23.不等式2230x x -++<的解集是( )A .{}|1x x <-B .3|2x x ⎧⎫>⎨⎬⎩⎭ C .3|12x x x ⎧⎫-<<⎨⎬⎩⎭D .3|12x x x ⎧⎫<->⎨⎬⎩⎭或 4.问由22()()()()()n ad bc K a b c d a c b d -=++++算得22100(10302040) 4.76250503070K ⨯-⨯=≈⨯⨯⨯参照右上附表,得到的正确结论( )A .在犯错误的概率不超过5%的前提下,认为“是否爱吃零食与性别有关”B .在犯错误的概率不超过5%的前提下,认为“是否爱吃零食与性别无关”C .有97.5%以上的把握认为“是否爱吃零食与性别有关”D .有97.5%以上的把握认为“是否爱吃零食与性别无关”5.右上图是一个几何体的三视图,由图中数据可知该几何体中最长棱的长度是( )A .6B .C .5D6.执行如右图所示的程序框图,则输出的y =( )A .12B .1C .1-D .27.“(1)(1)0a b -->”是“1a >且1b >”的( )A .充要条件B .充分但不必要条件C .必要但不充分条件D .既不充分也不必要条件8.将函数cos(2)6y x π=-的图像向右平移12π个单位后所得的图像的一个对称轴是( )A .6x π= B .4x π= C .3x π= D .2x π=9.变量x 、y 满足线性约束条件3202x y y x +-≤⎧⎪-≤⎨,则目标函数 z kx y =-,仅在点(0,2)取得最小值,则k 的取值范围是( )A .3k <-B .1k >C .31k -<<D .11k -<<10.设函数()y f x =在R 上有定义,对于任一给定的正数P ,定义函数 (),()(),()p f x f x pf x p f x p≤⎧=⎨>⎩,则称函数()p f x 为()f x 的“P 界函数”.若给定函数2()21,2f x x x p =--=,则下列结论不成立的是( )A .[(0)][(0)]p p f f f f =B .[(1)][(1)]p p f f f f =C .[(2)][(2)]p p f f f f =D .[(3)][(3)]p p f f f f =二、填空题:本大题共5小题,考生做答 4小题,每小题 5 分,满分 20 分.其中第 14~15 题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.请将答案填在答题卡相应位置. 11.等差数列{}n a 的前n 项和为n S ,且满足12a =,24615a a a ++=,则10S = . 12.函数3()2f x x x =-在1x =处的切线方程为 .13.已知菱形ABCD 的边长为a ,060DAB ∠=,2EC DE =,则AE DB 的值为 .14.(坐标系与参数方程选做题)在极坐标系中,已知圆C 的圆心为(2,)2π,半径为2,直线(0,)2R πθααρ=≤≤∈被圆C 截得的弦长为α的值等于 .15.(几何证明选讲选做题)如图,CD 是圆O 的切线,切点为C ,点B 在圆O 上,BC =060BCD ∠=,则圆O 的面积为________.三、解答题本大题共 6 小题,满分 80 分.解答须写出文字说明、证明过程和演算步骤。

[套卷]广东省珠海一中等六校2014届高三上学期第二次联考数学文

[套卷]广东省珠海一中等六校2014届高三上学期第二次联考数学文

广东省珠海一中等六校2014届高三上学期第二次联考数学文本试卷分选择题和非选择题两部分,共4页,20小题,满分150分。

考试用时120分钟。

第一部分 选择题(共50分)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{2,1,0,1,2}U =--,集合{1,1,2}A =-,{1,1}B =-,则)(B C A U 为A .{1,2}B .{1} C.{2} D .{1,1}- 2.已知命题:,cos 1p x R x ∀∈≤,则A .:,cos 1p x R ⌝∃∈>B .:,cos 1p x R ⌝∀∈≥C .:,cos 1p x R ⌝∃∈≥D .:,cos 1p x R ⌝∀∈>3. 下列函数中,既是偶函数又在区间(0,+ ∞)上单调递减的是A .21y x =-+B .lg ||y x =C .1y x=D .x y e -= 4. 在各项都为正数的等比数列}{n a 中,首项为3,前3项和为21,则3a 等于 A .15 B .12 C .9 D .65. 已知函数()()()40,40.x x x f x x x x +<⎧⎪=⎨-≥⎪⎩,, 则函数()f x 的零点个数为A .1B .2C .3D .46. 函数πsin 2y x ⎛⎫=- ⎪在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是7. 如果等差数列{}n a 中,15765=++a a a ,那么943...a a a +++等于xA.B.C.D.A .21B .30C .35D .408. ABC ∆的三个内角C B A ,,的对边分别为c b a ,,,已知sin 1B =,向量()a b =,,(12)=,,若q p //,则角A 的大小为 A.6π B. 3π C. 2π D. 32π9.已知定义在R 上的函数)(x f 满足1)2()4(=-=f f ,)(x f '为)(x f 的导函数,且导函数)(x f y '=的图象如右图所示.则不等式1)(<x f 的解集是( )A .)0,2(-B .)4,2(-C .)4,0(D .),4()2,(+∞--∞10. 设D 是边长为2的正123PP P ∆的边及其内部的点构成的集合,点0P 是123PP P ∆的中心,若集合0{|,||||,1,2,3}i S P P D PP PP i =∈≤=,若点M S ∈,则()01023P P P P P M +⋅的最大值为A. 0 B. 1 C. 2 D. 3第二部分 非选择题(共 100 分)二、填空题 本大题共4小题,每小题5分,满分20分.11. 已知函数⎪⎩⎪⎨⎧<≤-<=20,tan 0,2)(3πx x x x x f ,则=))4((πf f ________. 12. 已知向量()()1,1,2,2m n λλ=+=+ ,若()()m n m n +⊥-,则=λ_________ . 13.某住宅小区计划植树不少于60棵,若第一天植2棵,以后每天植树的棵树是前一天的2倍,则需要的最少天数n ()*n N ∈等于_____________.14.定义在R 上的函数()f x 满足(1)2()f x f x +=.若当01x ≤≤时.()(1)f x x x =-,则当10x -≤≤时,()f x =________________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15.(本小题满分12分)已知函数()sin 12f x x π⎛⎫=+ ⎪⎝⎭,x ∈R .(1) 求4f π⎛⎫-⎪⎝⎭的值; (2) 若4cos 5θ=,0,2πθ⎛⎫∈ ⎪⎝⎭,求23f πθ⎛⎫- ⎪⎝⎭.16.(本小题满分12分)已知向量22,cos )m x x =+ ,(1,2cos )n x =,设函数x f ⋅=)(,x ∈R .(1)求)(x f 的最小正周期与最大值;(2)在A B C ∆中, c b a ,,分别是角C B A ,,的对边,若ABC b A f ∆==,1,4)(的面积为23,求a 的值.17.(本小题满分14分)设数列{}n a 满足:11a =,13n n a a +=,*n N ∈.(1)求{}n a 的通项公式及前n 项和n S ;(2)已知{}n b 是等差数列,n T 为前n 项和,且11b a =,33T a =.求{}n b 的通项公式,并证明:1223111112n n b b b b b b ++++< .18.(本小题满分14分)已知函数3211()32f x x mx nx =++,x R ∈. (1)当1m =,2n =-时,求()f x 的单调区间;(2)当0n =,且 0m >时,求()f x 在区间[]1,1-上的最大值.19.(本小题满分14分)已知数列{}n a 的前n 项和为n S ,11=a ,13n S +是6与2n S 的等差中项(*N n ∈). (1)证明数列}23{-n S 为等比数列; (2)求数列{}n a 的通项公式;(3)是否存在正整数k ,使不等式()21nn n k a S -<(*N n ∈)恒成立,若存在,求出k 的最大值;若不存在,请说明理由.20.(本小题满分14分)已知函数c x b ax x f ++=ln )((c b a ,,是常数)在e x =处的切线方程为0)1(=-+-e ey x e ,且(1)0f =.(1)求常数c b a ,,的值;(2)若函数)()(2x mf x x g +=(R m ∈)在区间)3,1(内不是单调函数,求实数m 的取 值范围; (3)证明ln 2ln3ln 4ln 2013123420132013⨯⨯⨯⨯< .2014届高三六校第二次联考文科数学参考答案第Ⅰ卷选择题(满分50分)一、选择题:本大题共10小题,每小题5分,共50分.1.(C ) 2.(A ) 3.(A ) 4.(B ) 5.(C ) 6.(A ) 7.(C ) 8.(A ) 9.(B ) 10.(C )第Ⅱ卷非选择题(满分100分)二、填空题:本大题共4小题,每小题5分,共20分. 11. 2- 12.3- 13.5 14.(1)()2x x f x +=-三、解答题:本大题共6小题,满分80分.解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分12分) 解:(1)1sin sin sin 4412662f πππππ⎛⎫⎛⎫⎛⎫-=-+=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;……………… ……4分(2))2sin 2sin 2sin 2cos 2331242f ππππθθθθθ⎛⎫⎛⎫⎛⎫-=-+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭……………… ……7分因为4cos 5θ=,0,2πθ⎛⎫∈ ⎪⎝⎭,所以3sin 5θ=, ……………… ……9分所以24sin 22sin cos 25θθθ==,227cos 2cos sin 25θθθ=-=……………… 11分所以23f πθ⎛⎫- ⎪⎝⎭)sin 2cos 2θθ=-2472525⎛=-= ⎝⎭…………12分16.(本小题满分12分)解:(1)2()222cos f x m n x x =⋅++……………… ……2分2sin(2)36x π=++ ……………… ……4分∴ )(x f 的最小正周期为22π=T =π, ………………………5分)(x f 的最大值为5. ……………………6分(2)由4)(=A f 得,43)62sin(2=++πA ,即 21)62sin(=+πA , ∵ π<<A 0, ∴6562ππ=+A , ∴ 3π=A ………………………8分 又23sin 21=A bc , 即2343=c , ∴ 2=c ………………………10分 由余弦定理得,32121241cos 2222=⨯⨯⨯-+=-+=A bc c b a ∴ 3=a …………………………………12分17.(本小题满分14分) 解:(1)因为13n n a a +=,又11a =,所以13n na a +=, 因此{}n a 是首项为1,公比为3的等比数列, ……………2分所以13n n a -=,()13131132n nn S -==--. ……………6分 (2)设等差数列{}n b 的公差为d , 依题意111b a ==,1239b b b ++=所以()()11129b b d b d ++++=,即339d +=,故2d =. ……………8分 由此得,21n b n =-. (资料苏元高考吧 ) …………10分 所以,()()1223111111113352121n n b b b b b b n n ++++=+++⨯⨯-+ 1111111112323522121n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭……………12分 11112212n ⎛⎫=-< ⎪+⎝⎭. 因此所证不等式成立. ……………14分18.(本小题满分14分)解:(1)当1m =,2n =-时,3211()232f x x x x =+-, ……………………………1分则2()2f x x x '=+- ……………………………2分 令2()20f x x x '=+-=,解得2x =-,1x =,当1x >或2x <-时,有()0f x '>; 当21x -<<时,有()0f x '<,………… 5分 所以()f x 的单调递增区间(),2-∞-和(1,)+∞,()f x 的单调递减区间()2,1-.……………………………7分(2)当0n =,且 0m >时,3211()32f x x mx =+,x R ∈. 则2()f x x mx '=+, 令0)('=x f ,得0=x 或m x -=. …………………8分①当1m -≤-,即1m ≥时,此时当10x -<<时,有()0f x '<,所以()f x 在(1,0)-上为减函数, 当01x <<时,有()0f x '>,所以()f x 在(0,1)上为增函数, ………9分又11(1)32f m -=-+,11(1)32f m =+, 所以()f x 的最大值为11(1)32f m =+; …………………………10分②当10m -<-<,即01m <<时,此时当1x m -<<-时,()0f x '>;当0m x -<<时,()0f x '<;当01x <<时,()0f x '>;所以()f x 在(1,)m --上为增函数,在(,0)m -上为减函数,在(0,1)上为增函数. ……………………12分3231111()()()3266f m m m m m -=-+-=<, 111(1)323f m =+>,所以()f x 的最大值为11(1)32f m =+, …………………13分综上,()f x 在区间[]1,1-上的最大值为1132m + . …………………14分19.(本小题满分14分)解(1)因为13n S +是6与2n S 的等差中项,所以1626n n S S ++=(*N n ∈),即1311+=+n n S S ,(*N n ∈) ……………2分由此得)23(31213123)131(231-=-=-+=-+n n n n S S S S (*N n ∈), …………4分又21232311-=-=-a S , 所以 3123231=--+n n S S (*N n ∈), 所以数列}23{-n S 是以21-为首项,31为公比的等比数列. ……………6分(2)由(1)得1)31(2123-⨯-=-n n S ,即1)31(2123--=n n S (*N n ∈),……………7分所以,当2≥n 时,121131])31(2123[])31(2123[----=---=-=n n n n n n S S a ,…9分又1=n 时,11=a 也适合上式, 所以)(31*1N n a n n ∈=-. ……………10分 (3) 原问题等价于()()21111113323n n nk --⎡⎤⎛⎫⎛⎫-<-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦(*N n ∈)恒成立. 当n 为奇数时,对任意正整数k 不等式恒成立; ……………11分 当n 为偶数时,等价于()2111123033n n k --⎛⎫⎛⎫+-< ⎪⎪⎝⎭⎝⎭恒成立,令113n t -⎛⎫= ⎪⎝⎭,103t <<,则等价于2230kt t +-<恒成立,因为k 为正整数,故只须21123033k ⎛⎫+-< ⎪⎝⎭,解得012k <<,*k N ∈,所以存在符合要求的正整数k ,且其最大值为11. ……………14分20.(本小题满分14分)解:(1)由题设知,)(x f 的定义域为),0(+∞,xba x f +=)(', ……………1分 因为)(x f 在e x =处的切线方程为0)1(=-+-e ey x e ,所以'1()e f e e-=-,且()2f e e =-, 即1b e a e e-+=-,且2ae b c e ++=- …………3分又0)1(=+=c a f解得1-=a ,1=b ,1=c . …………4分 (2)由(1)知)0(1ln )(>++-=x x x x f ,因此,22()()ln (0)g x x mf x x mx m x m x =+=-++>,所以)0)(2(12)(2'>+-=+-=x m mx x xx m m x x g . …………5分 令2()2(0)d x x mx m x =-+>.(ⅰ)当函数)(x g 在)3,1(内有一个极值时,0)('=x g 在)3,1(内有且仅有一个根,即02)(2=+-=m mx x x d 在)3,1(内有且仅有一个根,又因为(1)20d =>,当0)3(=d ,即9=m 时,02)(2=+-=m mx x x d 在)3,1(内有且仅有一个根32x =,当0)3(≠d 时,应有0)3(<d ,即3322<+-⨯m m ,解得9>m ,所以有9m ≥. ………7分(ⅱ)当函数)(x g 在)3,1(内有两个极值时,0)('=x g 在)3,1(内有两个根,即二次函 数02)(2=+-=m mx x x d 在)3,1(内有两个不等根,所以⎪⎪⎩⎪⎪⎨⎧<<>+-⨯=>+-=>⨯⨯-=∆,341,0332)3(,02)1(,02422m m m d m m d m m解得98<<m . …………8分 综上,实数m 的取值范围是),8(+∞. …………9分 (3)因为'1()x f x x-=,所以当1x >时,有'()0f x <,所以()f x 在()1,+∞上为减函数,因此当),1(+∞∈x 时, ()(1)f x f <,即ln 10x x -++<,即当),1(+∞∈x 时, ln 1x x <-,所以xx x x 1ln 0-<<对一切(1,)x ∈+∞都成立, …………11分 所以2122ln 0<<,3233ln 0<<, 4344ln 0<<, …ln 20132012020132013<<,所以 ln 2ln3ln 4ln 2012123201223420122342013⨯⨯⨯⨯<⨯⨯⨯⨯ , 所以ln 2ln3ln 4ln 2013123420132013⨯⨯⨯⨯< . …………14分。

2014年高考文科数学广东卷及答案解析

2014年高考文科数学广东卷及答案解析

数学试卷 第1页(共10页) 数学试卷 第2页(共10页)绝密★启用前2014年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高.一组数据1x ,2x ,…,n x 的方差2222121[()()()]n s x x x x x x n=-+-++-…, 其中x 表示这组数据的平均数.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{2,3,4}M =,{0,2,3,5}N =,则M N =( ) A .{0,2} B .{2,3}C .{3,4}D .{3,5} 2.已知复数z 满足(34i)25z -=,则z =( ) A .34i -- B .34i -+ C .34i - D .34i + 3.已知向量(1,2)=a ,(3,1)=b ,则-=b a( ) A .(2,1)-B .(2,1)-C .(2,0)D .(4,3)4.若变量x ,y 满足约束条件28,04,03,x y x y +⎧⎪⎨⎪⎩≤≤≤≤≤则2z x y =+的最大值等于( ) A .7B .8C .10D .11 5.下列函数为奇函数的是( ) A .122x x-B .3sin x xC .2cos 1x +D .22x x +6.为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( ) A .50 B .40 C .25 D .20 7.在ABC △中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a b ≤”是“sin sin A B ≤”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件8.若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的( ) A .实半轴长相等 B .虚半轴长相等 C .离心率相等 D .焦距相等 9.若空间中四条两两不同的直线1l ,2l ,3l ,4l ,满足12l l ⊥,23l l ∥,34l l ⊥,则下列结论一定正确的是( ) A .14l l ⊥B .14l l ∥C .1l 与4l 既不垂直也不平行D .1l 与4l 的位置关系不确定10.对任意复数1ω,2ω定义1212*ωωωω=,其中2ω是2ω的共轭复数,对任意复数1z ,2z ,3z ,有如下四个命题:①1231323()*(*)(*)z z z z z z z +=+; ②1231213*()(*)(*)z z z z z z z ++=+ ③123123(*)**(*)z z z z z z =; ④1221**z z z z =. 则真命题的个数是( )姓名________________ 准考证号_____________------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------------数学试卷 第3页(共10页) 数学试卷 第4页(共10页)A .1B .2C .3D .4二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.曲线5e 3x y y =-+在点(0,2)-处的切线方程为 .12.从字母a ,b ,c ,d ,e 中任取两个不同字母,则取到字母a 的概率为 . 13.等比数列{}n a 的各项均为正数,且154a a =,则212223log log log a a a +++2425log log a a += .(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为2cos sin ρθθ=与cos 1ρθ=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的交点的直角坐标为 . 15.(几何证明选讲选做题)如图1,在平行四边形ABCD 中, 点E 在AB 上且2EB AE =,AC 与DE 交于点F ,则CDF AEF =△的周长△的周长 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数π()sin()3f x A x =+,x ∈R ,且5π()122f =. (Ⅰ)求A 的值;(Ⅱ)若()()f f θθ--=,π(0,)2θ∈,求π()6f θ-.17.(本小题满分13分)某车间20名工人年龄数据如下表:年龄(岁)工人数(人)19 1 28329 3 30 5 31 4 32 3 40 1 合计20(Ⅰ)求这20名工人年龄的众数与极差;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (Ⅲ)求这20名工人年龄的方差. 18.(本小题满分13分)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,1AB =,2BC PC ==.作如图3折叠:折痕EF DC ∥,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF CF ⊥.(Ⅰ)证明:CF ⊥平面MDF ; (Ⅱ)求三棱锥M CDE -的体积.19.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足22(3)n n S n n S -+--23()0n n +=,*n ∈N .(Ⅰ)求1a 的值;(Ⅱ)求数列{}n a 的通项公式; (Ⅲ)证明:对一切正整数n ,有11221111+(1)(1)(1)3n n a a a a a a +++++…<.20.(本小题满分14分)已知椭圆C :22221(0)x y a b a b+=>>的一个焦点为,.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若动点00(,)P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点数学试卷 第5页(共10页) 数学试卷 第6页(共10页)P 的轨迹方程.21.(本小题满分14分)已知函数321()1()3f x x x ax a =+++∈R .(Ⅰ)求函数()f x 的单调区间;(Ⅱ)当0a <时,试讨论是否存在011(0,)(,1)22x ∈,使得01()()2f x f =.{2,3,4}{0,2,3,5}={2,3}N =D 2525(34i)25(3=34i (34i)(34i)+==--+【答案】B【解析】(3,1)b a -=-【答案】C,a b ,,【解析】05k <<)21k -=-【答案】D312313231323)()()()()()z z z z z z z z z z z z ++===+,故①是真命题;12312312312131213()()()()()()()z z z z z z z z z z z z z z z z +=+=+=+=+,②对;()()()z z z z z z z z z z z z =*==,右边,≠左边右边,③错;(2)茎叶图如下图(1928329330531432340)+⨯+⨯+⨯+⨯+⨯+CD PD D=,所以MF AD M=,所以CF⊥平面ADF,DFBC PC==60,30CDF∠,38CD DE=,211111111111()()()(1)2323525722121n na a n n++<+-+-++-+⨯-+数学试卷第7页(共10页)数学试卷第8页(共10页)数学试卷 第9页(共10页) 数学试卷 第10页(共10页)1,12⎫⎛⎫⎪ ⎪⎭⎝⎭,使得1124⎛+-+ ⎝ 1,12⎫⎛⎫⎪⎪⎭⎝⎭上有解1,12⎫⎛⎫⎪ ⎪⎭⎝⎭上有解,1,12⎫⎛⎫⎪ ⎪⎭⎝⎭上无解;11a -+-1,12⎫⎛⎫⎪ ⎪⎭⎝⎭上有1,12⎫⎛⎫⎪ ⎪⎭⎝⎭上无解57,412⎫⎛⎫--⎪ ⎪⎭⎝⎭时1,12⎫⎛⎫⎪ ⎪⎭⎝⎭,。

广东省海珠区2014届高三上学期综合测试(二)理综试题 含答案

广东省海珠区2014届高三上学期综合测试(二)理综试题 含答案

海珠区2013学年高三综合测试(二)试题理科综合本试卷分第一部分(选择题)和第二部分(非选择题)两部分;第一部分1—6页,第二部分6—12页,满分300分。

考试时间150分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的学校、班级、姓名、考场试室号、座位号填写在答题卡上;填写准考证号,并用2B铅笔把对应号码的标号涂黑。

2.选择题每小题选出答案后,用2B铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束,将答题卡交回.第一部分选择题(共118分)一、单项选择题:本大题共16小题,每小题4分,共64分.在每小题给出的四个选项中,只有一个选项符合题目要求,选对的得4分,选错或不答的得0分。

1.右下图是细胞核的结构模式图。

下列关于各结构及功能的叙述,正确的是A .①属于生物膜系统,因其上有④,所以能让各种分子进出B .②是遗传物质的载体,能被酸性染料染色 C .③位于细胞核的中央,是细胞核功能的控制中心D .在有丝分裂的前期,①②③都会发生变化2.通过下列育种方法产生的后代,其染色体数一定发生变化的是A .单倍体育种B .植物体细胞杂交育种C .杂交育种D .转基因育种3.右图为人类某种单基因遗传病的系谱图,Ⅱ4为患者。

排除基因突变,下列推断不合理...的是A .该病属于隐性遗传病,但致病基因不一定位于常染色体上B .若Ⅰ2携带致病基因,则Ⅰ1和Ⅰ2再生一个患病男孩的概率为1/8C .若Ⅰ2不携带致病基因,则致病基因位于X 染色体D .若Ⅰ2不携带致病基因,则Ⅱ3不可能是该病携带者4.下列有关动物丰富度的研究方法,正确的是A .调查土壤动物丰富度:样方法和标志重捕法B .观察肉眼难识别的小动物:高倍显微镜观察C .统计土壤动物丰富度:记名计算法和目测估计法D .调查水中小动物类群丰富度:生态缸进行培养1 ⅠⅡ2 3 45.如右图所示,在适宜温度下某农作物CO2吸收量随环境CO2浓度变化的曲线。

广东省广州市海珠区2014届高三上学期综合测试二理科数学试卷(解析版)

广东省广州市海珠区2014届高三上学期综合测试二理科数学试卷(解析版)

广东省广州市海珠区2014届高三上学期综合测试二理科数学试卷(解析版)一、选择题1..若复数()()12bi i ++是纯虚数(i 是虚数单位,b 是实数),则b =( ) A.2- B.12- C.12D .2【答案】B 【解析】 试题分析:()()()()12112bi i b b i ++=-++是纯虚数,则有10120b b -≠⎧⎨+=⎩,解得12b =-,故选B.考点:1.复数的乘法运算;2.复数的概念2.在各项都为正数的等比数列{}n a 中,13a =,前三项的和为21,则345a a a ++=( )A.33B.72C.84D.189 【答案】C 【解析】试题分析:设等比数列{}n a 的公比为q ,则0q >,由于13a =,212333321a a a q q ++=++=,化简得260q q +-=,解得2q =,23423434533332323284a a a q q q ∴++=++=⨯+⨯+⨯=,故选C.考点:等比数列的性质3.阅读如图程序框图,若输入的100N =,则输出的结果是( )A.50B.1012C.51D.1032【答案】A 【解析】试题分析:1i =,100N =,i N >不成立,执行第一次循环,011S =+=,112i =+=; i N >不成立,执行第二次循环,123S =+=,213i =+=; i N >不成立,执行第三次循环,123S =++,314i =+=;;i N >不成立,执行第一百次循环,1001011231002S ⨯=++++=,1001101i =+=; i N >成立,输出1001011502101S i ⨯=⨯=,故选A. 考点:1.数列求和;2.算法与程序框图4.在ABC ∆中,已知D 是AB 边上的一点,若2AD DB =,13CD CA CB λ=+,则λ=( ) A.23 B.13 C.13- D.23-【答案】A 【解析】试题分析:2AD DB =,即()2CD C A C B C D -=-,解得1233CD CA CB =+,23λ∴=,故选A.考点:平面向量的线性表示5.“1a =-”是“直线260a x y -+=与直线()4390x a y --+=互相垂直”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 【答案】A 【解析】试题分析:若直线260a x y -+=与直线()4390x a y --+=互相垂直,则()()24130a a ⨯+-⨯--=⎡⎤⎣⎦,即2430a a +-=,即()()4310a a -+=,解得1a =-或34a =,故“1a =-”是“直线260a x y -+=与直线()4390x a y --+=互相垂直”的充分不必要条件,故选A.考点:1.两直线的位置关系;2.充分必要条件6.某校300名高三学生期中考试数学成绩的频率分布直方图如图所示,由图中数据估计此次数学成绩平均分为( )A.69B.71C.73D.75【答案】C 【解析】试题分析:由频率分布直方图知()21010.040.030.02100.10.005a a ⨯=-++⨯=⇒=,故此次数学成绩的平均分为()550.005650.04750.03850.02950.0051073x =⨯+⨯+⨯+⨯+⨯⨯=,故选C.考点:1.频率分布直方图;2.平均数7.已知x 、y 满足2y x x y x a ≥⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最大值是最小值的4倍,则a 的值是( )A.34 B.14 C.211 D.4【答案】B 【解析】试题分析:作出不等式组2y xx y x a≥⎧⎪+≤⎨⎪≥⎩所表示的可行域如下图所示,联立x a y x =⎧⎨=⎩得点(),A a a ,联立2y xx y =⎧⎨+=⎩得点()1,1B ,作直线:2l z x y =+,则z 为直线l 在y 轴上的截距,当直线l 经过可行域上的点A 时,此时直线l 在y 轴上的截距最小,此时z 取最小值,即min 23z a a a =⨯+=;当直线l 经过可行域上的点B 时,此时直线l 在y 轴上的截距最大,此时z 取最大值,即max 2113z =⨯+=,由题意知,max min 4z z =,即343a =⨯,解得14a =,故选B. 考点:线性规划8.若a 、b 是方程lg 4x x +=,104xx +=的解,函数()()22,02,0x a b x x f x x ⎧+++≤=⎨>⎩,则关于x 的方程()f x x =的解的个数是( )A.1B.2C.3D.4【答案】C 【解析】试题分析:由题意知,a 、b 是方程lg 4x x =-,104xx =-的实数根,作出函数()lg f x x =,()10x g x =与函数()4h x x =-的图象如下图所示,则函数()lg f x x =与函数()4h x x =-交于点(),lg A a a ,函数()10xg x =与函数()4h x x =-交于点(),10bB b ,由于函数()lg f x x =与函数()10xg x =关于直线y x =对称,且直线y x =与4y x =-垂直,且交于点()2,2C ,故点A 、B 也关于直线y x =对称,且其中点为点()2,2C ,因此4a b +=,当0x ≤时,()242f x x x =++,解方程()f x x =,即2320x x ++=,解得2x =-或1x =-;当0x >时,()2f x =,解方程()2f x x x =⇒=,故关于x 的方程()f x x =的实根个数为3,故选C.考点:1.函数的零点;2.函数的图象;3.分段函数二、填空题9.如图是一个空间几何体的三视图,则该几何体的体积为 .【答案】23. 【解析】试题分析:由三视图可知,该几何体是一个三棱锥,且底面是一个等腰直角三角形,腰长为其面积为2112S =⨯=,三棱锥的高为2,故该三棱锥的体积为121233V =⨯⨯=.考点:1.三视图;2.三棱锥的体积10.已知双曲线221x y m-=的离心率是2,则m 的值是 . 【答案】13. 【解析】试题分析:由题意知,双曲线的离心率2e ==,解得13m =.考点:双曲线的离心率11.在ABC ∆中,已知a 、b 、c 分别为A ∠、B ∠、C ∠所对的边,S 为ABC ∆的面积,若向量()2224,p a b c =+-,()1,q S =满足//p q ,则C ∠= .【答案】45. 【解析】 试题分析:()2224,p a b c =+-,()1,q S =,且有//p q ,故有2224S a b c =+-,而1sin 2S ab C =,故有2222s i n a b Ca b c =+-,222sin cos 2a b c C C ab+-∴==,tan 1C ∴=,由于0C π<<,45C ∴∠=.考点:1.平面向量共线;2.三角形的面积公式;3.余弦定理;4.同角三角函数的商数关系 12.在市数学竞赛中,A 、B 、C 三间学校分别有1名、2名、3名同学获一等,将这六名同学排成一排合影,要求同学校的同学相邻,那么不同的排法共有 种. 【答案】72. 【解析】试题分析:利用捆绑法,先将各学校的学生捆绑在一起,然后再将各学校的学生的整体进行排序,但是需要考虑各学生之间的顺序,故共有32332372A A A =种排法.考点:1.捆绑法;2.排列组合 13.给出下列四个命题: ①函数()xx f x ee -=+有最小值是2;②函数()4sin 23f x x π⎛⎫=-⎪⎝⎭的图象关于点,06π⎛⎫⎪⎝⎭对称; ③若“p 且q ”为假命题,则p 、q 为假命题;④已知定义在R 上的可导函数()y f x =满足:对x R ∀∈,都有()()f x f x -=-成立,若当0x >时,()0f x '>,则当0x <时,()0f x '>. 其中正确命题的序号是 . 【答案】①②④. 【解析】试题分析:对于命题①,0x e >,()2xx f x ee -=+≥=,当且仅当21x x x e e e -=⇒=,即当0x =时,上式取等号,即函数()x x f x e e -=+有最小值2,故命题①正确;对于命题②,由于6f π⎛⎫=⎪⎝⎭4sin 2063ππ⎛⎫⨯-= ⎪⎝⎭,故函数()4sin 23f x x π⎛⎫=- ⎪⎝⎭的图象关于点,06π⎛⎫⎪⎝⎭对称,故命题②正确;对于命题③,若“p 且q ”为假命题,则p 、q 中至少有一个是假命题,故命题③错误;对于命题④,由于函数()f x 是奇函数,当0x >时,()0f x '>,即函数()f x 在区间()0,+∞上单调递增,由奇函数的性质知,函数()f x 在(),0-∞上也是单调递增的,即当0x <时,仍有()0f x '>,故命题④正确,综上所述,正确命题的序号是①②④.考点:1.基本不等式;2.三角函数的对称性;3.复合命题;4.函数的奇偶性与单调性14.在极坐标中,圆4cos ρθ=的圆心C 到直线sin 4πρθ⎛⎫+= ⎪⎝⎭的距离为 .【解析】试题分析:圆4cos ρθ=的直角坐标方程为224x y x +=,化为标准式得()2224x y -+=,圆心C 坐标为()2,0,直线s i n 4πρθ⎛⎫+= ⎪⎝⎭的直角坐标方程为4x y +=,即40x y +-=,故圆心C 到直线40x y +-=的距离d ==考点:1.极坐标方程与直角坐标方程的互化;2.点到直线的距离15.如图,平行四边形ABCD 中,:1:2AE EB =,AEF ∆的面积为21cm ,则平行四边形ABCD 的面积为 2cm .【答案】24. 【解析】试题分析:由于四边形ABCD 为平行四边形,//AB CD ∴,且12AE EB =,13AE AE AE CD AB AE EB ∴===+,219AEF CDF S AE S CD ∆∆⎛⎫∴== ⎪⎝⎭,299CDF AEF S S cm ∆∆∴==,同理13EF AE DF CD ==,13AEF ADF S EF S DF ∆∆∴==,ADF S ∆∴ 233AEF S cm ∆==,故23912ACD ADF CDF S S S cm ∆∆∆=+=+=,因此四边形ABCD 的面积2ACD S S ∆== 221224cm ⨯=.考点:相似三角形三、解答题16.设向量(6cos ,a x =,()cos ,sin 2b x x =,0,2x π⎡⎤∈⎢⎥⎣⎦. (1)若23a =,求x 的值;(2)设函数()f x a b =⋅,求()f x 的最大、最小值. 【答案】(1)3x π=;(2)函数()f x的最小值为3-,最大值为6.【解析】试题分析:(1)先由平面向量模的计算公式由条件23a =得出cos x 的值,结合角x 的取值范围求出x 的值;(2)先由平面向量数量积的坐标运算求出函数()f x 的解析式,并将函数()f x 的解析式化简为()fx =236x π⎛⎫++ ⎪⎝⎭,先由02x π≤≤得出26x π+的取值范围,再利用余弦曲线确定函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值与最小值.试题解析:(1)23a =,=21cos 4x ∴=,1cos 2x ∴=±, 0,2x π⎡⎤∈⎢⎥⎣⎦,cos 0x ∴>,1cos 2x ∴=,3x π∴=;(2)()21cos 26cos 2622xf x a b x x x +=⋅=-=⨯13cos 2232sin 232326x x x x x π⎫⎛⎫=+=-+=++⎪ ⎪⎪⎝⎭⎭,当0,2x π⎡⎤∈⎢⎥⎣⎦时,72666x πππ≤+≤,1cos 26x π⎛⎫∴-≤+≤ ⎪⎝⎭,即函数()f x 的最小值为3-,最大值为6.考点:1.平面向量模的计算;2.平面向量的数量积;3.二倍角公式;4.辅助角公式;5.三角函数的最值17.在一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀,统计成绩后,得到如下的22⨯列联表,且已知在甲、乙两个文科班全部110人中随机抽取人为优秀的概率为3.(2)根据列联表的数据,能否有99%的把握认为成绩与班级有关系?(3)在甲、乙两个理科班优秀的学生中随机抽取两名学生,用ξ表示抽得甲班的学生人数,求ξ的分布列.【答案】(1)详见解析;(2)按99%的可靠性要求,能认为“成绩与班级有关系”; (3)抽到9或10号的概率为736. 【解析】 试题分析:(1)先根据题中条件确定乙班优秀的人数,然后根据甲乙两班的总人数将表中其它的数据补充上;(2)先提出假设“成绩与班级无关”,根据表中数据求出2K 的值,然后利用临界值表确定犯错误的概率,进而确定是否有99%的把握认为成绩与班级有关系;(3)先确定随机变量ξ的可能取值,然后根据超几何分布的方法求出随机变量ξ在相应的取值下的概率,并列出相应的分布列.(2)假设成绩与班级无关,根据列联表中的数据,得到()22110103020507.487 6.63560503080K ⨯⨯-⨯=≈>⨯⨯⨯,因此按99%的可靠性要求,能认为“成绩与班级有关系”;(3)由(1)知,甲、乙两个理科班优秀的学生人数分别为10、20, 依题意得,ξ的可能取值为0、1、2,()22023038087C P C ξ===,()11201023040187C C P C ξ⋅===,()2102309287C P C ξ===, 所以ξ的分布列为:考点:1.独立性检验;2.古典概型;3.离散型随机变量的分布列18.如图,已知矩形ABCD 中,10AB =,6BC =,将矩形沿对角线BD 把ABD ∆折起,使A 移到1A 点,且1A 在平面BCD 上的射影O 恰好在CD 上.(1)求证:1BC A D ⊥;(2)求证:平面1A BC ⊥平面1A BD ; (3)求二面角1A BD C --的余弦值.【答案】(1)详见解析;(2)详见解析;(3)二面角1A BD C --的余弦值925. 【解析】试题分析:(1)利用折叠后点1A 在平面BCD 内的射影点在棱CD 上得到1AO ⊥平面BCD ,从而得到1AO BC ⊥,再结合BC CD ⊥即可证明BC ⊥平面1ACD ,进而证明1BC A D ⊥;(2)由(1)中的结论BC ⊥平面1ACD 并结合平面与平面垂直的判定定理即可证明平面1A BC ⊥平面1A BD ;(3)先作OE BD ⊥,连接1A E ,利用(1)中的结论1AO ⊥平面BCD 得到1AO BD ⊥,于是得到BD ⊥平面1A EO ,于是得到1A EO ∠为二面角1A BD C --的平面角,然后在直角三角形1A EO 中计算1cos A EO ∠,进而确定二面角1A BD C --的余弦值;另一种方法是利用空间向量法计算二面角1A BD C --的余弦值. 试题解析:(1)1A 在平面BCD 上的射影O 在CD 上,1AO ∴⊥平面BCD , 又BC ⊂平面BCD ,1BC AO ∴⊥, 又BC CO ⊥,1AO CO O =,BC ∴⊥平面1ACD , 又1A D ⊂平面1ACD ,1BC A D ∴⊥; (2)四边形ABCD 是矩形,11A D A B ∴⊥,由(1)知1A D BC ⊥,1A B BC B =,1A D ∴⊥平面1A BC ,又1A D ⊂平面1A BD ,∴平面1A BC ⊥平面1A BD ; (3)1A D ⊥平面1A BC ,11A D AC ∴⊥,在1Rt A BD ∆中,由16AD =,10CD =,得18AC =,1245AO =, 过点O 作OE BD ⊥,垂足为点E ,连接1A E ,由1AO ⊥平面BCD ,1AO BD ⊥,BD ∴⊥平面1A EO ,1BD A E ⊥, 1A EO ∴∠为二面角1A BD C --的平面角,又在R t D E ∆和Rt DBC ∆,BC OD EO BD ⋅==,1A E =,119cos 25EO A EO A E ∴∠==; 另解:以点D 为坐标原点,以DA 方向为x 轴,以DC 方向为y 轴,以平行1OA 的方向为z轴,建立空间直角坐标系,可知()0,0,0D 、()6,10,0B 、18240,,55A ⎛⎫⎪⎝⎭,得()6,10,0DB =,118240,,55DA ⎛⎫= ⎪⎝⎭,设平面1A BD 的法向量为()1,,n x y z =,由61001824055x y y z +=⎧⎪⎨+=⎪⎩,得()120,12,9n =-, 而平面BDC 的法向量为()20,0,1n =,129cos ,25n n ∴==, 结合图象可知二面角1A BD C --的余弦值为925. 考点:1.直线与平面垂直;2.直线与直线垂直;3.平面与平面垂直;4.二面角的求解 19.在数列{}n a 中,11a =,23a =,()2130n n n a a ka k ++=-≠对任意n N *∈成立,令1n n n b a a +=-,且{}n b 是等比数列.(1)求实数k 的值;(2)求数列{}n a 的通项公式; (3)求证:12311113421n a a a a ++++<. 【答案】(1)2k =;(2)21n n a =-;(3)详见解析. 【解析】试题分析:(1)先利用题中的定义,利用数列{}n b 的前三项成等比数列求出k 的值,然后就k 的值进行检验,即对数列{}n b 是否为等比数列进行检验;(2)根据等比数列{}n b 的通项12n n n n b a a +=-=选择累加法求数列{}n a 的通项公式;(3)利用()12122221n n n -->-=-,将数列1n a ⎧⎫⎨⎬⎩⎭从第三项开始放缩为一个等比数列,而前面两项的值保持不变,再利用数列求和即可证明相应的数列不等式. 试题解析:(1)11a =,23a =,39a k =-,4276a k =-,12b ∴=,26b k =-,3185b k =-,数列{}n b 为等比数列,2213b b b ∴=⋅,即()()262185k k -=⨯-,解得2k =或0k =(舍),当2k =时,2132n n n a a a ++=-,即()2112n n n n a a a a +++-=-,12n nb b +∴=,所以2k =满足条件; (2)12b =,数列{}n b 为等比数列,1222n n n b -∴=⨯=,1212a a ∴-=,2322a a -=,,112n n n a a ---=,()()()2112132122222n n n n n a a a a a a a a --∴-=-+-++-=+++=-,21n n a ∴=-;(3)()12122221n n n -->-=-,1111111212212n n n n a a --∴=<⨯=--, 31231111111111111372113772nn n a a a a -++++=++++<++++-⋅ 2112112341113723721n -⎡⎤⎛⎫=++⋅-<++=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 考点:1.等比数列的定义;2.累加法求数列的通项公式;3.放缩法20.已知椭圆()222210x y a b a b +=>>的离心率为e =y x =心、椭圆C 的短半轴长为半径的圆O 相切.(1)求椭圆C 的方程;(2)如图,A 、B 、D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m ,求证:2m k -为定值.【答案】(1)椭圆C 的方程为2214x y +=;(2)详见解析. 【解析】试题分析:(1)先根据题中条件求出a 、b 、c ,进而可以求出椭圆C 的方程;(2)先由直线BP 的方程()2y k x =-与椭圆的方程联立求出点P 的坐标,然后由D 、P 、N 三点共线,利用平面向量共线进行等价转化,求出点N 的坐标,于是得到直线MN 的斜率m ,最终证明2m k -为定值.试题解析:(1)由直线y x =222x y b +=得1b ==,由c e a ==,得2222234c a b a a -==,所以2a =,所以椭圆C 的方程为2214x y +=; (2)因为()2,0B ,P 不为椭圆定点,即BP 的方程为()1202y k x k k ⎛⎫=-≠≠± ⎪⎝⎭且,①②将①代入2214x y +=,解得222824,4141k k P k k ⎛⎫-- ⎪++⎝⎭, 又直线AD 的方程为112y x =+, ② 由()0,1D 、222824,4141k k P k k ⎛⎫-- ⎪++⎝⎭、(),0N x 三点共线可得42,021k N k -⎛⎫⎪-⎝⎭, 所以MN 的斜率为214k m +=,则211222k m k k +-=-=(定值). 考点:1.椭圆的方程;2.直线与椭圆的公共点的求解;3.直线的斜率;4.三点共线 21.设a R ∈,函数()ln f x x ax =-.(1)若2a =,求曲线()y f x =在点()1,2P -处的切线方程; (2)若()f x 无零点,求实数a 的取值范围;(3)若()f x 有两个相异零点1x 、2x ,求证:212x x e ⋅>.【答案】(1)切线方程为10x y ++=;(2)实数a 的取值范围是1,e ⎛⎫+∞ ⎪⎝⎭;(3)详见解析. 【解析】试题分析:(1)将2a =代入函数()f x 的解析式,利用导函数的几何意义,结合直线的点斜式求出切线的方程;(2)先求出函数()f x 的导数,对a 的符号进行分类讨论,结合零点存在定理判断函数()f x 在定义域上是否有零点,从而求出参数a 的取值范围;另外一中方法是将问题等价转化为“直线y a =与曲线ln xy x=无公共点”,结合导数研究函数()ln xg x x=的基本性质,然后利用图象即可确定实数a 的取值范围;(3)从所证的不等式出发,利用分析法最终将问题等价转换为证明不等式()21ln 1t t t ->+在区间()1,+∞上恒成立,并构造新函数()()21ln 1t h t t t -=-+,利用导数结合函数的单调性与最值进行证明.试题解析:在区间()0,+∞上,()11ax f x a x x-'=-=, (1)当2a =时,()1121f '=-=-,则切线方程为()21y x -=--,即10x y ++=; (2)①当0a =时,()ln f x x =有唯一零点1x =;②当0a <时,则()0f x '>,()f x 是区间()0,+∞上的增函数,()10f a =->,()()10a a a f e a ae a e =-=-<,()()10a f f e ∴⋅<,即函数()f x 在区间()0,+∞有唯一零点;③当0a >时,令()0f x '=得1x a=, 在区间10,a ⎛⎫⎪⎝⎭上,()0f x '>,函数()f x 是增函数, 在区间1,a ⎛⎫+∞⎪⎝⎭上,()0f x '<,函数()f x 是减函数, 故在区间()0,+∞上,()f x 的极大值为11ln 1ln 1f a a a ⎛⎫=-=--⎪⎝⎭, 由10f a ⎛⎫<⎪⎝⎭,即ln 10a --<,解得1a e >,故所求实数a 的取值范围是1,e ⎛⎫+∞ ⎪⎝⎭; 另解:()f x 无零点⇔方程ln x a x =在()0,+∞上无实根⇔直线y a =与曲线ln xy x=无公共点, 令()ln x g x x =,则()1ln xg x x-'=,令()0g x '=,解得x e =,列表如下:故函数()f x 在x e =处取得极大值,亦即最大值,即()()max f x f e e==, 由于直线y a =与曲线ln x y x =无公共点,故1a e >,故所求实数a 的取值范围是1,e ⎛⎫+∞ ⎪⎝⎭; (3)设120x x >>,由()10f x =,()20f x =,可得11ln 0x ax -=,22ln 0x ax -=,()1212ln ln x x a x x ∴+=+,()1212ln ln x x a x x -=-,原不等式()()122121121212122122ln ln ln ln 222ln x x x x x x x e x x a x x x x x x x --⋅>⇔+>⇔+>⇔>⇔>-+, 令121x t x =>,于是()()121212221ln ln 1x x t x t x x x t -->⇔>++, 设函数()()()21ln 11t h t t t t -=->+,求导得()()()()222114011t h t t t t t -'=-=>++, 故函数()h t 是()1,+∞上的增函数,()()10h t h ∴>=,即不等式()21ln 1t t t ->+成立, 故所证不等式212x x e ⋅>成立.考点:1.利用导数求切线方程;2.函数的零点;3.分析法。

广东省广州市海珠区2014届高三入学摸底考试数学文试题(含答案)

广东省广州市海珠区2014届高三入学摸底考试数学文试题(含答案)

绝密★启用前广州海珠区2013学年高三调研测试(一)数学(文科) 2013.8本试卷共6页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁。

考试结束后,将答题卡一并交回。

参考公式:锥体体积公式Sh V 31=,其中S 为锥体的底面积,h 为锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z 满足()()21i 2z --=(i 为虚数单位),则z 的共轭复数z 为A.1i -B.1+ iC.3i -D.3+ i2.已知集合,A B 均为全集{}12U =,,3,4的子集,且()C U A B ⋃={}4,{}1B =,2,则C U A B ⋂=A .{}3 B.{}4 C. {}34, D.∅3.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项和10S =A.85B.135C.95D.234.设0.220.20.2log 2,log 3,2,0.2a b c d ====,则这四个数的大小关系是A.a b c d <<<B.d c a b <<<C.b a c d <<<D.b a d c <<< 5.对于平面α、β、γ和直线a 、b 、m 、n ,下列命题中真命题是A.若,,,,a m a n m n αα⊥⊥⊂⊂,则a α⊥B.若//,,,a b αβαγβγ==则//a bC.若//,a b b α⊂,则//a αD.若,,//,//a b a b ββαα⊂⊂,则//βα6.已知向量()2,1=→a ,()1,0=→b ,()2,-=→k c ,若(2+→a →b )⊥→c ,则k =A.2B. 2-C.8D.8-7.给出下列四个结论:①若命题2000:,10p x x x ∃∈++<R ,则2:,10p x x x ⌝∀∈++≥R ;② “()()340x x --=”是“30x -=”的充分而不必要条件;③命题“若0m >,则方程20x x m +-=有实数根”的逆否命题为:“若方程20x x m +-=没有实数根,则m ≤0”; ④若0,0,4a b a b >>+=,则ba 11+的最小 值为1.其中正确结论的个数为A.1B.2C. 3D.4 8.将函数()sin(2)6f x x π=+的图像向右平移6π个单位,那么所得的图像所对应的函数解 析式是A.sin 2y x =B.cos 2y x =C.2sin(2)3y x π=+D.s i n (2)6y x π=- 9.某程序框图如图1所示,若该程序运行后输 出的值是95,则 A.4a = B.5a = C.6a = D.7a = 10.已知函数)(x f 是定义在(,)-∞+∞上的奇函数,若对于任意的实数0≥x ,都有)()2(x f x f =+,且当[)2,0∈x 时,)1(log )(2+=x x f ,则)2012()2011(f f +-的值为 A.1- B. 2- C. 2 D.1二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.在区间[]-33,上随机取一个数x ,使得函数()1fx =-有意义的概率为 .12.设变量,x y 满足约束条件20240240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则目标函数2z x y =+的最大值为 .13.已知双曲线()222210,0x y a b a b-=>>的两条渐近线与抛物线()220y px p =>的准线分别交于,A B 两点,O 为坐标原点.若双曲线的离心率为2,AOB ∆则p = .(二)选做题(14、15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)已知极坐标的极点与平面直角坐标系的原点重合,极轴与x 轴的正半轴重合,且长度单位相同.圆C 的参数方程为13cos (13sin x y ααα=+⎧⎨=-+⎩为参数),点Q 4π). 若点P 是圆C 上的任意一点,,P Q 两点间距离的最小值为 .15.(几何证明选讲选做题)如图2,AB 是⊙O 的直径,P是AB延长线上的一点,过点P 作⊙O 的切线,切点为C ,32=PC ,若︒=∠30CAP ,则⊙O 的直径=AB __________ .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.错误!未找到引用源。

广东省广州市海珠区2014届高三入学摸底考试数学文试题

广东省广州市海珠区2014届高三入学摸底考试数学文试题

绝密★启用前2013学年高三调研测试(一)数学(文科) 2013.8本试卷共6页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁。

考试结束后,将答题卡一并交回。

参考公式:锥体体积公式Sh V 31=,其中S 为锥体的底面积,h 为锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z 满足()()21i 2z --=(i 为虚数单位),则z 的共轭复数z 为A.1i -B.1+ iC.3i -D.3+ i2.已知集合,A B 均为全集{}12U =,,3,4的子集,且()C U A B ⋃={}4,{}1B =,2,则C U A B ⋂=A .{}3 B.{}4 C. {}34, D.∅3.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项和10S =A.85B.135C.95D.234.设0.220.20.2log 2,log 3,2,0.2a b c d ====,则这四个数的大小关系是A.a b c d <<<B.d c a b <<<C.b a c d <<<D.b a d c <<< 5.对于平面α、β、γ和直线a 、b 、m 、n ,下列命题中真命题是A.若,,,,a m a n m n αα⊥⊥⊂⊂,则a α⊥B.若//,,,a b αβαγβγ==则//a bC.若//,a b b α⊂,则//a αD.若,,//,//a b a b ββαα⊂⊂,则//βα6.已知向量()2,1=→a ,()1,0=→b ,()2,-=→k c ,若(2+→a →b )⊥→c ,则k =A.2B. 2-C.8D.8-7.给出下列四个结论:①若命题2000:,10p x x x ∃∈++<R ,则2:,10p x x x ⌝∀∈++≥R ;② “()()340x x --=”是“30x -=”的充分而不必要条件;③命题“若0m >,则方程20x x m +-=有实数根”的逆否命题为:“若方程20x x m +-=没有实数根,则m ≤0”; ④若0,0,4a b a b >>+=,则ba 11+的最小 值为1.其中正确结论的个数为A.1B.2C. 3D.4 8.将函数()sin(2)6f x x π=+的图像向右平移6π个单位,那么所得的图像所对应的函数解 析式是A.sin 2y x =B.cos 2y x =C.2sin(2)3y x π=+D.s i n (2)6y x π=- 9.某程序框图如图1所示,若该程序运行后输 出的值是95,则 A.4a = B.5a = C.6a = D.7a = 10.已知函数)(x f 是定义在(,)-∞+∞上的奇函数,若对于任意的实数0≥x ,都有)()2(x f x f =+,且当[)2,0∈x 时,)1(log )(2+=x x f ,则)2012()2011(f f +-的值为 A.1- B. 2- C. 2 D.1二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.在区间[]-33,上随机取一个数x ,使得函数()1fx =-有意义的概率为 .12.设变量,x y 满足约束条件20240240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则目标函数2z x y =+的最大值为 .13.已知双曲线()222210,0x y a b a b-=>>的两条渐近线与抛物线()220y px p =>的准线分别交于,A B 两点,O 为坐标原点.若双曲线的离心率为2,AOB ∆则p = .(二)选做题(14、15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)已知极坐标的极点与平面直角坐标系的原点重合,极轴与x 轴的正半轴重合,且长度单位相同.圆C 的参数方程为13cos (13sin x y ααα=+⎧⎨=-+⎩为参数),点Q 4π). 若点P 是圆C 上的任意一点,,P Q 两点间距离的最小值为 .15.(几何证明选讲选做题)如图2,AB 是⊙O 的直径,P是AB延长线上的一点,过点P 作⊙O 的切线,切点为C ,32=PC ,若︒=∠30CAP ,则⊙O 的直径=AB __________ .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.错误!未找到引用源。

广东省广州市海珠区2014学年高三综合测试(二)数学(文)

广东省广州市海珠区2014学年高三综合测试(二)数学(文)

广东省广州市海珠区2014学年高三综合测试(二)数学(文)2014.11本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁。

考试结束后,将答题卡交回。

参考公式:锥体体积公式Sh V 31=,其中S 为锥体的底面积,h 为锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}4),(,2),(=-==+=y x y x B y x y x A ,那么集合A B 为 A .(){}1,3- B .()3,1-C .{}3,1-D .(){}3,1-2.若复数z 满足()1i z i -=,则z 在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.函数2x y =(x ∈R )的反函数为A .2log y x =(0x >)B .2log y x =(1x >)C .log 2x y =(0x >)D .log 2x y =(1x >)4.已知向量,a b 的夹角为120,2a =,且8a b ⋅=-,则b = A .6B .7C .8D .95.函数cos 2sin 2y x x =-的一条对称轴为 A .4x p =B .8x p =C .8x p =-D .4x p =- 6.根据如下样本数据:得到的回归方程为y bx a =+,则A .0,0a b ><B .0,0a b >>C .0,0a b <<D .0,0a b <>7.函数ln y x =与y =--8.阅读如图所示的程序框图,输出的结果S 的值为A .0 BCD. 9.已知椭圆2219x y +=与双曲线22221x y a b-=共焦点12,F F ,设它们在第一象限的交点为P ,且120PF PF ⋅=,则双曲线的渐近线方程为A.y = B.y x = C.3y x =±D.7y x =± 10.若实数1122,,,x y x y 满足22211122(3ln )(2)0y x x x y +-+-+=,则221212()()x x y y -+-的最小值为A .8 B.C .2 D二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11. 已知{}n a 是等差数列,125a a +=,91021a a +=,则该数列前10项和10S =________. 12. 一个几何体的正(主)视图和侧(左)视图都是边长为2的等边 三角形,俯视图如图所示,则这个几何体的体积为________.13.给出下列四个命题:①函数()f x =有最小值2;②“2450x x --=”的一个必要不充分条件是“5x =”;③命题:,tan 1p x x ∃∈=R ;命题2:,10q x x x ∀∈-+>R .则命题“()p q ∧⌝”是假命题;④函数()3132f x =x x +-在点()()2,2f 处的切线方程为3y =-.其中正确命题的序号是________.(二)选做题(14、15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)在极坐标中,圆4sin ρθ=与直线(s i n ρθθ+=相交所得的弦长为________.15.(几何证明选讲选做题) 如图,⊙O 是ABC ∆的外接圆, AB AC =,延长BC 到点D ,使得CD AC =,连结AD交⊙O 于点E ,连结BE ,若035D ∠=,则ABE ∠的大小为________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)在ABC ∆中,内角,,A B C 所对的边长分别是,,a b c ,已知4A π=,4cos 5B =. (1)求cos C 的值;(2)若10a =,D 为AB 的中点,求CD 的长.17.(本小题满分12分)随着社会的发展,网上购物已成为一种新型的购物方式.某商家在网上新推出,,,A B C D 四款商品,进行限时促销活动,规定每位注册会员限购一件,并需在网上完成对所购商品的质量评价.以下为四款商品销售情况的条形图和用分层抽样法选取100份评价的统计表:(1)若会员甲选择的是A 款商品,求甲的评价被选中的概率;(2)在被选取的100份评价中,若商家再选取2位评价为差评的会员进行电话回访,求这2位中至少有一位购买的是C 款商品的概率.18.(本小题满分14分)如图所示,已知PD 垂直以AB 为直径的圆O 所在平面,点D 在线段AB 上,点C 为圆O 上一点,且3,22BD AC AD ====. (1)求证:PA ⊥CD ;(2)求点B 到平面PAC 的距离.19.(本小题满分14分)已知{}n a 是首项为2,公差不为零的等差数列,且1517,,a a a 成等比数列. (1)求数列{}n a 的通项公式; (2)设13nn n a b -=,求数列{}n b 的前n 项和n S .20. (本小题满分14分)在平面直角坐标系xOy 中,A 、B 两点的坐标分别为()0,1、()0,1-,动点P 满足直线AP 与直线BP 的斜率之积为14-,直线AP 、BP 与直线2y =-分别交于点M 、N . (1)求动点P 的轨迹方程; (2)求线段MN 的最小值;(3)以MN 为直径的圆是否经过某定点?若经过定点,求出定点的坐标;若不经过定点,请说明理由.21.(本小题满分14分)已知函数1(0)()e (0)x x f x x x ⎧>⎪=⎨⎪≤⎩,()()F x f x kx =+ (k ∈R ).(1)当1k =时,求函数()F x 的值域; (2)试讨论函数()F x 的单调性.海珠区2014学年高三综合测试(二)文科数学参考答案与评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查共10小题,每小题5分,满分50分.二、填空题:本大题共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题.11. 65 12.313. ③④ 14. 15. 035 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16. 解:(1)4cos ,5B =且(0,)B π∈,∴3sin 5B ==.………………1分∴3cos cos()cos()4C A B B ππ=--=- ………………2分 33coscos sin sin 44B B ππ=+ ………………4分432525=-⨯+ ………………5分10=-. ………………6分 (2)由(1)可得sin C === ………………7分 由正弦定理得sin sin a cA C=c=, ………………8分17. 解:(1)由条形图可得,选择,,,A B C D 四款商品的会员共有2000人,……1分 其中选A 款商品的会员为400人,由分层抽样可得A 款商品的评价抽取了 400100202000⨯=份. ………………2分 设 “甲的评价被选中” 为事件M ,则201()00540020.P M ===. ………………3分 答:若甲选择的是A 款商品,甲的评价被选中的概率是0.05. ………………4分 (2) 由图表可知,选,,,A B C D 四款商品的会员分别有400,500,600,500人, ………5分 用分层抽样的方法,选取评价的人数分别为20,25,30,25人,其中差评的人数分别为1,0,3, 2人,共6人. ………………6分记对A 款商品评价为差评的会员是a ;对C 款商品评价为差评的会员是,,b c d ;对D 款商品评价为差评的会员是,e f .从评价为差评的会员中选出2人,共有15个基本事件:(),,a b ()()()(),,,,,,a c a d a e a f ,(),b c ,()()(),,,,,,b d b e b f ()()(),,,,,,c d c e c f()()(),,,,,d e d f e f . ………………9分设“至少有一人选择的是C 款商品” 为事件N ,事件N 包含有12个基本事件:(),,a b ()(),,,,a c a d (),b c ,()()(),,,,,,b d b e b f ()()(),,,,,,c d c e c f ()(),,,d e d f .由古典概率公式知()124155P N ==. ………………11分答:至少有一人选择的是C 款商品的概率为45. ………………12分 18.解:(1)由3BD =, 1AD =,知4AB =,2AO =,点D 为AO 的中点.……1分连接OC .∵2AO AC OC ===,∴AOC ∆为等边三角形, ………………2分 又点D 为AO 的中点,∴CD AO ⊥. ………………3分 又∵PD ⊥平面ABC ,又CD ⊂平面ABC ,∴PD CD ⊥, ………………4分PD AO D ⋂=,PD ⊂平面PAB ,AO ⊂平面PAB ,∴CD ⊥平面PAB , ………………5分 又PA ⊂平面PAB ,∴PA ⊥CD . ………………6分19.解:(1)设数列{}n a 的公差为d ,∴12a =,524a d =+,17216a d =+,由1517,,a a a 成等比数列, ∴()()2242216d d +=+, ………………3分 即2d d =.∵0d ≠,∴1d =. ………………5分 ∴()2111n a n n =+-⨯=+. ………………6分 (2)由(1)知,113n n n b -+=, ………………7分∴01212341...3333n n n S -+=++++, ………………8分 12312341 (33333)n n n S +=++++, ………………9分 两式相减得:012312211111 (3333333)n n n n S -+=++++-, ………………11分 ∴11112133213313n n n n S -⎛⎫- ⎪+⎝⎭=+--, ………………12分∴25253223n nn S +=-⨯, ………………13分 ∴11525443n n n S -+=-⨯. ………………14分另解:由(1)知113n n n b -+=,. ………………7分 设()12111333n n n n A n B n An B b ---++++==-=1223n An B A-+-, 利用待定系数法2121A B A =⎧⎨-=⎩,解得13,24A B ==, ∴()2113131242433n n n n n b --+++=-2123254343n n n n --++=-⨯⨯. ………………10分 ∴123...n n S b b b b =++++12112221212132152232252325...434343434343n n n n ------⨯+⨯+⨯+⨯+++=-+-++-⨯⨯⨯⨯⨯⨯11525443n n -+=-⨯. ………………14分20. 解:(1)已知()()0,1,0,1A B -,设动点P 的坐标(),x y ,∴直线AP 的斜率11y k x -=,直线BP 的斜率21y k x+=(0x ≠), ………2分 又1214k k ⨯=-,∴1114y y x x -+⨯=-, ………………3分即()22104x y x +=≠. ………………4分 (2)设直线AP 的方程为的()110y k x -=-,直线BP 的方程为的()210y k x +=-,………………6分由112y k x y -=⎧⎨=-⎩,得132x k y ⎧=-⎪⎨⎪=-⎩, ∴13,2M k ⎛⎫-- ⎪⎝⎭; ………………7分 由212y k x y +=⎧⎨=-⎩,得212x k y ⎧=-⎪⎨⎪=-⎩,∴21,2N k ⎛⎫-- ⎪⎝⎭, ………………8分 由1214k k ⨯=-,∴11213134MN k k k k =-=+≥=9分当且仅当1134k k =,即1k =∴线段MN长的最小值 ………………10分 (3)设点(),Q x y 是以MN 为直径的圆上的任意一点,则0QM QN =,即()()1231220x x y y k k ⎛⎫⎛⎫+++++= ⎪⎪⎝⎭⎝⎭, ………………11分 又1214k k ⨯=-,故以MN 为直径的圆的方程为:()2211342120x k x y k ⎛⎫+-++-= ⎪⎝⎭, ………………12分令0x =,得()2212y +=,解得2y =-± ………………13分 ∴以MN为直径的圆经过定点(0,2-+或(0,2--. ………………14分21.解:(1)当1=k 时,1(0)()e (0)x x x F x x x x ⎧+>⎪=⎨⎪+⎩≤, ………………1分当0>x 时,1()2=+F x x x≥,当且仅当1=x 时,()F x 取最小值2. …………2分 当0x ≤时,()e x F x x =+,()e 10x F x '=+>, ()F x 在()0,∞-上单调递增,所以()(0)1=F x F ≤. ………………3分所以当1=k 时,()F x 的值域为(,1][2,)-∞+∞. ………………4分(2)由1(0)()e (0)x kx x F x x kx x ⎧+>⎪=⎨⎪+⎩≤,得21(0)()e (0)x k x F x x k x ⎧->⎪'=⎨⎪+⎩≤, ………………5分 ①当0=k 时,21(0)()e (0)x x F x x x ⎧->⎪'=⎨⎪⎩≤,当0>x 时,()0F x '<,()F x 在区间(0,)+∞上单调递减, ………………6分 当0x ≤时,()0F x '>,()F x 在区间(,0]-∞上单调递增. ………………7分②当0>k 时,21(0)()e (0)x k x F x x k x ⎧->⎪'=⎨⎪+⎩≤, 当0x ≤时,()e 0x F x k '=+>,()F x 在区间(,0]-∞上单调递增.………………8分 当0>x 时,令21()0F x k x '=-=,解得x =,舍去负值,得x =,当0x <<时,()0F x '<,()F x在区间上单调递减, ………………9分当x >时,'()0>F x ,()F x在区间)+∞上单调递增. ………………10分 ③当0k <时,21(0)()e (0)x k x F x x k x ⎧->⎪'=⎨⎪+⎩≤, 当0>x 时,21()0F x k x'=-<,()F x 在区间(0,)+∞上单调递减.……………11分 当0x ≤时,令()e 0x F x k '=+=,得ln()=-x k , 下面讨论ln()=-x k 是否落在区间(,0)-∞上,令ln()0k -≥,解得1-k ≤,令ln()0k -<,解得10-<<k ,当1-k ≤时,当0x ≤时,()0F x '<,()F x 在(),0-∞上单调递减.……………12分 当10-<<k 时,在(),0-∞上存在极值点ln()=-x k ,当ln()0-<<k x 时,()0F x '>,()F x 在(ln(),0]-k 上单调递增,当ln()<-x k 时,()0F x '<,()F x 在(,ln())-∞-k 上单调递减.……………13分 综上所述:当0>k 时,()F x 在(,0]-∞和)+∞上单调递增,在上单调递减; 当0=k 时,()F x 在(,0]-∞上单调递增,在(0,)+∞上单调递减;当10-<<k 时,()F x 在(ln(),0]-k 上单调递增,在(,ln())-∞-k 和(0,)+∞上 单调递减;当1-k ≤时,()F x 在(],0-∞和()0,+∞上单调递减. ……………14分。

2014年广州市普通高中毕业班综合测试(文科)(二)

2014年广州市普通高中毕业班综合测试(文科)(二)

试卷类型:A2014年广州市普通高中毕业班综合测试(二)数学(文科)2014.4 本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式: 锥体的体积公式是13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足 i 2z =,其中i 为虚数单位,则z 等于A .2-iB .2iC .2-D .2 2.已知集合{}}{20,1,2,3,0A B x x x ==-=,则集合A B I的子集个数为A .2B .4C .6D .8 3.命题“对任意x ∈R ,都有32x x >”的否定是A .存在0x ∈R ,使得3200x x >B .不存在0x ∈R ,使得3200x x > C .存在0x ∈R ,使得3200x x ≤ D .对任意x ∈R ,都有32x x ≤4. 下列函数中,既是偶函数又在()0,+∞上单调递增的是A .y =B .21y x =-+C .cos y x =D .1y x =+5.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3, 将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是图1俯视图侧视图正视图 A .16 B .13 C .12D .38 6.一个几何体的三视图如图1,则该几何体的体积为A .12πB .6πC .4πD .2π7.设n S 是等差数列{}n a 的前n 项和,公差0d ≠, 若113132,24k S a a =+=,则正整数k 的值为 A .9 B .10 C .11 D .128.在△ABC 中,60ABC ︒∠=,1AB =,3BC =, 则sin BAC ∠的值为A.14 B.14 C.14 D.149.设12,F F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点P 在椭圆C 上,线段1PF的中点在y 轴上,若1230PF F ︒∠=,则椭圆C 的离心率为A.3 B.6 C .13 D . 1610.将正偶数2,4,6,8,L 按表1的方式进行 排列,记ij a 表示第i 行第j 列的数,若 2014ij a =,则i j +的值为A .257B .256C .254D .253 表1二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.不等式()()120x x +-<的解集为 .12. 已知四边形ABCD 是边长为3的正方形,若2,2DE EC CF FB ==u u u r u u u r u u u r u u u r ,则AE AF ⋅u u u r u u u r的值为 .13.设,x y 满足约束条件 220,840,0,0.x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩若目标函数()0,0z ax by a b =+>>的最大值为8,则ab 的最大值为 . (二)选做题(14~15题,考生从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,直线,(x a t t y t =-⎧⎨=⎩为参数)与圆1cos ,(sin x y θθθ=+⎧⎨=⎩为参数)相切,切点在第一象限,则实数a 的值为 .15.(几何证明选讲选做题)在平行四边形ABCD 中,点E 在线段AB 上,且 12AE EB =,连接,DE AC ,AC 与DE 相交于点F ,若△AEF 的面积为1 cm 2,则 △AFD 的面积为 cm 2.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 已知函数()4f x x π⎛⎫=+ ⎪⎝⎭,x ∈R .(1) 求函数()f x 的最小正周期和值域; (2)若0,2πθ⎛⎫∈ ⎪⎝⎭,且()12f θ=,求sin 2θ的值. 17.(本小题满分12分)某校高三年级一次数学考试之后,为了解学生的数学学习情况, 随机抽取n 名学生的数 学成绩, 制成表2所示的频率分布表. (1) 求a ,b ,n 的值;(2) 若从第三, 四, 五组中用分层抽样方法抽取6名学生,并在这6名学生中随机抽取2 名与张老师面谈,求第三组中至少有1名学生与张老师面谈的概率.表2H FE DC BA 18.(本小题满分14分)如图2,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形,EF ∥平面ABCD ,1EF =,,90FB FC BFC ︒=∠=,AE =H 是BC 的中点.(1)求证:FH ∥平面BDE ; (2)求证:AB ⊥平面BCF ; (3)求五面体ABCDEF 的体积.图2 19.(本小题满分14分)已知等差数列{}n a 的前n 项和为n S 2(,n pn q p q =++∈R ),且235,,a a a 成等比数列. (1)求,p q 的值;(2)若数列{}n b 满足22log log n n a n b +=,求数列{}n b 的前n 项和n T . 20.(本小题满分14分)已知函数()2ln f x x x ax =++,a ∈R .(1)若函数()f x 在其定义域上为增函数,求a 的取值范围; (2)当1a =时,函数()()1f xg x x x =-+在区间[),t +∞(t ∈N *)上存在极值,求t 的最大 值.( 参考数值: 自然对数的底数e ≈2.71828) 21.(本小题满分14分)已知点()2,1A 在抛物线2:E x ay =上,直线1:1(l y kx k =+∈R ,且0)k ≠与抛物线E相交于,B C 两点,直线,AB AC 分别交直线2:1l y =-于点,S T . (1)求a 的值;(2)若ST =1l 的方程;(3)试判断以线段ST 为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若 不是,说明理由.2014年广州市普通高中毕业班综合测试(二)数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题共10小题,每小题5分,满分50分.二、填空题:本大题共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题.11.()1,2- 12.9 13.4 141 15.3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(1)解:∵()4f x x π⎛⎫=+ ⎪⎝⎭,∴ 函数()f x 的最小正周期为2π. ……………2分 ∵x ∈R ,[]cos 1,14x π⎛⎫+∈- ⎪⎝⎭, ……………3分4x π⎛⎫⎡+∈ ⎪⎣⎝⎭. ……………4分∴ 函数()f x 的值域为⎡⎣. ……………5分 (2)解法1:∵()12f θ=,142πθ⎛⎫+= ⎪⎝⎭. ……………6分∴cos 4πθ⎛⎫+= ⎪⎝⎭. ……………7分 ∴ sin 2cos 22πθθ⎛⎫=-+⎪⎝⎭……………9分 212cos 4πθ⎛⎫=-+⎪⎝⎭……………11分2124⎛=-⨯ ⎝⎭34=. ……………12分 解法2:∵()12f θ=,∴142πθ⎛⎫+= ⎪⎝⎭. ……………6分1cos cossin sin442ππθθ⎫-=⎪⎭. ……………7分 ∴1cos sin 2θθ-=. ……………8分 两边平方得221cos 2cos sin sin 4θθθθ-+=. ……………10分∴ 3sin 24θ=. ……………12分17.(本小题满分12分)(1) 解:依题意,得5200.05,0.35,a b n n n===, 解得,100n =,35a =,0.2b =. ……………3分(2) 解:因为第三、四、五组共有60名学生,用分层抽样方法抽取6名学生, 则第三、四、五组分别抽取306360⨯=名,206260⨯=名,106160⨯=名.…………6分 第三组的3名学生记为123,,a a a ,第四组的2名学生记为12,b b ,第五组的1名学生记为1c , 则从6名学生中随机抽取2名,共有15种不同取法,具体如下:{}12,a a ,{}13,a a ,{}11,a b ,{}12,a b ,{}11,a c ,{}23,a a ,{}21,a b ,{}22,a b ,{}21,a c ,{}31,a b ,{}32,a b ,{}31,a c ,{}12,b b ,{}11,b c ,{}21,b c . ……………8分其中第三组的3名学生123,,a a a 没有一名学生被抽取的情况共有3种,具体如下:M O H F E D C B A{}12,b b ,{}11,b c ,{}21,b c . ……………10分故第三组中至少有1名学生与张老师面谈的概率为310.815-=. ……………12分 18.(本小题满分14分)(1)证明:连接AC ,AC 与BD 相交于点O ,则点O 是AC 的中点,连接,OH EO , ∵H 是BC 的中点,∴OH ∥AB ,112OH AB ==. ……………1分 ∵EF ∥平面ABCD ,EF ⊂平面ABFE ,平面ABCD I 平面ABFE AB =, ∴EF ∥AB . ……………2分 ∵1EF =,∴OH ∥EF ,OH EF =.∴四边形EOHF 是平行四边形.∴EO ∥FH ,EO =FH . ……………3分 ∵EO ⊂平面BDE ,FH ⊄平面BDE ,∴FH ∥平面BDE . ……………4分 (2)证法1:取AB 的中点M ,连接EM ,则1AM MB ==, 由(1)知,EF ∥MB ,且EF =MB , ∴四边形EMBF 是平行四边形.∴EM ∥FB ,EM FB =. ……………5分在Rt △BFC 中,2224FB FC BC +==,又FB FC =,得FB =∴EM =……………6分在△AME中,AE =1AM =,EM =∴2223AM EM AE +==.∴AM EM ⊥. ……………7分 ∴AM FB ⊥,即AB FB ⊥. ∵四边形ABCD 是正方形,∴AB BC ⊥. ……………8分 ∵FB BC B =I ,FB ⊂平面BCF ,BC ⊂平面BCF ,∴AB ⊥平面BCF . ……………9分 证法2:在Rt △BFC 中,H 为BC 的中点,∴112FH BC ==. 在△AEO中,112AE AO AC EO FH =====, ∴222AO EO AE +=.∴AO EO ⊥. ……………5分OHFEDCBA ∵FH ∥EO ,∴AO FH ⊥. ……………6分∵,FH BC BC ⊥⊂平面ABCD , AO ⊂平面ABCD , AO BC C =I , ∴FH ⊥平面ABCD . ∵AB ⊂平面ABCD ,∴FH ⊥AB . ……………7分 ∵四边形ABCD 是正方形,∴AB BC ⊥. ……………8分 ∵BC ⊂平面BCF , FH ⊂平面BCF , BC FH H =I ,∴AB ⊥平面BCF . ……………9分 (3)解:连接EC , 在Rt △BFC 中,112FH BC ==, ∴1EO FH ==.由(2)知AB ⊥平面BCF ,且EF ∥AB ,∴EF ⊥平面BCF . ……………10分 ∵FH ⊥平面ABCD , EO ∥FH ,∴EO ⊥平面ABCD . ……………11分 ∴四棱锥E ABCD -的体积为113ABCD V EO S =⋅⋅正方形2141233=⨯⨯=. ………12分 ∴三棱锥E BCF -的体积为213BCF V EF S =⋅⋅∆21111323=⨯⨯⨯=. ………13分∴五面体ABCDEF 的体积为1253V V V =+=. ……………14分19.(本小题满分14分)(1)解法1:当1n =时,111a S p q ==++, ……………1分 当2n ≥时,1n n n a S S -=- ……………2分 ()()221121n pn q n p n q n p ⎡⎤=++--+-+=-+⎣⎦. ………3分∵{}n a 是等差数列,∴1211p q p ++=⨯-+,得0q =. ……………4分 又2353,5,9a p a p a p =+=+=+, ……………5分 ∵235,,a a a 成等比数列,∴2325a a a =,即()()()2539p p p +=++, ……………6分解得1p =-. ……………7分解法2:设等差数列{}n a 的公差为d , 则()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭. ……………1分 ∵2n S n pn q =++,∴12d =,12da p -=,0q =. ……………4分 ∴2d =,11p a =-,0q =. ∵235,,a a a 成等比数列,∴2325a a a =, ……………5分即()()()2111428a a a +=++.解得10a =. ……………6分 ∴1p =-. ……………7分 (2)解法1:由(1)得22n a n =-. ……………8分 ∵22log log n n a n b +=, ∴221224na n n nb n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++L ()0122142434144n n n n --=+⨯+⨯++-⋅+⋅L ,①……………10分()1231442434144n n n T n n -=+⨯+⨯++-⋅+⋅L ,② ……………11分①-②得0121344444n nn T n --=++++-⋅L 14414n nn -=-⋅-()13413n n -⋅-=.……………13分∴()131419nn T n ⎡⎤=-⋅+⎣⎦. ……………14分 解法2:由(1)得22n a n =-. ……………8分∵22log log n n a n b +=, ∴221224na n n nb n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++L ()0122142434144n n n n --=+⨯+⨯++-⋅+⋅L .……………10分由()12311n nx x x x x x x x+-++++=≠-L ,……………11分 两边对x 取导数得,012123n x x x nx-++++=L ()()12111n n nx n x x +-++-. …………12分令4x =,得()()0122114243414431419n n nn n n --⎡⎤+⨯+⨯++-⋅+⋅=-⋅+⎣⎦L . ∴()131419nn T n ⎡⎤=-⋅+⎣⎦. ……………14分 20.(本小题满分14分)(1)解法1:函数()f x 的定义域为()0,+∞, ……………1分∵()2ln f x x x ax =++, ∴()12f x x a x'=++. ……………2分 ∵ 函数()f x 在()0,+∞上单调递增, ∴ ()0f x '≥, 即120x a x++≥对()0,x ∈+∞都成立. ……………3分 ∴ 12a x x-≤+对()0,x ∈+∞都成立. ……………4分 当0x >时,12x x +≥=当且仅当12x x=,即x =时,取等号. ……………5分∴a -≤即a ≥-.∴a的取值范围为)⎡-+∞⎣. ……………6分解法2:函数()f x 的定义域为()0,+∞, ……………1分∵()2ln f x x x ax =++, ∴()21212x ax f x x a x x++'=++=.……………2分方程2210x ax ++=的判别式28a ∆=-. ……………3分① 当0∆≤,即a -≤≤, 2210x ax ++≥,此时, ()0f x '≥对()0,x ∈+∞都成立,故函数()f x 在定义域()0,+∞上是增函数. ……………4分② 当0∆>,即a <-或a >时, 要使函数()f x 在定义域()0,+∞上为增函数, 只需2210x ax ++≥对()0,x ∈+∞都成立.设()221h x x ax =++, 则()010,0,4h a ⎧=>⎪⎨-<⎪⎩得0a >.故a > ……………5分综合①②得a的取值范围为)⎡-+∞⎣. ……………6分(2)解:当1a =时, ()()2ln ln 111f x x x x xg x x x x x x ++=-=-=+++. ()()211ln 1x x g x x +-'=+. ……………7分 ∵ 函数()g x 在[),t +∞(t ∈N *)上存在极值,∴ 方程()0g x '=在[),t +∞(t ∈N *)上有解,即方程11ln 0x x +-=在[),t +∞(t ∈N *)上有解. ……………8分 令()11ln x x x ϕ=+-()0x >, 由于0x >, 则()2110x x xϕ'=--<,∴函数()x ϕ在()0,+∞上单调递减. ……………9分∵()413ln 3ln33ϕ=-=4e 2741 2.5ln 0327>>, ……………10分 ()514ln 4ln44ϕ=-=5e 256513ln 04256<<, ……………11分 ∴函数()x ϕ的零点()03,4x ∈. ……………12分∵方程()0x ϕ=在[),t +∞(t ∈ N *)上有解, t ∈N *∴3t ≤. ……………13分 ∵t ∈N *,∴t 的最大值为3. ……………14分21.(本小题满分14分)(1)解:∵点()2,1A 在抛物线2:E x ay =上, ∴4a =. ……………1分第(2)、(3)问提供以下两种解法:解法1:(2)由(1)得抛物线E 的方程为24x y =.设点,B C 的坐标分别为()()1122,,,x y x y ,依题意,2211224,4x y x y ==,由21,4,y kx x y =+⎧⎨=⎩消去y 得2440x kx --=,解得1,22x k ==±. ∴12124,4x x k x x +==-. ……………2分直线AB 的斜率2111111124224ABx y x k x x --+===--, 故直线AB 的方程为()12124x y x +-=-. ……………3分 令1y =-,得1822x x =-+,∴点S 的坐标为182,12x ⎛⎫-- ⎪+⎝⎭. ……………4分 同理可得点T 的坐标为282,12x ⎛⎫-- ⎪+⎝⎭. ……………5分 ∴()()()121212888222222x x ST x x x x -⎛⎫=---= ⎪++++⎝⎭ ()()()121212121288248x x x x x xx x x x k k---===+++. ……………6分∵ST =,∴12x x -=. 由()221212124x x x x x x -=+-,得22201616k k =+,解得2k =, 或2k =-, …………… 7分 ∴直线1l 的方程为21y x =+,或21y x =-+. ……………9分 (3)设线段ST 的中点坐标为()0,1x -,则()()()12012124418822222222x x x x x x x ++⎛⎫=-+-=- ⎪++++⎝⎭ ()()()1212444444222248k k x x x x k k++=-=-=-+++. ……………10分而2ST=()()()2221212122221614k x x x x x x k k k +-+-==, ……………11分∴以线段ST 为直径的圆的方程为()2222114x y ST k ⎛⎫+++= ⎪⎝⎭()2241k k +=. 展开得()()22222414414k x x y k k k++++=-=. ……………12分令0x =,得()214y +=,解得1y =或3y =-. ……………13分 ∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分 解法2:(2)由(1)得抛物线E 的方程为24x y =.设直线AB 的方程为()112y k x -=-,点B 的坐标为()11,x y ,由()112,1,y k x y ⎧-=-⎨=-⎩解得122,1.x k y ⎧=-⎪⎨⎪=-⎩∴点S 的坐标为122,1k ⎛⎫-- ⎪⎝⎭. ……………2分 由()1212,4,y k x x y ⎧-=-⎨=⎩消去y ,得2114840x k x k -+-=, 即()()12420x x k --+=,解得2x =或142x k =-. ∴1142x k =-,22111114414y x k k ==-+. ∴点B 的坐标为()211142,441k k k --+. ……………3分 同理,设直线AC 的方程为()212y k x -=-, 则点T 的坐标为222,1k ⎛⎫-- ⎪⎝⎭,点C 的坐标为()222242,441k k k --+. …………4分∵点,B C 在直线1:1l y kx =+上,∴()()()()()()22222211212121214414414242k k k k k k k k k k k k k -+--+---==----121k k =+-.∴121k k k +=+. ……………5分 又()211144142k k k k -+=-1+,得()21111214442412k k kk k k k k k -=-=+--, 化简得122kk k =. ……………6分 ()12121222222k k ST k k k k -⎛⎫⎛⎫=---=⎪ ⎪⎝⎭⎝⎭, ……………7分∵ST =∴()12122k k k k -=∴()()2212125k k k k -=.由()()()2221212121212454k k k k k k k k k k +=-+=+, 得()225124k k k +=+, 解得2k =±. ……………8分 ∴直线1l 的方程为21y x =+,或21y x =-+. …………… 9分 (3)设点(),P x y 是以线段ST 为直径的圆上任意一点,则0SP TP ⋅=u u r u u r, ……………10分得()()122222110x x y y k k ⎛⎫⎛⎫-+-++++= ⎪⎪⎝⎭⎝⎭, ……………11分整理得,()224410x x y k+-++=. ……………12分 令0x =,得()214y +=,解得1y =或3y =-. ……………13分 ∴ 以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分。

广东省海珠区2014届高三上学期综合测试(二)语文答案

广东省海珠区2014届高三上学期综合测试(二)语文答案

2013学年高三调研测试(二)语文试题参考答案与评分标准1-8题、13题每题3分,多选、错选的不给分。

12题选对一项给2分,选对两项给5分,多选不给附:选择题答案说明9.(1)(7分)本题考查考生理解并翻译文言句子的能力;能力层级B。

①召集(官员)商议希望稍稍减少盐税数额,以宽舒民力。

(3分)[3分。

译对“集议”与“纾”各1分,译对大意1分。

集议:召集(官员)商议;纾:宽舒。

]②如今死亡、迁移的已经很多,难道重视更改已经有的户籍却轻易放弃百姓的生命吗?(4分)[4分。

“徙”“顾”“成籍”各1分,译对大意1分。

徙:迁移;顾:难道;成籍:已经有的户籍。

](2)本题考查考生理解分析文言文意的能力;能力层级C。

事例一:将减少的盐税转移到浙江西部,分派到商贾聚集的州县。

(移其所赋,散于商旅之所聚。

)事例二:在王艮的努力下,海运船只被大风所损坏的,予以核实后扣除粮食的数额。

(运船为风所败者,当核实除其数)事例三:王艮力争行省采纳自己的建议,将安福州多征的田租全部免除。

[3分。

每个事例各1分。

]附:参考译文:王艮字止善,是绍兴诸暨人。

他崇尚气节,读书务求其中的道理以达到使用它的目的,不随便加以评论。

淮东廉访司征用书吏,调任淮西廉访司。

时逢朝廷下令监察部门一律革除南方士人,王艮于是就到两淮都转运盐使司做吏员,因任期达到了规定的期限,授任庐州录事判官。

淮东宣慰司征用他做令史,以廉洁能干著称。

历任建德县尹,授两淮转运盐使司经历。

绍兴路总管王克敬,认为按照人口数目征收盐税对百姓不利,曾经向行省建议,不见答复。

后来王克敬担任运盐转运使,召集官员商议稍稍减少盐税数额,以宽舒民力。

阻挠这一建议的人认为有既定的户籍,不可更改。

王艮毅然说:“老百姓实际人数少而强行按照超过的人数多征盐税,如今迁移、死亡的已经很多,难道重视更改已经有的户籍却轻易放弃百姓的生命吗!何况浙江西部的州县,商贾会集,也未曾按人口计算征税,将减少的盐税转移到浙江西部,分派到商贾聚集的州县,确实是一种好办法。

广东省广州市海珠区2014届高三上学期入学摸底考试文科数学试卷(解析版)

广东省广州市海珠区2014届高三上学期入学摸底考试文科数学试卷(解析版)

广东省广州市海珠区2014届高三上学期入学摸底考试文科数学试卷(解析版)一、选择题1.复数z 满足()()21i 2z --=(i 为虚数单位),则z 的共轭复数z 为 ( ) A.1i - B.1+ i C.3i - D.3+ i 【答案】C. 【解析】试题分析:由已知223,3.1z i z i i=+=+∴=-- 考点:1、复数的运算;2、共轭复数的概念. 2.已知集合,A B 均为全集{}12U =,,3,4的子集,且()C U A B ⋃={}4,{}1B =,2,则C U A B ⋂= ( )A.{}3B.{}4C.{}34, D.∅ 【答案】A.【解析】试题分析:画出venn 图可知{}{}{}1,2,3,1,2,3U A B B A C B ==∴=.考点:集合的运算.3.已知等差数列{}n a 满足244a a +=, 3510a a +=,则它的前10项和10S = ( ) A.85 B.135 C.95 D.23【答案】C. 【解析】 试题分析:由244,10,a a a a +=+=得()34431310109324,210,3,24,104952a a d a a a a d S ⨯⨯==∴=-==-=-∴=⨯-+=. 考点:等差数列通项公式及前n 和公式.4.设0.220.20.2log 2,log 3,2,0.2a b c d ====,则这四个数的大小关系是 ( ) A.a b c d <<< B.d c a b <<< C.b a c d <<< D.b a d c <<< 【答案】D. 【解析】 试题分析:0.2log y x=是()0,+∞上的减函数,0b a ∴<<,又0.202221,00.21,c d b a d c =>=<=<∴<<<.考点:指数函数、对数函数及幂函数单调性的应用.5.对于平面α、β、γ和直线a 、b 、m 、n ,下列命题中真命题是 ( ) A.若,,,,a m a n m n αα⊥⊥⊂⊂,则a α⊥; B.若//,,,a b αβαγβγ==则//a b ;C.若//,a b b α⊂,则//a α;D.若,,//,//a b a b ββαα⊂⊂,则//βα.【答案】B. 【解析】试题分析:由线面垂直的判定定理知,还需m 与n 相交才能得a α⊥,故A 错;由线面平行的判定定理,还需知a α⊄,故C 错;由面面平行的判定定理知,还需a 与b 相交才能得//βα,故D 错. 所以选B.考点:立体几何线面位置关系.6.已知向量()2,1=→a ,()1,0=→b ,()2,-=→k c ,若(2+→a →b )⊥→c ,则k = ( ) A.2 B. -2 C.8 D.-8 【答案】C . 【解析】试题分析:由已知可得()()()21,4.2,1420,8a b a b c k k +=+⊥∴⨯+⨯-=∴=.考点:平面向量数量积坐标运算. 7.给出下列四个结论:①若命题2000:R,10p x x x ∃∈++<,则2:R,10p x x x ⌝∀∈++≥;② “()()340x x --=”是“30x -=”的充分而不必要条件;③命题“若0m >,则方程20x x m +-=有实数根”的逆否命题为:“若方程20x x m +-=没有实数根,则m ≤0”;④若0,0,4a b a b >>+=,则b a 11+的最小值为1. 其中正确结论的个数为( )A.1B.2C.3D.4 【答案】C. 【解析】试题分析:由特征命题的否定知①正确;()()()()34034,3340,x x x orx x x x --=⇒===⇒--=所以“()()340x x --=”是“30x -=”的必要而不充分条件,所以②错误;由逆否命题的定义知③正确;1111110,0,4,1,42442a b b a a b a b a b a b a b +⎛⎫>>+=∴+=⋅+=++≥+= ⎪⎝⎭∴④正确.考点:1、常用逻辑用语;2、均值不等式.8.将函数()sin(2)6f x x π=+的图像向右平移6π个单位,那么所得的图像所对应的函数解析式是( )A.sin 2y x =B.cos 2y x =C.2sin(2)3y x π=+D.sin(2)6y x π=- 【答案】D.【解析】试题分析:由已知得平移后的图像所对应的函数解析式是sin 2sin 2666y x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故选.D考点:三角函数图像变换.9.某程序框图如图所示,若该程序运行后输出的值是95,则 ( )A.4a =B.5a =C.6a =D.7a =【答案】A. 【解析】试题分析:初始值1,1S k ==;第一次循环131,2122S k =+==⨯;第二次循环1151,312233S k =++==⨯⨯;第三次循环11171,41223344S k =+++==⨯⨯⨯;第四次循环111191,5122334455S k =++++==⨯⨯⨯⨯;结束算法,输出95. 考点:算法与框图.10.已知函数)(x f 是定义在(,)-∞+∞上的奇函数,若对于任意的实数0≥x ,都有)()2(x f x f =+,且当[)2,0∈x 时,)1(log )(2+=x x f ,则)2012()2011(f f +-的值为( )A.-1B.-2C.2D.1 【答案】A. 【解析】试题分析:由已知)(x f 为R 上奇函数且周期为2,对于任意的实数0≥x ,都有)()2(x f x f =+,()()()()()()()()201120122011201221005121006010f f f f f f f f ∴-+=-+=-⨯++⨯+=-+22log 2log 11=-+=-.考点:函数的性质.二、填空题11.在区间[]-33,上随机取一个数x ,使得函数()1f x =有意义的概率为 . 【答案】23【解析】 试题分析:由10,30.x x -≥⎧⎨+≥⎩得()f x 的定义域为[]3,1-,由几何概型求解公式得所求概率为4263=. 考点:1、函数定义域;2、几何概型.12.设变量,x y 满足约束条件20240240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则目标函数2z x y =+的最大值为 . 【答案】2. 【解析】试题分析:首先画出可行域如下图所示,可知当4x y ==时,z 取最大值12.13.已知双曲线()222210,0x y a b a b-=>>的两条渐近线与抛物线()220y px p =>的准线分别交于,A B 两点,O 为坐标原点.若双曲线的离心率为2,AOB ∆的面积为,则p = .【答案】2.【解析】试题分析:有2,ce a==得2,,c a b ==所以双曲线的渐近线为.y =又抛物线的准线方程为,2px =-联立双曲线的渐近线和抛物线的准线方程得,,,.22p p A B ⎛⎛--- ⎝⎭⎝⎭在AOB ∆中,,AB =O 到AB 的距离为2p .1222AOB pS p ∆=∴⋅==.且长度单,4π).若点P是圆C上的任意一点,,P Q两点间距离的最小值为 .【答案】1.【解析】试题分析:点Q的直角坐标为()1,1.设()()13cos,13sin02Pαααπ+-+≤≤,则min1PQ PQ==∴=.考点:1、坐标系与参数方程;2、两点间距离公式;3、最值问题.15.如图,AB是⊙O的直径,P是AB延长线上的一点,过点P作⊙O的切线,切点为C,32=PC,若︒=∠30CAP,则⊙O的直径=AB__________ .【答案】4.【解析】试题分析:连结OC,在O C∆中,6023,23t a n302 C O P C P O C A B∠==∴=︒=∴=.考点:几何证明选讲.三、解答题16.在ABC∆中,角,,A B C的对边分别为,,,a b c向量()()()BABAm--=→sin,cos,()BBn sin,cos-=→,且53-=⋅→→nm.(1)求sin A的值;(2)若a =5b =,求角B 的大小及向量BA −−→在BC −−→方向上的投影. 【答案】(1)4sin 5A =;(2)4B π∠=,向量BA −−→在BC −−→方向上的投影cos cos BA B c B=1==【解析】试题分析:(1)由向量数量积坐标形式列式,可求得cos A 的值,再利用平方关系可求得sin A 的值;(2)先利用正弦定理可求得sin B 的值,再利用大边对大角可求得角B 的大小.由投影的定义可求得向量BA −−→在BC −−→方向上的投影. 试题解析:(1)由35m n ⋅=-,得()()3cos cos sin sin 5A B B A B B ---=-, 1分 ∴()3cos 5A B B -+=-, 2分∴3cos 5A =-.0A π<< sin A ∴3分 45== . 4分(2)由正弦定理,有sin sin a bA B=, 5分 sin sin b A B a ∴==452⨯6分 a b >,A B ∴>, 7分4B π∴=.8分由余弦定理,有(2223=5+255c c ⎛⎫-⨯⨯- ⎪⎝⎭, 9分1c ∴=或7c =-(舍去). 10分故向量BA 在BC 方向上的投影为cos cos BA B c B= 11分122=⨯=. 12分 考点:1、向量数量积、投影;2、三角恒等变换;3、解三角形.17.某中学作为蓝色海洋教育特色学校,随机抽取100名学生,进行一次海洋知识测试,按测试成绩分组如下:第一组[65,70),第二组 [70,75),第三组[75,80),第四组 [80,85),第五组 [85,90)(假设考试成绩均在[65,90)内),得到频率分布直方图如图:(1)求测试成绩在[80,85)内的频率;(2)从第三、四、五组同学中用分层抽样的方法抽取6名同学组成海洋知识宣讲小组,定期在校内进行义务宣讲,并在这6名同学中随机选取2名参加市组织的蓝色海洋教育义务宣讲队,求第四组至少有一名同学被抽中的的概率. 【答案】(1)0.2;(2)35. 【解析】 试题分析:(1)由所有频率的和为1,易得测试成绩在[80,85)内的频率;(2)先分别求出第三组、第四组、第五组的人数,再由分层抽样方法得各组应该抽取的人数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海珠区2013学年第一学期高三综合测试(二)文科数学参考答案与评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查共10小题,每小题5分,满分50分.题号 1 2 3 4 5 6 7 8 910答案DDACAAAC B C二、填空题:本大题共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题.11.1312.2313.①②④14.15. 24三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)解:(1)a=r=分∴214cos x=, …………………2分∴1,2cosx=± …………………3分∵0,2xpéùÎêúëû,∴0,cosx>∴1,2cosx= …………………4分3xp\= …………………5分(2)2()6cos2f x a b x x=×=-r r…………………6分1cos2622xx+=´3cos223x x=-+ …………………7分1cos2sin2322x xö=-+÷÷ø…………………8分236xpæö=++ç÷èø. …………………9分127[0,(2[,2666x x p p p p Î+Î当时,, …………………10分 cos 26x p æö+ç÷èø[1,2Î-,()f x的最小值为3-, ………………11分 ()f x 的最大值为6. ……………12分17.(本小题满分12分)解析:⑴ 优秀 非优秀 合计甲班 10 50 60乙班 20 30 50合计 30 80 110………………3分 ⑵假设成绩与班级无关,根据列联表中的数据,得到´´=´´´22110(1030-2050)K 60503080………………4分 2K 7.487» ………………5分»>2K 7.487 6.635. ………………6分因此按%99的可靠性要求,能认为“成绩与班级有关系”. ………………7分 ⑶先后两次抛掷一枚均匀的骰子,出现的点数为),(y x .所有的基本事件有:)1,1(、)2,1(、)3,1(、(1,4)K )6,6( …………8分 共36个. …………9分 设“抽到9或10号”为事件A , ……………10分事件A 包含的基本事件有:)6,3(、)5,4(、)4,5(、)3,6(、)5,5(、)6,4(、)4,6(共7个. ……………11分所以367)(=A P ,即抽到9号或10号的概率为367. ………………12分 18.(本小题满分14分)证明:(1)∵ 1A 在平面BCD 上的射影O 在CD 上,∴ 1AO ⊥平面BCD , ………………………1分 又BC Ì平面BCD ,∴ 1BC AO ^………………………2分 又1,BC CO AO CO O ^=I ,∴ BC ^平面1ACD ,………………………3分 又11A D A CD Ì平面,∴ 1BC A D ^. …………………………4分(2)∵ ABCD 为矩形 ,∴ 11A D A B ^, …………………………5分 由(1)知11,A D BC A B BC B ^=I ,∴1A D ^平面1A BC ,………………6分 又1A D Ì平面1A BD ……………………7分 ∴ 平面1A BC ^平面1A BD …………………8分(3)∵1A D ^平面1A BC ,∴11A D AC ^, …………9分在1Rt A BD D 中,由16A D =,10CD =,得18AC =, ………10分 ∴111245A D AC AO DC ´==, …………11分3∵1AO ⊥平面BCD , 1AO 为三棱锥1A BCD -的高, …………12分1111124(610)483325A BCD BCD V S A O -D =´=××××= …………14分另解:∵ 1A D ^平面 1A BC , ∴ 11A D AC ^. …………10分∵ 16,10A D CD ==, ∴ 18AC =, ………12分 ∴ 1111(68)64832A BCD D A BC V V --==××××=. …………14分19.(本小题14分)解:(1)∵11=a ,32=a ,k a -=93,k a 6274-=, …………1分 ∴21=b ,k b -=62,k b 5183-=. ………………2分 ∵{}n b 成等比数列,∴22b =31b b ×,即()()262185-=´-k k . ………………3分解得 k=2或k=0(舍) ………………4分 当k=2时,2+n a =n n a a 231-+即 ()n n n n a a a a -=-+++1122, ……………5分 ∴21=+nn b b ∴ k=2时满足条件. ………………6分(2)∵21=b ,{}n b 成等比数列,∴nn b 2= ………………7分∴21a -a =2,232a -a =2,... n-1n n-1a -a =2 ……………8分 ∴2n-1n 1a -a =2+2+...+2,2n 1n a 1222-=++++L ……………9分 ∴nn a 21=- …………………10分(3)´´´´123n n S =12+22+32...+n 2,∴´´´´234n+1n 2S =12+22+32...+n 2 …………………11分 ∴1231-222...2-2+=+++´n n n S n …………………12分 ∴123111-222...2-22-2-2+++=+++´=´n n n n n S n n …………………13分∴2=´+n+1n S (n -1)2 …………………14分20.(本小题14分)解:(1)由直线y =与圆222x y b +=b=,…………1分得1b = …………2分由2e=,得2222234c a b a a -==, …………3分所以2a =, …………4分2214x C y \+=椭圆的方程为: ………………5分12¹¹±(2)因为B(2,0),P不为椭圆顶点,则BP方程为y=k(x-2)(k 0且k ①………………6分4将①代入2214x y +=,解得222824(,)4141k k P k k --++ ………………8分 又直线AD 的方程为112y x =+ ② ①与②联立解得424(,2121k k M k k +-- ………………10分 由222824(0,1),(,),(,0)4141k k D P N x k k --++三点共线可得42(,0)21k N k -- …………12分 所以MN 的分斜率为m=214k +,则211222k m k k +-=-=(定值).………………14分 21.(本小题满分14分)解:在区间()0,+¥上,11()ax f x a x x-¢=-=. ……………………1分 (1)当2a =时,(1)121f ¢=-=-, …………2分 则切线方程为(2)(1)y x --=--,即10x y ++= …………3分(2) ①当0a £时,1()0f x a x¢=->, 故函数()f x 为增函数,即函数()f x 的单调递增区间为(0,)+¥. ………………5分②当0a >时,令1()0f x a x ¢=-=,可得1x a =, 当10x a <<时,1()0ax f x x -¢=>;当1x a >时,1()0ax f x x-¢=<, 故函数()f x 的单调递增区间为1(0,]a ,单调递减区间是1[,)a+¥. …………… 7分 (3)①当11a£,即1a ³时,函数()f x 在区间[1,2]上是减函数, ∴()f x 的最小值是(2)ln 22f a =-. ………………8分 ②当12a ³,即210£<a 时,函数()f x 在区间[1,2]上是增函数, ∴()f x 的最小值是(1)f a =-. ………………10分 ③当112a <<,即112a <<时,函数()f x 在1[1,a 上是增函数,在1[,2]a是减函数. 所以)(x f 的最小值产生于)1(f 与)2(f 之间,又(2)(1)ln 2f f a -=-, ∴当1ln 22a <<时,最小值是(1)f a =-; 当ln 21a £<时,最小值为(2)ln 22f a =-. ………………13分 综上所述,当0ln 2a <<时, 函数()f x 的最小值是a x f -=min )(;当ln 2a ³时,函数()f x 的最小值是 a x f 22ln )(min -=. ……………14分。

相关文档
最新文档