2016-2017学年高中数学人教A版选修4-4课件第一讲 本讲

合集下载

人教A版数学【选修4-4】ppt课件:1-4第一讲-坐标系

人教A版数学【选修4-4】ppt课件:1-4第一讲-坐标系

3.点的空间坐标的互相转化公式 设空间一点 P 的直角坐标为(x,y,z),柱坐标为(ρ,θ,z),球 坐标为(r,φ,θ),则 空间直角坐标(x,y,z) x= y= z= x= y= z= 转换公式 , ,
柱坐标(ρ,θ,z)
球坐标(r,φ,θ)
, ,
1.(ρ,θ,z) 空间的点 自我 校对 2.正向 标系 逆时针 球坐标 ρsinθ z
(3)在极坐标中,方程 ρ=ρ0(ρ0 为不等于 0 的常数)表示圆心在 极点,半径为 ρ0 的圆,方程 θ=θ0(θ0 为常数)表示与极轴成 θ0 角的 射线.而在空间的柱坐标系中,方程 ρ=ρ0 表示中心轴为 z 轴,底 半径为 ρ0 的圆柱面, 它是上述圆周沿 z 轴方向平行移动而成的. 方 程 θ=θ0 表示与 Oxz 坐标面成 θ0 角的半平面.方程 z=z0 表示平行 于 Oxy 坐标面的平面. 常把上述的圆柱面、 半平面和平面称为柱坐 标系的三族坐标面.
π π 2,6,4,则点 M 的柱坐
)
π π 2,4, 6 B. 2,4, 6 π π 2,6,2 2 D. 2,6, 2
解析 因为点 M
的球坐标为2
π π π 2,6,4,即 r=2 2,φ= , 6
π θ= ,故点 M 的直角坐标为 4 π π x=rsinφcosθ=2 2sin cos =1, 6 4 π π y=rsinφsinθ=2 2sin sin =1, 6 4 π z=rcosφ=2 2cos = 6. 6
2.球坐标系与球坐标
一般地,如图所示,建立空间直角坐标系 Oxyz.设 P 是空间任 意一点,连接 OP,记|OP|=r,OP 与 Oz 轴________所夹的角为 φ. 设 P 在 Oxy 平面上的射影为 Q,Ox 轴按________方向旋转到 OQ 时所转过的 ________ 为 θ. 这样点 P 的位置就可以用有序数组 ________表示.这样空间的点与有序数组(r,φ,θ)之间建立了一种 对应关系.把建立上述对应关系的坐标系叫做 ________(或空间极 坐标系),有序数组(r,φ,θ)叫做 P 的________,记作 P(r,φ,θ), 其中 r≥0,0≤φ≤π,0≤θ<2π.

人教版高中数学选修4-4 第一讲 坐标系 二 极坐标系 (共34张PPT)教育课件

人教版高中数学选修4-4 第一讲 坐标系 二 极坐标系 (共34张PPT)教育课件

A. y 1
sin t
1
x t2
C.
1
yt 2
x cos t
B. y 1
cos t
x tan t
D. y 1
tan t
7.极坐标方程
2
arcsin化(为 直0)角坐标方程的形
式是 ( )
A. x2 y2 x 0
B.y x(1 x)
C. 2x 1 4y2 1 D..y (x 1)
2.极坐标(,)与(ρ,2kπ+θ)( k )表z 示 同一个点.即一点的极坐标的统一的表达式 为(ρ,2kπ+θ)
3.如果规定ρ>0,0≤θ<2π,那么除 极 点外,平面内的点和极坐标就可以一一对 应了。
我们学了直角坐标,也学了极坐 标,那么这两种坐标有什么关系呢? 已知点的直角坐标为,如何用极坐标 表示这个点呢?
M (, )
0
x
2
4
5
6
C
1.如图,在极坐标系中,写出点 AF(,6B, ,4C3 ,)D的, G极(坐5, 标53,所) 并在标的出位E置( 72 , ) ,
E D BA
O
X
4 F
3
G 5
3
解:如图可得A,B,C,D的坐标分别为
(4,0)
(2, )
(3, )
(1, 5 )
4
2
6
点E,F,G的位置如图所示
1
4.极坐标方程ρ=cosθ与ρcosθ= 的2 图形是( ) B
A
B
C
D
解x=:12把,ρc故os排θ=除A,、12 化D;为又直圆角ρ坐=c程os,θ显得然: 过点 (0,1),又排除C,故选B。
5、若A、B的两点极坐标为A(4,

高中数学人教A版选修4-4课件:平面直角坐标系 (共31张PPT)

高中数学人教A版选修4-4课件:平面直角坐标系 (共31张PPT)

例1 在直角坐标系中,求下列方程所对应 x 2 x 的图形经过伸缩变换: 后的图形。
y 3 y
x 2 x x 解:(1)由伸缩变换 y 3 y 得到 ; y
x (2)将 y 1 x 2 代入x2+y2=1, 1 y 3
例1 说出下 图中各点的极坐标 标出(2, π/6), (4, 3π/4),

2
5 6
C E D O B A

4

4 3
X
(3.5, 5π/3)
F
G
所在位置。
5 3
练习: 在图中标出点
5 H ( 3, ), P (4, ), Q(6, ) 6 2 3

2
5 6

P
C E D B A
四、课堂练习
4 1.已知极坐标 M (5, 3 ),下列所给出的
不能表示点M的坐标的是( C )

10 2 A、 (5, ) B、 ( 5, ) C、 (5, ) 3 3 3
8 D(5, ) 3
3 2.已知三点的极坐标为 A( 2, ), B( 2 , ), 2 4 O(0,0) ,则 ABO 为( D )
3 y tan , 4 x

即y x( y 0)
4 把极坐标方程 =sin+2cos 化为直角坐标方程。
解:因给定的不恒等于零, 得 = sin 2 cos
2
化成直角坐标方程为 x2 y2 y 2x
1 2 5 即( x 1) ( y ) 2 4
例2:下图是某校园的平面示意图,点 A,B,C,D,E分别表示教学楼,体育馆,图 书馆,实验楼,办公楼的位置,建立适当 的极坐标系,写出各点的极坐标。

2016-2017学年高中数学人教A版选修4-4课件:第1讲 章末分层突破

2016-2017学年高中数学人教A版选修4-4课件:第1讲 章末分层突破

第二十二页,编辑于星期五:十六点 四十七分。
(2)点M的直角坐标为(1, 3),直线l过点M和原点,
∴直线l的直角坐标方程为y= 3x.
曲线C的圆心坐标为(1,1),半径r=
2 ,圆心到直线l的距离为d=
3-1 2

∴|AB|=2 r2-d2= 3+1.
第二十三页,编辑于星期五:十六点 四十七分。
【导学号:91060013】
第二十八页,编辑于星期五:十六点 四十七分。
【解析】 ∵x=ρcos θ,y=ρsin θ, ∴直线的直角坐标方程为x- 3y-1=0. ∵ρ=2cos θ,∴ρ2(sin2θ+cos2θ)=2ρcos θ, ∴x2+y2=2x. ∴圆的直角坐标方程为(x-1)2+y2=1. ∵圆心(1,0)在直线x- 3y-1=0上, ∴AB为圆的直径,∴|AB|=2. 【答案】 2
第二十一页,编辑于星期五:十六点 四十七分。
【解】 (1)∵直线l过点M2,π3和极点, ∴直线l的直角坐标方程是θ=π3(ρ∈R). ρ=2 2sinθ+π4即ρ=2(sin θ+cos θ), 两边同乘以ρ得ρ2=2(ρsin θ+ρcos θ), ∴曲线C的直角坐标方程为x2+y2-2x-2y=0.
第十一页,编辑于星期五:十六点 四十七分。
⊙O1和⊙O2的极坐标方程分别为ρ=4cos θ, ρ=-4sin θ. (1)把⊙O1和⊙O2的极坐标方程化为直角坐标方程; (2)求经过⊙O1,⊙O2交点的直线的直角坐标方程.
第十二页,编辑于星期五:十六点 四十七分。
【解】 以极点为原点,极轴为x轴正半轴,建立平面直角坐标系,两坐标 系中取相同的长度单位.
得x=x′3 , y=-12y′,
代入y2=2x,得14y′2=23x′, ∴即y′2=83x′, 因此变换后曲线的方程为y′2=83x′.

人教版高中数学选修4-4课件:第一讲二极坐标

人教版高中数学选修4-4课件:第一讲二极坐标

4.写出下图中各点的极坐标:
A________,B________,C________. 答案:(4,0) 2,π4 3,π2
5.极坐标系中,与点3,-π3关于极轴所在直线对 称的点的极坐标是________.
答案:3,π3
类型 1 极坐标系与点的极坐标(自主研析) [典例 1] (1)写出下图中各点的极坐标(ρ>0,0≤ θ<2π,且各线之间间距相等).
法二 将点 A 化为直角坐标为( 3,1),点 B 化为直 角坐标为( 3,-1).所以 A、B 两点间的距离
d= ( 3- 3)2+[1-(-1)]2=2. (2)如下图所示:
关于极轴的对称点为 B2,-π3. 关于直线 l 的对称点为 C2,23π. 关于极点 O 的对称点为 D2,-23π.
归纳升华 1.点(ρ,θ)关于极轴的对称点是(ρ,-θ)或(ρ,2π- θ),关于极点的对称点是(ρ,π+θ),关于过极点且垂直 于极轴的直线的对称点是(ρ,π-θ).
2.求极坐标系中两点间的距离应通过由这两点和极 点 O 构成的三角形求解,也可以运用两点间距离公式|AB| = ρ21+ρ22-2ρ1ρ2cos(θ1-θ2)求解,其中 A(ρ1,θ1), B(ρ2,θ2).注意当 θ1+θ2=2kπ(k∈Z)时,|AB|=|ρ1-ρ2|; 当 θ1+θ2=2kπ+π(k∈Z)时,|AB|=|ρ1+ρ2|.
2.点的极坐标
一般地,极坐标(ρ,θ)与(ρ,θ+2kπ)(k∈Z)表示同一 个点.特别地,极点 O 的坐标为(0,θ)(θ∈R).和直角坐 标不同,平面内一个点的极坐标有无数种表示方法.
如果规定 ρ>0,0≤θ<2π,那么除极点外,平面内的 点可用唯一的极坐标(ρ,θ)表示;同时,极坐标(ρ,θ)表 示的点也是唯一确定的.

人教A版数学【选修4-4】ppt课件:第一讲《坐标系》小结

人教A版数学【选修4-4】ppt课件:第一讲《坐标系》小结

在△OMB 中,同理 → |MB|= ρ2+36-12ρcosθ. → → 由|MA|· |MB|=36,得 (ρ2+36)2-(12ρcosθ)2=362. 即 ρ4+72ρ2-144ρ2cos2θ=0. 即 ρ2=72(2cos2θ-1)=72cos2θ. 所以,点 M 的轨迹的极坐标方程为 ρ2=72cos2θ.
3.柱坐标系与球坐标系 (1)柱坐标系
一般地,如图,建立空间直角坐标系 Oxyz,设 P 是空间任意 一点,它在 Oxy 平面上的射影为 Q,用(ρ,θ)(ρ≥0,0≤θ<2π)表示 点 Q 在平面 Oxy 上的极坐标, 这时点 P 的位置可用有序数组(ρ, θ, z)(z∈R)表示,这样我们建立了空间的点与有序数组(ρ,θ,z)之间 的一种对应关系.把建立上述对应关系的坐标系叫做柱坐标系,有 序数组(ρ,θ,z),叫做 P 的柱坐标,空间点 P 的直角坐标与柱坐 x=ρcosθ, 标之间的变换公式为y=ρsinθ, z=z.
2ac (2)当 a≠c 时,方程可化为 x +y - x=0,其轨迹是以 a-c
2 2
ac ac 2ac ( ,0)为圆心, 为半径的圆,但不包括点(0,0)和( , a-c |a-c| a-c 0).
【例 2】
x′=2x, 在同一坐标系中, 经过伸缩变换 y′=2y
后,
曲线 C 变为曲线(x-5)2+(y+6)2=1,求曲线 C 的方程,并判 断是什么曲线.
高 考 真 题 【例 8】 在极坐标系中, 圆 ρ=2cosθ 的垂直于极轴的两条切 线方程分别为( )
A.θ=0(ρ∈R)和 ρcosθ=2 π B.θ=2(ρ∈R)和 ρcosθ=2 π C.θ=2(ρ∈R)和 ρcosθ= D.θ=0(ρ∈R)和 ρcosθ=1

高中数学人教A版选修4-4课件:1本讲整合

高中数学人教A版选修4-4课件:1本讲整合

综合应用
真题放送
1(2016· 上海高考,理16)下列极坐标方程中,对应的曲线为右图的是 ( )
A.ρ=6+5cos θ B.ρ=6+5sin θ C.ρ=6-5cos θ D.ρ=6-5sin θ
解析:依次取 θ=0, , π,
2 π 3π 2
,
结合题图可知只有ρ=6-5sin θ满足,选D. 答案:D
知识建构 专题一 专题二 专题三
综合应用
真题放送
应用 说出由曲线y=tan x得到曲线y=3tan 2x的变换规律,并求出 满足其图形变换的伸缩变换. ������' = ������������(������ > 0), 提示:主要考查变换公式 ������' = ������������(������ > 0).
知识建构 专题一 专题二 专题三
综合应用
真题放送
应用 求点������ 4,
π 3
到直线������cos ������-
π 3
= 2 上的点的距离的最小值.
提示:可以先化为直角坐标再求解.
解 :点 M 的直角坐标为 (2,2 3), ∵ρcos ������1 2 π 3
= 2,
π π 3 1 2 3 3
知识建构 1 2 3 4 5 6 7
综合应用
真题放送
2(2015· 广东高考,理 14)已知直线 l 的极坐标方程为 2ρsi n ������2, 点������的极坐标为������ 2 2,
7π 4
π 4
= .
, 则点������到直线������的距离为
解析:2ρsin ������π 4
������
与 y=tan x 比较 ,则有 μ=3,λ= . 所以所求的伸缩变换为

人教A版数学【选修4-4】ppt课件:1-1第一讲-坐标系

人教A版数学【选修4-4】ppt课件:1-1第一讲-坐标系

【分析】
解决这一问题的关键,在于确定遗址 W 与地下管
线 m 的位置关系, 即求出 W 到直线 m 的距离 d 与 100 米进行比较.
【解】 依题意,以 A 点为原点,正东方向和正北方向分别为 x 轴和 y 轴的正方向,建立平面直角坐标系.如下图.
则 A(0,0),B(-1 000,0),由|AW|=400,得
∴水面与抛物线拱顶相距 3 5 3 |y|+ = + =2(m). 4 4 4 即水面上涨到与抛物线形拱顶相距 2 m 时,船开始不能通航.
【例 2】 用解析法证明:任意四边形两组对边中点连线及两 对角线中点连线三线共点,且互相平分.
【证明】 如下图所示,建立直角坐标系.设四边形各点的坐 标分别为 A(0,0),B(a,0),C(b,c),(d,e).
2 2 2 2 2
1 1 ∴λ=3,μ=2. 1 x′=3x, ∴ y′=1y, 2 1 即将椭圆 4x +9y =36 上的所有点的横坐标变为原来的 ,纵 3
2 2
1 坐标变为原来的 ,即可得到圆 x′2+y′2=1. 2
规律技巧
求满足图象变换的伸缩变换, 实际上是让我们求出
变换公式,将新旧坐标分清,代入对应的曲线方程,然后比较系数 可得.
2.坐标法的应用 (1)坐标法的基本思想就是在平面上引进“坐标”的概念,建 立平面上的点和坐标之间的一一对应,从而建立曲线的方程,并通 过方程研究曲线的性质. (2)坐标法解决几何问题的“五步骤”: ①建立适当的平面直角坐标系,设动点 M(x,y); ②根据题设条件,找出动点 M 满足的等量关系式;
第一讲 坐标系
一 平面直角坐标系
课前预习目标
课堂互动探究
课前预习目标
梳理知识 夯实基础

第一讲 坐标系 知识归纳 课件(人教A选修4-4)

第一讲 坐标系 知识归纳 课件(人教A选修4-4)
返回
考情分析 通过对近几年新课标区高考试题的分析可知,高考对本 讲的考查集在考查极坐标方程、极坐标与直角坐标的互化 等.预计今后的高考中,仍以考查圆、直线的极坐标方程为 主.
返回
真题体验 1.(2012· 安徽高考)在极坐标系中,圆 ρ=4sin θ 的圆心到直 π 线 θ= (ρ∈R)的距离是________. 6 解析:将 ρ=4sin θ 化成直角坐标方程为 x2+y2=4y,即 x2
返回
解析:在直线 l 上任取点 P(ρ,θ),在△OPM 中,由正弦定 OM OP 2 ρ 理得 = ,即 = ,化简得 ρ π 5π sin∠OPM sin∠OMP sin -θ sin 6 6 1 1 = ,故 f(θ)= . π π sin -θ sin -θ 6 6
1 答案: π sin -θ 6
返回
[例 2]
x′=2x, y′=2y
在同一平面直角坐标系中,经过伸缩变换 后, 曲线 C 变为曲线(x′-5)2+(y′+6)2=1,
求曲线 C 的方程,并判断其形状.
[解]
x′=2x, 将 y′=2y
代入(x′-5)2+(y′+6)2=1 中,
得(2x-5)2+(2y+6)2=1. 52 1 2 化简,得(x- ) +(y+3) = . 2 4 5 1 该曲线是以( ,-3)为圆心,半径为 的圆. 2 2
返回
返回
利用问题的几何特征,建立适当坐标系,主要就是兼
顾到它们的对称性,尽量使图形的对称轴(对称中心)正好
是坐标系中的x轴,y轴(坐标原点). 坐标系的建立,要尽量使我们研究的曲线的方程简 单.
返回
[例1]
已知圆的半径为6,圆内一定点P离圆心的距离
为4,A、B是圆上的两动点且满足∠APB=90°,求矩形 APBQ的顶点Q的轨迹方程. [解] 如图,以圆心O为原点,OP

人教新课标版数学高二选修4-4课件 第1课时 圆的极坐标方程

人教新课标版数学高二选修4-4课件 第1课时 圆的极坐标方程
答案
当堂训练
1.极坐标方程分别为ρ=cos θ和ρ=sin θ的两个圆的圆心距是
A.3
B. 2
C.1
√D.
2 2
12345
答案
2.将极坐标方程ρ2cos θ-ρ=0化为直角坐标方程为
A.x2+y2=0或y=1 C.x2+y2=0或x=1
B.x=1 √
D.y=1
12345
答案
3.在极坐标系中,圆ρ=2sin θ的圆心的极坐标是
π 4
= 2cos θ+ 2sin θ,
∴ρ2= 2ρcos θ+ 2ρsin θ,
∴化为直角坐标方程为 x2+y2- 2x- 2y=0.
解答
(3)ρcos(θ+π4)= 22; 解 ∵ρcos(θ+4π)= 22, ∴ρ(cos θ·cos π4-sin θ·sin π4)= 22, ∴ρcos θ-ρsin θ-1=0. 又ρcos θ=x,ρsin θ=y, ∴x-y-1=0.
解答
反思与感悟
在进行两种坐标方程间的互化时,要注意 (1)互化公式是有三个前提条件的,即极点与直角坐标系的原点重合、 极轴与直角坐标系的横轴的正半轴重合,两种坐标系的单位长度相同. (2)由直角坐标求极坐标时,理论上不是惟一的,但这里约定只在 0≤θ<2π范围内求值.
跟踪训练2 把下列直角坐标方程化为极坐标方程. (1)y2=4x; 解 将x=ρcos θ,y=ρsin θ代入y2=4x, 得(ρsin θ)2=4ρcos θ, 化简,得ρsin2θ=4cos θ. (2)x2+y2-2x-1=0. 解 将x=ρcos θ,y=ρsin θ代入x2+y2-2x-1=0, 得(ρcos θ)2+(ρsin θ)2-2ρcos θ-1=0, 化简,得ρ2-2ρcos θ-1=0.

高中数学第一讲相似三角形的判定及有关性质本讲整合课件新人教A版选修4

高中数学第一讲相似三角形的判定及有关性质本讲整合课件新人教A版选修4
(1)△ABC≌△DCB;
(2)DE·DC=AE·BD.
证明(1)∵四边形ABCD是等腰梯形,∴AC=DB,AB=DC.又
BC=CB,∴△ABC≌△DCB.
(2)由(1)知,△ABC≌△DCB,
∴∠ACB=∠DBC,∠ABC=∠DCB.
∵AD∥BC,∴∠DAC=∠ACB,∠EAD=∠ABC.
又ED∥AC,∴∠EDA=∠DAC.
2.平行线分线段成比例定理:三条平行线截两条直线,所得的对应
线段成比例.
推论:平行于三角形一边的直线截其他两边(或两边的延长线)所
得的对应线段成比例.
知识网络
专题一
专题二
专题归纳
高考体验
专题三
例1如图,在四边形ABCD中,AC,BD交于点O,过点O作AB的平行线,
2
与AD,BC分别交于点E,F,与CD的延长线交于点K,则
比例中项.
知识网络
专题一
专题二
专题归纳
高考体验
专题三
例3如图所示,在Rt△ABC中有正方形DEFG,点D,G分别在AB,AC
上,点E,F在斜边BC上,求证:EF2=BE·FC.
证明
如图所示,过点A作AH⊥BC于点H,
则DE∥AH∥GF.
知识网络
专题一
专题二
专题三



=
,
= .


1

= 4 , = .

1
所以 16 = 4,即 BM=4.取 BC 的中点 P,
知识网络
专题一
专题二
专题归纳
高考体验
专题三
作 PQ∥DH 交 EH 于 Q,如图,则 PQ 是梯形 ADHE 的中位线,

2016-2017学年高中数学人教A版选修4-1课件:本讲整合2

2016-2017学年高中数学人教A版选修4-1课件:本讲整合2

-20-
本讲整合
知识建构
12345678
由AG等于☉O的半径得AO=2OE, 所以∠OAE=30°. 因此△ABC和△AEF都是等边三角形.
综合应用
真题放送
-21-
本讲整合
知识建构
综合应用
真题放送
12345678
7(2014·课标全国Ⅰ高考,文22)如图,四边形ABCD是☉O的内接四
边 形,AB的延长线 与DC的延长线 交于点E,且CB=CE.
-6-
本讲整合
专题一 专题二
知识建构
综合应用
真题放送
专题二 与圆有关的线段的计算与证明
在圆中,解决与圆有关的线段的计算与证明问题 时 ,先考虑圆 幂 定理,即相交弦定理、割线定理、切割线定理和切线长 定理,得 到成比例线段,再结合射影定理、相似三角形进行等比代换或等 量代换加以证明或列出方程解得线段的长.
综合应用
真题放送
12345678
1(2015·天津高考,理5)如图,在圆O中,M,N是弦AB的三等分点,弦 CD,CE分别经 过 点M,N.若CM=2,MD=4,CN=3,则 线 段NE的长为 (
)
-11-
本讲整合
12345678
解析:由相交弦定理,
知识建构
综合应用
真题放送
因为M,N是弦AB的三等分点, 所以AM=MN=NB,MB=AN. 所以AM·MB=AN·NB.
提示:要证明∠CED=∠ABC,容易想到圆内接四边形的性质,需证 明A,B,D,E四点共圆.用圆内接四边形的判定定理不易找到条件,故 采用分类讨论来解决.
-5-
本讲整合
知识建构
综合应用
真题放送
专题一 专题二

人教A版高中数学选修4-4课件 2.4摆线课件

人教A版高中数学选修4-4课件 2.4摆线课件
第二讲参数方程 四渐开线与摆线
2.摆线
ቤተ መጻሕፍቲ ባይዱ
人民教育出版社 高中 |选修4-4
人民教育出版社 高中 |选修4-4
摆线的概念
圆的摆线就是一个圆沿着一条定直线无滑动地滚动时圆周上 一个定点 的轨迹,圆的摆线又叫 旋轮线 .
摆线的参数方程:
x=rφ-sin φ y=r1-cos φ
(φ 为参数)
人民教育出版社 高中 |选修4-4
所以xy==221α--csoins
α, α.
这就是所求摆线的参数方程.
人民教育出版社 高中 |选修4-4
总结:
(1)圆的摆线的实质是一个圆沿着一条定直线无滑动地滚动, 圆周上一个定点的轨迹.
(2)在圆的摆线中,圆周上定点的位置也可以由圆心角φ唯 一确定.
人民教育出版社 高中 |选修4-4
[例2] 设圆的半径为8,沿x轴正向滚动,开始时 圆与x轴相切于原点O,记圆上动点为M,它随圆的滚 动而改变位置,写出圆滚动一周时M点的轨迹方程, 画出相应曲线,求此曲线上点的纵坐标y的最大值,说 明该曲线的对称轴.
人民教育出版社 高中 |选修4-4
[精讲详析] 本题考查摆线的参数方程的求 法及应用.解答本题需要先分析题意,搞清M 点的轨迹的形状,然后借助图象求得最值.
人民教育出版社 高中 |选修4-4
轨迹曲线的参数方程为
x=8t-sin t y=81-cos t
(0≤t≤2π)
即 t=π 时,即 x=8π 时,y 有最大值 16.
向量OB =(2α,2), 向量 MB=(2sin α,2cos α), BM =(-2sin α,-2cos α),
因此OM =OB+BM
人民教育出版社 高中 |选修4-4

人教版高中数学选修4-4课件:第一讲四柱坐标系与球坐标系简介

人教版高中数学选修4-4课件:第一讲四柱坐标系与球坐标系简介

且角 θ 的终边经过点(1,1,0),所以 θ=π4,

所以点 M 的柱坐标为

2,π4,1.
(2)设点 P 的直角坐标为(x,y,z),柱坐标为(ρ,θ,
z),

因为(ρ,θ,z)=

2,34π,2,
x=ρcos θ, x= 2cos 34π, x=-1,


由公式y=ρsin
tzρa==nzθ=x2xy+(yx2,≠0),及rc=os
x2+y2+z2, φ=zr.
在用三角函数值求角时,要结合图形确定角的取值范 围再求值;若不是特殊角,可以设定角,然后明确其余弦 值或正切值,并标注角的取值范围即可.
[变式训练]如图所示,已知长方体
ABCD-A1B1C1D1 的边长 AB=6 3, AD=6,AA1=12,以这个长方体的顶点 A 为坐标原点,以射线 AB、AD、AA1 分别 为 x 轴、y 轴、z 轴的正半轴,建立空间直 角坐标系,求长方体顶点 C1 的空间直角坐标、柱坐标、 球坐标.
()
A.(2 2,2 2,3)
B.(-2 2,2 2,3)
C.(-2 2,-2 2,3) D.(2 2,-2 2,3)
解析:x=ρcos θ=4cos54π=-2 2, y=ρsin θ=4sin 54π=-2 2,
故其直角坐标为(-2 2,-2 2,3). 答案:C
4.如图所示,正方体 OABC-O1A1B1C1 中,棱长为 1. (1)在柱坐标系中,点 B1 的坐标为 ________________. (2)在球坐标系中,点 C1 的坐标为 ________________.
5.已知点 M 的直角坐标为(1,2,3),球坐标为(r, φ,θ),则 tan φ=________,tan θ=________.

2016-2017学年高中数学人教A版选修4-5课件:本讲整合1

2016-2017学年高中数学人教A版选修4-5课件:本讲整合1

如果给定的不等式符合上述形式,就可以直接利用它的结果来解 .
-18-
本讲整合
知识建构 综合应用 真题放送
专题一 专题二 专题三 专题四 专题五
第二种类型:设 a为 正数.根据绝对 值 的定义,不等式|x|>a的解集 是{x|x>a或x<-a}.
它的几何意义就是数轴上到原点的距离大于a的点的集合是两 个开区间(-∞,-a),(a,+∞)的并集.如图所示.
1.解在绝对 值 符号内含有未知数的不等式(也称绝对 值 不等式), 关键在于去掉绝对 值 符号,化成一般的不等式.主要的依据是绝对 值 的定义.
在数轴上,一个点到原点的距离称为这 个点所表示的数的绝对 值,
-17-
本讲整合
知识建构 综合应用 真题放送
专题一 专题二 专题三 专题四 专题五
2.含有绝对 值 的不等式有两种基本的类型. 第一种类型:设 a为 正数.根据绝对 值 的定义,不等式|x|<a的解集 是{x|-a<x<a},它的几何意义就是数轴上到原点的距离小于a的点 的集合是开区间(-a,a),如图所示.
-14-
本讲整合
知识建构 综合应用 真题放送
专题一 专题二 专题三 专题四 专题五
-15-
本讲整合
知识建构 综合应用 真题放送
专题一 专题二 专题三 专题四 专题五
-16-
本讲整合
知识建构 综合应用 真题放送
专题一 专题二 专题三 专题四 专题五
专题五 含有绝对值的不等式的解法
关于含有绝对 值 的不等式的问题 ,主要包括两类:一类是解不等 式,另一类是证明不等式.
-23-
本讲整合
12 345
知识建构 综合应用 真题放送

人教A版高中数学选修4-1-第一讲--一-平行线等分线段定理-课件(共27张PPT)

人教A版高中数学选修4-1-第一讲--一-平行线等分线段定理-课件(共27张PPT)

过程与方法
1.通过初中学习平行线的性质和判定定理, 进一步学习一组平行线等分线段定理以及两个推论.
2.培养化归思想,从特殊到一般,再到特殊.
情感态度与价值观
1.通过平行线等分线段定理证明,体会数 学证明的必要性.
2.通过课堂学习培养敢于结合以前所学知 识,推导出新的知识或性质,有利于深刻理解.
教学重难点
求证:B1B2=B2B3
分析
l l’
A1 A2 A3
B1
C2
B2 B3
C3
l1 l2
l3
“角角边”
B1C2//B2C3
△B1C2B2≌△B2C3B3
B1B2=B2B3
知识要 点
平行线等分线段定理
如果一组平行线在一条直线上截得的 线段相等,那么在其他直线上截得的线段也 相等.
小练习
已知:ΔABC,D是AB的中点,DE//BC
求证: AE=EC 证明: 因为AD=BD,DE//BC
A DE
根据平行线等分线段定理,得:
B
C
AE=EC.
能推出

什么结论?

知识要 点
平行线等分线段定理
推论1:经过三角形一边的中点与另一边 平行的直线必平分第三边.
小练习
已知:梯形ABCD,E是AB的中点,
求证:CF=DF.
A
C
证明: 因为AE=BE,AC//BD E
3、平行线等分线段定理和推论的应用
(1)把线段n等分. (2)证明在同一直线上的线段相等.
A AD

EF

E
F

B B
CB
? C
随堂练习
1.判断题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档