人教版数学九年级下册28.1《锐角三角函数》习题精选

合集下载

人教版九年级数学下册《28.1 锐角三角函数》练习题-附带有答案

人教版九年级数学下册《28.1 锐角三角函数》练习题-附带有答案

人教版九年级数学下册《28.1 锐角三角函数》练习题-附带有答案一、选择题1.2tan30°的值等于()A.√32B.√33C.√3D.2√332.已知在△ABC中∠C=90°,∠B=50°,AB=10,那么()A.BC=10cos50°B.BC=10sin50°C.AC=10tan50°D.AC=10cos50°3.如图,在△ABC中∠C=90°,设∠A,∠B,∠C所对的边分别为4,3,5,则()A.5=3sinB B.3=5sinB C.4=3tanB D.3=5tanB4.在平面直角坐标系xOy中,已知点P(1,2),点P与原点O的连线与x轴的正半轴的夹角为α(0°<α<90°),那么tanα的值是()A.2 B.12C.√52D.√55.若规定sin(α−β)=sinαcosβ−cosαsinβ,则sin15°=()A.√2−12B.√2−√64C.√3−12D.√6−√246.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ACB等()A.45B.35C.34D.√10107.如图,矩形ABCD中,AD=4,AB=5,E是AB边上的一点,连接DE、EC.若EC平分∠BED,则sin∠BCE 的值是()A .√55B .2√55C .√32D .23 8.如图,AB 是⊙O 的直径,AB =4,AC 是弦,AC =2 √3 ,∠AOC =( )A .120°B .130°C .140°D .150°二、填空题 9.如果cosA =√32,那么锐角A 的度数为 °. 10.在Rt △ABC 中,∠C =90°,若AB =4,sinA = ,则斜边上的高等于 .11.如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,CD ⊥AB ,垂足为D ,则tan ∠BCD 的值是 .12.如图所示,在四边形 ABCD 中 ∠B =90° AB =2 CD =8 AC ⊥CD 若 sin∠ACB =13 ,则 cos∠ADC = .13.如图,在半径为6的⊙O 中,点A 是劣弧BC ⌢的中点,点D 是优弧BC ⌢上一点 ∠tan∠D =√33,则BC 的长为 .三、解答题14.计算:√2sin60°﹣4cos 230°+sin45°•tan60°.15.先化简,再求值:x 2+2x+12x−6÷(x −1−3xx−3),其中x =cos30°+tan45°.16.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求证:DF是⊙O的切线;(2)若AC=2√5DE 求tan∠ABD的值.17.如图在△ABC中∠ACB=90∘,CD是AB边上的中线分别过点C 点D作AB,BC的平行线交于E 点DE与AC交于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若AC=2DE求sin∠CDB的值.参考答案1.D2.A3.B4.A5.D6.D7.A8.A9.3010.482511.3412.4513.6√314.解:原式=√2×√32﹣4×(√32)2+√22×√3 =√62﹣3+√62 =√6−3.15.解:x 2+2x+12x−6÷(x −1−3x x−3) =(x+1)22(x−3)÷[x(x−3)x−3−1−3x x−3] =(x+1)22(x−3)÷x(x−3)−(1−3x)x−3 =(x+1)22(x−3)÷x 2−1x−3=(x+1)22(x−3)×x−3(x+1)(x−1) =x+12(x−1)=x+12x−2当x =cos30°+tan45°=√32+1 时 原式=√32+1+12(√32+1)−2=12+2√33=3+4√3616.(1)证明:连接DO∵∠EDC=90° F是EC的中点∴DF=FC∴∠FDC=∠FCD∵OD=OC∴∠OCD=∠ODC∵∠OCF=90°∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°∴DF是⊙O的切线;(2)解:∵∠E+∠CAE=90°∠CAD+∠ACD=90°∴∠DCA=∠E又∵∠ADC=∠ACE=90°∴△ACE∽△ADC∴ACAD =AEAC∴AC2=AD×AE设DE=a 则AC=2√3a∴12a2=AD(AD+a)解得AD=3a或-4a(舍去)∵DC2=AC2-AD2∴DC=√3a∴tan∠ABD=tan∠ACD=ADCD =√3a=√3.17.(1)证明:∵CE//BD,DE//BC ∴四边形BDEC是平行四边形.∴CE=BD ∵CD是AB边上的中线∴AD=BD∴CE=AD∴四边形ADCE是平行四边形.∵∠ACB=90∘,DE//BC∴∠AOD=∠ACB=90°,∴AC⊥DE∴四边形ADCE是菱形.(2)解:过点C作CF⊥AB于F.∵平行四边形BDEC,∴DE=BC,∵AC=2DE,∴AC=2BC,设BC=x,则AC=2x,在Rt△ACB中∠ACB=90∘;AB=√AC2+BC2=√5x.∵∠ACB=90∘,CF⊥AB∴S△ABC=12AC⋅BC=12AB⋅CF∴CF=2√5 5x∵∠ACB=90;CD是AB边上的中线∴CD=12AB=√52x在Rt△CDF中∠CFD=90∘∴sin∠CDB=CFCD =45.。

人教版数学九年级下册28.1锐角三角函数达标训练(含答案)

人教版数学九年级下册28.1锐角三角函数达标训练(含答案)

人教版数学九年级下册28.1锐角三角函数达标训练一、选择题1.如图K -16-2,将∠AOB 放置在5×5的正方形网格中,则sin ∠AOB 的值是( D )图K -16-2A.32B.23C.21313D.313132.2017·金华在Rt △ABC 中,∠C =90°,AB =5,BC =3,则tanA 的值是( A ) A.34 B.43 C.35 D.453..如图K -18-1,在△ABC 中,∠ACB =90°,∠ABC =26°,BC =5.若用科学计算器求边AC 的长,则下列按键顺序正确的是( D )图K -18-1A.5÷tan 26=B.5÷sin 26=C.5×cos 26=D.5×tan 26=4.在Rt △ABC 中,∠C =90°,若AB =4,sinA =35,则斜边上的高等于(B )A.6425B.4825C.165D.1255.如图K -17-1,在平面直角坐标系中,点A 的坐标为(4,3),那么cosα的值是( D )图K -17-1A.34B.43C.35D.456..已知cosθ=0.7415926,则∠θ约为( C )A .40°B .41°C .42°D .43°7.如图K -16-4,在正方形网格中,小正方形的边长均为1,点A ,B ,O 都在格点上,则∠AOB 的正弦值是( D )图K -16-4A.31010B.12C.13D.10108..如图K -17-4是教学用的直角三角板,边AC 的长为30 cm ,∠C =90°,tan ∠BAC=33,则边BC 的长为(C )图K -17-4A .30 3 cmB .20 3 cmC .10 3 cmD .5 3 cm9.如图K -18-2,以点O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,OA 长为半径画弧,两弧交于点B ,画射线OB ,则sin ∠AOB 的值为(C )图K -18-2A.12B.22C.32D. 3 10.如图K -17-5,在Rt △ABC 中,∠B =90°,cosA =1213,则tanA 的值为( D )图K -17-5A.125B.1312C.1213D.512二、填空题11.如图K -16-5,在△ABC 中,∠C =90°,sinA =45,则sinB =________.图K -16-5[答案] 2312.在Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,CD =4,AC =6,则sinB 的值是________. [答案] 3714.如图K -17-7所示,在平面直角坐标系中,已知点A 的坐标为(2,0),点B 的坐标为(0,4),且∠1=∠2,则tan ∠OCA =________.图K-17-7[答案] 215.如图K-17-8,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tanD=________.图K-17-8[答案] 2 216.反比例函数y=kx的图象经过点(tan30°,sin60°),则k=________.[答案] 6-2 4三、解答题17.已知:如图K-16-10,在△ABC中,AB=AC=13,BC=10.求∠BAC,∠ABC 的正弦值.图K-16-10解:如图,过点A 作AD ⊥BC 于点D ,过点B 作BE ⊥AC 于点E.∵AB =AC ,BC =10, ∴BD =12BC =5.∵AB =13,∴AD =AB 2-BD 2=132-52=12, ∴sin ∠ABC =AD AB =1213.又∵S △ABC =12BC·AD =12AC·BE ,∴BE =12013,∴sin ∠BAC =BE AB =12013÷13=120169. 即sin ∠BAC =120169,sin ∠ABC =1213.18.如图K -17-12,已知AB 是⊙O 的直径,点C ,D 在⊙O 上,且AB =5,BC =3. (1)求sin ∠BAC 的值;(2)如果OE ⊥AC ,垂足为E ,求OE 的长; (3)求tan ∠ADC 的值.图K -17-12解:(1)∵AB 是⊙O 的直径,∴∠ACB =90°. ∵AB =5,BC =3,∴sin ∠BAC =BC AB =35. (2)∵OE ⊥AC ,O 是⊙O 的圆心, ∴E 是AC 的中点, ∴OE =12BC =32.(3)∵AC =AB 2-BC 2=4, ∴tan ∠ADC =tan ∠ABC =AC BC =43.19.如图K -18-5,河的两岸l 1与l 2互相平行,A ,B 是l 1上的两点,C ,D 是l 2上的两点,某人在点A 处测得∠CAB =90°,∠DAB =30°,再沿AB 方向前进20 m 到达点E(点E 在线段AB 上),测得∠DEB =60°,求C ,D 两点间的距离.图K -18-5解:如图,过点D 作l 1的垂线,垂足为F. ∵∠DEB =60°,∠DAB =30°, ∴∠ADE =∠DEB -∠DAB =30°, ∴DE =AE =20 m.在Rt △DEF 中,EF =DE·cos60°=20×12=10(m).∵DF ⊥AF ,∴∠DFB =90°,∴AC ∥DF. 由l 1∥l 2,可知CD ∥AF , ∴四边形ACDF 为矩形, ∴CD =AF =AE +EF =30 m.。

人教版九年级数学下册 28.1 锐角三角函数 练习及答案

人教版九年级数学下册 28.1 锐角三角函数  练习及答案

人教版九年级数学下册 第28章 锐角三角函数 28.1 锐角三角函数1. 在Rt △ABC 中,若∠ACB=90°,AC =2,BC =3,则下列各式中成立的是( )A .sinB =23 B .cos B =23C .tan B =23D .sin A =232. 在△ABC 中,∠C=90°,AB =13,BC =5,则sinA 的值是( ) A.1312 B. 135 C.125 D.513 3.如图,P 是∠α的边OA 上一点,点P 的坐标为(12,5),则∠α的正弦值为( )A. 125 B.1312 C. 135 D.5124. 在Rt △ABC 中,若各边长度都扩大到原来的2倍,则锐角B 的正切值( ) A .扩大到原来的4倍 B .缩小到原来的12C .扩大到原来的2倍D .没有变化5. 如图,AB 为⊙O 的直径,点D 为BC ︵的中点,AD 交BC 于点M ,点E 为AM 的中点,若AB =5,BC =4,则tan ∠CEM 的值为( )A.43B.35C. 45D.346. 已知Rt △ABC ∽Rt △A ′B ′C ′,∠C=∠C ′=90°,且AB=2A ′B ′,则sinA 与sinA ′的关系为( )A.sinA=2sinA ′B.sinA=sinA ′C.2sinA=sinA ′D.不确定 7. 如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为AB 上一点,且AE∶BE =4∶1,EF ⊥AC 于点F ,连接BF ,则tan ∠CFB 的值是( )A.33B.233C.533D .5 38. 如图,已知Rt △ABC 中,∠C=90°,AC=4,tanA=21,则BC 的长是( )A. 45B. 25C.6D. 29.如图,△ABC 的三个顶点分别在正方形网格的格点上,则tanA 的值是( ) A. 65B.56 C.3102 D.1010310. 如果在△ABC 中,sinA=cosB=22,那么下列最确切的结论是( ) A.△ABC 是等腰直角三角形 B.△ABC 是等腰三角形 C.△ABC 是直角三角形 D.△ABC 是锐角三角形 11. 在Rt △ABC 中,∠C=90°,a=1,c=2,那么sinA= .12. 如图,在△ABC 中,∠C=90°,AC=2,BC=1,则tanA 的值是 .13. 在△ABC 中,∠A=75°,sinB=23,则tanC = .14. 计算:(1) (1+sin 40°)(1-cos 50°)+sin 240=________; (2) (4cos 30°sin 60°)2+(-2)-1-( 2 017-2 018)0=________. 15. 已知正方形ABCD 的边长为2,点P 是直线CD 上一点,若DP =1,则tan ∠BPC 的值是________.16.如图,在Rt △ABC 中,∠C =90°,AM 是BC 边上的中线,sin ∠CAM =35,则tan B 的值为________.17. 如图,在平面直角坐标系中,将矩形OABC 沿OB 对折,使点A 落在点A 1处,已知OA =3,AB =1,则点A 1的坐标为________.18. 计算下列各式的值:(1) cos 60°-tan 60°+cos 30°+2sin 245°;(2) sin 30°sin 60°-cos 45°-(1-cos 30°)2-tan 45°.19. 如图,在四边形ABCD 中,∠A=∠C =90°,∠ABC=30°,AD =3,BC =15,求tan ∠ABD 的值.20. 如图,在Rt △ABC 中,∠ACB =90°,sin B =35,D 是BC 上一点,DE ⊥AB 于点E ,CD =DE ,AC +CD =9,求BC 的长.答案:1—10 CBCDA BCDBA11. 1212.1213. 1 14. (1) 1 (2) 152 15. 2或2316. 2317. ⎝ ⎛⎭⎪⎪⎫32,32 18.(1) 32-32(2)332+2-2 19. 解:如图,延长CD ,BA 交于点E.∵∠C =90°,∠ABC =30°,∴∠E =60°.在Rt △ADE 中,AD =3,∠E =60°, ∠DAE =90°,∴tan E =AD AE ,即tan 60°=3AE =3,∴AE = 3.在Rt △BCE 中,BC =15,∠ABC =30°,∴cos ∠ABC =BCBE,即cos 30°=15BE =32,∴BE =103,∴AB =BE -AE =103-3=93,∴tan ∠ABD =AD AB =393=39.20. 解:在Rt △BED 中,sin B =35,可设DE =3k ,则BD =5k ,CD =3k ,BC=8k ,BE =4k.∴tan B =3k 4k =34.在Rt △ACB 中,AC =BC·tan B =8k·34=6k.∵AC +CD =9,∴6k +3k =9,即k =1,∴BC =8k =8.。

28.1锐角三角函数(1)精选

28.1锐角三角函数(1)精选

正弦 如图,在Rt△ABC中,∠C=90°,我们把锐角A的 对边与斜边的比叫做∠A的正弦(sine),记作sinA, B 即
A的对边 a sin A 斜边 c
斜边 A
c
a 对边
b
C
例如,当∠A=30°时,我们有 1 sin A sin 30 2 当∠A=45°时,我们有
2 sin A sin 45 2
当∠A=定值;
当∠A=45°时,∠A的对边与斜边的比都等于 2 ,
2
也是一个固定值.
一般地,当∠A 取其他一定度数的锐角时,它的
对边与斜边的比是否也是一个固定值?
探究
∠A=∠A‘= ,那么
B
任意画Rt△ABC和Rt△A‘B’C‘,使得∠C=∠C’=90°,
2 上的中线,AC=2,BC=4,则sin∠DAC=___. 2
练一练 2.在Rt△ABC中,锐角A的对边和斜边同时扩大
100倍,sinA的值( C
A.扩大100倍

1 B.缩小 100
C.不变
B 3.如图 A 3
D.不能确定
则 C
1 2 sinA=______
.
300 7
练习 如图,Rt△ABC中,∠C=90度,CD⊥AB, 图中sinB可由哪两条线段比求得。
B B 3 5 A
试着完成图(2)
13
C
4 C A
(1)
(2)
解:如图(),在RtABC中, 1 AB AC2 BC 2 4 2 32 5. BC 3 AC 4 因此 sin A , B sin . AB 5 AB 5
练一练
1.判断对错:
BC √ 1) 如图 (1) sinA= ( ) AB

2022--2023学年人教版九年级数学下册《28-1锐角三角函数》同步练习题(附答案)

2022--2023学年人教版九年级数学下册《28-1锐角三角函数》同步练习题(附答案)

2022--2023学年人教版九年级数学下册《28.1锐角三角函数》同步练习题(附答案)一.选择题1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=2.三角函数sin30°、cos16°、cos43°之间的大小关系是()A.sin30°<cos16°<cos43°B.cos43°<sin30°<cos16°C.sin30°<cos43°<cos16°D.sin16°<cos30°<cos43°3.如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,则下列比值中不等于sin A 的是()A.B.C.D.4.如果锐角A的度数是25°,那么下列结论中正确的是()A.0<sin A<B.0<cos A<C.<tan A<1D.1<cot A<5.在Rt△ABC中,如果各边长度都扩大为原来的3倍,则锐角∠A的余弦值()A.扩大为原来的3倍B.没有变化C.缩小为原来的D.不能确定6.在Rt△ABC中,∠C=90°,AB=4,AC=2,则sin A的值为()A.B.C.D.7.若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°8.在Rt△ABC中,∠B=90°,cos A=,则sin A=()A.B.C.D.9.若tan B=,则∠B的度数为()A.30°B.60°C.45°D.15°10.在Rt△ABC中,∠C=90°,AB=5,AC=4.下列四个选项,正确的是()A.tan B=0.75B.sin B=0.6C.sin B=0.8D.cos B=0.8 11.如图,△ABC的顶点是正方形网格的格点,则sin∠ABC的值为()A.B.C.D.二.填空题12.在Rt△ABC中,∠C=90°,若c=5,sin B=,则AC=.13.在△ABC中,∠C=90°,如果tan∠A=2,AC=3,那么BC=.14.如图,在Rt△ABC中,∠ACB=90°,D为AB上异于A,B的一点,AC≠BC.(1)若D为AB中点,且CD=2,则AB=.(2)当CD=AB时,∠A=α,要使点D必为AB的中点,则α的取值范围是.15.若∠A为锐角,且cos A=,则∠A的取值范围是.16.如图,已知两点A(2,0),B(0,4),且∠1=∠2,则tan∠OCA=.三.解答题17.如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3.求AC的长和sin A的值.18.如图,在Rt△ABC中,∠C=90°,AC=12,BC=5.求sin A,cos A和tan A.19.(1)如图锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律.(2)根据你探索到的规律试比较18°,34°,50°,62°,88°,这些锐角的正弦值的大小和余弦值的大小.(3)比较大小(在空格处填写“>”“=”“<”号),若α=45°,则sinαcosα;若0°<α<45°,则sinαcosα;若45°<α<90°,sinαcosα.20.在Rt△ABC中,∠C=90°,斜边c=5,两直角边的长a,b是关于x的一元二次方程x2﹣mx+2m﹣2=0的两个根,求Rt△ABC中较小锐角的正弦值.21.已知如图,A,B,C,D四点的坐标分别是(3,0),(0,4),(12,0),(0,9),探索∠OBA和∠OCD的大小关系,并说明理由.22.在△ABC中,BC=2AB=12,∠ABC=α,BD是∠ABC的角平分线,以BC为斜边在△ABC外作等腰直角△BEC,连接DE.(1)求证:CD=2AD;(2)当α=90°时,求DE的长;(3)当0°<α<180°时,求DE的最大值.参考答案一.选择题1.解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sin A=,故A错误;cos A=,故B正确;tan A=;故C错误;cos A=,故D错误;故选:B.2.解:∵sin30°=cos60°,又16°<43°<60°,余弦值随着角度的增大而减小,∴cos16°>cos43°>sin30°.故选:C.3.解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=,故选:D.4.解:A.∵sin30°=,∴0<sin25°<,故A符合题意;B.∵cos30°=,∴cos25°>,故B不符合题意;C.∵tan30°=,∴tan25°<,故C不符合题意;D.∵cot30°=,∴cot25°>,故D不符合题意;故选:A.5.解:设原来三角形的各边分别为a,b,c,则cos A=,若把各边扩大为原来的3倍,则各边为3a,3b,3c,那么cos A==,所以余弦值不变.故选:B.6.解:在Rt△ABC中,∠C=90°,AB=4,AC=2,∴BC===2,∴sin A===,故选:D.7.解:∵α是锐角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是锐角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.故选:B.8.解:在Rt△ABC中,∠B=90°,cos A=,∴设AB=12k,AC=13k,∴BC===5k,∴sin A===,故选:A.10.解:∵tan B=,∴∠B=60°.故选:B.11.解:如图,∵∠C=90°,AB=5,AC=4,∴BC===3,A选项,原式==,故该选项不符合题意;B选项,原式===0.8,故该选项不符合题意;C选项,原式===0.8,故该选项符合题意;D选项,原式===0.6,故该选项不符合题意;故选:C.二.填空题12.解:在Rt△ABC中,∠C=90°,若c=5,sin B=,所以sin B===,所以AC=4,故答案为:4.13.解:在△ABC中,∠C=90°,tan∠A=2,AC=3,∴BC=AC tan∠A=3×2=6,故答案为:6.14.解:(1)∵∠ACB=90°,D为AB中点,∴AB=2CD=2×2=4;故答案为:4;(2)当以C点为圆心,CD为半径画弧与线段AB只有一个交点(点A、B除外),则点D必为AB的中点,∴CB≤CD或CA≤CD,∵CD=AB,∴CB≤AB或CA≤AB∵sin A=≤或sin B=≤,即sinα≤sin30°或sin B≤sin30°,∴α≤30或∠B≤30°,∴α≤30°或α≥60°,∴α的取值范围为0°<α≤30°或60°≤α<90°.故答案为:0°<α≤30°或45°或60°≤α<90°.15.解:∵0<<,又cos60°=,cos90°=0,锐角余弦函数值随角度的增大而减小,∴当cos A=时,60°<∠A<90°.故答案为:60°<∠A<90°.16.解:∵∠1=∠2,∴∠BAO=∠ACO,∵A(2,0),B(0,4),∴tan∠OCA=tan∠BAO==2.故答案为:2.三.解答题17.解:∵∠C=90°,AB=5,BC=3,∴AC===4,sin A==.答:AC的长为4,sin A的值为.18.解:在Rt△ABC中,∠C=90°,AC=12,BC=5.∴AB===13,∴sin A==,cos A==,tan A==.19.解:(1)在图中,令AB1=AB2=AB3,B1C1⊥AC于点C1,B2C2⊥AC于点C2,B3C3⊥AC 于点C3,显然有:B1C1>B2C2>B3C3,∠B1AC>∠B2AC>∠B3AC.∵sin∠B1AC=,sin∠B2AC=,sin∠B3AC=,而>>,∴sin∠B1AC>sin∠B2AC>sin∠B3AC.在图中,Rt△ACB3中,∠C=90°,cos∠B1AC=,cos∠B2AC=,cos∠B3AC=,∵AB3>AB2>AB1,∴>>.即cos∠B3AC<cos∠B2AC<cos∠B1AC;结论:锐角的正弦值随角度的增大而增大,锐角的余弦值随角度的增大而减小.(2)由(1)可知:sin88°>sin62°>sin50°>sin34°>sin18°;cos88°<cos62°<cos50°<cos34°<cos18°.(3)若α=45°,则sinα=cosα;若0°<α<45°,则sinα<cosα;若45°<α<90°,则sinα>cosα.故答案为:=,<,>.20.解:∵a,b是方程x2﹣mx+2m﹣2=0的解,∴a+b=m,ab=2m﹣2,在Rt△ABC中,由勾股定理得,a2+b2=c2,而a2+b2=(a+b)2﹣2ab,c=5,∴a2+b2=(a+b)2﹣2ab=25,即:m2﹣2(2m﹣2)=25解得,m1=7,m2=﹣3,∵a,b是Rt△ABC的两条直角边的长.∴a+b=m>0,m=﹣3不合题意,舍去.∴m=7,当m=7时,原方程为x2﹣7x+12=0,解得,x1=3,x2=4,不妨设a=3,则sin A==,∴Rt△ABC中较小锐角的正弦值为21.解:∠OBA=∠OCD,理由如下:由勾股定理,得AB===5,CD===15,sin∠OBA==,sin∠OCD===,∠OBA=∠OCD.22.(1)证明:如图,过点D作DO∥BC交AB于点O,∴∠ODB=∠CBD,∵BD是角平分线,∴∠OBD=∠CBD,∴∠OBD=∠ODB,∴OB=OD,∵OD∥BC,∴=,△AOD∽△ABC,∴=,∴===,∴=,∴CD=2AD;解:(2)如图,过点D作DO∥BC交AB于点O,当α=90°时,BD平分∠ABC,∴∠DBC=∠OBD=45°,∠DOB=90°,∵△BEC为等腰直角三角形,BC=12,∴∠EBC=45°,BE=6,∴∠DBE=90°,由(1)可得AB=6,==,∴OB=4,∴BD=4,∴DE==2;(3)如图,过点D作DO∥BC交AB于点O,DE交BC于点F,设BC中点为点G,连接EG,∴BG=6,当α变化时,OB的长度不变,∴点O在以点B为圆心,半径为4的圆弧上,令圆弧与BC交于点F,∴BF=4,此时,点D在以点F为圆心,半径为4的圆弧上,当点D,E,F三点共线时,DE最大,∴GF=BG﹣BF=2,∴EF==2,∴DE的最大值=DF+FE=2+4.。

新人教版九年级下《28.1锐角三角函数》课时练习含答案解析(初中 数学试卷)

新人教版九年级下《28.1锐角三角函数》课时练习含答案解析(初中 数学试卷)

新人教版数学九年级下册第28章28.1锐角三角函数课时作业一、选择题知识点:锐角三角函数的定义解析:解答:∵Rt△ABC中,∠C=90°,AB=2BC,知识点:锐角三角函数定义解析:解答:连接CD,如图所示:∵∠COD=90°,∴CD为圆A的直径,又∵∠CBO与∠CDO为CO所对的圆周角,∴∠CBO=∠CDO,又∵C(0,5),答案:B知识点:锐角三角函数定义解析:解答:①∵△ABD为直角三角形,∴BD2=AD2+AB2,不是BD=AD2+AB2,故说法错误;知识点:锐角三角函数的定义解析:解答:由图形知:tan∠ACB=26=13,知识点:锐角三角函数的定义解析:解答:∵∠C=90°,BC=6,AC=8,知识点:特殊角的三角函数值解析:解答:∵sinA=cosB=2,知识点:特殊角的三角函数值解析:解答:由题意得:∠AOB=90°,A .不变B .缩小为原来的3C .扩大为原来的3倍D .不能确定 答案:A知识点:锐角的三角函数的定义解析:解答:因为△ABC 三边的长度都扩大为原来的3倍所得的三角形与原三角形相似,所以锐角A 的大小没改变,所以锐角A 的正弦函数值也不变.知识点:锐角的三角函数的定义解析:解答:作DE⊥AB于点E.知识点:特殊角的三角函数值解析:解答:解:2sin30°-sin 245°+cot60°, =2×12-)2 知识点:特殊角的三角函数值解析:解答:解:原式=1+2-1=2.故选A .分析:本题考查的是实数的运算,熟知负整数指数幂及0指数幂的运算法则,熟记各特殊角度的三角函数值是解答此题的关键.知识点:特殊角的三角函数值解析:,cos45°=2,知识点:锐角三角函数的定义解析:解答:知识点:锐角的三角函数的定义解析:解答:过C 点作CD ⊥AB ,垂足为D .根据旋转性质可知,∠B′=∠B .知识点:特殊角的三角函数值解析:解答:∵sin60°,cos60°=12, 1.计算:cos 245°+tan30° sin60°=____.答案:1知识点:特殊角的三角函数值解析:解答:cos 245°+tan30°sin60°=1212+12=1.解析:解答:C在以A为圆心,以2为半径作圆周上,只有当OC与圆A相切(即到C点)时,∠BOC最小,解析:解析:解析:1.已知⊙O的弦CD与直径AB垂直于F,点E在CD上,且AE=CE.(1)求证:CA2=CE CD;(2)已知CA=5,EA=3,求sin∠EAF.知识点:锐角三角函数的定义解析:知识点:特殊角的三角函数值解析:解析:知识点:特殊角的三角函数值解析:解析:解答:∠CBD与∠CEB相等,证明:∵BC切⊙O于点B,(1)根据题意即可推出∠CBD=∠BAD,由∠BAD=∠CEB,即可推出∠CBD与∠CEB相等;(2)根据(1)所推出的结论,通过求证△EBC∽△BDC,即可推出结论;(3)通过设BC=3x,AB=2x,根据题意,推出OC和CD的长度,然后通过求证△DCF∽△BCD,即可推出DF:BD的值,即∠DBF的正切值,由∠DBF=∠CDF,即可推出∠CDF的正切值.。

人教版九年级数学下册同步试题:28.1锐角三角函数 训练题(含答案)

 人教版九年级数学下册同步试题:28.1锐角三角函数 训练题(含答案)

28.1 锐角三角函数 训练题一、选择题.1.如图1,Rt △ABC 中,∠C=90°,D 为BC 上一点,∠DAC=30°,BD=2,AC 的长是( ).AB .C .3D.32D C BADBA(1) (2) (3)2.如图2,从地面上C 、D 两处望山顶A ,仰角分别为35°、45°,若C 、 D 两处相距200米,那么山高AB 为( ).A .100)米B .米C .米D .200米3.如图3,两建筑物的水平距离为s 米,从A 点测得D 点的俯角为α,测得C 点的俯角为β,则较低的建筑物的高为( ).A .s ·tan α米 B .s ·tan (β-α)米C .s (tan β-tan α)米D .米tan tan sβα-4.已知:A 、B 两点,若由A 看B 的仰角为α,则由B 看A 的俯角为( ).A .αB .90°-αC .90°+αD .180°-α5.如图4,从山顶A 望地面C 、D 两点,测得它们的俯角分别是45°和30°, 已知CD=100m ,点C 在BD 上,则山高AB 等于().A .100mB.C .mD .50+1)m(4) (5) (6)6.已知楼房AB高50m,如图5,铁塔塔基与楼房房基间水平距离BD为50m,塔高DCm,下列结论中正确的是().A.由楼顶望塔顶仰角为60°B.由楼顶望塔基俯角为60°C.由楼顶望塔顶仰角为30°D.由楼顶望塔基俯角为30°7.如图6,一台起重机的机身高AB为20m,吊杆AC的长为36m, 吊杆对水平线的倾角可以从30°转到80°,则这台起重机工作时吊杆端点C离地面的最大高度和离机身的最远水平距离分别是().A.(36+20)m和36·tan30°m B.36·sin80°m和36·cos30°mC.(36sin30°+20)m和36·cos30°m D.(36sin80°+20)m和36·cos30°m8.观察下列各式:(1)sin59°>sin28°;(2)0<cosα<1(α是锐角);(3) tan30 °+tan60°=tan90°;(4)tan44°·cot44°=1,其中成立的有().A.1个B.2个C.3个D.4个9.角a为锐角,且cosα=,那么α在()。

人教版九年级数学下册《28.1锐角三角函数》同步测试题及答案

人教版九年级数学下册《28.1锐角三角函数》同步测试题及答案

人教版九年级数学下册《28.1锐角三角函数》同步测试题及答案任务一 求锐角三角函数值子任务1 利用参数法求锐角三角函数值母题1 如图,在Rt △ABC 中,∠C=90°,BC=3AC ,则tan B=( )A .13B .3C .√1010 D .3√1010变式练1:在直角三角形ABC 中,若2AB=AC ,则cos C 的值为( )A .12或2√35B .12或2√55 C .√32或2√55 D .√32或2√35子任务2 构造直角三角形求锐角三角函数值母题2 如图,已知钝角三角形ABC ,点D 在BC 的延长线上,连接AD ,若∠DAB=90°,∠ACB=2∠D ,AD=2,AC=32,求tan D 的值.变式练2:如图,△ABC与△BDC均为直角三角形,若∠ACB=30°,∠DBC=45°,求∠ADB的正切值.母题3如图,在△ABC中,CA=CB=4,cos C=14,则sin B的值为()A.√102B.√153C.√64D.√104变式练3:如图,在Rt△BAD中,延长斜边BD到点C,使DC=12BD,连接AC.若tan B=53,则tan∠CAD的值为.子任务3利用等角转换法求锐角三角函数值母题4如图,在半径为3的☉O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tan D=()A.2√2B.√24C.13D.2√23【关键点拨】变式练4:如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=1∠BAC,求sin∠BPC.2子任务4利用网格求锐角三角函数值母题5如图,这是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是.【关键点拨】变式练5:如图,点A,B,C在正方形网格的格点上,则sin∠BAC=()A.√1313B.√66C.√2613D.√2626子任务5在折叠问题中求锐角三角函数值母题6如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D 处,EF为折痕,若AE=3,则sin∠BFD的值为.【关键点拨】变式练6:直角三角形纸片ABC,两直角边BC=4,AC=8,现将△ABC纸片按图中方式折叠,使点A 与点B重合,折痕为DE,则tan∠CBE的值是()A.12B.34C.1D.43任务二 由一个锐角的三角函数值求三角形的边长母题7 在Rt △ABC 中,∠C=90°,sin A=35,AC=8 cm,则BC 的长度为( )A .3 cmB .4 cmC .5 cmD .6 cm变式练7:已知∠A 是锐角,sin A=35,则cos A 的值为( )A .35B .45C .34D .54任务三 由一个锐角的三角函数值求三角形的面积母题8 已知△ABC 中,tan B=23,BC=6,过点A 作BC 边上的高,垂足为点D ,且满足BD ∶CD=2∶1,则△ABC 面积的所有可能值为 .变式练8:在△ABC 中,AB=3√6,AC=6,∠B=45°,则BC= .任务四 锐角三角函数的探究问题母题9 如图1,在Rt △ABC 中,以下是小亮探究asinA 与bsinB 之间关系的方法:∵sin A=a c ,sin B=b c , ∴c=a sinA ,c=bsinB ∴asinA =bsinB .根据你掌握的三角函数知识,在图2的锐角三角形ABC 中,探究asinA ,bsinB ,csinC 之间的关系,并写出探究过程.图1 图2变式练9:把(sin α)2记作sin 2α,根据图完成下列各题:图1图2(1)如图1,sin 2A 1+cos 2A 1= ,sin 2A 2+cos 2A 2= sin 2A 3+cos 2A 3= .(2)观察上述等式后猜想:在Rt △ABC 中,∠C=90°,总有sin 2A+cos 2A= . (3)如图2,在Rt △ABC 中证明(2)题中的猜想.(4)已知在△ABC 中,∠A+∠B=90°,且sin A=1213,求cos A 的值.参考答案母题1 A 提示:在Rt △ABC 中,∠C=90°,BC=3AC∴tan B=AC BC =AC 3AC =13.故选A .变式练1 C 提示:①当AC 为直角边时∵2AB=AC∴BC=√AB 2+AC 2=√5AB∴cos C=AC BC =2AB √5AB =2√55;②当AC 为斜边时 ∵2AB=AC∴BC=√AC 2-AB 2=√3AB∴cos C=BC AC =√3AB 2AB=√32. 综上,cos C=2√55或√32. 故选C .母题2 解:∵∠ACB=∠D+∠CAD ,∠ACB=2∠D∴∠CAD=∠D∴CA=CD. ∵∠DAB=90°∴∠B+∠D=90°,∠BAC+∠CAD=90° ∴∠B=∠BAC ∴AC=CB∴BD=2AC=2×32=3. 在Rt △ABD 中,∵∠DAB=90°,AD=2∴AB=√32-22=√5∴tan D=AB AD =√52.变式练2解:如图,过点A 作DB 延长线的垂线,垂足为点E 则∠E=90°,∠ABE=45°,AE=BE.设AE=BE=x ,则AB=√2x ,BC=√6x ,BD=CD=√3x∴DE=√3x+x ,∴tan ∠ADB=AE DE =(√3+1)x =√3+1=√3-12.母题3 D 提示:如图,过点A 作AD ⊥BC ,垂足为D在Rt △ACD 中,CD=CA ·cos C=1∴AD=√AC 2-CD 2=√15.在Rt △ABD 中,BD=CB-CD=3,AD=√15.∴AB=√BD 2+AD 2=2√6.∴sin B=AD AB =√104.故选D . 变式练3 15 提示:如图,延长AD ,过点C 作CE ⊥AD ,垂足为E.在Rt △BAD 中,tan B=AD AB =53. 可设AD=5x ,则AB=3x.∵∠CDE=∠BDA ,∠CED=∠BAD ∴△CDE ∽△BDA∴CE AB =DE AD =CD BD =12 ∴CE=32x ,DE=52x ∴AE=AD+DE=152x ∴在Rt △AEC 中,tan ∠CAD=CE AE =15.故答案为15.母题4 A 提示:如图,连接BC.∵AB 是直径,∴∠ACB=90°. ∵☉O 的半径为3,∴AB=6 ∴BC=√AB 2-AC 2=√62-22=4√2∴tan D=tan A=BC AC =4√22=2√2. 故选A .变式练4 解:如图,作AD ⊥BC 于点D.∵AB=AC=5,BC=8∴BD=CD=4,∠BAD=12∠BAC. ∵∠ADB=90°,∴sin ∠BAD=BD AB =45.又∵∠BPC=12∠BAC∴∠BPC=∠BAD ∴sin ∠BPC=45. 母题5 2 提示:如图,过点Q 作QC ∥BA ,连接PC∴∠QMB=∠CQP. 由题意得CQ 2=22+22=8 PC 2=42+42=32 PQ 2=22+62=40∴PC 2+CQ 2=PQ 2∴△PCQ 是直角三角形 ∴∠PCQ=90°∴tan ∠CQP=PC CQ =√22√2=2∴tan ∠QMB=tan ∠CQP=2. 故答案为2.变式练5 D 提示:如图,延长AC 到点D ,连接BE 交CD 于点O∴BE ⊥CD ,AB=√22+32=√13,OB=12BE=12√12+12=√22∴sin ∠BAC=OB AB =√22√13=√2626. 故选D .母题6 13 提示:∵在△ABC 中,∠ACB=90°,AC=BC=4∴∠A=∠B.由折叠的性质得到△AEF ≌△DEF∴∠EDF=∠A ∴∠EDF=∠B∴∠CDE+∠BDF+∠EDF=∠BFD+∠BDF+∠B=180° ∴∠CDE=∠BFD. 又∵AE=DE=3∴CE=4-3=1.在直角△ECD 中,sin ∠CDE=CEED =13∴sin ∠BFD=13. 故答案为13.变式练6 B 提示:根据题意,BE=AE.设BE=x ,则CE=8-x. 在Rt △BCE 中,x 2=(8-x )2+42 解得x=5∴CE=8-5=3∴tan ∠CBE=CE CB =34.故选B .母题7 D 提示:∵sin A=BCAB =35∴设BC=3x ,AB=5x. 又∵AC 2+BC 2=AB 2∴82+(3x )2=(5x )2解得x=2或x=-2(舍去)∴BC=3x=6 cm . 故选D .变式练7 B 提示:∵sin 2A+cos 2A=1∴cos A=√1−(35) 2=45. 故选B .母题8 8或24 提示:如图1所示∵BC=6,BD ∶CD=2∶1∴BD=4.∵AD ⊥BC ,tan B=23∴AD BD =23∴AD=23BD=83∴S △ABC =12BC •AD=12×6×83=8. 如图2所示∵BC=6,BD ∶CD=2∶1,∴BD=12.∵AD ⊥BC ,tan B=23,∴AD BD =23,∴AD=23BD=8 ∴S △ABC =12BC •AD=12×6×8=24. 综上所述,△ABC 面积的所有可能值为8或24. 故答案为8或24.图1 图2变式练8 3√3+3或3√3-3 提示:①当△ABC 为锐角三角形时 过点A 作AD ⊥BC 于点D ,如图1.图1∵AB=3√6,∠B=45°∴AD=BD=AB ·sin 45°=3√3∴CD=√AC 2-AD 2=3,∴BC=BD+CD=3√3+3. ②当△ABC 为钝角三角形时过点A 作AD ⊥BC 交BC 延长线于点D ,如图2.图2∵AB=3√6,∠B=45°∴AD=BD=AB ·sin 45°=3√3∴CD=√AC 2-AD 2=3∴BC=BD-CD=3√3-3.综上,BC 的长为3√3+3或3√3-3.故答案为3√3+3或3√3-3.母题9 解:a sinA =b sinB =c sinC .理由如下:如图,过点A 作AD ⊥BC ,过点B 作BE ⊥AC在Rt △ABD 中,sin B=AD c ,即AD=c sin B 在Rt △ADC 中,sin C=AD b ,即AD=b sin C∴c sin B=b sin C ,即b sinB =c sinC 同理可得a sinA =c sinC则a sinA =b sinB =c sinC .变式练9 解:(1)1;1;1 提示:sin 2A 1+cos 2A 1=122+√322=14+34=1 sin 2A 2+cos 2A 2=1√22+1√22=12+12=1 sin 2A 3+cos 2A 3=352+452=925+1625=1.故答案为1;1;1.(2)1.(3)在题图2中,∵sin A=a c ,cos A=b c ,且a 2+b 2=c 2 则sin 2A+cos 2A=a c 2+b c 2=a 2c 2+b 2c 2=a 2+b 2c 2=c 2c 2=1 即sin 2A+cos 2A=1.(4)在△ABC 中,∠A+∠B=90°,∴∠C=90°. ∵sin 2A+cos 2A=1,∴12132+cos 2A=1 解得cos A=513或cos A=-513(舍去),∴cos A=513.。

人教版九年级下册数学:第二十八章《能力测试题含答案不全

人教版九年级下册数学:第二十八章《能力测试题含答案不全

人教版九年级下册数学:第二十八章《能力测试题《28.1 锐角三角函数》一、基础题1.如图,已知,在Rt △ABC 中,∠C =90°,AB =5,BC =3,则cosB 的值是( ) A.45 B.34 C.35 D.432.如图,△ABC 的顶点都在正方形网格的格点上,则cosC 的值为( ) A.12 B.32 C.55 D.2553.已知在Rt △ABC 中,∠C =90°,sinA =35,则cosB 的值为( )A.74 B.35 C.34 D.454.如图,在Rt △ABC 中,∠C =90°,若AB =5,AC =4,则sinB =( )A.35B.45C.34D.43 5.在Rt △ABC 中,∠C =90°,各边都扩大2倍,则锐角A 的正弦值( ) A .扩大2倍 B .缩小12C .不变D .无法确定6.在△ABC 中,若三边BC ,CA ,AB 满足BC ∶CA ∶AB =5∶12∶13,则sinA 的值是( )A.512B.125C.513D.12137.在Rt △ABC 中,∠C =90°,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,若2a =3c ,则∠A 的正弦值等于 .8.如图所示,在Rt △ABC 中,∠C =90°,a ∶c =2∶3,求sinA 和sinB 的值.9.如图,在△ABC 中,∠C =90°,sinA =1213,AB =26,求△ABC 的周长.二、提升题10.如图,△ABC 的顶点是正方形网格的格点,则sinA 的值为( )A.12B.55C.1010D.255 11.如图,在矩形ABCD 中,AB =8,BC =12,点E 是BC 的中点,连接AE ,将△ABE 沿AE 折叠,点B 落在点F 处,连接FC ,则sin ∠ECF =( )A.34B.43C.35D.4512.在Rt △ABC 中,∠C =90°,sinA =45,AC =6 cm ,求BC 的长度.13.如图,菱形ABCD 的边长为10 cm ,DE ⊥AB ,sinA =35,求DE 的长和菱形ABCD的面积.14.如图,已知⊙O 的半径为5 cm ,弦AB 的长为8 cm ,P 是AB 延长线上一点,BP =2 cm ,求cosP 的值.28.2 解直角三角形及其应用(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 在中,,,,则边长为()A. B. C.或 D.或2. 如图,,,,,则A. B. C. D.3. 如图,一艘海轮位于灯塔的北偏东方向,距离灯塔海里的处,它沿正南方向航行一段时间后,到达位于灯塔的南偏东方向上的处,这时,海轮所在的处与灯塔的距离为()A.海里B.海里C.海里D.海里4. 如图,在高为,坡角为的楼梯表面铺地毯,地毯的长度至少需要()A. B. C. D.5. 在离电视塔的处,测得塔顶仰角为,若测角仪高度为,则电视塔高为()A. B. C. D.6. 如图,沿方向开山修路,为加快施工进度,要在小山的另一边同时施工.现在上取一点,使,,,要使,,成一直线,那么开挖点离点的距离为()A. B. C. D.7. 如图,在中,,,,则A. B. C. D.8. 如图是一长为米的游泳池的纵切面,该游泳池的最浅处为米,最深处为米,底面为斜坡,则底面的坡度为()A. B. C. D.9. 在一次夏令营活动中,小亮从位于点的营地出发,沿北偏东方向走了到达地,然后再沿北偏西方向走了若干千米到达地,测得地在地南偏西方向,则,两地的距离为A. B. C. D.10. 如图,等腰的底角为,底边上的高,则腰、的值为()A. B. C. D.二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 在中,,,,那么________度.12. 小明同学从地出发沿北偏东的方向到地,再由地沿南偏西的方向到地,则________.13.在中,,,若,则的长度为________.14. 如图,岛在岛的北偏东,岛在岛的北偏西方向,且为海里,为海里,则________.15. 在中,,为边上的高,,则线段的长为________.16. 如图,一个小球由地面沿着坡度的坡面向上前进了,此时小球距离出发点的水平距离为________.17. 如图,,之间是一座山,一条高速公路要通过,两点,在地测得公路走向是北偏西.如果,两地同时开工,那么在地按________方向施工,才能使公路在山腹中准确接通.18. 如图,设,,为射线上一点,于,于,则等于________ (用、的三角函数表示)19. 如图,在点处测得塔顶的仰角为,点到塔底的水平距离是,那么塔的高度为________(结果保留根号).20. 如图,一幢大楼的顶部竖有一块写有“校训”的宣传牌.小明在山坡的底部处测得宣传牌底部的仰角为,沿山坡向上走到处测得宣传牌顶部的仰角为.已知山坡垂直于视线,米,米,则这块宣传牌的高度为________.(测角器的高度忽略不计,结果精确到米.参考数据:,).三、解答题(本题共计6 小题,共计60分,)21. 已知一艘轮船从港口出发以∕的速度向正东方向航行,后到港口,又从港口以同样的速度后航行到港口,此时在处测得港口位于港口的南偏西方向上,求该艘轮船以∕的速度返回到港口所需的时间.(精确到,参考数据:,,,,,)22. 如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度.小宇同学在处观测对岸点,测得=,小英同学在距处米远的处测得=,请你根据这些数据算出河宽.(精确到米,参考数据,)23. 如图,一幢居民楼临近山坡,山坡的坡度为,小亮在距山坡坡脚处测得楼顶的仰角为,当从处沿坡面行走米到达处时,测得楼顶的仰角刚好为,点,,在同一直线上,求该居民楼的高度.(结果保留整数,)24. 教育部布的《基础教育课程改革纲要》要求每位学生每学年都要参加社会实践活动,某学校组织了一次测量探究活动,如图,某大楼的顶部竖有一块广告牌,小明与同学们在山坡的坡脚处测得广告牌底部的仰角为,沿坡面向上走到处测得广告牌顶部的仰角为,已知山坡的坡度,=米,=米,求广告牌的高度.(测角器的高度忽略不计,结果精确到米,参考数据:,,,)25. 某课桌生产厂家研究发现,倾斜为的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度的桌面.新桌面的设计图如图所示,可绕点旋转,在点处安装一根长度一定且处固定,可旋转的支撑臂,.(1)如图中,当于时,测得,求此时支撑臂的长.(2)在图中,当不垂直时,测得,求此时的长(结果保留根号).参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】D【解答】解:∵,∴,当为钝角三角形时,如图,∵,,∴,∵,∴由勾股定理得,∴;当为锐角三角形时,如图,,故选.2.【答案】A【解答】解:由勾股定理知,,∴.∵,∴是直角三角形.∴.故选.3.【答案】A【解答】解:过点作于点.在中,∵海里,,∴海里.在中,∵海里,,∴海里.即海轮所在的处与灯塔的距离为海里.故选:.4.【答案】A【解答】解:由题意得:地毯的竖直的线段加起来等于,水平的线段相加正好等于,即地毯的总长度至少为,在中,,,.∵,∴.∴.故选.5.【答案】A【解答】解:根据题意画出相应的图形,如图所示:在中,,,则,即,又因为,则.故选.6.【答案】B【解答】解:由题意可得,,,∴要使,,成一直线,则,∴,故选.7.【答案】B【解答】解:作于点.由题意知,∵,∴,∵,∴.∵,∴.∴.故选.8.【答案】B解:因为水平距离为米,则底面的坡度为.故选.9.【答案】A【解答】解:如图.由题意可知,,,,.∵,∴又∵,∴.∴是直角三角形.又∵,∴.∴.∴.故选.10.C【解答】解:∵等腰的底角为,底边上的高,∴.故选.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】【解答】解:在中,∵,,,∴,∴,∴(直角三角形的两个锐角互为余角).故答案是:.12.【答案】【解答】解:如图:由题意知,,,∴.故答案为: .13.【答案】【解答】解:∵,∴,∵,∴;故答案为:.14.【答案】【解答】解:过点作,∵岛在岛的北偏东,岛在岛的北偏西方向,,,∴,,∴,∴,∵为海里,为海里,∴海里,∴.故答案为:.15.【答案】或【解答】解:①如图,是锐角三角形时,∵,,∴是等边三角形,∴,②是钝角三角形时,∵,∴,∵,∴,∴,综上所述,线段的长为或.故答案为:或.16.【答案】【解答】解:∵米,.∴设,,由勾股定理得,,即,解得,∴,米.故答案为.17.【答案】北偏东【解答】解:在地按北偏东施工,就能使公路在山腹中准确接通.∵指北方向相互平行,、两地公路走向形成一条直线,∴这样就构成了一对同旁内角,∴,(两直线平行,同旁内角互补),∴可得在地按北偏东施工.故答案为:北偏东.18.【答案】【解答】解:∵于,于,∴,∴,,∴.故答案为:.19.【答案】【解答】∵在点处测得塔顶的仰角为,∴,∵,∴,20.【答案】米【解答】解:过作,交的延长线于,作于.中,∵,,∴,,∴.在中,∵,,∴.中,∵,,,∴,∴.答:宣传牌高约米.故答案为米.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:∵,.根据勾股定理可以得出:,,在以上式子中,设为,那么,设为,又因为,所以,根据以上设定可列出如下方程组:,∴.以轮船的速度从返回,所需的时间为:小时.【解答】解:∵,.根据勾股定理可以得出:,,在以上式子中,设为,那么,设为,又因为,所以,根据以上设定可列出如下方程组:,∴.以轮船的速度从返回,所需的时间为:小时.22.【答案】河宽为米.【解答】过作于,设=米,在中:=,==在中:=,,∴=解之得:=.23.【答案】解:如图,过点作于点,于点,∵山坡的坡度为,,∴可设,则.在中,,解得或(舍去),∴,则.∵,∴.设米,则米,米.在中,,即,解得,∴(米).【解答】解:如图,过点作于点,于点,∵山坡的坡度为,,∴可设,则.在中,,解得或(舍去),∴,则.∵,∴.设米,则米,米.在中,,即,解得,∴(米).24【答案】宣传牌高约米.【解答】过作于,,由(1)得:=,=,∴==,中,=,∴==.中,=,=,∴=.∴==.答:宣传牌高约米.25.【答案】解:(1)在中,∵,,∴,∴;∴此时支撑臂的长为;(2)如图,过点作于点,当时,∴,∴,∵,∴,∴,∴的长为或.【解答】解:(1)在中,∵,,∴,∴;∴此时支撑臂的长为;(2)如图,过点作于点,当时,∴,∴,∵,∴,∴,∴的长为或.。

人教版九年级数学下第二十八章 锐角三角函数单元练习题(含答案)含答案

人教版九年级数学下第二十八章 锐角三角函数单元练习题(含答案)含答案

人教版九年级数学下第二十八章锐角三角函数单元练习题(含答案)含答案一、选择题1.在Rt△ABC中,∠C=90°,AB=6,cos B=,则BC的长为()A.4B.2C.D.2.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,则sin A等于()A.B.C.D.3.在Rt△ABC中,∠C=90°,a=1,b=,则∠A等于()A.30°B.45°C.60°D.90°4.如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)()A.B.C.D.h·cosα5.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米B.6米C.6.5米D.12米6.Rt△ABC中,∠C=90°,AB=13,AC=5,则sin B的值为()A.B.C.D.7.在Rt△ABC中,∠C=90°,AB=6,AC=4,则cos A的值是()A.B.C.D.8.如图,在一笔直的海岸线l上有A、B两个观测站,C离海岸线l的距离(即CD的长)为2,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则AB的长()A.2 kmB.(2+)kmC.(4-2) kmD.(4-) km9.在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是() A.100tanα米B.100cotα米C.100sinα米D.100cosα米10.把△ABC三边的长度都扩大为原来的3倍,则锐角A的余弦函数值()A.不变B.缩小为原来的C.扩大为原来的3倍D.不能确定二、填空题11.若2cosα-=0,则锐角α=____________度.12.在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sin A=;②cos B=;③tan A =;④tan B=,其中正确的结论是__________(只需填上正确结论的序号)13.如图,已知点A(0,1),B(0,-1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则sin ∠BAC=____________.14.已知∠A的补角是120°,则tan A=________.15.如图是一斜坡的横截面,某人沿着斜坡从P处出发,走了13米到达M处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是____________.16.汽车沿着坡度为1∶7的斜坡向上行驶了50米,则汽车升高了____________米.17.已知0°<θ<30°,且sinθ=km+(k为常数且k<O),则m的取值范围是__________.18.在Rt△ABC中,∠C=90°,BC=3,sin A=,那么AB=__________.19.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则sin ∠ABC=________.20.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________米.(精确到1米,参考数据:≈1.73)三、解答题21.如图,初三一班数学兴趣小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°.朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度为(即AB∶BC=),且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测量器的高度忽略不计)22.南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos 75°=0.2588,sin 75°=0.9659,tan 75°=3.732,=1.732,=1.414)23.如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30 cm,∠OBC=45°,求AB的长度.(结果精确到0.1 cm)(参考数据:sin 15°≈0.259,cos 15°≈0.966,tan 15°≈0.268,≈1.414)24.小明周日在广场放风筝,如图,小明为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC的长为20米,小明的身高AB为1.75米,请你帮小明计算出风筝离地面的高度.(结果精确到0.1米,参考数据≈1.41,≈1.73)25.如图,一艘海轮位于灯塔P的北偏东53°方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.(1)在图中画出点B,并求出B处与灯塔P的距离(结果取整数);(2)用方向和距离描述灯塔P相对于B处的位置.(参考数据:sin 53°=0.80,cos 53°=0.60,tan 53°=0.33,=1.41)26.如图,在Rt△ABC中,∠C=90°,M是直角边AC上一点,MN⊥AB于点N,AN=3,AM=4,求cos B的值.27.如图是某小区的一个健身器材,已知BC=0.15 m,AB=2.70 m,∠BOD=70°,求端点A 到地面CD的距离(精确到0.1 m).(参考数据:sin 70°≈0.94,cos 70°≈0.34,tan 70°≈2.75)28.在△ABC中,∠C=90°,AC=7,BC=24,求sin A,sin B的值.答案解析1.【答案】A【解析】如图,∵∠C=90°,∴cos B=,∴BC=AB cos B=6×=4,故选A.2.【答案】B【解析】sin A==,故选B.3.【答案】A【解析】如图所示:∵在Rt△ABC中,∠C=90°,a=1,b=,∴tan A==.∴∠A=30°,故选A.4.【答案】B【解析】∵∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,∴∠CAD=∠BCD,在Rt△BCD中,∵cos ∠BCD=,∴BC==,故选B.5.【答案】A【解析】在如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC===5,∴小车上升的高度是5 m.故选A.6.【答案】A【解析】∵Rt△ABC中,∠C=90°,AB=13,AC=5,∴sin B==.故选A.7.【答案】B【解析】cos A===.故选B.8.【答案】C【解析】在CD上取一点E,使BD=DE,可得∠EBD=45°,AD=DC=2,∵从B测得船C在北偏东22.5°的方向,∴∠BCE=∠CBE=22.5°,∴BE=EC.设AB=x,则DE=BD=AD-AB=2-x,∴EC=BE=BD=(2-x),∵DE+EC=CD,∴2-x+(2-x)=2,解得x=4-2,即AB=4-2.故选C.9.【答案】B【解析】∵∠BAC=α,BC=100 m,∴AB=BC·cotα=100cotαm.故选B.10.【答案】A【解析】因为△ABC三边的长度都扩大为原来的3倍所得的三角形与原三角形相似,所以锐角A的大小没改变,故锐角A的余弦函数值也不变.故选A.11.【答案】45°【解析】∵2cosα-=0,∴cosα=,又∵cos 45°=,∴锐角α=45°.12.【答案】②③④【解析】如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sin A==,故①错误;∴∠A=30°,∴∠B=60°,∴cos B=cos 60°=,故②正确;∵∠A=30°,∴tan A=tan 30°=,故③正确;∵∠B=60°,∴tan B=tan 60°=,故④正确.故答案为②③④.13.【答案】【解析】∵A(0,1),B(0,-1),∴AB=2,OA=1,∴AC=2,由勾股定理,得OC==,∴在Rt△AOC中,sin ∠OAC=sin ∠BAC==.14.【答案】【解析】∵∠A的补角是120°,∴∠A=180°-120°=60°,∴tan A=tan 60°=.15.【答案】5∶12【解析】如图所示,由题意可知,PM=13 m,MC=5米,∴PC==12,∴MC∶PC=5∶12,故答案为5∶12.16.【答案】5【解析】∵坡度为1∶7,∴设坡角是α,则sinα==,∴上升的高度是50×=5(米).17.【答案】<m<【解析】∵0°<θ<30°,∴sin 0°<sinθ<sin 30°,即0<km+<,∴<km<,∴<m<.18.【答案】18【解析】在Rt△ABC中,∵∠C=90°,sin A==,∴AB=3×6=18.19.【答案】【解析】∵小正方形边长为1,∴AB2=8,BC2=10,AC2=2;∴AB2+AC2=BC2,∴△ABC是直角三角形,且∠CAB=90°,∴sin ∠ABC===.20.【答案】208【解析】由题意可得:tan 30°===,解得:BD=30,tan 60°===,解得DC=90,故该建筑物的高度为BC=BD+DC=120≈208(m).21.【答案】解∵AF⊥AB,AB⊥BE,DE⊥BE,∴四边形ABEF为矩形,∴AF=BE,EF=AB=2,设DE=x,在Rt△CDE中,CE===x,在Rt△ABC中,∵=,AB=2,∴BC=2,在Rt△AFD中,DF=DE-EF=x-2,∴AF===(x-2),∵AF=BE=BC+CE.∴(x-2)=2+x,解得x=6.答:树DE的高度为6米.【解析】由于AF⊥AB,则四边形ABEF为矩形,设DE=x,在Rt△CDE中,CE===x,在Rt△ABC中,得到=,求出BC,在Rt△AFD中,求出AF,由AF=BC +CE即可求出x的长.22.【答案】解过B作BD⊥AC,∵∠BAC=75°-30°=45°,∴在Rt△ABD中,∠BAD=∠ABD=45°,∠ADB=90°,由勾股定理,得BD=AD=×20=10(海里),在Rt△BCD中,∠C=15°,∠CBD=75°,∴tan ∠CBD=,即CD=10×3.732=52.77048,则AC=AD+DC=10+10×3.732=66.91048≈67(海里),即我海监执法船在前往监视巡查的过程中行驶了67海里.【解析】过B作BD⊥AC,在直角三角形ABD中,利用勾股定理求出BD与AD的长,在直角三角形BCD中,求出CD的长,由AD+DC求出AC的长即可.23.【答案】解过O点作OD⊥AB交AB于D点.在Rt△ADO中,∵∠A=15°,AO=30,∴OD=AO·sin 15°≈30×0.259≈7.77(cm)AD=AO·cos 15°≈30×0.966≈28.98(cm)又∵在Rt△BDO中,∠OBC=45°,∴BD=OD=7.77(cm),∴AB=AD+BD=36.75≈36.8(cm).答:AB的长度为36.8 cm.【解析】过O点作OD⊥AB交AB于D点,根据∠A=15°,AO=30可知OD=AO·sin 15°,AD=AO·cos 15°,在Rt△BDO中根据∠OBC=45°可知,BD=OD,再根据AB=AD+BD即可得出结论.24.【答案】解∵在Rt△CBE中,sin 60°=,∴CE=BC·sin 60°=20×≈17.3 m,∴CD=CE+ED=17.3+1.75=19.05≈19.1 m.答:风筝离地面的高度是19.1 m.【解析】先根据锐角三角函数的定义求出CE的长,再由CD=CE+ED即可得出结论.25.【答案】解(1)如图,作PC⊥AB于C,在Rt△PAC中,∵PA=100,∠PAC=53°,∴PC=PA·sin ∠PAC=100×0.80=80,在Rt△PBC中,∵PC=80,∠PBC=∠BPC=45°,∴PB=PC=1.41×80≈113,即B处与灯塔P的距离约为113海里;(2)∵∠CBP=45°,PB≈113海里,∴灯塔P位于B处北偏西45°方向,且距离B处约113海里.【解析】(1)根据方向角的定义结合已知条件在图中画出点B,作PC⊥AB于C,先解Rt△PAC,得出PC=PA·sin ∠PAC=80,再解Rt△PBC,得出PB=PC=1.41×80≈113;(2)由∠CBP=45°,PB≈113海里,即可得到灯塔P位于B处北偏西45°方向,且距离B处约113海里.26.【答案】解∵∠C=90°,MN⊥AB,∴∠C=∠ANM=90°,∴∠A+∠B=90°,∠A+∠AMN=90°,∴∠B=∠AMN,又AN=3,AM=4,∴MN==,∴cos B=cos ∠AMN==.【解析】根据“同角的余角相等”,可得∠B=∠AMN,又AN=3,AM=4,由勾股定理得MN =,故cos B=cos ∠AMN.27.【答案】解作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,∵OD⊥CD,∠BOD=70°,∴AE∥OD,∴∠A=∠BOD=70°,在Rt△AFB中,∵AB=2.7,∴AF=2.7×cos 70°≈2.7×0.34=0.918,∴AE=AF+BC≈0.918+0.15=1.068≈1.1 m,答:端点A到地面CD的距离是1.1 m.【解析】作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,求出AF、EF即可解决问题.28.【答案】解在△ABC中,∠C=90°,AC=7,BC=24,由勾股定理,得AB===25,sin A==,sin B==.【解析】根据勾股定理,可得AC的长,根据锐角的正弦为对边比斜边,可得答案.人教版九年级数学下第二十八章锐角三角函数单元复习卷(含答案)一、选择题1.在△ABC中,∠C=90°,tan A=,则cos A的值为()A.B.C.D.2.某校数学兴趣小组要测量摩天轮的高度.如图,他们在C处测得摩天轮的最高点A的仰角为45°,再往摩天轮的方向前进50 m至D处,测得最高点A的仰角为60°.问摩天轮的高度AB约是()(结果精确到1 米,参考数据:≈1.41,≈1.73)A.120米B.117米C.118米D.119米3.已知,在Rt△ABC中,∠C=90°,AB=,AC=1,那么∠A的正切tan A等于()A.B.2C.D.4.如图,每个小正方形的边长为1,点A、B、C是小正方形的顶点,则∠ABC的正弦值为()A.B.C.D.不能确定5.在Rt△ABC中,∠C=90°,则tan A·tan B等于()A.0B.1C.-1D.不确定6.在Rt△ABC中,∠C=90°,∠A=∠B,则sin A的值是()A.B.C.D.17.如图,水库大坝截面的迎水坡AD的坡比为4∶3,背水坡BC的坡比为1∶2,大坝高DE =20 m,坝顶宽CD=10 m,则下底AB的长为()A.55 mB.60 mC.65 mD.70 m8.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A.B.C.D.9.当锐角a<60°,sin a的值()A.小于B.大于C.小于D.大于10.在Rt△ABC中,∠C=Rt∠,若BC∶AC=3∶4,BD平分∠ABC交AC于点D,则tan∠DBC 的值为()A.B.C.D.二、填空题11.如图,在△ABC中,∠C=90°,AB=5,BC=3,则cos A的值是________.12.某船自西向东航行,在A处测得某岛B在北偏东60°的方向上,前进8海里后到达C,此时,测得海岛B在北偏东30°的方向上,要使船与海岛B最近,则船应继续向东前进____________海里.13.△ABC中,∠C=90°,BC=5,AC=3,那么sin B=________.14.在Rt△ABC中,斜边AB的长是8,cos B=,则BC的长是__________.15.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86 n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时,B处与灯塔P的距离约为__________ n mile.(结果取整数,参考数据:≈1.7,≈1.4)16.在△ABC中,AD是BC边上的高,∠C=45°,sin B=,AD=1.则BC的长____________.17.在△ABC中,∠ACB=90°,若tan A=,则cos A=__________.18.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则sin ∠ABC=________.19.已知0<α<90°,且tanα=,则∠α=________.20.在Rt△ABC中,∠ABC=90°,AB=4BC,则sin A=__________.三、解答题21.如图,两座建筑物的水平距离BC=30 m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度.22.在锐角△ABC中,AB=15,BC=14,S△ABC=84,求:(1)tan C的值;(2)sin A的值.23.如图,某同学在测量建筑物AB的高度时,在地面的C处测得点A的仰角为30°,向前走60米到达D处,在D处测得点A的仰角为45°,求建筑物AB的高度.24.如图,海中一渔船在A处且与小岛C相距70 nmile,若该渔船由西向东航行30 nmile到达B处,此时测得小岛C位于B的北偏东30°方向上;求该渔船此时与小岛C之间的距离.25.我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为75海里.(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(结果保留根号)26.如图,在△ABC中,AB=8,BC=6,S△ABC=12.试求tan B的值.27.如图,某人为了测量小山顶上的塔ED的高,他在山下的点A处测得塔尖点D的仰角为45°,再沿AC方向前进60 m到达山脚点B,测得塔尖点D的仰角为60°,塔底点E的仰角为30°,求塔ED的高度.(结果保留根号)28.小敏家对面新建了一幢图书大厦,小敏在自家窗口测得大厦顶部的仰角为45°,大厦底部的仰角为30°,如图所示,量得两幢楼之间的距离为20米.(1)求出大厦的高度BD;(2)求出小敏家的高度AE.答案解析1.【答案】D【解析】如图,∵tan A==,∴设BC=x,则AC=3x,∴AB==x,∴cos A===.故选D.2.【答案】C【解析】在Rt△ABC中,由∠C=45°,得AB=BC,在Rt△ABD中,∵tan ∠ADB=tan 60°=,∴BD===AB,又∵CD=50 m,∴BC-BD=50,即AB AB=50,解得AB≈118.即摩天轮的高度AB约是118米.故选C.3.【答案】B【解析】∵∠C=90°,AB=,AC=1,∴BC==2,则tan A==2,故选B.4.【答案】B【解析】如图,连接AC,根据勾股定理可以得到AC=AB=,BC=2.∵()2+()2=(2)2.∴AC2+AB2=BC2.∴△CAB是等腰直角三角形.∴∠ABC=45°,∴∠ABC的正弦值为.故选B.5.【答案】B【解析】根据正切函数的定义,利用△ABC的边表示出两个三角函数,即可求解.tan A·tan B=·=1,故选:B.6.【答案】B【解析】∵∠C=90°,∠A=∠B,∴∠A=45°,∴sin 45°=.故选B.7.【答案】C【解析】∵DE=20 m,DE∶AE=4∶3,∴AE=15 m,∵CF=DE=20 m,CF∶BF=1∶2,∴BF=40 m,∴AB=AE+EF+BF=15+10+40=65 m.故选C.8.【答案】D【解析】过A作AB⊥x轴于B,∵A(4,3),∴PB=3,OB=4,由勾股定理得OA==5,所以cosα==.故选D.9.【答案】A【解析】∵sin 60°=,a<60°,∴sinα<sin 60°=.故选A.10.【答案】B【解析】作DE⊥AB于E,在Rt△ABC中,设BC为3x,则AC为4x,根据勾股定理,AB=5x,设CD为a,BD平分∠ABC,则DE=CD=a,AD=4x-a,AE=5x-3x=2x,在Rt△ADE中,AD2=DE2+AE2,即(4x-a)2=a2+(2x)2,解得a=x,∴tan∠DBC===,故选B.11.【答案】【解析】∵在△ABC中,∠C=90°,AB=5,BC=3,∴AC==4,∴cos A==.12.【答案】4【解析】根据题意画出图形,过B作BD⊥AD,如图所示,∵∠BAC=30°,∠BCD=60°,且∠BCD为△ABC的外角,∴∠ABC=∠BCD-∠BAC=30°,∴∠CAB=∠CBA,又AC=8海里,∴AC=BC=8海里,在直角三角形BCD中,BC=8海里,∠BCD=30°,∴CD=BC=4海里,则要使船与海岛B最近,则船应继续向东前进4海里.13.【答案】【解析】∵在△ABC中,∠C=90°,BC=5,AC=3,∴AB===,∴sin B===.14.【答案】【解析】在Rt△ABC中,∵∠C=90°,AB=8,cos B=,∴=,∴BC=.15.【答案】102【解析】过P作PD⊥AB,垂足为D,∵一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86 n mile的A处,∴∠MPA=∠PAD=60°,∴PD=AP·sin ∠PAD=86×=43,∵∠BPD=45°,∴∠B=45°.在Rt△BDP中,BP===43×≈102(n mile).16.【答案】2+1【解析】∵在△ABC中,AD是BC边上的高,∴AD⊥BC,即∠ADB=∠ADC=90°,在Rt△ACD中,∠C=45°,∴∠DAC=45°,∴DC=AD=1,在Rt△ABD中,sin B=,AD=1,∴sin B==,即AB=3,根据勾股定理,得BD==2,则BC=BD+DC=2+1.17.【答案】【解析】∵tan A=,∴设b=x,则a=2x,根据a2+b2=c2,得c=x.∴cos A===.故答案为.18.【答案】【解析】∵小正方形边长为1,∴AB2=8,BC2=10,AC2=2;∴AB2+AC2=BC2,∴△ABC是直角三角形,且∠CAB=90°,∴sin ∠ABC===.19.【答案】30°【解析】∵tanα=,0<α<90°,∴α=30°.20.【答案】【解析】因为Rt△ABC中,∠ABC=90°,AB=4BC,所以AC==BC,所以sin A===.21.【答案】解延长CD,交AE于点E,可得DE⊥AE,在Rt△AED中,AE=BC=30 m,∠EAD=30°,∴ED=AE tan 30°=10m,在Rt△ABC中,∠BAC=30°,BC=30 m,∴AB=30m,则CD=EC-ED=AB-ED=30-10=20m.【解析】延长CD,交AE于点E,可得DE⊥AE,在直角三角形ABC中,由题意确定出AB的长,进而确定出EC的长,在直角三角形AED中,由题意求出ED的长,由EC-ED求出DC 的长即可.22.【答案】解(1)过A作AD⊥BC于点D.∵S△ABC=BC·AD=84,∴×14×AD=84,∴AD=12.又∵AB=15,∴BD==9.∴CD=14-9=5.在Rt△ADC中,AC==13,∴tan C==.(2)过B作BE⊥AC于点E.∵S△ABC=AC·EB=84,∴BE=,∴sin ∠BAC===.【解析】(1)过A作AD⊥BC于点D,利用面积公式求出高AD的长,从而求出BD、CD、AC 的长,此时再求tan C的值就不那么难了.(2)同理作AC边上的高,利用面积公式求出高的长,从而求出sin A的值.23.【答案】解设建筑物AB的高度为x米.在Rt△ABD中,∠ADB=45°,∴AB=DB=x.∴BC=DB+CD=x+60.在Rt△ABC中,∠ACB=30°,∴tan ∠ACB=,∴tan 30°=,∴=,3x=(x+60)=x+60,(3-)x=60,x==30+30,∴x=30+30.经检验,x=30+30是分式方程的解.∴建筑物AB的高度为(30+30)米.【解析】设建筑物AB的高度为x米,在Rt△ABD中可得出AB=DB=x,在Rt△ABC中根据tan ∠ACB的值可求出x的值.24.【答案】解过点C作CD⊥AB于点D,由题意得:∠BCD=30°,设BC=x,则:在Rt△BCD中,BD=BC·sin 30°=x,CD=BC·cos 30°=x;∴AD=30+x,∵AD2+CD2=AC2,即+=702,解之得x=50(负值舍去),答:渔船此时与C岛之间的距离为50海里.【解析】过点C作CD⊥AB于点D,由题意得:∠BCD=30°,设BC=x,解直角三角形即可得到结论.25.【答案】解(1)过点B作BH⊥CA交CA的延长线于点H,∵∠MBC=60°,∴∠CBA=30°,∵∠NAD=30°,∴∠BAC=120°,∴∠BCA=180°-∠BAC-∠CBA=30°,∴BH=BC×sin ∠BCA=150×=75(海里).答:B点到直线CA的距离是75海里;(2)∵BD=75海里,BH=75海里,∴DH==75海里,∵∠BAH=180°-∠BAC=60°,在Rt△ABH中,tan ∠BAH==,∴AH=25海里,∴AD=DH-AH=(75-25)(海里).答:执法船从A到D航行了(75-25)海里.【解析】(1)过点B作BH⊥CA交CA的延长线于点H,根据三角函数可求BH的长即为所求;(2)根据勾股定理可求DH,在Rt△ABH中,根据三角函数可求AH,进一步得到AD的长.26.【答案】解如图,过点A作AD⊥BC的延长线于D,S△ABC=BC·AD=×6×AD=12,解得AD=4,在Rt△ABD中,BD===4,tan B===.【解析】过点A作AD⊥BC的延长线于D,利用三角形的面积求出AD,再利用勾股定理列式求出BD,然后根据锐角的正切值等于对边比邻边列式计算即可得解.27.【答案】解由题知,∠DBC=60°,∠EBC=30°,∴∠DBE=∠DBC-∠EBC=60°-30°=30°.又∵∠BCD=90°,∴∠BDC=90°-∠DBC=90°-60°=30°.∴∠DBE=∠BDE.∴BE=DE.设EC=x m,则DE=BE=2EC=2x m,DC=EC+DE=x+2x=3x m,BC===x,由题意知,∠DAC=45°,∠DCA=90°,AB=60,∴△ACD为等腰直角三角形,∴AC=DC.∴x+60=3x,解得x=30+10,2x=60+20.答:塔高约为(60+20)m.【解析】先求出∠DBE=30°,∠BDE=30°,得出BE=DE,然后设EC=x m,则BE=2x m,DE =2x m,DC=3x m,BC=x m,然后根据∠DAC=45°,可得AC=CD,列出方程求出x的值,然后即可求出塔DE的高度.28.【答案】解(1)如题图,∵AC⊥BD,∴BD⊥DE,AE⊥DE,∴四边形AEDC是矩形,∴AC=DE=20米,∵在Rt△ABC中,∠BAC=45°,∴BC=AC=20米,在Rt△ACD中,tan 30°=,∴CD=AC·tan 30°=20×=20(米),∴BD=BC+CD=20+20(米);∴大厦的高度BD为(20+20)米;(2)∵四边形AEDC是矩形,∴AE=CD=20米.∴小敏家的高度AE为20米.【解析】(1)易得四边形AEDC是矩形,即可求得AC的长,然后分别在Rt△ABC与Rt△ACD 中,利用三角函数的知识求得BC与CD的长,继而求得答案;(2)结合(1),由四边形AEDC是矩形,即可求得小敏家的高度AE.人教版九年级下册第二十八章《锐角三角函数》单元测试一、选择题1、3tan60°的值为()A. B. C. D.32、sin45°的值等于()A. B.1 C. D.3、在直角△ABC中,∠C=90°,∠A、∠B与∠C的对边分别是a、b和c,那么下列关系中,正确的是()A.cosA= B.tanA= C.sinA= D.cosA=4、在4×4网格中,∠α的位置如图所示,则tanα的值为()A. B. C.2 D.5、如图,在△ABC中,∠C=90°,AB=3,BC=2,则cosB的值是()A. B. C. D.6、在Rt△ABC中,∠C=90º,,则的值为A. B.C.D.7、在Rt△ABC中,∠C=90°,sinA=,BC=6,则AB=()A.4 B.6 C.8 D.108、将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A. 3cm B. 6cm C.cm D.cm9、如图,有一轮船在A处测得南偏东30°方向上有一小岛P,轮船沿正南方向航行至B处,测得小岛P在南偏东45°方向上,按原方向再航行10海里至C处,测得小岛P在正东方向上,则A,B之间的距离是( )A.10海里 B.(10-10)海里 C.10海里 D.(10-10)海里二、填空题10、计算:= .11、如下图:直角三角形纸片的两直角边长分别为4,8,现将如图那样折叠,使点与点重合,折痕为,则的值是.12、如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB=__________]m.13、.如图,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阴影部分)的面积为.14、如图,河坝横断面迎水坡AB的坡比是1:,堤高BC=5米,则坝底AC的长度是米.15、全球最大的关公塑像矗立在荆州古城东门外,如图,张三同学在东门城墙上C处测得塑像底部B处的俯角为18°48′,测得塑像顶部A处的仰角为45°,点D在观测点C正下方城墙底的地面上,若CD=10米,则此塑像的高AB约为___米.(参考数据:tan78°12′≈4.8)16、如图,正方形ABCD的边长为4,点M在边DC上,M、N两点关于对角线AC对称,若DM=1,则tan∠ADN= .三、计算题17、计算:3tan30°﹣2tan45°+2sin60°+4cos60°.18、计算:.四、简答题19、在Rt△ABC中,∠C=90°,BC∶AC=3∶4,求∠A的三个三角函数值.20、如图,九(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度,标杆与旗杆的水平距离,人的眼睛与地面的高度,人与标杆的水平距离,人的眼睛E、标杆顶点C和旗杆顶点A在同一直线,求旗杆的高度.21、小刚学想测量灯杆AB的高度,结果他在D处时用测角仪测灯杆顶端A的仰角∠AEG=30°,然后向前走了8米来到C处,又测得A的仰角∠AFG=45°,又知测角仪高1.6米,求灯杆AB的高度.(结果保留一位小数;参考数据:≈1.73)22、如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A.C之间选择一点B(A.B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).23、山西绵山是中国历史文化名山,因春秋时期晋国介子推携母隐居于此被焚而著称,如图1,是绵山上介子推母子的塑像,某游客计划测量这座塑像的高度,由于游客无法直接到达塑像底部,因此该游客计划借助坡面高度来测量塑像的高度;如图2,在塑像旁山坡坡脚A处测得塑像头顶C的仰角为75°,当从A处沿坡面行走10米到达P处时,测得塑像头顶C的仰角刚好为45°,已知山坡的坡度i=1:3,且O,A,B在同一直线上,求塑像的高度.(侧倾器高度忽略不计,结果精确到0.1米,参考数据:cos75°≈0.3,tan75°≈3.7,≈1.4,≈1.7,≈3.2)24、如图,A,B两地之间有条河,原来从A地到B地需要经过桥DC,沿折线A→D→C→B到达,现在新建了桥EF,可直接沿直线AB从A地到达B地.已知BC=11km,∠A=45°,∠B=37°,桥DC和AB平行,桥DC与桥EF的长相等.(1)求点D到直线AB的距离;(2)现在从A地到B地可比原来少走多少路程?(结果保留小数点后一位.参考数据:≈1.41,sin37°≈0.60,cos37°≈0.80).25、甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离;(2)甲轮船后来的速度.26、如图,海上有一灯塔P,在它周围3海里处有暗礁,一艘客轮以9海里/时的速度由西向东航行,行至A点处测得P在北偏东60°方向上,继续行驶20分钟后,到达B处又测得灯塔P在北偏东45°方向上,问客轮不改变方向继续前进有无触礁危险?参考答案一、选择题1、D【考点】特殊角的三角函数值.【分析】把tan60的数值代入即可求解.【解答】解:3tan60°=3×=3.故选D.【点评】本题考查了特殊角的三角函数值,正确记忆特殊角的三角函数值是关键.2、D【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值得出即可.【解答】解:sin45°=,故选D.【点评】本题考查了特殊角的三角函数的应用,能熟记特殊角的三角函数值是解此题的关键,难度适中.3、C【考点】锐角三角函数的定义.【分析】根据三角函数定义:(1)正弦:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.(2)余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.(3)正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.分别进行分析即可.【解答】解:在直角△ABC中,∠C=90°,则A、cosA=,故本选项错误;B、tanA=,故本选项错误;C、sinA=,故本选项正确;D、cosA=,故本选项错误;故选:C.【点评】此题主要考查了锐角三角函数的定义,关键是熟练掌握锐角三角函数的定义.4、C【考点】锐角三角函数的定义.【专题】网格型.【分析】根据“角的正切值=对边÷邻边”求解即可.【解答】解:由图可得,tanα=2÷1=2.故选C.【点评】本题考查了锐角三角函数的定义,正确理解正切值的含义是解决此题的关键.5、C【考点】锐角三角函数的定义.【分析】根据在直角三角形中,余弦为邻边比斜边,可得答案.【解答】解:△ABC中,∠C=90°,AB=3,BC=2,得cosB==,故选:C.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.6、B7、D【考点】解直角三角形.【分析】在直角三角形ABC中,利用锐角三角函数定义表示出sinA,将sinA的值与BC的长代入求出AB的长即可.【解答】解:在Rt△ABC中,∠C=90°,sinA==,BC=6,∴AB===10,故选D8、D9、D二、填空题10、;11、12、 5.513、.考点:解直角三角形;特殊角的三角函数值.分析:重叠部分为菱形,运用三角函数定义先求边长AB,再求出面积.解答:解:∵AC=,∴它们重叠部分(图中阴影部分)的面积为:×1=.故答案为:.14、.【解析】试题分析:∵河坝横断面迎水坡AB的坡比是1:,∴BC:A C=1:,∵堤高BC=5米,∴坝底AC=米.故答案为:.考点:解直角三角形的应用-坡度坡角问题.15、58_16、【考点】正方形的性质;轴对称的性质;锐角三角函数的定义.【分析】M、N两点关于对角线AC对称,所以CM=CM,进而求出CN的长度.再利用∠ADN=∠DNC 即可求得tan∠ADN.【解答】解:在正方形ABCD中,BC=CD=4.∵DM=1,∴CM=3,∵M、N两点关于对角线AC对称,∴CN=CM=3.∵AD∥BC,∴∠ADN=∠DNC,∵tan=∠DNC==,∴tan∠ADN=.故答案为:.三、计算题17、原式=2.18、.解:原式=1+﹣1+2﹣=2四、简答题19、20、AB=13.5 m21、【考点】解直角三角形的应用-仰角俯角问题.【分析】设AG的长为x米,根据正切的概念分别表示出GF、GE的长,计算即可得到AG,求出AB即可.【解答】解:设AG的长为x米,在Rt△AGE中,EG==x,在Rt△AGF中,GF=AG=x,由题意得,x﹣x=8,解得,x≈10.9,则AB=AG+GB≈12.5米,答:灯杆AB的高度约为12.5米.22、解:(1)过点B作BE⊥AD于点E,∵AB=40m,∠A=30°,∴BE=AB=20m,AE==20m,即点B到AD的距离为20m;(2)在Rt△ABE中,∵∠A=30°,∴∠ABE=60°,∵∠DBC=75°,∴∠EBD=180°﹣60°﹣75°=45°,∴DE=EB=20m,则AD=AE+EB=20+20=20(+1)(m),在Rt△ADC中,∠A=30°,∴DC==(10+10)m.答:塔高CD为(10+10)m.23、【考点】解直角三角形的应用﹣仰角俯角问题;解直角三角形的应用﹣坡度坡角问题.【分析】过点P作PE⊥OB于点E,PF⊥OC于点F,设PE=x,则AE=3x,在Rt△AEP中根据勾股定理可得PE=,则AE=3,设CF=PF=m米,则OC=(m+)米、OA=(m﹣3)米,在Rt△AOC中,由tan75°=求得m的值,继而可得答案.【解答】解:过点P作PE⊥OB于点E,PF⊥OC于点F,∵i=1:3,AP=10,设PE=x,则AE=3x,在Rt△AEP中,x2+(3x)2=102,解得:x=或x=﹣(舍),∴PE=,则AE=3,∵∠CPF=∠PCF=45°,∴CF=PF,设CF=PF=m米,则OC=(m+)米,OA=(m﹣3)米,在Rt△AOC中,tan75°==,即m+=tan75°•(m﹣3),解得:m≈14.3,∴OC=14.3+≈17.5米,答:塑像的高度约为17.5米.24、【考点】解直角三角形的应用.【分析】(1)过点D作DH⊥AB于H,DG∥CB交AB于G,根据平行四边形的判定得出DCBG为平行四边形,在Rt△DGH中,根据DH=DG•sin37,即可求出点D到直线AB的距离;(2)根据(1)先求出GH、AD和AH的长,再根据两条路线路程之差为AD+DG﹣AG,代值计算即可得出答案.【解答】解:(1)如图,过点D作DH⊥AB于H,DG∥CB交AB于G,∵DC∥AB,∴四边形DCBG为平行四边形.∴DC=GB,GD=BC=11.在Rt△DGH中,DH=DG•sin37°≈11×0.60=6.60,∴点D到直线AB的距离是6.60km;(2)根据(1)得:GH=DG•cos37°≈11×0.80≈8.80,在Rt△ADH中,AD=DH≈1.41×6.60≈9.31.AH=DH≈6.60,∵两条路线路程之差为AD+DG﹣AG,∴AD+DG﹣AG=(9.31+11)﹣(6.60+8.80)≈4.9(km).即现在从A地到B地可比原来少走约4.9km.25、【考点】TB:解直角三角形的应用﹣方向角问题.【分析】(1)根据题意画出图形,再根据平行线的性质及直角三角形的性质解答即可.(2)根据甲乙两轮船从港口A至港口C所用的时间相同,可以求出甲轮船从B到C所用的时间,又知BC间的距离,继而求出甲轮船后来的速度.【解答】解:(1)作BD⊥AC于点D,如图所示:由题意可知:AB=30×1=30海里,∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵AB=30海里,∠BAC=30°,∴BD=15海里,AD=ABcos30°=15海里,在Rt△BCD中,∵BD=15海里,∠BCD=45°,∴CD=15海里,BC=15海里,∴AC=AD+CD=15+15海里,即A、C间的距离为(15+15)海里.(2)∵AC=15+15(海里),轮船乙从A到C的时间为=+1,由B到C的时间为+1﹣1=,∵BC=15海里,∴轮船甲从B到C的速度为=5(海里/小时).26、解:过P作PC⊥AB于C点,如图,据题意知AB=9×=3,∠PAB=90°-60°=30°,[ ∠PBC=90°-45°=45°,∠PCB=90°,∴PC=BC.在Rt△APC中,tan 30°===,即=,∴PC=海里>3海里,∴客轮不改变方向继续前进无触礁危险.。

人教版数学九年级下册28.1《锐角三角函数》基础强化训练 含答案

人教版数学九年级下册28.1《锐角三角函数》基础强化训练   含答案

word 版数学初中人教版 2021 年九年级下册 28.1《锐角三角函数》基础强化训练一.选择题1.cos30°的值是( )A.1B.C.D.2.式子 2cos30°﹣tan45°的值是( )A.1﹣B.0C. ﹣1D. ﹣3.计算:sin60°•tan30°=( )A.1B.C.D.24.在 Rt△ ABC 中,∠C=90°,AB=5,BC=3,那么 sinA 的值为( )A.B.C.D.5.在△ ABC 中,∠C=90°,若 BC=8,AC=6,则 cosA 的值为( )A.B.C.D.6.在 Rt△ ABC 中,∠B=90°,AB=4,BC=3,则 tanA 的值为( )A.B.C.D.7.在 Rt△ ABC 中,∠C=90°,cosA= ,则 sinA=( )A.B.C.D.8.已知 cosα= ,则锐角 α 的取值范围是( )A.0°<α<30°B.30°<α<45°C.45°<α<60° D.60°<α<90°9.在 Rt△ ABC 中,∠C=90°,sinA= ,则 sinB 的值为( )A.B.C.D.1/8word 版数学初中10.如图,在 Rt△ ABC 中,∠A=90°,sinB= ,AC=2,则 BC 长为( )A.2B.4C.6二.填空题11.比较大小:sin81°tan47°(填“<”、“=”或“>”).12.计算:2sin30°﹣tan45°=.13.已知 sinα= (α 为锐角),则 tanα=.14.在 Rt△ ABC 中,∠C=90°,若 tanA= ,则 cosB 的值是15.在△ ABC 中,∠C=90°,sinA= ,BC=6,则 AC 的长为三.解答题 16.计算:D.8. .17.计算:|2﹣tan60°|﹣(π﹣3.14)0+( )﹣2+.18.计算:.2/8word 版数学19.计算: (1)2sin30°一 3tan45°•sin45°+4cos60° (2)初中+cos45°•sin60°20.设 Rt△ ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为 a、b、c,若 b=6,c=10, 求 sinA、cosA 和 tanA.21.如图,在 Rt△ ABC 中,∠C=90°,tanA= ,BC=2,求 AB 的长.22.在 Rt△ ABC 中,∠C=90°,a,b,c 分别是∠A、∠B、∠C 的对边. (1)已知 c=2 ,b= ,求∠B; (2)已知 c=12,sinA= ,求 b.3/8word 版数学参考答案一.选择题1.解:cos30°= .故选:B.2.解:2cos30°﹣tan45°=2× ﹣1= ﹣1,故选:C.3.解:sin60°•tan30°= × = .故选:B.4.解:在 Rt△ ABC 中,∠C=90°,AB=5,BC=3,则 sinA= = ,故选:A. 5.解:由勾股定理得,AB===10,则 cosA= = =,故选:D. 6.解:在 Rt△ ABC 中,∠B=90°,AB=4,BC=3,则 tanA= = , 故选:D. 7.解:∵sin2A+cos2A=1,即 sin2A+( )2=1, ∴sin2A= ,4/8初中word 版数学∴sinA= 或﹣ (舍去),∴sinA= .故选:C. 8.解:∵cos30°= ,cos45°= ,∵ << ,∴30°<α<45°,故选:B.9.解:∵Rt△ ABC 中,∠C=90°,sinA= ,∴cosA=== ,∠A+∠B=90°,∴sinB=cosA= .故选:A. 10.解:在 Rt△ ABC 中,∠A=90°,sinB= ,则 =,解得,BC=6,故选:C.二.填空题11.解:∵sin81°<sin90°=1,tan47°>tan45°=1,∴sin81°<1<tan47°,∴sin81°<tan47°.故答案为<. 12.解:原式=2× ﹣1=0.13.解:∵sin2α+cos2α=1,5/8初中word 版∴cosα==,数学∴tanα== =,故答案为: . 14.解:如图所示:∵∠C=90°,tanA= ,∴ =, 设 BC=3x,AC=4x,故 AB=5x, 则 cosB= = = . 故答案是: .15.解:∵sinA= = ,BC=6,∴AB=8, ∴BC====2 ,故答案为:2 .三.解答题16.解:原式= × +2﹣1= +1=2+16/8初中word 版数学=3.17.解:|2﹣tan60°|﹣(π﹣3.14)0+( )﹣2+,=|2﹣ |﹣1+4+ ,=2﹣ ﹣1+4+ ,=5.18.解:原式==.19.解:(1)2sin30°一 3tan45°•sin45°+4cos60°=2× ﹣3×1× +4×=1﹣ +2=3﹣ ;(2)+cos45°•sin60°初中=+×=+=﹣ +=.20.解:如图所示:∵Rt△ ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为 a、b、c,b=6,c=10,∴a==8,∴sinA= = = ;cosA= = = ;tanA= = = .7/8word 版数学21.解:∵在 Rt△ ABC 中,∠C=90°, ∴tanA= = .∵BC=2, ∴ = ,AC=6.∵AB2=AC2+BC2=40,∴AB=.22.解:(1)∵sinB= ==,∴∠B=45°; (2)∵c=12,sinA= = ,∴a=4, ∴b==8 ,初中8/8。

人教版九年级数学下册28.1 锐角三角函数同步练习(填空题) 含答案

人教版九年级数学下册28.1 锐角三角函数同步练习(填空题)  含答案

第28章锐角三角函数 同步学习检测(一)一、填空题:注意:填空题的答案请写在下面的横线上, (每小题3分,共96分) 1、 ;2、 ;3、 ;4、 ;5、 ; 6、 ;7、 ;8、 ;9、 ;10、 ; 11、 ;12、 ;13、 ;14、 ;15、 ; 16、 ;17、 ;18、 ;19、 ;20、 、 ;21、 ; 22、 ;23、 ; 24、 ; 25、 ;26、 ;27、 ;28、 ;29、 ;30、 ;31、 ;32、 ;1.(2009年济南)如图,AOB ∠是放置在正方形网格中的一个角,则cos AOB ∠的值是 .2.(2009年济南)九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角60CBD =︒∠; (2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米.根据测量数据,计算出风筝的高度CE 约为 米.(精确到0.1米,3 1.73≈) 3. (2009仙桃)如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点.C 点的仰角分别为52°和35°,则广告牌的高度BC 为_____________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)4.(2009年安徽)长为4m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了 m .5.(2009年桂林市.百色市)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电 线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).6.(2009湖北省荆门市)计算:104cos30sin 60(2)(20092008)-︒︒+---=______. 7.(2009年宁波市)如图,在坡屋顶的设计图中,AB AC =,屋顶的宽度l 为10米,坡角α为35°,则坡屋顶高度h 为 米.(结果精确到0.1米)8.(2009桂林百色)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).9.(2009丽水市)将一副三角板按如图1位置摆放,使得两块三角板的直角边AC 和MD 重合.已知AB =AC =8 cm,将△MED 绕点A (M )逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积约是 ▲ cm 2(结果 精确到0.1,73.13≈)10.(09湖南怀化)如图,小明从A 地沿北偏东ο30方向走1003m 到B 地,再从B 地向正南方向走200m 到C 地,此时小明离A 地 m .11.(2009年孝感)如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .12.(2009泰安)如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tanA 的值为 . 13.(2009年南宁市)如图,一艘海轮位于灯塔P 的东北方向,距离灯塔402A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则海轮行驶 的路程AB为 _____________海里(结果保留根号).14.(2009年衡阳市)某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为52米,则这个破面的坡度为_________.15.2009年鄂州)小明同学在东西方向的沿江大道A 处,测得江中灯塔P 在北偏东60°方向上,在A 处正东400米的B 处,测得江中灯塔P 在北偏东30°方向上,则灯塔P 到沿江大道的距离为____________米.16.(2009年广西梧州)在△ABC 中,∠C =90°, BC =6 cm ,53sin =A , 则AB 的长是 cm .17.(2009宁夏)10.在Rt ABC △中,903C AB BC ∠===°,,, 则cos A 的值是 .18.(2009年包头)如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π). 19.(2009年包头)如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为 cm (保留根号).20.(2009年山东青岛市)如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 cm ;如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要 cm .ANBM21.(2009年益阳市)如图,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到△C B A ''',使点B '与C 重合,连结B A ',则C B A ''∠tan 的值为 . 22.(2009白银市)如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B .C ,那么线段AO = cm .23. (2009年金华市) “赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为4,大正方形的面积为100,直角三角形中较小的锐角为α,则tan α的值等于 .24.(2009年温州)如图,△ABC 中,∠C=90°,AB=8,cosA=43,则AC 的长是 25.(2009年深圳市)如图,小明利用升旗用的绳子测量学校旗杆BC 的高度,他发现 绳子刚好比旗杆长11米,若把绳子往外拉直,绳子接触地面A 点并与地面形成30º角时,绳子末端D 距A 点还有1米,那么旗杆BC 的高度为 .26.(2009年深圳市)如图,在Rt △ABC 中,∠C=90º,点D 是BC 上一点,AD=BD , 若AB=8,BD=5,则CD= .27.(2009年黄石市)计算:1132|20093tan 303-⎛⎫+--+ ⎪⎝⎭°= .28..(2009年中山)计算:19sin 30π+32-0°+()= .29.(2009年遂宁)计算:()3208160cot 33+--o -= .30.(2009年湖州)计算:()02cos602009π9--+°= . 31.(2009年泸州)︒+--+-30sin 29)2009()21(01= . 32.(2009年安徽)计算:|2-|o 2o 12sin30(3)(tan 45)-+--+= . 二、解答题(每小题4分,24分)1.(2009年河北)图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin∠DOE = 1213. (1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降,则经过多长时间才能将水排干?OEC D2.(2009年新疆乌鲁木齐市)九(1)班的数学课外小组,对公园人工湖中的湖心亭A 处到笔直的南岸的距离进行测量.他们采取了以下方案:如图7,站在湖心亭的A 处测得南岸的一尊石雕C 在其东南方向,再向正北方向前进10米到达B 处,又测得石雕C 在其南偏东30°方向.你认为此方案能够测得该公园的湖心亭A 处到南岸的距离吗?若可以,请计算此距离是多少米(结果保留到小数点后一位)?3.(2009年哈尔滨)如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A 处测得灯塔C 在北偏西30°方向,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西60°方向.当轮船到达灯塔C 的正东方向的D 处时,求此时轮船与灯塔C 的距离.(结果保留根号)BADC北东西南4. (2009山西省太原市)如图,从热气球C 上测得两建筑物A .B 底部的俯角分别为30°和60°.如果这时气球的高度CD 为90米.且点A .D .B 在同一直线上,求建筑物A .B 间的距离.5.(2009年中山)如图所示,A .B 两城市相距100km ,现计划在这两座城市间修建一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏ABC EF60°30°CDBA 北60°30°西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:3≈1.732,2≈1.414)6.(2009河池)如图,为测量某塔AB 的高度,在离该塔底部20米处目测其顶A ,仰角为60o ,目高1.5米,试求该塔的高度(3 1.7)≈.1.5C 60oA1.51.22 2. 16.1 3. 3.5 4. 2(32)- 5. 43 6. 327. 3.5 8. 43 9. 20.3 10. 100 11. 45(或0.8); 12. 33 13.. ()40340+ 14.1:215. 3200 16. 10 17. 53 18. π33-19..532 20. 10,22916n +(或23664n +)21. 3122. 5 23。

人教版-数学-九年级下册-《锐角三角函数》习题精选

人教版-数学-九年级下册-《锐角三角函数》习题精选

《锐角三角函数》习题精选 一、选择题 1.已知锐角的顶点在原点,一条边在x 轴的正半轴上,另一条边经过点(3,-4),则 的值是( ) A .43 B .34 C .54 D .53 2.在△ABC 中,∠C=90°,下列式子不一定成立的是( )A .B .C .D .3.已知 是锐角,且54cos =a ,则( )A .259B .54C .53D .2516 二、填空题(1)在直角三角形中,________角所对的边等于斜边的一半.(2)在Rt △ABC 中,∠C=90°,c=8,a=6 ,则最小角的正切值为_________.(3)已知在 中,∠C=90°,5=b ,三角形面积为25,则斜边 , 的度数是________.(4)当时, 值的范围是_________. (5)中, ,则 . (6)Rt 中, ,则最小角的正切值是__________.(7)已知等腰三角形的两边长分别为2和4,则其底角的余弦值是_________.(8)已知23cos =A ,则锐角A 的度数是_______. (9)用计算器计算: 的值是________.(10)Rt 中, ,则的值是_________. (11)Rt中, ,且 ,则 的值是___________. 三、计算题1.在 中, ,求 的两个三角函数值.2.已知a a ,23sin = 为锐角,求角 的度数与2cos a . 3.在 中,若23cos ,22sin ==A B ,求 的度数. 4.已知 ,求. 5.等腰梯形腰长6cm ,底角的余弦值是232,上底长为 cm ,求此梯形的面积. 6.已知,求锐角 .参考答案一、1.C; 2.A; 3.C.二、(1)30°;(2);(3),45°;(4);(5).(6);(7);(8)30°;(9)0.3860;(10);(11)三、1.2.3.4.0.45405. cm6.70°。

人教版九年级数学下册第28章锐角三角函数全章训练题含答案

人教版九年级数学下册第28章锐角三角函数全章训练题含答案

人教版九年级数学下册第28章锐角三角函数全章训练题含答案1. 在Rt △ABC 中,∠C =90°,假定将各边长度都扩展为原来的2倍,那么∠A 的正弦值( D )A .扩展2倍B .增加2倍C .扩展4倍D .不变2. 如图,在△ABC 中,∠C =90°,cosB =45,那么AC ∶BC ∶AB =( A )A .3∶4∶5B .4∶3∶5C .3∶5∶4D .5∶3∶43. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为点D ,假定AC =5,BC =2,那么sin ∠ACD 的值为( A ) A.53 B.255 C.52 D.234.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,那么tan A =( D )A.35B.45C.34D.435.计算sin30°·tan45°的结果是( A )A.12B.32C.36D.246.如图,在Rt △ABC 中,∠ACB =90°,BC =1,AB =2,那么以下结论正确的选项是( D )A .sin A =32B .tan A =12C .cos B =32D .tan B = 3 7.如图,AC 是电杆的一根拉线,测得BC =6米,∠ACB =52°,那么拉线AC 的长为( D )A.6sin52°米B.6tan52°米 C .6·cos52°米 D.6cos52°米 8.如图是拦水坝的横断面,斜坡AB 的水平宽度为12米,斜面坡度为1∶2,那么斜坡AB 的长为( B )A .43米B .65米C .125米D .24米9.在△ABC 中,∠C =90°,tan A =34,那么cos B 的值是( C ) A.45 B.34 C.35 D.4310.如图,渔船在A 处看到灯塔C 在北偏东60°方向上,渔船向正西方向飞行了12海里抵达B 处,在B 处看到灯塔C 在正南方向上,这时渔船与灯塔C 的距离是( D )A .123海里B .63海里C .6海里D .43海里11.如图,为测量B 点到河岸AD 的距离,在A 点测得∠BAD =30°,在C 点测得∠BCD =60°,又测得AC =100米,那么B 点到河岸AD 的距离为( B )A .100米B .503米 C.20033米 D .50米 12.小明去爬山,在山脚看山顶角度为30°,小明在坡比为5∶12的山坡上走1300米,此时小明看山顶的角度为60°,求山高( B )A .(600-2503)米B .(6003-250)米C .(350+3503)米D .5003米13.在Rt △ABC 中,∠C =90°,假设AC =3,AB =5,那么cos B 的值是 __45__. 14.在△ABC 中,∠C =90°,BC =2,sin A =23,那么AC 的长是__5__. 15.如图,在空中上的点A 处测得树顶B 的仰角为α度,AC =7米,那么树高BC 为__7tan α__米.(用含α的代数式表示),第13题图) ,第14题图) ,第16题图) ,第17题图)16.如图,△ABC 中,∠C =90°,BC =4 cm ,tan B =32,那么△ABC 的面积是__12__cm 2.17.在△ABC 中,假定∠A ,∠B 满足|cos A -12|+(sin B -22)2=0,那么∠C =__75°__.18.长为4 m 的梯子搭在墙上与空中成45°角,作业时调整为60°角(如下图),那么梯子的顶端沿墙面降低了__(23-22)__m.19.如图,在修建平台CD 的顶部C 处,测得大树AB 的顶部A 的仰角为45°,测得大树AB 的底部B 的俯角为30°,平台CD 的高度为5 m ,那么大树的高度为3)__m .(结果保管根号)20.规则:sin (-x)=-sin x ,cos (-x)=cos x ,sin (x +y)=sin x ·cos y +cos x ·sin y.据此判别以上等式成立的是__②③④__.(写出一切正确的序号)①cos(-60°)=-12;②sin75°=6+24;③sin2x =2sin x ·cos x ; ④sin(x -y )=sin x ·cos y -cos x ·sin y . 21.计算:(1)sin 230°+cos 245°+3sin60°·tan45°;解:94(2)cos 230°+cos 260°tan60°·tan30°+sin 245°. 解:3222.在Rt △ABC 中,∠C =90°,a =10,c =20,解这个直角三角形. 解:∠A =30°,∠B =60°,b =10 323.假设是我国某海域内的一个小岛,其平面图如图甲所示,小明据此结构出该岛的一个数学模型如图乙所示,其中∠B =∠D =90°,AB =BC =15千米,CD =32千米.求∠ACD 的余弦值.解:衔接AC ,在Rt △ABC 中,AC =AB 2+BC 2=152千米,在Rt △ACD 中,cos ∠ACD =CD AC =32152=15,∴∠ACD 的余弦值为1524.如图,在Rt △ABC 中,∠C =90°,BC =8,tan B =12,点D 在BC 上,且BD =AD .求AC 的长和cos ∠ADC 的值.解:∵在Rt △ABC 中,BC =8,tanB =12,∴AC =4.设AD =x ,那么BD =x ,CD =8-x ,由勾股定理,得(8-x)2+42=x 2.解得x =5.∴cos ∠ADC =DC AD=3525.如图,A ,B ,C 表示修建在一座山上的三个缆车站的位置,AB ,BC 表示衔接缆车站的钢缆.A ,B ,C 所处位置的海拔AA 1,BB 1,CC 1区分为160米,400米,1000米,钢缆AB ,BC 区分与水平线AA 2,BB 2所成的夹角为30°,45°,求钢缆AB 和BC 的总长度.(结果准确到1米)解:依据题意知BD =400-160=240米,CB 2=1000-400=600米,在Rt△ADB 中,sin30°=BD AB ,∴AB =BD sin30°=480米,在Rt △BB 2C 中,sin45°=CB 2BC ,∴BC =CB 2sin45°=6002米,AB +BC =(480+6002)米≈1329米 26.如图,某高速公路树立中需求确定隧道AB 的长度.在离空中1500 m 的高度C 处的飞机上,测量人员测得正前方A ,B 两点处的俯角区分为60°和45°.求隧道AB 的长.(3≈1.73) 解:∵OA =1500×tan30°=5003,OB =OC =1500,∴AB =1500-5003≈1500-865=635(m)。

人教版九年级数学下册《28.1锐角三角函数》检测题含答案1

人教版九年级数学下册《28.1锐角三角函数》检测题含答案1

人教版九年级数学下册《28.1锐角三角函数》检测题含答案1第二十八章 锐角三角函数 28.1 锐角三角函数 第1课时 正弦和余弦01 基础题 知识点1 正弦1.如图,在Rt △ABC 中,∠C =90°,若AB =5,AC =4,则sin B =(B )A .35B .45C .34D .432.(唐山玉田县月考)在Rt △ABC 中,∠C =90°,各边都扩大2倍,则锐角A 的正弦值(C )A .扩大2倍B .缩小12C .不变D .无法确定3.(天津和平区汇文中学单元检测)在△ABC 中,若三边BC ,CA ,AB 满足BC ∶CA ∶AB =5∶12∶13,则sin A 的值是(C )A .512B .125C .513D .12134.在Rt △ABC 中,∠C =90°,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,若2a =3c ,则∠A 25.如图所示,在Rt △ABC 中,∠C =90°,a ∶c =2∶3,求sin A 和sin B 的值.解:在Rt △ABC 中,∠C =90°,a ∶c =2∶3, 设a =2k ,c =3k(k>0), 则b =c 2-a 2=5k.∴sin A =a c =2k 3k =23,sin B =b c =5k 3k =53.6.如图,在△ABC 中,∠C =90°,sin A =1213,AB =26,求△ABC 的周长.解:在Rt △ABC 中,∠C =90°,AB =26,sin A =BC AB =1213,∴BC =24,AC =AB 2-BC 2=262-242=10. ∴△ABC 的周长为26+24+10=60.知识点2 余弦7.(湖州中考)如图,已知,在Rt △ABC 中,∠C =90°,AB =5,BC =3,则cos B 的值是(A )A .35B .45C .34D .438.(承德六校一模)如图,△ABC 的顶点都在正方形网格的格点上,则cos C 的值为(D )A .12B .32C .55D .2559.已知在Rt △ABC 中,∠C =90°,sin A =35,则cos B 的值为(B )A .74 B .35 C .34 D .4502 中档题10.如图,△ABC 的顶点是正方形网格的格点,则sin A 的值为(B )A .12B .55C .1010D .255解析:如图,连接CD 交AB 于O ,根据网格的特点,CD ⊥AB ,在Rt △AOC 中,CO =12+12=2,AC =12+32=10.则sin A =OC AC =210=55.11.(怀化中考改编)在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm ,求BC 的长度.解:∵sin A =BC AB =45,∴设BC =4x ,AB =5x.又∵AC 2+BC 2=AB 2,∴62+(4x)2=(5x)2,解得x =2或x =-2(舍去). ∴BC =4x =8 cm .12.如图,菱形ABCD 的边长为10 cm ,DE ⊥AB ,sin A =35,求DE 的长和菱形ABCD 的面积.解:∵DE ⊥AB , ∴∠AED =90°.在Rt △AED 中,sin A =DE AD ,即DE 10=35.解得DE =6.∴菱形ABCD 的面积为10×6=60(cm 2). 13.如图,已知⊙O 的半径为5 cm ,弦AB 的长为8 cm ,P 是AB 延长线上一点,BP =2 cm ,求cos P 的值.解:作OC ⊥AB 于C 点. 根据垂径定理, AC =BC =4.∴CP =4+2=6(cm ).在Rt △OAC 中,OC =52-42=3(cm ). 在Rt △OCP 中,根据勾股定理,得 OP =CO 2+CP 2=32+62=35(cm ).故cos P =PC PO =635=255.03 综合题14.(鄂州中考)如图,在矩形ABCD 中,AB =8,BC =12,点E 是BC 的中点,连接AE ,将△ABE 沿AE 折叠,点B 落在点F 处,连接FC ,则sin ∠ECF =(D )A .34B .43C .35D .45。

人教版九年级数学下册锐角三角函数同步练习附答案-精编版

人教版九年级数学下册锐角三角函数同步练习附答案-精编版

28.1锐角三角函数——正弦、余弦、正切一、基础·巩固达标1.在△R t ABC中,如果各边长度都扩大2倍,则锐角A的正弦值和余弦值()A.都没有变化B.都扩大2倍C.都缩小2倍D.不能确定2.已知α是锐角,且cosα=45,则sinα=()A.925B.45C.316D.5253.Rt△ABC中,∠C=90°,AC∶BC=1∶3,则cosA=_______,tanA=_________.4.设α、β为锐角,若sinα=33,则α=________;若tanβ=,则β=_________. 235.用计算器计算:sin51°30′+cos49°50′-tan46°10′的值是_________.6.△ABC中,∠BAC=90°,AD是高,BD=9,tanB=43,求AD、AC、BC.二、综合应用达标7.已知α是锐角,且sinα=45,则cos(90°-α)=()A.43B.54C.31D.558.若α为锐角,tana=3,求coscossinsin的值.9.已知方程x2-5x·sinα+1=0的一个根为23,且α为锐角,求tanα.10.四边形是不稳定的.如图28.1-14,一矩形的木架变形为平行四边形,当其面积变为原矩形的一半时,你能求出∠α的值吗?图28.1-14三、回顾展望达标11.三角形在正方形网格纸中的位置如图28.3-15所示,则sinα的值是()A.3434B. C. D. 4355图28.1-15图28.1-17图28.1-1612.如图28.1-17,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r 3 2,AC=2,则cosB的值是()A.32B.55C.32D.2313.在△ABC中,∠C=90°,AB=15,sinA=13,则BC=()A.45B.5C.11D. 54514.如图28.3-16,CD是△R t ABC斜边上的高,AC=4,BC=3,则cos∠BCD=()A.35B.344C. D.43515.课本中,是这样引入“锐角三角函数”的:如图 28.1-18,在锐角 α 的终边 OB 上,任意取两点 P 和 P ,分别过点 P 和 P 做始边 OA 的垂线 PM 和 P M ,M 和 M 为垂足.我们规定,比值________ 叫做角 α 的正弦,比值________叫做角 α 的余弦.这是因为,由相似三角形的性质,可推得关于 这些比值得两个等式:________,________.说明这些比值都是由________唯一确定的,而与 P 点在角的终边上的位置无关,所以,这些比值都是自变量 α 的函数.图 28.1-18图 28.1-1916.计算:2-1-tan60°+(5-1)0+| 3 |;17.已知:如图 28.1-19,△ABC 内接于⊙O ,点 D 在 OC 的延长线上,sinB= (1)求证:AD 是⊙O 的切线;(2)若 OD ⊥AB ,BC=5,求 AD 的长.参考答案12,∠CAD=30°.一、基础·巩固达标1.在 △R t ABC 中,如果各边长度都扩大 2 倍,则锐角 A 的正弦值和余弦值()A.都没有变化B.都扩大 2 倍C.都缩小 2 倍D.不能确定思路解析:当 △R t ABC 的各边长度都扩大二倍,所得新三角形与原三角形相似,故锐角 A 大小不变.答案:A2.已知 α 是锐角,且 cos α=4 5,则 sin α=()A.9 25B.4 5C.3 16 D.525思路解析:由 cos α=4 5,可以设 α 的邻边为 4k ,斜边为 5k ,根据勾股定理,α 的对边为 3k ,则sinα=3 5.答案:C1 1 1 1 13.Rt△ABC中,∠C=90°,AC∶BC=1∶3,则cosA=_______,tanA=_________.思路解析:画出图形,设AC=x,则BC=义计算.3x,由勾股定理求出AB=2x,再根据三角函数的定答案:12,34.设α、β为锐角,若sinα=33,则α=________;若tanβ=,则β=_________. 23思路解析:要熟记特殊角的三角函数值.答案:60°,30°5.用计算器计算:sin51°30′+cos49°50′-tan46°10′的值是_________.思路解析:用计算器算三角函数的方法和操作步骤.答案:0.38606.△ABC中,∠BAC=90°,AD是高,BD=9,tanB=43,求AD、AC、BC.思路解析:由条件可知△ABC、△ABD、△ADC是相似的直角三角形,∠B=∠CAD,于是有tan∠CAD=tanB=求解.43,所以可以在△ABD、△ADC中反复地运用三角函数的定义和勾股定理来解:根据题意,设AD=4k,BD=3k,则AB=5k.在△R t ABC中,∵tanB=4420,∴AC=AB= k.∵BD=9,∴k=3. 333所以AD=4×3=12,AC=203×3=20.根据勾股定理BC 20215225.二、综合应用达标7.已知α是锐角,且sinα=45,则cos(90°-α)=()A.43B.54C.31D.55思路解析:方法1.运用三角函数的定义,把α作为直角三角形的一个锐角看待,从而对边、邻边、斜边之比为4∶3∶5,(90°-α)是三角形中的另一个锐角,邻边与斜边之比为4∶5,cos(90°-α)=4 5 .方法2.利用三角函数中互余角关系“sinα=cos(90°-α)”.答案:A8.若α为锐角,tana=3,求coscossinsin的值.思路解析:方法1.运用正切函数的定义,把α作为直角三角形的一个锐角看待,从而直角三角形三边之比为3∶1∶10,sinα=310,cosα=110,分别代入所求式子中.方法2.利用tanα=sincos计算,因为cosα≠0,分子、分母同除以cosα,化简计算.答案:原式=cos sincos coscos sincos cos1tan 1311tan 1329.已知方程x2-5x·sinα+1=0的一个根为23,且α为锐角,求tanα.思路解析:由根与系数的关系可先求出方程的另一个根是利用前面介绍过的方法求tanα.23解:设方程的另一个根为x,则()x=123∴x=4.∴5sinα=(23)+(23),解得sinα=523,进而可求出sinα=45,然后设锐角α所在的直角三角形的对边为4k,则斜边为5k,邻边为3k,∴tanα=4k43k3.10.四边形是不稳定的.如图28.1-14,一矩形的木架变形为平行四边形,当其面积变为原矩形的一半时,你能求出∠α的值吗?图28.1-14思路解析:面积的改变实际上是平行四边形的高在改变,结合图形,可以知道h=12b,再在高所在的直角三角形中由三角函数求出α的度数.解:设原矩形边长分别为a,b,则面积为ab,2221 2ab.由题意得,平行四边形的面积S=又因为 S=ah=a(bsin α),所以 1 1ab=absin α,即 sinα= .所以 α=30°.2 2三、回顾 展望达标11.三角形在正方形网格纸中的位置如图 28.3-15 所示,则 sin α 的值是()A.图 28.1-1534 3 4 B. C. D.43 5 5思路解析:观察格点中的直角三角形,用三角函数的定义. 答案:C12.如图 28.1-17,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接 CD ,若⊙O 的半径r3 2,AC=2,则 cosB 的值是()图 28.1-17A.3 2B.5 5 C.32D.2 3思路解析:利用∠BCD=∠A 计算. 答案:D13.在△ABC 中,∠C=90°,AB=15,sinA= 13,则 BC=()A.45B.5C.1 1 D.5 45思路解析:根据定义 sinA= 答案:BBC AB,BC=AB·sinA.14.如图 28.3-16,CD 是 △R t ABC 斜边上的高,AC=4,BC=3,则 cos ∠BCD=()图 28.1-16A.3 5B.3 4 4 C. D.43 5思路解析:直径所对的圆周角是直角,设法把∠B 转移到 △R t ADC 中,由“同圆或等圆中,同 弧或等弧所对的圆周角相等”,得到∠ADC=∠B.答案:B15.课本中,是这样引入“锐角三角函数”的:如图 28.1-18,在锐角 α 的终边 OB 上,任意取两点 P 和P ,分别过点 P 和 P 做始边 OA 的垂线 PM 和 P M ,M 和 M 为垂足.我们规定,比值________ 叫做角 α 的正弦,比值________叫做角 α 的余弦.这是因为,由相似三角形的性质,可推得关于 这些比值得两个等式:________,________.说明这些比值都是由________唯一确定的,而与 P 点在角的终边上的位置无关,所以,这些比值都是自变量 α 的函数.图 28.1-18思路解析:正弦、余弦函数的定义.答案:PM OM PMP M OMOM , , 1 1 , 1OP OP OPOPOPOP11,锐角 α 16.计算:21-tan60°+( 5 -1)0+ | 3 | ;思路解析:特殊角的三角函数,零指数次幂的意义,负指数次幂的意义.解:2 - -tan60°+(5-1)0+| 3|=1 3- 3 +1+ 3 = .2 217.已知:如图 28.1-19,△ABC 内接于⊙O ,点 D 在 OC 的延长线上,sinB=1 2,∠CAD=30°.图 28.1-191 1 1 1 1 - 1(1)求证:AD是⊙O的切线;(2)若OD⊥AB,BC=5,求AD的长.思路解析:圆的切线问题跟过切点的半径有关,连接OA,证∠OAD=90°.由sinB=12可以得到∠B=30°,由此得到圆心角∠AOD=60°,从而得到△ACO是等边三角形,由此∠OAD=90°.AD是△R t OAD的边,有三角函数可以求出其长度.(1)证明:如图,连接OA.∵sinB=12,∴∠B=30°.∴∠AOD=60°.∵OA=OC,∴△ACO是等边三角形∴∠OAD=60°.∴∠OAD=90°.∴AD是⊙O的切线. (2)解:∵OD⊥AB∴OC垂直平分AB.∴AC=BC=5.∴OA=5.在△R t OAD中,由正切定义,有tan∠AOD=∴AD=53.AD OA.。

人教版数学九年级下册第28章测试题(含答案)

人教版数学九年级下册第28章测试题(含答案)

人教版数学九年级下册第28章测试题(含答案)28.1《锐角三角函数》一、选择题1.2cos60°=()A.1B.C.D.2.在菱形ABCD中,BD为对角线,AB=BD,则sin∠BAD=()A. B. C. D.3.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,下列线段的比值等于cosA的值的有()个(1)(2)(3)(4).A.1B.2C.3D.44.tan45°sin45°﹣2sin30°cos45°+tan30°=()A. B. C. D.5.计算的值是()A. B. C. D.6.如图,在由边长为1的小正方形组成的网格中,点A、B、C都在小正方形的顶点上,则tan∠CAB的值为()A.1B.C.D.7.如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA的值为()A. B. C. D.8.计算sin60°+cos45°的值等于()A. B. C. D.9.sin60°的值等于()A. B. C. D.10.在△ABC中,若三边BC、CA、AB满足 BC∶CA∶AB=5∶12∶13,则sinA的值是( )A. B. C. D.11.tan30°的值为()A. B. C. D.12.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧上的一点,则cos∠APB的值是()A.45°B.1C.D.无法确定二、填空题13.计算;sin30°•tan30°+cos60°•tan60°= .14.已知在△ABC中,AB=AC=4,BC=6,那么cosB=____________.15.△ABC中,∠A,∠B都是锐角,若sinA=,cosB=,则∠C= .16.在△ABC中,∠B=45°,cosA=,则∠C的度数是________.17.计算:=18.△ABC中,∠A、∠B都是锐角,且sinA=cosB=,则△ABC是三角形.三、计算题19.计算:20.计算:四、解答题21.先化简,再求值,其中a=1+2cos45°;b=1-2sin45°22.一般地,当α,β为任意角时,sin(α+β)与sin(α-β)的值可以用下面的公式求得:sin(α+β)=sin αcos β+cos αsin β;sin(α-β)=sin αcos β-cos αsin β.例如sin 90°=sin(60°+30°)=sin 60°cos 30°+cos 60°sin 30°=×+×=1.类似地,可以求得sin 15°的值是___________________.23.小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(1)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(2)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.24.如图,四边形ABCD是平行四边形,以AB为直径的⊙0经过点D,E是⊙O上一点,且∠AED=45°,(1)求证:CD是⊙O的切线.(2)若⊙O的半径为3,AE=5,求∠ADE的正弦值.参考答案1.答案为:A;.2.答案为:C3.答案为:C4.答案为:D.5.答案为:A;6.答案为:C.7.答案为:A;8.答案为:B;9.答案为:C10.答案为:C11.答案为:B;.12.答案为:C13.答案为:14.答案为:0.75;15.答案为:60°.16.答案为:75°17.答案为:18.答案为:直角.19.原式=120.原式=721.原式=22.原式=.23.解1:(1)当α=30°时,sin2α+sin2(90°﹣α)=sin230°+sin260°=()2+()2=1;(2)小明的猜想成立,证明如下:如图,在△ABC中,∠C=90°,设∠A=α,则∠B=90°﹣α,∴sin2α+sin2(90°﹣α)=()2+()2===1.24.解:(1)CD与⊙O相切.理由是:连接OD.则∠AOD=2∠AED=2×45°=90°,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠CDO=∠AOD=90°.∴OD⊥CD,∴CD与⊙O相切.(2)连接BE,由圆周角定理,得∠ADE=∠ABE.∵AB是⊙O的直径,∴∠AEB=90°,AB=2×3=6(cm).在Rt△ABE中,sin∠ABE==,∴sin∠ADE=sin∠ABE=.28.2解直角三角形及其应用一.选择题1.如图,在Rt△ABC中,∠C=90°,BC=,AB=2,则∠B等于()A.15°B.20°C.30°D.60°2.在△ABC中,∠ACB=90°,若AC=8,BC=6,则sin A的值为()3.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ACB等于()A.B.C.D.4.如图,传送带和地面所成斜坡的坡度为1:3,若它把物体从地面点A处送到离地面1米高的点B处,则物体从A到B所经过的路程为()A.3米B.米C.2米D.3米5.如图,在国旗台DF上有一根旗杆AF,国庆节当天小明参加升旗仪式,在B处测得旗杆顶端的仰角为37°,小明向前走4米到达点E,经过坡度为1的坡面DE,坡面的水平距离是1米,到达点D,测得此时旗杆顶端的仰角为53°,则旗杆的高度约为()米.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)A.6.29B.4.71C.4D.5.336.如图,AB是斜靠在墙上的长梯,AB与地面夹角为α,当梯顶A下滑1m到A′时,梯脚B 滑到B′,A'B'与地面的夹角为β,若tanα=,BB'=1m,则cosβ=()7.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度为i=1:2.4,坡长为26米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为()米(结果精确到1米)(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)A.27B.28C.29D.308.数学兴趣小组的同学们要测量某大桥主架顶端离水面的高CD.在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为45°,测得与大桥主架的水平距离AB为100米.则大桥主架顶端离水面的高CD为()A.(100+100•sinα)米B.(100+100•tanα)米C.(100+)米D.(100+)米9.某兴趣小组想测量一座大楼AB的高度,如图,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测量仪测得大楼顶端A的仰角为37°,测角仪DE的高度为1.5米,求大楼AB的高度约为多少米?()(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)A.39.3B.37.8C.33.3D.25.710.在数学综合实践课上,老师和同学们一起测量学校旗杆的高度,他们首先在旗杆底部C地测得旗杆顶部A的仰角为45°,然后沿着斜坡CD到斜坡顶部D点处再测得旗杆顶部A的仰角为37°(身高忽略不计),已知斜坡CD的坡度i=1:2.4,坡面CD长2.6米,旗杆AB所在旗台高度为1.4米,旗杆、旗台底部、斜坡在同一平面,则旗杆AB的高度为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.9.5米B.9.6米C.9.7米D.9.8米二.填空题11.如图,在正方形网格中,小正方形的边长为1,点A,B,C,D都在格点上,AB与CD相交于点O,则∠AOC的正切值是.12.如图,在平面直角坐标系中有一点P(6,8),那么OP与x轴的正半轴的夹角α的余弦值为.13.一座建于若干年前的水库大坝,目前坝高4米,现要在不改变坝高的情况下修整加固,将背水坡AB的坡度由1:0.75改为1:2,则修整后的大坝横截面积增加了平方米.14.如图,点P、A、B、C在同一平面内,点A、B、C在同一直线上,且PC⊥AC,在点A处测得点P在北偏东60°方向上,在点B处测得点P在北偏东30°方向上,若AP=12千米,则A,B两点的距离为千米.15.如图,某无人机兴趣小组在操场上开展活动,此时无人机在离地面30米的D处,无人机测得操控者A的俯角为30°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,则教学楼BC的高度为.(点A,B,C,D都在同一平面上,结果保留根号)三.解答题16.如图,在△ABC中,AD是BC边上的高,BC=4,AD=12,sin B=.求:(1)线段CD的长;(2)sin∠BAC的值.17.石室联合中学金沙校区位于三环跨线桥旁边,为了不影响学生上课,市政在桥旁安装了隔音墙,交通局也对此路段设置了限速,九年级学生为了测量汽车速度做了如下实验:在桥上依次取B、C、D三点,再在桥外确定一点A,使得AB⊥BD,测得AB之间15米,使得∠ADC =30°,∠ACB=60°.(1)求CD的长(精确到0.01,≈1.73,≈1.41).(2)交通局对该路段限速30千米/小时,汽车从C到D用时2秒,汽车是否超速?说明理由.18.如图,一艘渔船沿南偏东42°方向航行,在A处测得一个小岛P在其南偏东64°方向.又继续航行(40﹣16)海里到达B处,测得小岛P位于渔船的南偏东72°方向,已知以小岛P为圆心,半径16海里的圆形海域内有暗礁.如果渔船不改变航向有没有触礁的危险,请通过计算加以说明.如果有危险,渔船自B处开始,沿南偏东多少度的方向航行,能够安全通过这一海域?(参考数据:sin22°=,cos22°=,tan22°=)参考答案一.选择题1.解:∵∠C=90°,BC=,AB=2,∴cos B==,∴∠B=30°,故选:C.2.解:在△ABC中,∠ACB=90°,AC=8,BC=6,∴AB===10,∴sin A===.故选:A.3.解:如图,作CD⊥AB于点D,作AE⊥BC于点E,由已知可得,AC==,AB=5,BC==5,CD=3,∵S△ABC=AB•CD=BC•AE,∴AE===3,∴CE===1,∴cos∠ACB===,故选:B.4.解:过B作BC⊥地面于C,如图所示:∵BC:AC=1:3,即1:AC=1:3,∴AC=3(米),∴AB===(米),即物体从A到B所经过的路程为米,故选:B.5.解:过点D作DM⊥BC,垂足为M,由题意得,∠B=37°,∠ADF=53°,BE=4,EM=1,∵坡面DE的坡度为1,∴=1,∴DM=EM=1=FC,在Rt△ADF中,∠DAF=90°﹣∠ADF=90°﹣53°=37°,∵tan∠DAF=≈0.75,设AF=x,则DF=0.75x=MC,在Rt△ABC中,∵tan∠B=,∴tan37°=≈0.75,解得x=≈6.29(米),故选:A.6.解:如图.∵在直角△ABC中,∠ACB=90°,tanα=,∴可设AC=4x,那么BC=3x,∴AB===5x,∴A′B′=AB=5x.∵在直角△A′B′C中,∠A′CB′=90°,A′C=4x﹣1,B′C=3x+1,∴(4x﹣1)2+(3x+1)2=(5x)2,解得x=1,∴A′C=3,B′C=4,A′B′=5,∴cosβ=.故选:A.7.解:如图,延长AB交ED的延长线于F,作CG⊥EF于G,由题意得:FG=BC=20米,DE=40米,BF=CG,在Rt△CDG中,i=1:2.4,CD=26米,∴BF=CG=10米,GD=24米,在Rt△AFE中,∠AFE=90°,FE=FG+GD+DE=84米,∠E=24°,∴AF=FE•tan24°≈84×0.45=37.8(米),∴AB=AF﹣BF=37.8﹣10≈28(米);即建筑物AB的高度为28米;故选:B.8.解:在Rt△ABC中,,∴BC=AB•tanα,在Rt△ABD中,tan45°=,∴BD=AB•tan45°=AB,∴CD=a=BC+BD=AB•tanα+AB=(100+100•tanα)米,故选:B.9.解:如图,延长AB交直线DC于点F,过点E作EH⊥AF,垂足为点H.∵在Rt△BCF中,BF:CF=1:,∴设BF=k,则CF=k,∴BC=2k.又∵BC=12,∴k=6,∴BF=6,CF=6,∵DF=DC+CF,∴DF=40+6在Rt△AEH中,tan∠AEH=,∴AH=tan37°×(40+6)≈37.785(米),∵BH=BF﹣FH,∴BH=6﹣1.5=4.5.∵AB=AH﹣HB,∴AB=37.785﹣4.5≈33.3.答:大楼AB的高度约为33.3米.故选:C.10.解:作DH⊥FC交FC的延长线于点H,延长AB交CF的延长线于点T,作DJ⊥AT于点J,如图所示:则四边形EFTB与四边形DHTJ都是矩形,∴BT=EF=1.4米,JT=DH,在Rt△DCH中,CD=2.6米,=,∴DH=1(米),CH=2.4(米),∵∠ACT=45°,∠T=90°,∴AT=TC,设AT=TC=x.则DJ=TH=(x+2.4)米,AJ=(x﹣1)米,在Rt△ADJ中,tan∠ADJ==0.75,∴=0.75,解得:x=11.2,∴AB=AT﹣BT=11.2﹣1.4=9.8(米),故选:D.二.填空题11.解:如图取格点K,连接BK,过点K作KH⊥AB于H,如图所示:∵DB=CK=2,DB∥CK,∴四边形CDBK是平行四边形,∴CD∥BK,∴∠AOC=∠ABK,过点K作KH⊥AB于H.∵AB==,S△ABK=•AK•4=•AB•KH=20,∴HK==,∵BK==2,∴BH===,∴tan∠AOC=tan∠ABK===,故答案为:.12.解:如图作PH⊥x轴于H.∵P(6,8),∴OH=6,PH=8,∴OP==10,∴cosα===.故答案为:.13.解:∵背水坡AB的坡度为1:0.75,AC=4,∴=0.75,解得,BC=3,∵坡AD的坡度为1:2,AC=4,∴CD=8,∴BD=DC﹣BC=5,∴△ADB的面积=×5×4=10(平方米),故答案为:10.14.解:∵PC⊥AC,在点A处测得点P在北偏东60°方向上,∴∠PCA=90°,∠P AC=30°,∵AP=12千米,∴PC=6千米,AC=6千米,∵在点B处测得点P在北偏东30°方向上,∠PCB=90°,PC=6千米,∴∠PBC=60°,∴BC===2千米,∴AB=AC﹣BC=6﹣2=4(千米),故答案为:4千米.15.解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F.由题意得,AB=57,DE=30,∠A=30°,∠DCF=45°.在Rt△ADE中,∠AED=90°,∴tan30°=,即=,∴AE=30,∵AB=57,∴BE=AB﹣AE=57﹣30,∵四边形BCFE是矩形,∴CF=BE=57﹣30.在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°.∴DF=CF=57﹣30,∴BC=EF=30﹣57+30=(30﹣27)米.答:教学楼BC高约(30﹣27)米.故答案为:(30﹣27)米.三.解答题16.解:(1)∵AD是BC边上的高,∴∠D=90°,在Rt△ABD中,∵sin B=.∴=,又∵AD=12,∴AB=15,∴BD==9,又∵BC=4,∴CD=BD﹣BC=9﹣4=5;答:线段CD的长为5;(2)如图,过点C作CE⊥AB,垂足为E,∵S△ABC=BC•AD=AB•CE∴×4×12=×15×CE,∴CE=,在Rt△AEC中,∴sin∠BAC===,答:sin∠BAC的值为.17.解:(1)在Rt△ABC中,∠ABC=90°,∠ACB=60°,AB=15米,∴BC===5米,在Rt△ABD中,∠ABD=90°,∠ADB=30°,∴BD=AB=15米,∴CD=BD﹣BC=10≈17.32米,∴CD的长为17.32米;(2)∵30千米/小时=30000÷3600=米/秒,而10÷2≈8.66>,∴汽车超速.18.解:如图1,过点P作PC⊥AB,交AB的延长线于点C,由题意得,∠P AC=64°﹣42°=22°,∠PBC=72°﹣42°=30°,AB=40﹣16,设PC=x,在Rt△PBC中,∵∠PBC=30°,∴BC=PC=x,∴AC=AB+BC=40﹣16+x,在Rt△P AC中,∵∠P AC=22°,∴tan∠P AC=,即=,解得,x=16,即PC=16,BP=2PC=32,∵16<16,∴有危险.如图2,渔船沿着BD方向航行,过点P作PD⊥BD,垂足为D,在Rt△PBD中,∵sin∠PBD===,∴∠PBD=45°,∴∠QBD=∠QBP﹣∠DBP=72°﹣45°=27°,即渔船自B处开始,沿南偏东27°的方向航行,能够安全通过这一海域.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《锐角三角函数》习题精选
一、选择题
1.已知锐角 的顶点在原点,一条边在x 轴的正半轴上,另一条边经过点(3,-4),则
的值是( )
A .43
B .34
C .54
D .5
3
2.在△ABC 中,∠C=90°,下列式子不一定成立的是( ) A .
B .
C .
D .
3.已知 是锐角,且5
4
cos =a ,则( )
A .
259 B .54 C .53 D .25
16 二、填空题
(1)在直角三角形中,________角所对的边等于斜边的一半.
(2)在Rt △ABC 中,∠C=90°,c=8,a=6 ,则最小角的正切值为_________. (3)已知在
中,∠C=90°,5=b ,三角形面积为
2
5
,则斜边 ,
的度数是________. (4)当 时,
值的范围是_________.
(5) 中, ,则

(6)Rt
中,
,则最小角的正切值是__________.
(7)已知等腰三角形的两边长分别为2和4,则其底角的余弦值是_________. (8)已知2
3
cos =
A ,则锐角A 的度数是_______. (9)用计算器计算: 的值是________.
(10)Rt 中, ,则
的值是_________.
(11)Rt 中,
,且
,则
的值是___________.
三、计算题 1.在
中,
,求
的两个三角函数值.
2.已知a a ,23
sin = 为锐角,求角 的度数与2
cos a

3.在 中,若2
3cos ,22sin ==
A B ,求 的度数.
4.已知
,求 .
5.等腰梯形腰长6cm ,底角的余弦值是23
2
,上底长为 cm ,求此梯形的面
积. 6.已知 ,求锐角
.。

相关文档
最新文档