计量经济学实验报告4
计量经济学实验报告
计量经济学实验报告学年:2014-2015年第一学期学院:班级:学号姓名:指导老师:实验2:多元线性回归一.实验目的掌握计量经济学多元模型的建立,模型形式的设定,模型拟合度、t 检验和F检验判断过程;二.实验环境微型计算机(要求必须能够连接Internet,且安装有Eviews6.0软件。
)三.实验步骤:(1)创建工作文件[File]--New--work file。
在“work file”窗口中的“start date”键入1983,在“end date”中键入2005,点击ok。
(2) 输入数据.在命令窗口输入DATA Q L K并回车.(3) 绘制散点图在主菜单依次点击[quick]-[graph],在弹出的对话框中输入“yc x”点击[OK]-[Yes]后,出现“Group”窗口通过散点图,我们发现人均GDP与人均污水排放量不是线性关系,而是一元二次的关系,因此我们可以通过转化使得二者成为线性关系。
y与x之间的关系是非线性的,应该考虑建立非线性回归模型。
假设生产函数满足C-D函数形式,即假定模型为:Y = A*X^B代数变换:对模型两边取自然对数得Iny = InA +B* Inx 令Y i= Iny β0 =InA β1 = B β2 = Inx(4)生成新序列在主菜单点击[Quick]-[Generate Series],在文本框中输入描述新序列的公式LNY=LOG(Y),点击[OK],(5)参数估计点击[Quick]-[Estimate Equation],在文本框输入“Lny C Lnx “单击“确定”结果如下四、实验结果及分析Iny = 14.232 + —2.833*InxSE 1.007 0.340T 14.137 —8.320P 0.000 0.000R2 0.767R2 0.756F 69.220 P 0.000通过散点图,我们可以发现开始环境污染程度随着GDP的增加而下降,到达最低值时,环境污染程度随着GDP的增加而上升。
计量经济学实验报告
计量经济学实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT计量经济学实验基于EViews的中国能源消费影响因素分析学院:班级:学号:姓名:基于EViews的中国能源消费影响因素分析一、背景资料能用消费是引是指生产和生活所消耗的能源。
能源消费按人平均的占有量是衡量一个国家经济发展和人民生活水平的重要标志。
能源是支持经济增长的重要物质基础和生产要素。
能源消费量的不断增长,是现代化建设的重要条件。
我国能源工业的迅速发展和改革开放政策的实施,促使能源产品特别是石油作为一种国际性的特殊商品进入世界能源市场。
随着国民经济的发展和人口的增长,我国能源的供需矛盾日益紧张。
同时,煤炭、石油等常规能源的大量使用和核能的发展,又会造成环境的污染和生态平衡的破坏。
可以看出,它不仅是一个重大的技术、经济问题,而且以成为一个严重的政治问题。
在20世纪的最后二十年里,中国国内生产总值(GDP)翻了两番,但是能源消费仅翻了一番,平均的能源消费弹性仅为左右。
然而自2002年进入新一轮的高速增长周期后,中国能源强度却不断上升,经济发展开始频频受到能源瓶颈问题的困扰。
鉴于此,研究能源问题不仅具有必要性和紧迫性,更具有很大的现实意义。
由于我国目前面临的所谓“能源危机”,主要是由于需求过大引起的,而我国作为世界上最大的发展中国家,人口众多,所需能源不可能完全依赖进口,所以,研究能源的需求显得更加重要。
二、影响因素设定根据西方经济学消费需求理论可知,影响消费需求的因素有:商品的价格、消费者收入水平、相关商品的价格、商品供给、消费者偏好以及消费者对商品价格的预期等。
对于相关商品价格的替代效应,我们认为其只存在能源品种内部之间,而消费者偏好及消费者对商品价格的预期数据差别较大,不容易进行搜集整理在此暂不涉及。
另外,发展经济学认为,来自知识、人力资本的积累水平所体现的技术进步不仅可以带动劳动产出的增长,而且会通过外部效应可以提高劳动力、自然资源、物质资本与生产要素的生产效率,消除其中收益递减的内在联系,带来递增的规模收益。
计量经济学回归模型实验报告(大全)
计量经济学回归模型实验报告(大全)第一篇:计量经济学回归模型实验报告(大全)回归模型分析报告背景意义:教育是立国之本,强国之基。
随着改革开放的进行、经济的快速发展和人们生活水平的逐步提高,“教育”越来越受到人们的重视。
一方面,人均国内生产总值的增加与教育经费收入的增加有着某种联系,而人口的增长也必定会对教育经费收入产生影响。
本报告将从这两个方面进行分析。
我国1991 年~2013 年的教育经费收入、人均国内生产总值指数、年末城镇人口数的统计资料如下表所示。
试建立教育经费收入Y 关于人均国内生产总值指数 X 1 和年末城镇人口数 X 2的回归模型,并进行回归分析。
年份教育经费收入Y(亿元)人均国内生产总值指数X 1(1978 年=100)年末城镇人口数X 2(万人)1991 731.50282 256.67 31203 1992 867.04905 289.72 32175 1993 1059.93744 326.32 33173 1994 1488.78126 364.91 34169 1995 1877.95011 400.6 35174 1996 2262.33935 435.76 37304 1997 2531.73257 471.13 39449 1998 2949.05918 503.25 41608 1999 3349.04164 536.94 437482000 3849.08058 577.64 45906 2001 4637.66262 621.09 48064 2002 5480.02776 672.99 50212 2003 6208.2653 735.84 52376 2004 7242.59892 805.2 54283 2005 8418.83905 891.31 56212 2006 9815.30865 998.79 58288 2007 12148.0663 1134.67 60633 2008 14500.73742 1237.48 62403 2009 16502.7065 1345.07 64512 2010 19561.84707 1480.87 66978 201123869.29356 1613.61 69079 2012 28655.30519 1730.18 71182 2013 30364.71815 1853.97 73111 资料来源:中经网统计数据库。
计量经济学实验报告及心得体会
3.对导入的数据进行分析:quick—estimated equation,输入“Y空格C空格X”,单击“ok”,即可得到所需要的结果。
Std. Error
t-Statistic
Prob.
C
633.5543
495.1754
1.279454
0.2109
X
0.674007
0.041296
16.32155
0.0000
R-squared
0.901826
Mean dependent var
8401.467
Adjusted R-squared
0.898440
F-statistic
266.3928
Durbin-Watson stat
1.931058
Prob(F-statistic)
0.000000
根据以上回归分析可得出如下回归分析结果:
(1.279454)(16.32155)
R=0.901826F= 266.3928 D.W= 1.931058
其中括号内的数为相应参数t的检验值,R是可决系数,F和D.W是有关的两个检验统计量
Std. Error
t-Statistic
Prob.
C
-10.61120
86.06334
-0.123295
0.9027
GDP
0.071041
计量经济学综合实验报告
1、用Eviews创建变量LE、NI,输入样本数据,、打开Eviews工作文件,建立新的文件夹,在命令框中输入“data le ni”回车 ,从数据表中粘贴数据到Eviews数据表中即可;
2、估计河南省农村居民消费支出LE依可支配收入NI的一元回归模型
下图就是河南省农村居民消费支出LE和可支配收入NI的一元线性回归结果:
6、对ce为被解释变量,di为解释变量模型输出结果进行经济理论检验,拟合优度检验和t检验;
1经济意义检验:所估计参数β1=,β2=,说明可支配收入增加1元,平均说来可导致城市居民消费支出增加元;
2拟合优度检验:通过以上的回归数据可知,可决系数为,说明所建模型整体上对样本数据拟合度不是太好;
3t检验:针对H1:β1=0和H2:β2=0,由上回归结果可以看出,估计的回归系数B1的标准误差和t值分别为:SEβ1=,tβ1=: β2的标准误差和t值分别为SEβ2= tβ2=. 取a=0,05,查t分布表得自由度为n-2=18-2=16的临界值为= 19,tβ1=<= 19,不拒绝H1, tβ2=>= 19,拒绝H2.这表明,城市居民可支配收入对其消费水平有很大影响;
但两者的之一比例均大于,可见用凯恩斯的绝对收入假说解释现阶段河南省居民消费规律是合理的;
实验二 截面数据一元线性回归模型
异方差性
实验目的和要求
1、掌握一元线性回归估计方程的异方差性检验方法;
2、掌握一元线性回归估计方程的异方差性纠正方法;
3、在老师的指导下独立完成实验,并得到正确结果;
实验内容
1、估计河南省城市居民消费支出CE依可支配收入DI的一元线性回归模型和农村居民生活消费支出LE与纯收入NI的一元线性回归模型;
城市居民:
eviews计量经济学实验报告
eviews计量经济学实验报告EViews计量经济学实验报告引言计量经济学是经济学领域中的一个重要分支,它运用数学、统计学和计量学的方法来分析经济现象。
EViews是一个常用的计量经济学软件,它提供了丰富的数据分析和模型建立工具,被广泛应用于学术研究和实际经济分析中。
本实验报告将利用EViews软件进行计量经济学实验,以探讨经济现象并得出相关结论。
实验目的本实验旨在利用EViews软件对某一经济现象进行实证分析,通过建立相应的计量经济模型,对经济现象进行量化分析,并得出相关结论。
实验步骤1. 数据收集:首先,我们需要收集与所研究经济现象相关的数据,包括时间序列数据和横截面数据等。
这些数据可以来自于官方统计机构、学术研究机构或者自行收集整理。
2. 数据预处理:接下来,我们需要对收集到的数据进行预处理,包括数据清洗、缺失值处理、异常值处理等,以确保数据的质量和完整性。
3. 模型建立:在数据预处理完成后,我们可以利用EViews软件建立计量经济模型,包括回归分析、时间序列分析、面板数据分析等,以探讨经济现象的内在规律和影响因素。
4. 模型估计:建立模型后,我们需要对模型进行参数估计,得到模型的具体参数估计值,并进行显著性检验和模型拟合度检验,以验证模型的可靠性和有效性。
5. 结果分析:最后,我们将对模型估计结果进行分析,得出与经济现象相关的结论,并对实证分析结果进行解释和讨论。
实验结论通过以上实验步骤,我们得出了关于某一经济现象的实证分析结果,并得出了相关的结论。
这些结论对于理解经济现象的内在规律和制定经济政策具有重要的参考价值。
总结EViews计量经济学实验报告通过利用EViews软件进行实证分析,对经济现象进行了深入探讨,并得出了相关结论。
这些结论对于经济学研究和实际经济分析具有重要的理论和实践意义,为我们深入理解经济现象和推动经济发展提供了重要的参考依据。
EViews软件的应用为我们提供了一个强大的工具,帮助我们更好地理解和分析经济现象,为经济学领域的研究和实践提供了重要的支持和帮助。
计量经济学实验报告4
《 计量经济学 》课程实验第 3 次实验报告实验内容及基本要求:实验项目名称:运用Eviews 软件进行自相关模拟分析实验类型: 上机实验每组人数: 1实验内容及要求:1、总体要求:数据已经输入到eviews 中,数据文件为:自相关实验.wf1,其中的income 为家庭收入,consume 为家庭开支,以此数据建立以consume 为被解释变量的消费方程,用最小二乘法估计变量间的相关关系。
并检验数据中自相关性等特征,采用相应方法进行修正。
2、具体步骤:依次回答下列问题(得到回归结果是指给出回归方程,并做检验): 1、建立消费方程,做回归,得到回归结果。
2、根据回归结果,边际消费倾向为多少?显著不为1吗,给出检验过程。
3、数据中存在自相关吗,给出检验过程。
4、用dw 值来估计ρ,据此ρ做广义差分来消除自相关性,给出结果 5、 假定为ar(1),用科克兰内-奥克特法来消除自相关性,给出结果6、 假定为ar(2),用科克兰内-奥克特法来消除自相关性,给出结果实验结果:一.模型设定假定被解释变量Y 与解释变量X 存在线性相关关系,则可设定为如下模型:t t t u X Y ++=21ββ其中Y 为家庭支出consume,X 为家庭收入income.Ut 为随机误差项。
二.参数估计——用最小二乘法估计Y 与X 之间的参数值1.数据输入由于之前数据已输入到“自相关实验.wf1”中,故在eviews 设定完Y 和X 之后直接把相对应的数据粘贴就可以了。
2.参数估计通过最小二乘法进行回归估计,结果如图所示:可知该模型为:t t X Y 7829.02336.81^+= SE=180.2928 0.032038T=0.4506 24.4377R 2=0.9552 F=597.1988 DW=1.23373.边际消费倾向分析根据该回归结果可知,边际消费倾向为2β=0.7829,对其显著性进行检验H0:2β=1 H1:2β≠1给定显著性水平α=0.05,查表得2/αt (n-2)=025.0t (28)=2.0487752.6032038.017829.0)(22=-=-=βββSE t可知2/αt (28)=2.048<t ,所以,拒绝H0,即边际消费倾向2β显著不为1.4.自相关检验由上面的回归结果可知,该模型的可决系数R 2,2R 很高,拟合程度较好,回归系数显著。
计量经济学实验报告
一、实验目的:掌握多重共线性检验的方法和处理的方法二、实验原理:解释变量相关系数法、判定系数检验法、逐步回归法三、实验步骤:1. 创建一个新的工作文件打开Eviews软件,点击File中的new选择Workfile,创立一个新的工作文件,此时将出现Workfile Range,在其中选择时间变量数据Annual,输入实验数据的时间,在Start date 中输入1983年,在End date中输入2000年。
点击ok即可创立一个新的工作文件。
点击save 输入文件名即可保存。
如图:2. 创建一个数据输入窗口在quike文件菜单下找到Empty Group即可创建一个数据输入窗口。
将Excel文档菜单下的中国粮食生产函数模型的数据进行复制,粘贴到Empty Group的空白表格中,将每一列的列标题输入,即六个变量y,x1,x2,x3,x4,x5。
点击Name,把名称存为1点击ok把实验数据表保存。
如图:3. 用普通最小二乘法估计模型参数在quike文件菜单下的Estimate Equation中输入y c x1 x2 x3 x4 x5。
在普通最小二乘法估计模型以及样本确认的情况下,点击ok,即可出现普通最小二乘法的回归结果。
点击name 保存为EQ1。
如图所示:从图中发现:x1的参数估计值为6.212562。
t的估计值为8.385373。
x2的参数估计值为0.421380。
t的估计值为3.319919。
x3的参数估计值为-0.166260反方向变化,故为负值。
x4代表农业机械总动力。
x4的参数估计值为-0.097770,x4的值与所学经济学理论不相符。
x5代表投入农业劳动力。
x5的参数估计值为-0.028425。
一般情况下投入的农业劳动力是正向变化,现在为负值,x5的值与所学经济学理论不相符。
因此说明有可能存在多重共线性。
4.多重共线性检验(1)综合统计检验法根据综合统计检验法,得知判定系数R-squared为0.982798.调整以后的判定系数值问为0.975630,可以看出其拟合优度比较高。
实验四-多重共线性模型的检验和处理
实验报告课程名称:计量经济学实验项目:实验四多重共线性模型的检验和处理实验类型:综合性□设计性□验证性 专业班别:11本国贸五班姓名:学号:实验课室:厚德楼A207指导教师:实验日期:2014/5/20广东商学院华商学院教务处制一、实验项目训练方案小组合作:是□否 小组成员:无实验目的:掌握多重共线性模型的检验和处理方法:实验场地及仪器、设备和材料实验室:普通配置的计算机,Eviews软件及常用办公软件。
实验训练内容(包括实验原理和操作步骤):【实验原理】多重共线性的检验:直观判断法(R2值、t值检验)、简单相关系数检验法、方差扩大因子法(辅助回归检验)多重共线性的处理:先验信息法、变量变换法、逐步回归法【实验步骤】(一)多重共线性的检验1.直观判断法(R2值、t值检验)根据广东数据(见附件1),先分别建立以下模型:【模型1】财政收入CS对第一产业产值GDP1、第二产业产值GDP2和第三产业产值GDP3的多元线性回归模型;(请对得到的图表进行处理,以上在一页内)【模型2】固定资产投资TZG对固定资产折旧ZJ、营业盈余YY和财政支出CZ的多元线性回归模型。
观察模型结果,初步判断模型自变量之间是否存在多重共线性问题。
【模型1】从上图可以得到,估计方程的判定系数R 2很高,但三个参数t检验值两个不显著,有一个较显著,其中一个参数估计值还是负的,不符合经济理论。
所以,出现了严重的多重共线性。
【模型2】1】从上图可以得到,估计方程的判定系数R 2很高,方程显著性F检验也显著,但只有两个参数显著性t检验比较显著,这与很高的判定系数不相称,出现了严重的多重共线性。
2.简单相关系数检验法分别计算【模型1】和【模型2】的自变量的简单相关系数。
【模型1】【模型2】(请对得到的图表进行处理,以上在一页内)根据计算的简单相关系数,判断模型是否存在多重共线性。
【模型1】可看出三个解释变量GDP1 、GDP2和GDP3之间高度相关,存在严重的多重共线性。
计量经济学试验报告
计量经济学试验报告实验报告实验1:单方程线性计量经济学模型的最小二乘估计和统计检验1实验目的掌握计量经济学专用软件(Eviews)使用方法,理解和正确解释输出结果。
在学习计量经济学的基本理论和方法的基础上,掌握建立计量经济模型对实际经济问题进行实证分析的方法。
运用Eviews软件完成对线形回归模型的最小二乘估计、统计检验、计量经济学检验以及进一步进行经济结构分析、经济预测和政策评价,培养发现问题、分析问题、解决问题的能力。
2实验软件Eviews5.03实验数据甲商品从1988―2021年的销售量Y/千个,价格X1 /(元/个),售后服务支出X2 /万元年份 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2021 2021 2021Y 121 133 130 126 131 147 148 159 160 156 155 157 179 189 180 183 202 200X1 1500 1490 1480 1470 1460 1450 1440 1430 1420 1410 1400 1390 1380 1370 1360 1350 1340 1330 X2 12 15 13 10 11 14 13 15 13 12 11 10 15 15 13 12 14 12 12021 2021 2021 2021201 203 258 234 1320 1310 1300 1290 11 10 15 12 4实验内容及其步骤实验内容:研究甲商品1988―2021年价格和售后服务支出对销售量的影响。
其中,销售量Y、价格X1、售后服务支出X2的数据如上所示。
建立多元线性计量经济学回归模型为:Yi = β0 + β1X1i + β2X2i + μi实验步骤:1、建立工作文件:双击Eviews,进入Eviews主界面在主菜单上依次点击File → New → Workfile,出现Workfile对话框,在workfile frequency中选择Annual,在Start里输入起始日期1988,在End里输入结束日期2021。
第四章计量经济学实验报告
Coefficient
Std. Error
t-Statistic
Prob.
C
-480.5047
501.1310
-0.958841
0.3566
X5
22.59572
2.594705
8.708399
0.0000
R-squared
0.863382
Mean dependent var
3527.783
Sum squared resid
5874636.
Schwarz criterion
16.16198
Log likelihood
-110.4948
F-statistic
86.65749
Durbin-Watson stat
0.424390
Prob(F-statistic)
0.000001
③Y=C+β4X4+μ
②导入数据
打开“Eviews”主页,点击“File”→“import”→“Read Text Lotus Excel”
在workfile中,选中x和y,右击鼠标,选中“open”→“as grup”即可。
obs
Y
X2
X3
X4
X5
X6
1994
1023.500
52400.00
414.7000
54.90000
Log likelihood
-101.7312
F-statistic
333.0199
Durbin-Watson stat
0.442335
Prob(F-statistic)
0.000000
②Y=C+β3X3+μ
计量经济学实验报告_4
《计量经济学》课程实验报告1专业国际经济与贸易班级B谢谢谢谢姓名XXX 日期2012.9.28一、实验目的1.学会Eviews工作文件的建立、数据输入、数据的编辑和描述;2.掌握用Eviews软件求解简单线性回归模型的方法;3.掌握用Eviews软件输出结果对模型进行统计检验;4.掌握用Eviews软件进行经济预测。
二、实验内容:根据1978年到2007年的中国居民的人均消费水平和人均GDP的数据,通过模型设定,估计参数,模型检测,回归预测等步骤,分析中国全体居民的消费水平和经济发展的数量关系,对于探寻居民消费增长的规律性。
三、实验数据四:实验步骤:1:模型设定。
由上表分析居民人均消费水平(y)和人均GDP(x)的关系,制作散点图。
从中可以看出居民消费水平(y)和人均GDP(x)大体呈现为线性关系。
2:估计参数:利用软件eviews作简单线性分析的步骤包括以下几方面内容。
建立文件夹,首先双击eviews图标,进入主页。
在其菜单栏中点击File|new|workfile,并选择数据频率为1978和2007.输入数据:在eviews命令框中直接输入“data x y”回车出现“Group”窗口数据编辑框,在对应的“y”,“x”下输入数据。
估计参数。
在eviews命令框中直接键入“LS Y C X”,按回车,即出现回归结果。
Dependent Variable: YMethod: Least SquaresDate: 11/17/12 Time:8:37Sample: 1978 2007Included observations: 30Coefficient Std. Error t-Statistic Prob.C 224.3149 55.64114 4.031457 0.0004X 0.386430 0.007743 49.90815 0.0000R-squared 0.988884 Mean dependent var 2175.067Adjusted R-squared 0.988487 S.D. dependent var 2021.413S.E. of regression 216.8978 Akaike info criterion 13.66107Sum squared resid 1317251. Schwarz criterion 13.75448Log likelihood -202.9161 Hannan-Quinn criter. 13.69095F-statistic 2490.823 Durbin-Watson stat 0.115812Prob(F-statistic) 0.000000若要显示回归结果的图形,在“Equation”框中,点击“Resids”,即出现剩余项、实际值、拟合值的图形:3:模型检测:包括经济意义检测和拟合有度、统计检验。
《计量经济学》课程实验报告
2.估计结果,解释参数的数量关系
数量关系: GDP每增加一万亿元,可导致全国财政收入增加0.0041212万亿元,农业总产值每增加一万亿元,可导致全国财政收入增加0.0489586万亿元,税收每增加一万亿元,可导致全国财政收入增加1.183604万亿元。
三、实证分析
1.描述性统计(数据的最大值最小值,平均值,方差等,定性分析,了解数据质量)
X1最大值: 101.6 最小值: 18.6 平均值: 57.375 标准差: 27.22657
X2最大值: 7.2 最小值:2 平均值: 4.45625标准差: 1.648016
X3最大值: 15.8 最小值:2.9 平均值: 9.9125 标准差: 4.480606
图示检验法:
由图可得:模型存在正的相关序列。
3.检验模型是否存在多重共线性
Variable | VIF 1/VIF
-------------+----------------------
x2 | 70.29 0.014226
x1 | 54.81 0.018246
x3 | 52.31 0.019117
x2 | 3.299357 .1326672 24.87 0.000 3.014814 3.5839
_cons | -3.04026 .6279573 -4.84 0.000 -4.387095 -1.693426
------------------------------------------------------------------------------
二、模型和变量解释
1.模型建立,写出方程,阐述设定模型的经济理论
计量经济学实验报告
实验一一、实验内容:以1978-2012年中国进口总额(IM)、GDP、CPI(以1978年为基期)序列为例,取对数(LnIm, lnGDP, lnCPI),对其进行单位根检验,协整检验,并建立误差修正模型。
二、实验步骤:1、平稳—ADF单位根检验图1由图1可知,这些序列都带有明显的上升趋势,即非平稳。
因此对这三个序列逐一进行单位根检验。
打开LnIm序列,点击View→Unit Root Test,出现如图2所示界面,需进行多次试验,分别选择含截距项,含时间趋势向和截距项,不含时间趋势项和截距项,对序列分别进行水平,一阶差分和二阶差分,选择AIC准则,点击ok。
图2对另外连个序列做同样的操作。
最后三个序列的单位根检验结果如下:表1注:检验形式(C,T,L)中,C、T、L分别代表常数项、时间趋势和滞后阶数。
***表示在1%显著水平上拒绝零假设。
根据单位根检验结果,LnIm、LnGDP、LnCPI的水平序列的ADF 值在5%的显著性水平上大于其临界值,不能拒绝单位根假设。
一阶差分后,其ADF值小于5%的临界值,则应拒绝单位根假设。
因此,LnIm、LnGDP、LnCPI是非平稳的,服从I(1)过程,而其一阶差分是平稳的,服从I(0)过程。
2、协整检验根据前面的实验结果可知,LnIm、LnGDP、LnCPI都是一阶单整,因此符合协整检验的前提条件。
①建立VAR模型点击Quick→Estimate VAR,出现如图3所示界面:输入内生变量(Endogenous Variables)LnIm、LnGDP、LnCPI,点击确定。
图3 其运行结果如图4所示,三列分别代表三个方程式,第一行的三个变量表示三个方程式等号左边的被解释变量,不带括号的数字分别表示相应方程式右侧变量的回归系数估计值,回归系数下面第一个带括号的数字表示相应回归系数估计量的标准差,第二个括号里的数字表示相应回归系数估计量的t统计量的值。
图4②VAR模型最佳滞后期的选择在VAR模型估计结果窗口点击View→Lag structure→Lag Length Criteria,在弹出的对话框中填2,其结果如图5所示。
计量经济学实验报告
实验异方差性一、实验目的掌握异方差和自相关模型的检验方法与处理方法.二、实验要求1.应用教材第141页案例做异方差模型的图形法检验、Goldfeld-Quanadt 检验与White检验,使用WLS法对异方差进行修正;2.应用教材第171页案例做自相关模型的图形法检验和DW检验,使用科克伦—奥克特迭代法对自相关进行修正。
三、实验原理异方差性检验:图形法检验、Goldfeld-Quanadt检验、White检验与加权最小二乘法;四、预备知识Goldfeld-Quanadt检验、White检验、加权最小二乘法。
五、实验步骤【案例1】异方差性在现实经济活动中,最小二乘法的基本假定并非都能满足,本案例将讨论随机误差违背基本假定的一个方面——异方差性。
本案例将介绍:异方差模型的图形法检验、Goldfeld-Quanadt检验与White检验;异方差模型的WLS法修正。
1、表中列出了1995年北京市规模最大的20家百货零售商店的商品销售收入X和销售利润Y的统计资料。
2、参数估计(1)按住ctrl键,同时选中序列X和序列Y,点右键,在所出现的右键菜单中,选择open\as Group弹出一对话框,点击其上的“确定”,可生成并打开一个群对象(图 2.3.1)。
在群对象窗口工具栏中点击view\Graph\Scatter\Simple Scatter, 可得X与Y的简单散点图,可以看出X与Y是带有截距的近似线性关系。
(2)点击主界面菜单Quick\Estimate Equation ,在弹出的对话框中输入y c x ,点确定即可得到回归结果从图中可以看出,残差平方对解释变量X 的散点图主要分布在图形中的下三角部分,大致可以看出残差平方和随的变动呈现增大的趋势。
因此,2^i e 2^i e i X模型有可能存在异方差。
3、检验模型的异方差本例用的是1995年北京市规模最大的20家百货零售商店的商品销售收入和销售利润,由于地区之间存在的不同人口数,因此,对每一家百货零售商店的销售会存在不同的需求,这种差异使得模型很容易产生异方差,从而影响模型的估计和运用。
计量经济学实验报告4
《计量经济学》课程实践报告4系部:经济与管理系专业:国际经济与贸易任课教师:李祖辉老师年级班级: 2013级 2班组员:舒冠、张淑琴、梁湘、冯冬雪东部地区第二产业对财政收入的影响分析—基于面板数据模型的经济计量分析一、意义财政收入对于国民经济的运行及社会发展具有重要影响,是一个国家各项收入得以实现的物质保证。
在税收体制及政策不变的情况下,财政收入会随着经济繁荣而增加,随着经济衰退而下降。
财政收入分配是调整国民收入初次分配格局,实现社会财富公平合理分配的主要工具。
是国家对经济实行宏观调控的重要经济杠杆。
我国财政收入主要来自于工业、农业、商业、交通运输和服务业等部门。
其中工业和农业对财政收入的影响最大。
工业是国民经济的主要部门,也是财政收入的主要来源部门。
就我国的工业和农业相比,工业部门的技术装备、劳动生产率要远远高于农业,积累水平也要高的多。
因此,在财政收入中来自工业部门的收入占绝大比重,工业部门完成上缴任务多少,对保证财政收入起决定作用。
二、研究综述从历史上看,首先比较明确提出国家财政税收原则的是威廉配第,他作为古典政治经济学的奠基人和财政理论的先驱者,不仅在国家财政支出方面进行了深入的研究,而且在国家财政收入理论上也有很大的建树。
在其代表作《赋税论》中,他阐述了关于税收制度的建设和税收对于国家重要性的理论。
配第十分重视国家税收对经济的影响,他在《赋税论》中,比较深刻的分析了税收和国民财富,税收和国家经济实力之间的关系。
周泽民在《论财政与国民收入分配》中指出,在生产资料公有制的社会主义国家, 财政在国民收入分配中居于主导的地位, 它制约着其他各分配手段。
财政的这种主导地位是由社会主义国家的职能和有计划按比例发展的社会主义经济规律的客观要求所决定的。
中央财经大学中国经济与管理研究院的崔小勇在《我国国民收入分配格局研究》中指出:无论是初次分配格局还是再分配格局,我国居民收入在国民收入分配中的比例都是逐年下降的,而企业收入和政府收入在国民收入中的比例则是上升的.这说明,近年来我国国民收入的格局在向企业和政府倾斜.企业利润增长快于居民收入增长、财政收入增长速度远高于居民收入增长速度、居民财产收入占比下降是导致收入分配格局失衡的主要原因。
计量经济学实验报告(范例)
影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。为了与“城市居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。
2.在中经网数据库获取数据,并建立Excel表格类型的数据文档。
3.利用 ,求解参数估计值。
4.将数据导入Eviews5.0中,首先利用equation命令求解,进一步利用程序设计地方法解得参数估计值。
5.根据模型估计结果检验估计效果和拟合图形。
实验成果(系统化研究结果的说明和研究过程介绍,纸张不够可以加页)
对回归系数的t检验:针对 和 ,由表2.6中还可以看出,估计的回归系数 的标准误差和t值分别为: , ; 的标准误差和t值分别为: , 。取 ,查t分布表得自由度为 的临界值 。因为 ,所以不能拒绝 ;因为 ,所以应拒绝 。这表明,城市人均年可支配收入对人均年消费支出有显著影响。
四、回归预测
由表2.5中可看出,2002年中国西部地区城市居民人均年可支配收入除了西藏外均在8000以下,人均消费支出也都在7000元以下。在西部大开发的推动下,如果西部地区的城市居民人均年可支配收入第一步争取达到1000美元(按现有汇率即人民币8270元),第二步再争取达到1500美元(即人民币12405元),利用所估计的模型可预测这时城市居民可能达到的人均年消费支出水平。可以注意到,这里的预测是利用截面数据模型对被解释变量在不同空间状况的空间预测。
计量经济学实验报告4
计量经济学实验报告4计量经济学实验报告4在计量经济学中,实验是一种重要的研究方法,通过实验可以对经济理论进行验证和检验。
本次实验旨在探究市场供给曲线的形状对市场均衡和福利的影响,并通过实验结果对供给曲线的弹性进行估计。
实验设计如下:我们设定了三个不同形状的市场供给曲线,分别是完全弹性供给曲线、完全非弹性供给曲线和中间弹性供给曲线。
实验中,参与者扮演买家和卖家的角色,根据不同的价格和数量,买家和卖家可以自由决定是否进行交易。
实验的目标是观察不同供给曲线下市场的均衡价格和数量,并计算市场福利。
在实验过程中,我们发现市场供给曲线的形状对市场均衡和福利产生了显著的影响。
首先,完全弹性供给曲线下,市场均衡价格较低,交易量较大,市场福利最大化。
这是因为供给曲线完全弹性意味着卖家对价格的变动非常敏感,他们会根据市场价格灵活调整供给量,从而满足买家的需求。
相反,完全非弹性供给曲线下,市场均衡价格较高,交易量较小,市场福利较低。
这是因为供给曲线完全非弹性意味着卖家对价格的变动不敏感,他们无法根据市场需求灵活调整供给量,从而导致市场均衡价格上升。
在中间弹性供给曲线下,市场均衡价格和交易量介于完全弹性和完全非弹性之间,市场福利也相对较高。
这是因为供给曲线中间弹性意味着卖家对价格的变动有一定的敏感度,但不像完全弹性供给曲线那样敏感,也不像完全非弹性供给曲线那样不敏感。
因此,在中间弹性供给曲线下,市场能够更好地平衡供求关系,实现较高的福利。
通过对实验结果的分析,我们还可以对供给曲线的弹性进行估计。
根据实验中不同供给曲线下的市场均衡价格和交易量,我们可以计算出供给曲线的弹性系数。
弹性系数越高,说明供给曲线对价格的变动越敏感,反之则越不敏感。
通过对多组实验数据的分析,我们可以得到供给曲线的平均弹性系数,并进一步研究供给曲线的变动对市场均衡和福利的影响。
综上所述,本次实验通过观察不同形状的市场供给曲线对市场均衡和福利的影响,以及对供给曲线的弹性进行估计,得出了一些有意义的结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计量经济学实验报告4
2散点图—图示检验法
建立工作表,输入数据,在命令窗口输入 ls LOG(Y) C LOG(X1) LOG(X2) 再点击“enter”在命令窗口输入 SCAT LOG(X2) RESID^2 则出现
4、G-Q检验
(1)按x2排序:建立工作表,输入数据,在数据(group)窗口点击sort 出现sort order 窗口,在 primary key 选择X2 在序列中选择升序( ascending)点击ok,并将其复制到word中
子样本2:建立观测值为12的工作表,在刚刚复制的word文档中,数据中的后十二项输入工作表。
在命令窗口输入 ls LOG(Y) C LOG(X1) LOG(X2) 再点击“enter”
WLS加权最小二乘法进行异方差的修正
(1)在命令窗口输入 LS LOG(RESID^2) C LOG(X2) (LOG(X2))^2
(3)在命令窗口输入 GENR W=1/SQR(EXP(93.1958629866 - 25.9762949871*LOG(X2) +
1.7010711324*(LOG(X2))^2))
Ls (W) LOG(Y) C LOG(X1) LOG(X2)
出现方程窗口,点击 Proce 选择 Specify/estimate 出现Equation Estimation点击specification 删掉(w),再点击option 点击如下光标输入权数w,点击确认
5、运用异方差稳健标准误法修正
然后在原模型的基础上,点击View中Residual Tests的Heteroskedasticity Tests,然后在弹出的窗口中选择White,点击Ok即可
在Quick中选择Estimate Equation在Specification中输入“LOG(Y)cLOG(X1)LOG(X2),在Options中选择White,最后,点击确定,即出现异方差稳健标准误法修正的结果。
成绩评定:
教师签名:
年月日。