高等数学课件-25

合集下载

高等数学-微积分下-课件-华南理工大学 (25).

高等数学-微积分下-课件-华南理工大学 (25).
4
如果当各小段长度的最大值 0时 ,
n
P(i ,i )xi的极限总存在, 则称此极限为函数
i 1
P( x, y)在有向曲线弧 L上 对坐标x的曲线积分,
或称 第二型曲线积分.记作 P( x, y)dx,即 L
n
L
P(
x,
y)dx
lim
0
i 1
P(i
,i
)xi
n
类似地定义 Q( x, y)dy L
1 23
化成参数式方程为 x 1 t, y 1 2t,z 1 3t A点对应 t 0, B点对应 t 1,于是
xdx ydy ( x y 1)dz
01(1 t)dt (1 2t)2dt (1 3t )3dt
1
0 (6 14t)dt 13
17
例3 计算 x2dx ( y x)dy, 其中 L
n
P( x,
y, z)dx
lim
0
i 1
P(i
,i ,
i
)xi
n
Q(
x,
y,
z)dy
lim
0
i 1
Q(i
,i
,
i
)yi
n
R( x,
y, z)dz
lim
0
i 1
R(i ,i , i )zi
8
6. 性质
y L L2
(1) 如果把 L分成 L1和 L2 , 则
L1 O
x
Pdx Qdy Pdx Qdy Pdx Qdy
(1) L是上半圆周 y a2 x2 , 反时针方向;
(2) L是x轴上由点 A(a,0) 到点B(a,0) 的线段.
解 (1)中L的参数方程为

高等数学完整全套教学课件

高等数学完整全套教学课件

高等数学完整全套教学课件一、教学内容1. 极限与连续数列极限的定义及性质函数极限的定义及性质无穷小、无穷大的概念极限的运算法则函数在一点处的连续性定义函数在区间上的连续性2. 导数与微分导数的定义及几何意义基本导数公式高阶导数微分的定义及运算法则隐函数、参数方程函数求导3. 微分中值定理与导数的应用罗尔定理、拉格朗日中值定理柯西中值定理洛必达法则泰勒公式函数的单调性、凹凸性、极值和最值二、教学目标1. 掌握极限、导数、微分等基本概念及其性质、运算法则。

2. 能够运用微分中值定理解决实际问题,分析函数的性质。

3. 培养学生的抽象思维能力、逻辑推理能力和数学建模能力。

三、教学难点与重点1. 教学难点:极限、导数、微分等概念的理解;微分中值定理的应用。

2. 教学重点:极限、导数、微分的基本性质和运算法则;函数的单调性、凹凸性、极值和最值的求解。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:教材、笔记本、文具。

五、教学过程1. 实践情景引入通过实际案例,如物体的运动轨迹、温度变化等,引出极限、导数、微分等概念。

2. 例题讲解选取具有代表性的例题,详细讲解极限、导数、微分的基本性质和运算法则。

结合图形,解释函数的单调性、凹凸性、极值和最值的概念。

3. 随堂练习布置与例题难度相当的练习题,让学生巩固所学知识。

对学生进行个别辅导,解答疑问。

4. 课堂小结六、板书设计1. 极限、导数、微分的基本概念及性质。

2. 极限、导数、微分的运算法则。

3. 微分中值定理及其应用。

4. 函数的单调性、凹凸性、极值和最值。

七、作业设计1. 作业题目求下列函数的极限、导数、微分。

判断下列函数的单调性、凹凸性,并求极值、最值。

2. 答案详细的解答过程和答案。

八、课后反思及拓展延伸2. 拓展延伸:引导学生研究更高级的微积分概念,如泰勒级数、场论等。

鼓励学生参加数学竞赛、数学建模等活动,提高数学素养。

重点和难点解析1. 教学内容的布局与组织2. 教学目标的设定3. 教学难点与重点的识别4. 教学过程的实践情景引入5. 例题讲解的深度和广度6. 板书设计的清晰度与逻辑性7. 作业设计的针对性与答案的详细性8. 课后反思与拓展延伸的实际效果详细补充和说明:一、教学内容的布局与组织教学内容应遵循由浅入深、循序渐进的原则。

高等数学课件详细

高等数学课件详细
分学
多元微积分的应用实例
物理学:描述物理现象,如流体力学、电磁学等 工程学:解决工程问题,如结构分析、控制系统设计等 经济学:分析经济模型,如市场均衡、最优化问题等 计算机科学:用于图像处理、机器学习等领域
无穷级数与常微分
07
方程
无穷级数的概念和性质
性质:收敛性、发散 性、绝对收敛性、条
件收敛性等

常微分方程的概念和分类
常微分方程:描述函数在某点或某区 间上的变化规律的方程
一阶常微分方程:只含有一个未知函 数和一个自变量的方程
二阶常微分方程:含有两个未知函数 和两个自变量的方程
高阶常微分方程:含有多个未知函数 和多个自变量的方程
线性常微分方程:未知函数和自变量 之间的关系是线性的方程
非线性常微分方程:未知函数和自变 量之间的关系是非线性的方程
常微分方程的基本解法与实例
基本解法:分离变量法、积分因子法、常数变易法等 实例:求解一阶线性常微分方程、求解二阶线性常微分方程等 应用:在物理、化学、生物等领域有广泛应用 难点:求解高阶常微分方程、求解非线性常微分方程等
微分方程的应用实例
生物:描述生物种群增长、 生态平衡等现象
化学:描述化学反应速率、 物质扩散等现象
06
多元函数微积分
多元函数的极限与连续性
多元函数的极限:定义、性质、计算方法 多元函数的连续性:定义、性质、判断方法 多元函数的可微性:定义、性质、判断方法 多元函数的可导性:定义、性质、判断方法 多元函数的可积性:定义、性质、判断方法 多元函数的积分:定义、性质、计算方法
偏导数与全微分
性质。
函数连续性的 性质:连续函 数具有局部有 界性、局部保 号性、局部保 序性等性质。

高等数学课件(完整版)详细

高等数学课件(完整版)详细

即(ax)axln a .
(ex)ex.
精选课件
15
例5 求y 函 lo ax ( 数 g a 0 ,a 1 )的.导数
解 ylim loa(g xh )loax g
h 0
h
h
lim
loga
(1
) x
1
h0
h
x
x
1xlh im 0loag(1h x)h x
1 x
loga
e.
即 (lo axg )1 xloae g.
h 0
h
h
limcos(x
h0
h) 2
sin 2
h
cx o . s
2 即(sx ) i n co x . s
(sixn) x coxsx
4
4
2. 2
精选课件
13
例3 求函 yx数 n(n为正 )的 整导 .数数
解 (xn)lim (xh)nxn
h 0
h
li[n m n 1 x n (n 1 )x n 2 h h n 1 ]nxn1
一、问题的提出
1.自由落体运动的瞬时速度问题
如图, 求t0时刻的瞬时速, 度
取一邻t0的 近时 于t,刻 运动时间 t,
平均速 v度 s t
s t
s0 t0
g 2 (t0 t).
当tt0时 , 取极限得

时v 速 lim g度 (0 tt) 2 t t0
gt0.
精选课件
t0 t
t
1
2.切线问题 割线的极限位置——切线位置
xx0Βιβλιοθήκη 切线 MT的斜率为 ktan lim f(x)f(x0).
x x0 xx0

高等数学--25极限存在性定理与两个重要极限

高等数学--25极限存在性定理与两个重要极限

lim
x
1
1 1 [x] 1
e
lim
x
1
1 x
x
e.
19
信息学院 罗捍东
令 t x,
lim
x
1
1 x
x
lim
t
1
1 t
t
lim
t
1
t
1
t
1
lim
t
1
t
1
1
t
1
1
t
1
1
e.
lim
x
1
1 x
x
e
令 t 1, x
lim(1
x0
1
x) x
lim
t
1
1 t
t
e
1
lim(1 x) x e
信息学院 罗捍东
第五节 极限存在性定理与两个重要极限
2.5.1 极限存在性定理
定理 : (夹逼定理) 设在x0的某空心邻域内恒有:
(1) g(x) f (x) h(x),
(2) lim g(x) A, lim h(x) A
x x0
x x0
那末极限 lim f (x) A 存在. xx0
An
A0 (1
r )n n
令n→∞,则表示利息随时计入本金,这样, 一年后 其本利和为:
lim
n
A0 (1
r )n n
lim
n
A0
(1
rn )r
n
r
A0e r
25
an 是单调递增的
an 2 2 2 2 2 2 22 2
7
信息学院 罗捍东

高等数学ppt课件

高等数学ppt课件

05
常微分方程初步
常微分方程基本概念
1 2
常微分方程定义
明确常微分方程的定义,包括独立变量、未知函 数、方程阶数等概念。
初始条件和边界条件
解释初始条件和边界条件在解常微分方程中的作 用和意义。
3
常微分方程的解
阐述通解、特解、隐式解、显式解等概念,并举 例说明。
一阶常微分方程解法
分离变量法
介绍分离变量法的原理、步骤和适用范围,通 过实例演示其应用。
向量积定义
两向量按照右手定则所构成的平行四边形的面积,结果为一向量,可用于计算法向量、判断三向量共 面等。
平面和直线方程求解方法
要点一
平面方程求解方法
包括点法式、一般式等,用于确定平面在空间中的位置。
要点二
直线方程求解方法
包括点向式、参数式等,用于确定直线在空间中的位置和 方向。
常见曲面方程及其图形特征
为未来职业生涯打基础
许多行业都需要具备一定的数学基础 ,学习高等数学有助于为未来职业生 涯打下坚实基础。
02
函数与极限
函数概念与性质
函数定义
详细解释函数的定义,包括函数值、定义域、值域等概念。
函数性质
介绍函数的单调性、奇偶性、周期性等基本性质,并举例说明。
初等函数及其图像
基本初等函数
详细讲解幂函数、指数函数、对数函数、三角函数等基本初等函数的定义、性质和图像。
隐函数求导法
阐述隐函数存在定理,介绍隐函数求导方法及应用实例。
二重积分定义和计算方法
二重积分定义
阐述二重积分概念、性质及实际意义,介绍 二重积分在物理、工程等领域的应用。
二重积分计算方法
分别介绍直角坐标系和极坐标系下二重积分 的计算方法,包括累次积分法、换元积分法

高等数学课件详细

高等数学课件详细

导数的应用
第五章
函数的单调性和极值
导数与函数的单调性:导数大于0,函数单调递增;导数小于0,函数单调递减
极值的定义:函数在某点处的导数为0,且该点两侧的导数符号相反,则该点为函数的极 值点
极值的分类:极大值和极小值
极值的求解:通过求导数等于0的点,并判断该点两侧的导数符号,确定极值点
曲线的凹凸性和拐点
质。
定积分的应用: 定积分在物理、 工程、经济等 领域有着广泛 的应用,如计 算物体的质量、 体积、重心等。
定积分的计算 方法:常用的 定积分计算方 法有牛顿-莱布 尼茨公式、积 分表法、数值
积分法等。
定积分的运算和求法
定积分的定义: 对函数在某一区 间上的积分
定积分的性质: 线性性、可加性、 单调性等
导数:函数在某一点的切 线斜率
凹凸性:函数在某点附近 的增减性
拐点:函数在某点附近的 凹凸性发生变化的点
应用:判断函数的单调性、 极值、最值等
洛必达法则和不定积分
洛必达法则:用于求解极限, 包括0/0型和∞/∞型
不定积分:用于求解函数的原 函数,包括基本积分公式和换 元积分法
洛必达法则的应用:求解极限、 求导、求积分等
不定积分的应用:求解函数的 原函数、求导、求积分等
泰勒公式和等价无穷小量代换
等价无穷小量代换:将复杂 函数替换为简单函数,便于 计算和近似
泰勒公式的应用:求极限、 求导数、求积分等
泰勒公式:将函数展开为多 项式形式,便于计算和近似
等价无穷小量代换的应用: 求极限、求导数、求积分等
不定积分与定积分
极限的应用:极限在微积分、函数分析、概率论等领域有着广泛的应用。
极限的运算和求法
极限的定义:函数 在某点或某区间上 的极限值

高等数学课件课件

高等数学课件课件
非线性常微分方程的解法:包括一阶非线性常微分方程的解法和二阶非线性常微分方 程的解法
应用:包括在物理、化学、生物、工程等领域的应用
差分方程的基本概念和性质
差分方程的定义:描述离散系统动态行为的数学模型 差分方程的性质:线性、非线性、稳定性、收敛性等 差分方程的求解方法:迭代法、数值解法、解析解法等 差分方程的应用:信号处理、控制系统、计算机科学等领域
求解方法:包括分离变量法、 积分因子法、拉普拉斯变换法

解法:包括初值问题、边值 问题和混合问题等
实例:如求解一阶线性常微分 方程的初值问题、边值问题等
高阶常微分方程的解法和应用
解法:包括高阶线性常微分方程的解法和非线性常微分方程的解法
线性常微分方程的解法:包括齐次线性常微分方程的解法和非齐次线性常微分方程的 解法
高等数学的基本内容和学习方法
基本内容:函数、极限、连续、导数、微分、积分、级数等 学习方法:理解概念、掌握公式、多做练习、总结规律 重点难点:极限、导数、积分、级数等 学习技巧:理解概念、掌握公式、多做练习、总结规律、多思考、多交流
数的基本概念和性质
自然数:正整数和零
整数:自然数和负整 数
有理数:整数和分数
性、可积性
导数的应用: 求极限、求最 大值和最小值、 求极值、求拐 点、求渐近线

微分学的应用
物理:描述运动、 力、加速度等物 理量
工程:计算工程 问题中的优化、 最优化问题
经济:分析经济 模型、预测市场 趋势
生物:研究生物 种群的增长、衰 减等规律
定积分的概念和性质
定积分的定义:积分上限和 下限的函数值之差
导数的计算和应用
导数的定义:函数在某一点的切线斜率 导数的计算方法:极限法、导数公式、导数表等 导数的应用:求极限、求极值、求最值、求渐近线等 导数的几何意义:函数在某一点的切线斜率,函数在某一点的变化率等

高等数学ppt课件

高等数学ppt课件

定积分的性质
定积分具有可加性、可积性、可微性等性质 。
定积分的应用
01
02
03
几何应用
定积分可以用于计算平面 图形和三维物体的面积和 体积,如矩形、圆形、球 体等。
物理应用
定积分可以用于计算变力 沿直线做功、液体压力等 物理问题。
经济应用
定积分可以用于计算经济 指标,如成本、收益、利 润等。
05
多重积分与向量分析
多重积分的概念与性质
多重积分的定义
多重积分是单变量积分概念的推广,它涉及多个变量 的积分。多重积分可以看作是对于每个变量进行积分 ,然后将结果相乘。
多重积分的性质
多重积分的性质包括积分的可加性、积分的可交换性、 积分的可结合性等。这些性质与单变量积分的性质类似 ,但需要考虑到多个变量的复杂性。
函数定义
函数是一种数学工具,它建立了数与数之间的对应关系,可以将一个数集中的每一个数唯一地映射到另一个数集中。 函数的性质包括定义域、值域、对应关系等。
函数的表示方法
函数的表示方法有表格法、图示法和解析法等,其中解析法是最常用的方法之一。解析法是通过数学表达式来表示函 数的关系。
函数的单调性
函数的单调性是指函数在某区间内的单调递增或单调递减的性质。单调函数具有连续性和可导性等性质 。
03
导数与微分
导数的定义与性质
总结词
导数是描述函数值随自变量改变速率的 方式,是函数局部性质的重要体现。
VS
详细描述
导数定义为函数在某一点的变化率,即函 数在这一点处切线的斜率。导数的基本性 质包括:(1)常数函数的导数为零;( 2)导函数在某点的极限就是原函数在该 点的导数值;(3)两个函数相加或相减 后的导数等于各自导数之和或之差;(4 )常数倍函数的导数等于该常数乘以原函 数的导数。

《高等数学课件》课件

《高等数学课件》课件
导数的定义
导数是函数在某一点的变化率,表示函数在该 点的斜率或切线斜率。
导数的几何意义
导数在几何上表示曲线在某一点处的切线斜率 。
导数的性质
导数具有一些重要的性质,如线性性质、乘积法则、商的导数法则等。
导数的计算方法
基本初等函数的导数
对于一些基本的初等函数,如幂函数、指数 函数、三角函数等,它们的导数已经给出。
链式法则
乘积法则用于计算两个函数的导数,公式为 (uv)'=u'v+uv'。
乘积法则
链式法则是计算复合函数导数的重要工具, 通过链式法则可以将复合函数的导数转化为 简单函数的导数。
商的导数法则
商的导数法则是计算分式函数的导数的关键 ,公式为(u/v)'=(u'v-uv')/v^2。
微分的概念与性质
详细描述
无穷级数在数学、物理、工程等领域有广泛的应用。在 数学领域,无穷级数可以用来证明一些数学定理,如泰 勒定理等;在物理领域,无穷级数可以用来描述一些物 理现象,如振动和波动等;在工程领域,无穷级数可以 用来解决一些工程问题,如信号处理和图像处理等。
感谢您的观看
THANKS
重积分、方向导数等概念的基础。
06
微分方程
微分方程的基本概念
总结词
理解微分方程的基本定义和分类
详细描述
介绍微分方程的定义,以及微分方程 的分类,如线性微分方程、非线性微 分方程、一阶微分方程、高阶微分方 程等。
一阶微分方程的解法
总结词
掌握一阶微分方程的常见解法
详细描述
介绍一阶微分方程的常见解法,如变量分离法、积分因子法、常数变易法等,并 举例说明每种解法的应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反三角函数在其定义域内皆连续.
又如,

上连续 单调 递增,
其反Байду номын сангаас数

上也连续单调递增.
*** 复合函数的连续性
定理5.3 若 lim ( x) a, 函数 f (u)在点a连续, x x0
则有 lim f [( x)] f (a) f [ lim ( x)].
x x0
x x0
意义 极限符号可以与函数符号互换.
在其定义域内连续
定理5.2. 连续单调递增(递减)函数的反函数也连续
单调递增(递减).
例如, y sin x 在
上连续单调递增,
其反函数 y arcsin x 在 [-1 , 1] 上也连续单调递增.
同理 y arccos x 在[1,1]上单调减少且连续; y arctan x, y arc cot x 在[,]上单调且连续.
第五节 连续函数的运算与 初等函数的连续性
*** 连续函数的运算法则
定理5.1 若函数 f (x), g(x)在点 x0处连续,则
f (x) g(x),
f (x) g(x),
f (x) g(x)
(g(x0 ) 0)在点 x0处也连续.
例如,
*** 反函数的连续性
tan x,cot x,sec x,csc x
定理5.4. 连续函数的复合函数是连续的.
证: 设函数
且 (x0 ) u0 .
于是 故复合函数

lim f (u)
uu0
f [ (x0 )]
例如
y x a
loga x
y au,
u log x. a
在(0, )内连续
***、初等函数的连续性
基本初等函数在定义区间内连续 连续函数经四则运算仍连续 连续函数的复合函数连续
证 f (u)在点 u a连续,
0, 0, 使当 u a 时, 恒有 f (u) f (a) 成立. 又 lim ( x) a,
x x0
对于 0, 0, 使当 0 x x0 时, 恒有 ( x) a u a 成立.
将上两步合起来:
0, 0, 使当0 x x0 时,
一切初等函数 在定义区间内 连续
例如,
y 1 x2 的连续区间为
(端点为单侧连续)
例 求 lim sin e x 1. x1
解 原式 sin e1 1 sin e 1.

求 lim
1 x2 1 .
x0
x
解 原式 lim ( 1 x2 1)( 1 x2 1)
x0
x( 1 x2 1)
解:
2 (x), (x) 1
x2, x 1
2 (x), (x) 1 2 x , x 1
x 1时 f [ (x)] 为初等函数 , 故此时连续; 而
lim f [ (x)] lim x2 1
x1
x1
lim f [ (x)] lim (2 x) 3
x1
x1

在点 x = 1 不连续 , x = 1为第一类间断点 .
lim x 0 0. x0 1 x2 1 2
内容小结
基本初等函数在定义区间内连续 连续函数的四则运算的结果连续 连续函数的反函数连续 连续函数的复合函数连续
初等函数在 定义区间内 连续
说明: 分段函数在界点处是否连续需讨论其 左、右连续性.
例. 求 解: 原式
3 sin
x
ln(1
2x)
3 2x
x
说明: 若 lim u(x) 0, lim v(x) , 则有
x x0
x x0
lim 1 u(x) v(x) e
x x0
lim v(x)u(x)
e xx0
例. 设
(x) xx, 4,
x 1 x 1
讨论复合函数
的连续性 .
f (u) f (a) f [ ( x)] f (a) 成立.
lim f [ ( x)] f (a) f [ lim ( x)].
x x0
x x0
例. 求 解: 原式
例. 求
解: 令 t a x 1, 则 x loga (1 t) , 原式 lim t t0 loga (1 t)
相关文档
最新文档