最新 北师大版七年级数学下册期末测试卷(含答案) (6)
最新北师大版七年级数学下册期末测试题(含答案)
其中正确的个数为(
)
(1)汽车行驶时间为 40 分钟;( 2)AB表示汽车匀速行驶;
(3)在第 30 分钟时,汽车的速度是 90 千米/时;( 4)第 40 分钟时,汽车停
下来了. A、 1 个 B 、2 个 C 、3 个
速度
C
D
80
60
40
D 、 420个A B
时间
5 10 15 20 25 30 35 40
Q BD、CE分别为 ABC的高
BEC= BDC=90 0
在 BEC和 CDB中
BEC= ABC= BC=BC
BDC=90 0 ACB
BEC CDB
1= 2 OB=OC
7
20. 解: Q P小丽
2 6
1 3
42 P小芳 6 3
又Q 1 2
33
∴此游戏不公平
修改如下:将转盘中的奇数任改一个为偶数即可
根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1=
三、计算题 (15 分)
16、(7 分) 计算:
23
1 (2005
3) 0
(
1 )
2
3
3
。
3
17、化简求值: (8 分) (x 2 y) 2 ( x y)(3 x y) 5 y2 ,其中 x 2, y 1
2
18、(8 分)如图, AD是△ ABC的角平分线, DE⊥AB,垂足为 E,DF⊥AC,垂足为 F, 你能找出一对全等的三角形吗?为什么它们是全等的?
)。
A、 a 5 a 5 a10 B 、 a 6 a 4 a 24 C 、 a 0 a 1 a D 、 a 4 a 4 a 0
北师大版七年级数学下册期末测试题及参考答案
北师大版七年级数学下册期末测试题) 1. 下列事件是必然事件的是( )A. 小梅的数学考试将得99分B. 抛出去的铅笔将着地C. 明天会是晴天D. 2018年有370天 2. 下列计算正确的是( )A. a4·a4=a16B. (a3)4=a7C. 12a6b4÷3a2b -2=4a4b2D. (-a3b)2=a6b23.如图, 在△ABC 中, AB =AC, DE ∥BC, ∠ADE =48°, 则下列结论中不正确的是( )A. ∠B =48°B. ∠AED =66°C. ∠A =84°D. ∠B +∠C =96° 4.已知xy =9, x -y =-3, 则x2+3xy +y2的值为( ) A. 27 B. 9 C. 54 D. 185.为应对越来越严峻的交通形势, 某市对其主干道进行拓宽改造.工程队在工作了一段时间后, 因雨被迫停工几天, 随后工程队加快了施工进度, 按时完成了拓宽改造任务.下面能反映该工程尚未改造的道路y(米)与时间x(天)的关系的大致图象是( )6. 如图, 在△ABC 中, D 是AB 上一点, DF 交AC 于点E, AE =EC, DE =EF, 则下列说法中: ①∠ADE =∠EFC ;②∠ADE +∠ECF +∠FEC =180°;③∠B +∠BCF =180°;④S △ABC =S 四边形DBCF, 正确说法的个数有( )A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共6小题, 每小题3分, 满分18分)7. 在不借助任何工具的情况下, 人的眼睛可以看到的最小物体的大小约为0.00003米, 将0.00003用科学记数法表示为____________.8. 汽车由吉安驶往相距220km的南昌,它的平均速度为100km/h,则汽车距南昌的路程s(km)与行驶的时间t(h)的关系式为__________________.9.四张质地、大小相同的卡片上, 分别画上如图所示的四个图形.在看不到图形的情况下从中任意抽取一张, 则抽取的卡片是轴对称图形的概率为________.10. 如图, 在△ABC中, AB=AC, D是BC的中点, AC的垂直平分线分别交AC, AD, AB于点E, O, F, 则图中全等的三角形共有________对.第10题图第11题图11. 如图, 有一块边长为4的正方形塑料模板ABCD, 将一块足够大的直角三角板的直角顶点落在A点, 两条直角边分别与CD交于点F, 与CB的延长线交于点E, 则四边形AECF 的面积是________.12. 我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”. 如果等腰三角形的“内角正度值”为45°, 那么该等腰三角形的顶角度数为________.三、解答题(本大题共5小题, 每小题6分, 满分30分)13. (1)计算:43×0.259;(2)如图, 直线AB, CD相交于点O, OM⊥AB.若∠COB=135°, 求∠MOD的度数.14. 先化简, 再求值: 2a(a+2b)-(a+2b)2, 其中a=2, b=-1.15. 如图, ∠A=65°, ∠ABD=∠DCE=30°, 且CE平分∠ACB, 求∠DBC的度数.16. 如图, 在等边△ABC中, D是BC上一点, ∠BAD=40°, E是AC上一点, AD=AE,求∠AED的度数.17. 如图是由一个长方形和一个等腰三角形组成的轴对称图形, 请你用两种方法作出它的对称轴(要求: 只能用没有刻度的直尺, 可不写作法, 但要保留作图痕迹).四、(本大题共3小题, 每小题8分, 共24分)18.如图, 已知AB ∥CD, DA 平分∠BDC, ∠A =∠C. (1)试说明: CE ∥AD ;(2)若∠C =30°, 求∠B 的度数.19. 有四根小木棒长度分别是1, 3, 5, 7, 若从中任意抽出三根木棒组成三角形. (1)下列说法正确的序号是________; ①第一根抽出木棒长度是3的可能性是14;②抽出的三根木棒能组成三角形是必然事件; ③抽出的三根木棒能组成三角形是随机事件; ④抽出的三根木棒能组成三角形是不可能事件.(2)求抽出的三根木棒能组成三角形的概率.20. 对于任意有理数a, b, c, d, 我们规定符号(a, b)□(c, d)=ad-bc.例如: (1, 3)□(2, 4)=1×4-2×3=-2.(1)(-2, 3)□(4, 5)=________;(2)求(3a+1, a-2)□(a+2, a-3)的值, 其中a2-4a+1=0.五、(本大题共2小题, 每小题9分, 共18分)21. 如图, 在△ABC中, AB=AC, D, E, F分别在三边上, 且BE=CD, BD=CF, G为EF 的中点.(1)若∠A=40°, 求∠B的度数;(2)试说明: DG垂直平分EF.22. 一水果零售商在批发市场按每千克1.8元批发了若干千克西瓜进城出售, 为了方便, 他带了一些零钱备用. 他先按市场价售出一些后, 又降价出售. 售出西瓜的质量x(千克)与他手中持有的钱数y(元)(含备用零钱)的关系如图所示, 结合图象回答下列问题:(1)零售商自带的零钱是多少?(2)降价前他每千克西瓜出售的价格是多少?(3)随后他按每千克下降0.5元将剩余的西瓜售完, 这时他手中的钱(含备用的钱)是450元, 问他一共批发了多少千克的西瓜?(4)这位水果零售商一共赚了多少钱?六、(本大题共12分)23. 如图①, 在△ABC中, ∠BAC=90°, AB=AC, 直线MN过点A, 且MN∥BC, 点D是直线MN上一点, 不与点A重合.(1)若点E是图①中线段AB上一点, 且DE=DA, 请判断线段DE与DA的位置关系, 并说明理由;(2)请在下面的A, B两题中任选一题解答.A: 如图②, 在(1)的条件下, 连接BD, 过点D作DP⊥DB交线段AC于点P, 请判断线段DB与DP的数量关系, 并说明理由;B:如图③, 在图①的基础上, 改变点D的位置后, 连接BD, 过点D作DP⊥DB交线段CA的延长线于点P, 请判断线段DB与DP的数量关系, 并说明理由.我选择: ________.参考答案与解析1. B2.D3.B4.C5.D6.A7. 3×10-58.s=220-100t9.10.411. 16解析: 根据题意可知∠BAE=∠DAF=90°-∠BAF, AB=AD, ∠ABE=∠ADF=90°, ∴△AEB≌△AFD(ASA), ∴S四边形AECF=S正方形ABCD=42=16.12.30°或90°解析: 设最小角的度数为x, 则最大角的度数为x+45°.当最小角是顶角时, 则x+x+45°+x+45°=180°, 解得x=30°, 此时三角形顶角的度数为30°.当最大角为顶角时, 则x+x+45°+x=180°, 解得x=45°, 此时三角形顶角的度数为90°.综上所述, 等腰三角形的顶角为30°或90°.13. 解: (1)43×0.259=43×0.253×0.256=(4×0.25)3×0.256=1×0.256=0.256.(3分)(2)∵∠COB=135°, ∴∠AOD=135°.∵OM⊥AB, ∴∠AOM=90°, ∴∠MOD=∠AOD-∠AOM=135°-90°=45°.(6分)14. 解: 原式=2a2+4ab-a2-4ab-4b2=a2-4b2.(3分)当a=2, b=-1时, 原式=4-4=0.(6分)15. 解: ∵∠DCE=30°, CE平分∠ACB, ∴∠ACB=2∠DCE=60°.(2分)∵∠A=65°, ∴∠ABC=180°-∠ACB-∠A=55°.(4分)∵∠ABD=30°, ∴∠DBC=∠ABC-∠ABD=25°.(6分)16. 解:∵△ABC是等边三角形, ∴∠BAC=60°.(2分)∵∠BAD=40°, ∴∠CAD=∠BAC-∠BAD=20°.(4分)∵AD=AE, ∴∠AED=(180°-∠CAD)=80°.(6分)17.解:如图所示, 直线AB即为所求.(6分)18. 解: (1)∵AB∥CD, ∴∠A=∠ADC.(1分)又∵∠A=∠C, ∴∠ADC=∠C, ∴CE∥AD.(3分)(2)由(1)可得∠ADC=∠C=30°.∵DA平分∠BDC, ∴∠CDB=2∠ADC=60°.(5分)∵AB∥DC, ∴∠B+∠CDB=180°, ∴∠B=180°-∠CDB=120°.(8分)19. 解: (1)①③(3分)(2)从1, 3, 5, 7中任意抽出三根木棒有1, 3, 5;1, 3, 7;3, 5, 7;1, 5, 7, 共四种情况, 而能组成三角形的只有3, 5, 7一种情况, (6分)∴抽出的三根木棒恰好能组成三角形的概率为.(8分)20. 解: (1)-22(2分)(2)原式=(3a+1)(a-3)-(a-2)(a+2)=3a2-9a+a-3-(a2-4)=3a2-9a+a-3-a2+4=2a2-8a+1.(5分)∵a2-4a+1=0, ∴a2=4a-1, ∴原式=2(4a-1)-8a+1=-1.(821. 解: (1)∵AB=AC, ∴∠C=∠B.∵∠A=40°, ∴∠B==70°.(3分)(2)连接DE, DF.在△BDE与△CFD中, ∴△BDE≌△CFD(SAS), ∴DE=DF.(7分)∵G 为EF的中点, ∴DG⊥EF, ∴DG垂直平分EF.(9分)22. 解: (1)零售商自带的零钱为50元. (2分)(2)(330-50)÷80=280÷80=3.5(元).答: 降价前他每千克西瓜出售的价格是3.5元. (4分)(3)(450-330)÷(3.5-0.5)=120÷3=40(千克), 80+40=120(千克).答: 他一共批发了120千克西瓜. (7分)(4)450-120×1.8-50=184(元).答: 这位水果零售商一共赚了184元. (9分)23. 解:(1)DE⊥DA.(1分)理由如下:∵∠BAC=90°, AB=AC, ∴∠B=∠C=45°.(2分)∵MN∥BC, ∴∠DAE=∠B=45°.(3分)∵DA=DE, ∴∠DEA=∠DAE=45°, ∴∠ADE=180°-∠DEA-∠DAE=90°, 即DE⊥DA.(5分)(2)选A DB=DP.(6分)理由如下:∵DP⊥DB, ∴∠BDE+∠EDP=90°.(7分)由(1)知DE⊥DA, ∴∠ADP+∠EDP=90°, ∴∠BDE=∠ADP.(9分)∵∠DEA=∠DAE=45°, ∴∠BED=∠DAE+∠BAC=135°, ∠DAP=∠DAE+∠BAC=135°, ∴∠BED=∠DAP.(10分)在△DEB和△DAP中, ∴△DEB≌△DAP(ASA), ∴DB=DP.(12分)或选B DB=DP.(6分)理由如下: 如图, 延长AB至F, 连接DF, 使DF=DA.(7分)同(1)得∠DFB=∠DAF=45°, ∴∠ADF=90°.∵DP⊥DB, ∴∠FDB=∠ADP.(9分)∵∠BAC=90°, ∠DAF=45°, ∴∠PAD=45°, ∴∠BFD=∠PAD.(10分)在△DFB和△DAP中, ∴△DFB≌△DAP(ASA),∴DB=DP.(12分)。
【最新】北师大版数学七年级下册《期末测试卷》(含答案)
8.如图,用直尺和圆规作一个角等于已知角,能得出AOBAOB的依据是()
A.SASB.SSSC.ASAD.AAS
如图所示,ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为()
A.15°B.30°C.45°D.60°
10.如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;
B.平行于同一条直线的两条直线平行
C.掷一枚图钉,落地后图钉针尖朝上
D.掷一枚质地均匀的骰子,掷出的点数是7
3.下列图形中,不是轴对称图形的是()
A
B.C.D.
4.下列运算正确的是()
A.(x2)3(x3)22x6
B.(x2)3(x3)22x12
C.x4(2x)22x6
D.(2x)3(x)28x5
5.如图,已知点B、、、在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE
的是()
A.BE=CFB.AB=DFC.∠ACB=∠DEFD.AC=DE
6.下列乘法运算中,能用平方差公式的是()
A.(b+a)(a+b)
C.(1﹣x)(x﹣1)
B.(﹣x+y)(x+y)
D.(m+n)(﹣m﹣n)
7.在等腰三角形ABC中,如果两边长分别为6cm,10cm,则这个等腰三角形的周长为()
14.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=_____°.
北师大版七年级下学期期末测试
数学试卷
学校________班级________姓名________成绩________
最新北师大版七年级数学下册期末考试卷(含答案)
本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载,另外祝您生活愉快,工作顺利,万事如意!最新北师大版七年级数学下册期末考试卷(含答案)一、选择题(每题3分,共18分)1、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形(5)长方形,在这五种图形中是轴对称图形的有( )A 、1个B 、2个C 、3个D 、4个2、下列运算正确的是( )。
A 、1055a a a =+B 、2446a a a =⨯C 、a a a =÷-10D 、044a a a =-3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )A 、154B 、31C 、51D 152 4、1纳米相当于1根头发丝直径的六万分之一。
则利用科学记数法来表示,头发丝的半径是()A、6万纳米 B、6×104纳米 C、3×10-6米 D、3×10..-5米5、下列条件中,能判定两个直角三角形全等的是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条直角边对应相等6、如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为()(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车Array停下来了.A、1个B、2个C、3个D、4个二、填空题(每空3分,共27分)7、单项式313xy -的次数是 . 8、一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为 三角形.9、在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为 万元.10、如图∠AOB=1250,AO ⊥OC ,B0⊥0D 则∠COD= .11、小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是 .ODCB A12、若229++是一个完全平方式,则k等于.a ka13、()32+m(_________)=942-m14、已知:如图,矩形ABCD的长和宽分别为2和1,以D为圆心, AD为半径作AE弧,再以AB的中点F为圆心,FB长为半径作BE弧,则阴影部分的面积为.15、观察下列运算并填空:1×2×3×4+1=25=52;2×3×4×5+1=121=112:3×4×5×6+1=361=192;……根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1= 。
最新北师大新版七年级下学期数学期末考试试卷(精品期末试卷含数学参考答案)
2024—2025学年最新北师大新版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、纳米是一种长度单位,它用来表示微小的长度,1纳米为十亿分之一米,即10﹣9米.甲型H1N1流感病毒的直径大约83纳米左右,“83纳米”用科学记数法表示为()A.8.3×10﹣8米B.8.3×10﹣9米C.83×10﹣9米D.0.83×10﹣11米2、下列运算正确的是()A.a4+a3=a7B.(a﹣1)2=a2﹣1C.(a3b)2=a3b2D.a(2a+1)=2a2+a3、下列说法正确的是()A.10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率较大B.从1,2,3,4,5中随机抽取一个数,取得偶数的可能性较大C.小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件D.抛一枚质地均匀的硬币,正面朝上的概率为,连续抛此硬币2次必有1次正面朝上4、等腰三角形的两边长分别为4cm和9cm,则这个三角形的周长为()A.22cm B.17cm或13cmC.13cm D.17cm或22cm5、如图,在三角形ABC中,∠C=90°,AC=5,点P是边BC上的动点,则AP的长不可能是()A.4.8B.5C.6D.76、根据下列条件能画出唯一确定的△ABC的是()A.AB=4,BC=3,∠A=30°B.AB=3,BC=4,AC=8C.∠A=60°,∠B=45°,AB=4D.∠A=50°,∠B=60°,∠C=70°7、如图,AB∥DC,BC∥DE,∠B=145°,则∠D的度数为()A.25°B.35°C.45°D.55°8、七巧板是我国古代的一项发明,被誉为“东方魔板”,19世纪传到国外被称为“唐图”,它是由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成.如图,在七巧板铺成的正方形地板上,一个小球自由滚动,则小球停留在阴影部分的概率为()A.B.C.D.9、如果(x 2﹣px +1)(x 2+6x ﹣7)的展开式中不含x 2项,那么p 的值是( )A .1B .﹣1C .2D .﹣210、如图1,矩形ABCD 中,BD 为其对角线,一动点P 从D 出发,沿着D →B →C 的路径行进,过点P 作PQ ⊥CD ,垂足为Q .设点P 的运动路程为x ,PQ ﹣DQ 为y ,y 与x 的函数图象如图2,则AD 的长为( )A .B .C .D .二、填空题(每小题3分,满分18分)11、计算(﹣0.25)2024×(﹣4)2025的结果是 .12、若(x ﹣1)(x ﹣2)=x 2+mx +n ,则n m 的值为 .13、若x ﹣2y =2,则10x ÷100y = .14、如图,在锐角三角形ABC 中,AD 是边BC 上的高,在BA ,BC 上分别截取线段BE ,BF ,使BE =BF ;分别以点E ,F 为圆心,大于EF 的长为半径画弧,在∠ABC 内,两弧交于点P ,作射线BP ,交AD 于点M ,过点M 作MN ⊥AB 于点N .若MN =2,AD =4MD ,则AM = ,15、如图,△ABC 中,AB =AC =4,P 是BC 上任意一点,过P 作PD ⊥AC 于D ,PE ⊥AB 于E ,若S △ABC =12,则PE +PD = .16、如图,点C ,D 分别是边∠AOB 两边OA 、OB 上的定点,∠AOB =20°,OC =OD =4.点E ,F 分别是边OB ,OA 上的动点,则CE +EF +FD 的最小值是 .第5题图 第7题图 第8题图 第16题图第15题图 第14题图2024—2025学年最新北师大新版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:;18、先化简,再求值:[(2a+b)2﹣(2a+b)(2a﹣b)]÷2b,其中a=2,b=﹣1.19、如图,点D、E分别是等边三角形ABC边BC、AC上的点,且BD=CE,BE与AD交于点F.求证:AD=BE.20、如图,EF∥CD,GD∥CA,∠1=140°.(1)求∠2的度数;(2)若DG平分∠CDB,求∠A的度数.21、如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,BE平分∠ABC交AC于点E,交CD于点F,过点E作EG∥CD,交AB于点G,连接CG.(1)求证:∠A+∠AEG=90°(2)求证:EC=EG;(3)若CG=4,BE=5,求四边形BCEG的面积.22、如图,长方形ABCD中,点P沿着四边按B→C→D→A方向运动,开始以每秒m个单位匀速运动,a秒后变为每秒2个单位匀速运动,b秒后恢复原速匀速运动.在运动过程中,△ABP的面积S与运动时间t的函数关系如图所示.(1)求长方形的长和宽;(2)求m、a、b的值;(3)当P点运动到BC中点时,有一动点Q从点C出发,以每秒1个单位的速度沿C→D→A运动,当一个点到达终点,另一个点也停止运动,设点Q运动的时间为x秒,△BPQ的面积为y,求y与x之间的关系式.23、如图①,点A、点B分别在直线EF和直线MN上,EF∥MN,∠ABN=45°,射线AC从射线AF的位置开始,绕点A以每秒2°的速度顺时针旋转,同时射线BD从射线BM的位置开始,绕点B以每秒6°的速度顺时针旋转,射线BD 旋转到BN的位置时,两者停止运动.设旋转时间为t秒.(1)∠BAF=°;(2)在转动过程中,当射线AC与射线BD所在直线的夹角为80°,求出t 的值.(3)在转动过程中,若射线AC与射线BD交于点H,过点H作HK⊥BD交直线AF于点K,的值是否会发生改变?如果不变,请求出这个定值;如果改变,请说明理由.24、对于任意有理数a、b、c、d,定义一种新运算:.(1)=;(2)对于有理数x、y,若是一个完全平方式,则k;(3)对于有理数x、y,若x+y=10,xy=22.①求的值;②将长方形ABCD和长方形CEFG按照如图方式进行放置,其中点B、C、G在同一条直线上,点E在边CD上,连接BD、BF.若AD=x,AB=nx,FG =y,EF=ny,图中阴影部分的面积为45,求n的值.25、△ABC中,∠ACB=90°,AC=BC,点D是BC边上的一个动点,连接AD 并延长,过点B作BF⊥AD延长线于点F.(1)如图1,若AD平分∠BAC,AD=6,求BF的值;(2)如图2,M是FB延长线上一点,连接AM,当AD平分∠MAC时,试探究AC、CD、AM之间的数量关系并说明理由;(3)如图3,连接CF,①求证:∠AFC=45°;②S△BCF =,S△ACF=21,求AF的值.2024—2025学年最新北师大新版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、﹣412、13、100 14、6 15、6 16、4三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、918、2a+b,3.19、略20、(1)40°(2)40°21、(1)证明略(2)证明略(3)1022、(1)长为8,宽为4(2)a=4,b=11,m=1(3)y=.23、(1)135(2)20或25(3)不变,=.24、(1)﹣4;(2)2或﹣2;(3)①56;②2.25、(1)3;(2)AM=AC+CD,理由略(3)①∠AFC=45°;②AF的值为12.。
最新北师大版七年级数学下册期末考试卷(含答案)
最新北师大版七年级数学下册期末考试卷(含答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若a ≠0,b ≠0,则代数式||||||a b ab a b ab ++的取值共有( ) A .2个 B .3个 C .4个 D .5个2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 3.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°5.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB =6.下列方程组中,是二元一次方程组的是( ) A .4237x y x y +=⎧⎨+=⎩ B .2311546a b b c -=⎧⎨-=⎩ C .292x y x ⎧=⎨=⎩ D .284x y x y +=⎧⎨-=⎩7.若3a b +=,则226a b b -+的值为( )A .3B .6C .9D .128.关于x 的不等式2(1)40x a x ><-⎧⎨-⎩的解集为x >3,那么a 的取值范围为( ) A .a >3 B .a <3 C .a ≥3 D .a ≤39.用代数式表示:a 的2倍与3 的和.下列表示正确的是( )A .2a -3B .2a +3C .2(a -3)D .2(a +3)10.将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则1∠的度数是( )A .95︒B .100︒C .105︒D .110︒二、填空题(本大题共6小题,每小题3分,共18分)1.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD=50°,则∠BOC 的度数为_____.2.一艘船从甲码头到乙码头顺流行驶,用了2个小时,从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/时,则船在静水中的速度是________千米/时.3.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.4.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是________.5.若不等式(a﹣3)x>1的解集为13xa<-,则a的取值范围是________.6.已知|x|=3,则x的值是________.三、解答题(本大题共6小题,共72分)1.解方程31571 46x x---=2.已知A-B=7a2-7ab,且B=-4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b-2)2=0,求A的值.3.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.4.如图,已知∠1,∠2互为补角,且∠3=∠B,(1)求证:∠AFE=∠ACB(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度数.5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担,若国家财政拨付资金不超过11800万元,地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校改扩建资金分别为每所300万元和500万元,请问共有哪几种改扩建方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D=3、D4、A5、C6、A7、C8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、140°2、273、3 44、40°5、3a .6、±3三、解答题(本大题共6小题,共72分)1、x=﹣12、(1)3a2-ab+7;(2)12.3、略4、(1)详略;(2)70°.5、(1)40;(2)72;(3)280.6、(1)1200万元、1800万元;(2)共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.。
最新北师大版七年级下册数学期末考试试卷以及答案 (4套题)
七年级下册数学期末考试试卷一、选择题。
(共12道选择题,每道选择题只有一个正确答案)4、小明在一次用频率估概率的试验中,统计了某一次结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的试验可能是()A、15°B、25°C、35°D、45°9、某社区有一块空地需要绿化,某绿化组织承担了此任务,绿化组工作一段时间后,提高了工作效率,该绿化组完成的绿化面积S与工作时间之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A、150平方米B、300平方米C、330平方米D、450平方米二、填空题。
(共6道填空题)15、如图所示是3×3方格形地面上,阴影部分是草地,其余部分是空地,一只自由飞翔的小鸟飞下列落在草地上的概率是。
16、如图所示是关于变量x、y的程序计算,若开始输入的x值是6,则最后输出因变量y的值是。
17、一个等腰三角形的两个角的度数比是1:4,则这个等腰三角形的顶角为。
三、解答题。
19、20、24、七年级下册数学期末考试试卷一、选择题。
(共12道选择题,每道选择题只有一个正确答案)A、23°B、46°C、67°D、78°11、如图。
点E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE形状是()A、等腰三角形B、等边三角形C、不等边三角形D、不能确定形状二、填空题。
(共6道填空题)16、a 、b 、c 是三个连续的正整数,以点b 为边长的正方形,面积为1S ,分别以a 、c 为长和宽的长方形,面积为2S ,则1S -2S 等于 。
17、如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,ABC S △=7,DE=2,AB=4,则AC 的长为 。
18、如图,在△ABC 和△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C 、D 、E 在同一条直线上,连接BD 、BE ,以下四个结论:①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=90°,④22222CD AB AD BD )-(+=,其中正确的结论是 。
新北师大版七年级数学下册期末试卷(及参考答案)
新北师大版七年级数学下册期末试卷(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知m=4+3,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <62.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.下列说法正确的是( )A .一个数前面加上“-”号,这个数就是负数B .零既是正数也是负数C .若a 是正数,则a -不一定是负数D .零既不是正数也不是负数5.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB = 6.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A .118°B .119°C .120°D .121°7.如图,下列各组角中,互为对顶角的是( )A .∠1和∠2B .∠1和∠3C .∠2和∠4D .∠2和∠58.已知多项式2x 2+bx +c 分解因式为2(x -3)(x +1),则b ,c 的值为( ).A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-69.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.将9.52变形正确的是( )A .9.52=92+0.52B .9.52=(10+0.5)(10﹣0.5)C .9.52=102﹣2×10×0.5+0.52D .9.52=92+9×0.5+0.52二、填空题(本大题共6小题,每小题3分,共18分)1.若32m x =+,278m y =-,用x 的代数式表示y ,则y =__________.2.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是________元.3.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.已知1a -+5b -=0,则(a ﹣b )2的平方根是________.6.如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.(1)用代入法解方程组:3759x y x y -=⎧⎨+=-⎩(2)用加减法解方程组:2232(3)31x y x y ⎧+=⎪⎨⎪+-=⎩2.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值.3.如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE=DF ,∠A=∠D,(1)求证:AB=CD;(2)若AB=CF,∠B=30°,求∠D的度数.4.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.5.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与; D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.6.某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话图片,解决下面两个问题:(1)求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予8折优惠,合计272元.问小明购买了钢笔和签字笔各多少支?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、C6、C7、A8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、3(2)8x --2、2000,3、70.4、50°5、±4.6、54°三、解答题(本大题共6小题,共72分)1、(1)1x=21y=22⎧⎪⎪⎨⎪-⎪⎩;(2)x=2y=3⎧⎨⎩. 2、353、(1)略;(2)∠D=75°.4、(1)∠1+∠2=90°;略;(2)(2)BE ∥DF ;略.5、(1)400;(2)补全条形图见解析;C 类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.6、(1)小明原计划购买文具袋17个;(2)小明购买了钢笔20支,签字笔30支.。
北师大版七年级数学下册期末测试卷及答案(最新版)
(北师大版)七年级下册数学期末模拟试卷及答案考试时间90分钟一、选择题:(每小题3分,共36分。
每小题四个选项中,只有一个是正确的。
) 1.下列计算正确的是( )A .x+x=2x 2,B .x 3•x 2=x 5,C .(x 2)3=x 5,D .(2x )2=2x 2 2.一个三角形的三条边长分别为1、2、x ,则x 的取值范围是( ) A .1≤x≤3, B .1<x≤3, C .1≤x <3, D .1<x <3 3.如图,AB ∥CD ,∠CDE=140°,则∠A 的度数为( ) A .140°, B .60°, C .50°, D .40°4.如图,AB ∥CD ,DB ⊥BC ,∠2=50°,则∠1的度数是( ) A .40°, B .50°, C .60°, D .140°5.以下事件中,必然发生的是( ) A .打开电视机,正在播放体育节目 B .正五边形的外角和为180°C .通常情况下,水加热到100℃沸腾D .掷一次骰子,向上一面是5点6.已知点P (a a 31,2-)在第二象限,若点P 到x 轴的距离与到y 轴的距离之和为6,则a 的值为( )A .1-B .1C .5D .37.一个多边形的内角和与它的一个外角和为570°,则这个多边形的边数为( )A .5B .6C .7D .88.贝贝解二元一次方程组⎩⎨⎧=+=+12y x py x 得到的解是⎪⎩⎪⎨⎧∆==y x 21,其中y 的值被墨水盖住了,不过她通过验算求出了y 的值,进而解得p 的值为( )A .21B .1C .2D .39.如图,在△ABC 中,∠ABC=50°,∠ACB=80°,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .100°B .110°C .115°D .120°10.如果()()q a pa a a +-++3822的乘积不含a 3和a 2项,那么p ,q 的值分别是( )A .p =0,q =0B .3-=p ,q =9C .p =3,q =8D .p =3,q =111.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A .(5,4)B .(4,5)C .(3,4)D .(4,3)12.若定义()()a b b a f ,,=,()()n m n m g --=,,,例如()()3,23,2=f ,()()4,14,1=--g ,则()()6,5-f g 的值为( )A .(6-,5)B .(5-,6-)C .(6,5-)D .(5-,6)第Ⅱ卷 非选择题二、填空题:本大题共6小题,满分18分.把答案填写在题中横线上13.生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm .这个数量用科学记数法可表示为________cm . 14.已知()()ab x b x a x x ++=++52,b a +=________.15.从A 沿北偏东60°的方向行驶到B ,再从B 沿南偏西20°的方向行驶到C ,则∠ABC=________度.16.已知⊙O 的半径为6cm ,(1)OB=6cm ,则点B 在________;(2)若OB=7.5cm ,则点B 在________.17.已知三元一次方程组⎪⎩⎪⎨⎧=-=+=-1721y z z x y x ,则z y x +-的值为________.18.若多项式42++mx x 能用完全平方公式分解因式,则m 的值是________.三、解答题:本大题共6小题,满分66分.解答应写出必要的计算过程、推演步骤或文字说明.19.(1)解方程组⎩⎨⎧=-=+5342y x y x (5分)(2)分解因式:r p q pqr q 225105++ (5分) 20.(1)利用公式计算803×797(4分)(2)先化简,再求值:()()()a b a b b a b a 24222-++-+,其中21-=a ,2=b (6分) 21.(7分)如图,已知A 、B 两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x 轴上行驶,从原点O 出发.(1)汽车行驶到什么位置时离A 村最近?写出此点的坐标. (2)汽车行驶到什么位置时离B 村最近?写出此点的坐标. (3)请在图中画出汽车行驶到什么位置时,距离两村的和最短?22.(7分)一个零件的形状如图所示,按规定∠A 应等于90°,∠B ,∠C 应分别是21°和32°.检验工人量得∠BDC=148°.就断定这个零件不合格,这是为什么?23.(10分)2012年12月1日,世界上第一条地处高寒地区的高铁线路——哈大高铁正式通车运营。
最新北师大版七年级数学下册期末考试及答案【完整版】
最新北师大版七年级数学下册期末考试及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分) 1.已知m=4+3,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <62.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(2,3)B .(-2,-3)C .(-3,2)D .(3,-2)5.如果3ab 2m-1与9ab m +1是同类项,那么m 等于( )A .2B .1C .﹣1D .06.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13或119B .13或15C .13D .157.若3a b +=,则226a b b -+的值为( )A .3B .6C .9D .128.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .709.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >10.如图,宽为50cm 的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为( )A .400cm 2B .500cm 2C .600cm 2D .300cm 2二、填空题(本大题共6小题,每小题3分,共18分)1.把命题“等角的补角相等”改写成“如果…那么…”的形式是______.2.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是________. 3.若|a|=5,b=﹣2,且ab >0,则a+b=________.4.27的立方根为________.5.如果一个角的补角是150°,那么这个角的余角的度数是________度.638-.三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x ﹣1)=15 (2)71132x x -+-=2.已知关于x ,y 的二元一次方程组3426x y m x y +=+⎧⎨-=⎩的解满足3x y +<,求满足条件的m 的所有非负整数值.3.如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,点P是直线CD上的一个动点。
最新北师大版七年级数学下册期末考试(含答案)
最新北师大版七年级数学下册期末考试(含答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 2.小丽在纸上画了一条数轴后,折叠纸面,使数轴上表示2的点与表示-4的点重合;若数轴上A 、B 两点之间的距离为10(A 在B 的左侧),且A 、B 两点经上述折叠后重合,则A 点表示的数是( )A .-5B .-6C .-10D .-43.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于( )A .40°B .45°C .50°D .55°43815244,…,其中第6个数为( )A 373535235.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB = 6.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A .118°B .119°C .120°D .121°7.若3a b +=,则226a b b -+的值为( )A .3B .6C .9D .128.(-9)2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或79.如图,直线l 1∥l 2,∠α=∠β,∠1=50°,则∠2的度数为( )A .130°B .120°C .115°D .100°10.已知关于x 的方程2x-a=x-1的解是非负数,则a 的取值范围为( )A .1a ≥B .1a >C .1a ≤D .1a <二、填空题(本大题共6小题,每小题3分,共18分)1.把命题“等角的补角相等”改写成“如果…那么…”的形式是______.2.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是________.3.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 __________.4.方程()()()()32521841x x x x +--+-=的解是_________.5.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.6.木工师傅在锯木料时,一般先在木料上画出两个点,然后过这两个点弹出一条墨线,这是因为______________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)4935x y x y -+=⎧⎨+=⎩ (2)3224()5()2x y x y x y +=⎧⎨+--=⎩2.如果方程34217123x x -+-=- 的解与关于x 的方程4x -(3a +1)=6x +2a -1的解相同,求代数式a 2+a -1的值.3.已知:如图,∠C=∠1,∠2和∠D 互余,BE ⊥FD 于点G .试说明:AB ∥CD .4.尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P.(不写画图过程,保留作图痕迹)5.现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数;(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.6.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B 两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、C6、C7、C8、D9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、如果两个角是等角的补角,那么它们相等.2、55°3、180°4、3x=.5、40°6、两点确定一条直线.三、解答题(本大题共6小题,共72分)1、(1)12xy=-⎧⎨=⎩;(2)71xy=⎧⎨=⎩2、x=10;a=-4;11.3、略4、略.5、(1)甲蛋糕店数量为100家,该市蛋糕店总数为600家;(2)甲公司需要增设25家蛋糕店.6、(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西安名校2018-2019学年度第二学期二年级
期末考试数学试题
一、选择题(每小题3分,共30分)
1. 下列事件中,概率为0的事件是 ( ) A. 竹篮打水 B.冬天下雪 C.守株待兔 D.冬去春来
2. 下列四个图案中,轴对称图形的个数是 ( )
A. 1个
B.2个
C.3个
D.4个
3. 3.若(x +2)(x -1)=x 2+mx +n ,则m +n = ( ) A.1 B.-2 C.-1 D.2
4.如图是一台自动测温记录仪的图象,它反映了某市冬季某天气温T 随时间t 变化而变化的
关系,观察图象得到下列信息,其中错误的是 ( )
A.凌晨4时气温最低为-3°C
B.14时气温最高为8 °C
C.从0时至24时,气温随时间增长而上升
D.从14时至24时,气温随时间增长而下降
5.有一个三位数8□2,□中的数字由小新投掷的骰子决定,例如,投出的点数为1,则 8□2就为812.小新打算投掷一颗骰子,骰子上标有1~6的点数,若骰子上的每个数出现的机会相等,则三位数8□2是3的倍数的概率是 ( ) A.
21 B.31 C.61 D.10
3
6. 若a ,b 是正数,a -b =1,ab =2,则a +b = ( ) A. -3 B.3 C.±3 D.9
7. 如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交AC ,AD ,AB 于点
E ,O ,
F ,则图中全等三角形的对数是 ( ) A.1对 B.2对 C.3对 D.4对
8. 把一张正方形纸片按如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是 ( )
A. B. C. D.
9.将一副三角板按如图所示放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有AC ∥DE ;③如果∠2=30°,则有BC ∥AD ;④如果∠2=30°,必有∠4=∠C.其中正确的有 ( ) A.①③③ B.①②④ C.③④ D.①②③④
10.一段笔直的公路AC 长20千米,途中有一处休息点,AB 长15千米. 甲、乙两名长跑爱好者同时从点A 出发,甲以15千米/小时的速度跑至点B ,原地休息半小时后,再以10千米/小时的速度匀速跑至终点C ;乙以12千米/小时的速度匀速跑至终点C.下列选项中,能正确
反映甲、乙两人出发后2小时内运动路程y (千米)与时间x (小时)关系的图象是( )
二、填空题(每小题3分,共30分)
11.弹簧上挂物体后会伸长,测得一弹簧的长度y (cm )与所挂物体的质量x (kg )间有下面的关系: .
第7题图
第7题图
12.如图,已知∠C =90°,∠1=∠2,若BC =10,BD =6,则点D 到边AB 的距离是 . 13.某校九年一班在体育加试中全班学生的得分如下表所示:
从九年一班的学生中随机抽取一人,恰好是获得30分的学生概率为 cm . 14.如图,在△ABC 中,边AB ,BC 的垂直平分线交于点P ,且AP =5,那么PC = . 15.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= .
16.小明设计了一个转盘游戏:随意转动转盘,使指针最后落在蓝色区域的概率是5
2
,若他将转盘等分成10个扇形,则蓝色区域应占 个扇形.
17.四条线段的长为5cm ,6cm ,8cm ,13cm ,以其中任意三条线段为边可以构成 个三角形. 18.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有 个.
19. 如图,线段AD ,BC 相交于点O ,连接AB ,C D.下列条件:①AB =CD ,AO =CO ;②∠A =∠C ,AO =CO ;
③AO =CO ,BO =DO ;④∠B =∠D ,AB =CD ;⑤∠B =∠D ,∠A =∠
C.从中任选一组
能
得出△ABO ≌△CDO 的概率是 .
20. 某仓库调拨一批物资,调进物资共用8小时,调进物资4小时候同时开始调出物资(调进与调出的速度保持不变).该仓库库存物资m (吨)与时间t (小时)之间的关系如图所示,则这批物资从开始调进到全部调出所需要的时间是 小时. 三、解答题(共60分)
第18题图
第19题图
第20题图
21.(8分)用简便方法计算:
(1) -992 (2)20172-2018×2016
22.(10分)一只口袋中放着若干个黄球和绿球,这两种球除了颜色之外没有其他任何区别,袋中的球已经搅匀,从口袋中取出一个球是黄球的概率为5
2
. (1)取出绿球的概率是多少?
(2)如果袋中的黄球有12个,那么袋中的绿球有多少个?
23. (10分)如图,在△ABC 与△DCB 在,AC 与BD 相交于点E ,且∠A =∠D ,AB =D C. (1)试说明:△ABE ≌△DCE ;
(2)若∠AEB =50°,求∠EBC 的度数.
24.(10分)定义一种新运算“⊙”,其运算方式如下列各式所示: 1⊙3=1×4+3=7 3⊙(-1)=3×4-1=11 5⊙4=5×4+4=24 4⊙(-3)=4×4-3=13 请解决下列问题
(1)直接写出结果:4⊙5=______;(-3)⊙4=______; (2)若a ≠b ,那么a ⊙b ______b ⊙a (填入“=”或“≠”) (3)若a ⊙(-2b )=4,请计算 (a -2b )⊙(4a +4b )的值.
25.(10分)某商场柜台为了吸引顾客,打出了一个小广告:本专柜为了感谢广大消费者的支持和厚爱,特举行购物抽奖活动,中奖率100%,最高奖50元.具体方法是:顾客每购买100元的商品,就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准黄、红、绿、白色区域,顾客就可以分别获得50元、20元、10元、5元的购物券.(转盘的各个区域均被等分)请根据以上信息,解答下列问题:
(1)小红的妈妈购物150元,她获得50元、5元购物券的概率分别是多少?
(2)请在转盘的适当地方写上一个区域的颜色,使得自由转动这个转盘,当它停止转动时,
指针落在某一区域的事件发生概率为8
3
,并说出此事件.
26.(12分)如图,AC ∥BD ,∠CAB 的平分线AH 与∠ABD 的平分线BH 相交于点H .
(1)图1中,若直线EF ⊥AC 且经过点H ,问∠AHE 与∠BHF 有怎样的数量关系?请直接写出这个结论.
(2)图2中,若EF '为经过H 的任一直线,且直线E 'F '在∠AHB 的外部,则∠AHE '与∠BHF '是否仍具有(1)中的结论,请加以说明.。