超临界ORC循环工质性能分析
超临界参数基本特性要点
超临界压力下蒸汽的比热容
1kg工质温度升高1℃所需要的热量 超临界压力时,水的比热容随温度提高而
增大,蒸汽的比热容则随温度提高而减小 超临界压力时,在相变点时存在着最大比
热容区 超临界范围内,压力提高后其最大比热容
区比热容变化较小
超临界压力下蒸汽的比焓
从温度0℃作为计算基准点,使单位工质达 到规定的状态参数,总共吸收的热量
临界和超临界压力,在相变点附近,当温 度稍有变化,焓值变化会很大
超过一定压力后,变化趋缓
超临界压力下的类膜态沸腾
管壁处流体温度与管中心流体温度不同, 故管中心流体黏度大,管壁流体黏度小, 黏度梯度引起层流化
减小受热不均匀(螺旋管圈的优势所在) 减小结构不均匀 加节流圈(垂直管屏UP直流炉) 增大管内工质质量流量 ρw
超临界压力下的传热特性
第一类传热恶化可能出现 第二类传热恶化一定出现 此外,在大比热容区内,也会发生传热恶
化,称为类膜态沸腾。 在大比热区,比容(密度)的变化相当大, 工质的温度几乎不变;在管子内壁面附近 工质密度比中心处小3~4倍,在流动截面 上存在不均匀性,出现最小的传热系数。 当热负荷高时,出现传热恶化。
使用材料的特点
水冷壁:强度高,抗氧化,耐腐蚀 过热器:强度高,抗氧化,耐腐蚀、耐磨 再热器:同过热器,管径大 省煤器:高强度碳素钢 汽水分离器:高强度,薄壁
温度/℃
水分子密度与压力、温度关系
相变点
在压力达到22.1MPa时,汽化潜热为零,汽 和水密度差为零,该压力为临界压力。水 在该压力下加热到374.15℃,即为蒸汽,该 温度为临界温度,即相变点。
水在相变过程(最大比热容区),汽水性 质剧变。
AFR-100钠冷快堆超临界CO_(2)循环结构布置与性能分析
图。 图 中 ,工 质 在 回 热 器 中 吸 收 的 热 量 295.41 MWlh(b - c 过 程 )高于工质从热源的吸热 量280.95肘贾+(〇-£1过 程 ),循环过程中巨大的 回 热 量 是 超 临 界 C0 2循 环 的 一 个 重 要 特 征 。另 外,即使在系统中布置了回热器,但受到回热器端 差 的 限 制 ,经 过 回 热 的 C0 2 工 质 仍 达 到 了 116.01丈 ,这 部 分 热 量 被 全 部 带 入 冷 却 器 中 排 向
Abstract:Aim to the Adavanced Fast Reactor (AFR - 100) as the heat source, this paper studied on the laytout and system performance analyses of supercritical C0 2 Brayton cycle. Via the thermodynam ic anlaysis program, the recuperation cycle, the recompression cycle and the partical cooling cycle were calculated and the optimal parameters, the highest thermal efficiency were gained. Compering with the recuperation cycle, both efficiencies were improved about 2 % on the recompression cycle and the partial cooling cycle, as 37. 8 1 % and 37. 5 9 % respectively. For AFR - 100, the recompres sion cycle and the partical cooling cycle are suitable layouts both on the higher cycle thermal effiency and the more reseasonable system structure and component design. Key words: Supercritical C0 2 Brayton Cycle;AFR - 1 0 0 ;System performance analysis
ORC和Kalina以及Uehara循环的热力性能分析_毕业设计论文
摘要:介绍了海洋温差能发电的现状和历史,有机朗肯循环,Kalina 循环,上原循环的原理,有机朗肯循环工质的选择原则。
详细分析了在同样条件(热源温度、冷源温度、膨胀机效率、泵效率)下使用不同工质的有机朗肯循环的效率,使用不同效率的膨胀机时的有机朗肯循环效率,不同热源温度的有有机朗肯循环效率,不同氨质量分数下的Kalina循环的理论效率和(在70%的膨胀机效率和工质泵效率下的)实际效率和不同氨质量分数下的上原循环的理论效率和(在70%的膨胀机效率和工质泵效率下的)实际效率。
Abstract:This text introduces the status and history of the OTEC. It also introduces the theory of ORC cycle,Kalina cycle and the Uehara cycle and how to choose working medium in ORC cycle. It analyzes and calculates the efficiency of ORC cycle at the same heat source temperature, cold source temperature, expander efficiency and pump efficiency and at different working medium and the the efficiency of ORC cycle at different expander efficiency and he the efficiency of ORC cycle at different heat source temperature. It also analyzes the theoretical efficiency and the actual efficiency (with a expander and pump efficiency of 70%)of Kalina cycle at different ammonia mass fraction. It also analyzes the theoretical efficiency and the actual efficiency (with a expander and pump efficiency of 70%)of Uehara cycle at different ammonia mass fraction..关键词:海洋温差能、有机朗肯循环、Kalina循环、上原循环、循环效率Keywords: OTEC、ORC cycle、Kalina cycle、Uehara cycle、cycle efficiency目录摘要......................................................................................................................................................... ...1 Abstract............................................................................................................................................... . (1)关键词........................................................................................................................................................ 1 Keywords............................................................................................................................................. . (1)综述......................................................................................................................................................... (3)1.1 海洋温差能及其开发历史和现状 (3)1.1.1 海洋温差能资源储藏量估算方法 (4)1.1.2 海洋温差能开发历史及现状 (5)1.2 海洋温差能转换发电系统 (7)1.2.1 开式循环发电系统 (7)1.2.2 闭式循环发电系统 (8)1.2.3 混合循环发电系统 (8)1.3 关于Refprop 7.0 (9)1.4 本文研究内容 (9)2. 有机朗肯循环 (9)2.1 有机朗肯循环的原理 (9)2.2 有机朗肯循环效率的影响因素 (12)2.2.1 工质种类的影响 (12)2.2.2 膨胀机效率的影响 (15)2.2.3 表层海水温度(热源温度)的影响 (15)3.Kalina 循环 (18)3.1 Kalina循环的原理 (18)3.2 不同氨质量分数Kalina循环效率 (19)4. 上原循环 (20)4.1 上原循环的原理 (20)4.2 不同氨质量分数上原循环效率 (22)5 结语 (2)3参考文献 (24)谢辞......................................................................................................................................................... .24ORC、Uehara循环以及Kalina循环热力性能分析(海洋温差能)1综述1.1 海洋温差能及其开发历史和现状海洋温差能又称海洋热能,是利用海洋中受太阳能加热的暖和的表层水与较冷的深层水之间的温差进行发电而获得的能量。
从热力循环角度论述我国大容量机组(超超临界)达到超高效率的方法
从热力循环角度论述我国大容量机组(超超临界)达到超高效率的方法超超临界的概念:燃煤发电机组运行过程中,锅炉内工质都是水,水的临界点压力为22.12MPa,温度374.15℃;在这个压力和温度时,水和蒸汽的密度是相同的,就叫水的临界点。
超临界机组是指主蒸汽压力大于水的临界压力22.12 MPa的机组,而亚临界机组是指主蒸汽压力低于这个临界压力的机组,通常出口压力在15.7~19.6 MPa。
习惯上,又将超临界机组分为两个类型:一是常规超临界燃煤发电机组,其主蒸汽压力一般为24兆帕左右,主蒸汽和再热蒸汽温度为566~593℃;二是超超临界燃煤发电机组,其主蒸汽压力为25~35 MPa及以上,主蒸汽和再热蒸汽温度一般600℃以上,700℃超超临界燃煤发电机组是超超临界发电技术发展前沿。
在超临界与超超临界状态,水由液态直接成为汽态,即由湿蒸汽直接成为过热蒸汽、饱和蒸汽,热效率较高,因此,超超临界机组具有煤耗低、环保性能好和技术含量高的特点,且温度越高,热效率越高,煤耗越少。
超超临界高效率的原因:一般认为超超临界的主蒸汽压力大于25MPa,同时主蒸汽和再热蒸汽的温度高于600℃以上。
超超临界的效率如此之高,主要是因为提高了进锅炉的水的温度,减小水和火焰之间的传热温差。
因为不等温传热是热力系统不可逆的原因之一,同时传热温差的存在造成了做功能力的损失,即产生了㶲损,所以增加压力到达超临界根本原因就是为了提高水的温度,减少传热温差。
超临界机组的热效率比亚临界机组的热效率高2%~3%左右,而超超临界机组的热效率比常规临界机组的效率高4%左右。
在超超临界机组参数的范围的条件下主蒸汽压力提高1Mpa,机组的热耗率就可以下降0.13%~0.15%,主蒸汽温度每提高10℃,机组的热耗率就下降0.25%~0.3%。
再热蒸汽温度每提高10℃,机组的热耗率就下降0.15%~0.20%;在一定范围内,如果增加再热次数,采用二次再热,则其热耗率可较采用一次再热的机组下降1.4%~1.6%。
内燃机余热回收跨临界并行朗肯循环研究万爽
内燃机余热回收跨临界并行朗肯循环研究万爽发布时间:2021-11-07T04:39:11.440Z 来源:《福光技术》2021年17期作者:万爽[导读] TSPORC 系统解决了现有双环朗肯循环(DRC)结构的高复杂度、高空间占有率等问题,T-CO2-PRC 系统解决了 CO2 临界压力高、临界温度低造成系统输出功偏低等问题。
河北华电石家庄热电有限公司河北石家庄050000摘要:基于跨临界朗肯循环(TRC)与内燃机高温排气余热匹配性高、亚临界朗肯循环(SRC)能够高效回收内燃机冷却液低温余热,本章构建了一个新型跨亚临界并行有机朗肯循环(TSPORC)和一个新型跨临界 CO2 并行朗肯循环(T-CO2-PRC)内燃机余热回收系统,TSPORC 系统解决了现有双环朗肯循环(DRC)结构的高复杂度、高空间占有率等问题,T-CO2-PRC 系统解决了 CO2 临界压力高、临界温度低造成系统输出功偏低等问题。
关键词:内燃机;余热回收;跨临界;并行朗肯循环内燃机余热回收跨临界朗肯循环技术根据热源温度高低,热源可分为三个等级:低温热源(小于 230℃)、中温热源(高于 230℃低于 650℃)以及高温热源(高于 650℃)。
根据循环中工质的工作状态,朗肯循环(RC)可以分为亚临界朗肯循环(SRC)和跨临界朗肯循环(TRC)。
在 SRC 中,工质以亚临界压力与热源进行换热,此时存在一个饱和温度与蒸发压力对应,在饱和状态下,工质温度保持不变,仅蒸汽含量发生变化,因而在 SRC 吸热过程中,工质存在一个等温相变过程。
在 TRC 中,工质以超临界压力与热源进行热交换,同时工质的工作温度达到临界温度以上,即工质达到超临界状态,此时工质的压力和温度相互没有约束。
众多研究表明,SRC 能够较好地回收低温热源余热。
对于中、高温热源,一方面由于在 SRC 蒸发器中存在等温相变过程,热源与工作液体的温差很大,导致换热过程拥损较大,无法有效利用热源的高温特性,从而导致 SRC 系统的能量利用率不高。
超临界压力下的工质特性-最全资料PPT
工质物性变化特性
1.大比热容特性
超临界压力下工质的大比热容特 性如图所示。
由图可见:超临界压力下,对应 一定的压力,存在一个大比热容 区。进入该区后,比热容随温度 的增加而飞速升高,在拟临界温 度处达到极值,然后迅速降低。 将比热容超过8.4kJ/(kg·℃)的温 度区间称大比热容区。压力越高, 拟临界温度向高温区推移,大比 热容特性逐渐减弱。
超临界压力下的水力特性
1.水动力多值性
直流锅炉的水动力多值性是指平行工作的水冷壁管内,同一工作压差对 应三个不同流量的情况。一旦发生水动力不稳定,运行中一些管子流量 大,另一些管子则流量很小,且交互倒替。流量小的管子出口工质已是
直流锅炉产过生热水动蒸力多汽值,性的由主要于原质因是量水预流热量段与减蒸发小段,具有“不同蒸的干水阻”力关点系也式。提前至炉内高温区,这两 种情况都会导致管壁超温。 8- h1=1260kJ/kg;
2.其他特性
如图所示,在超临界压力的大比 热容区内,工质比容、粘度、导 热系数等也都剧烈变化,离开大 比热容区后则变化趋缓。除了比 热容以外,上述参数的变化都是 单方向的,随着温度的升高,比 容增大,粘度、导热系数降低。
1—p=25MPa 2一p=30MPa
CP 比热,λ导热系数,μ工质动 力黏度,ν 比容。
而且管屏平均焓增△h越大、吸热不均系数越大,流动不均越厉害(即ηG越小),出口汽温变化也越大。
因直此流, 锅超炉临的直界水流压冷力壁锅下管水在炉变蒸产成发蒸时生汽(低不水于再临动存界在压力汽力水多)或两大值相比区性热。容的区中主(超要临界原压因力)介是质水比体预积将热随段加热与偏差蒸而发急剧段增大具,有偏差不管中同的的介质流量 可12能M明Pa显时低水,于汽阻平化均潜力值热而关为导零系致,偏汽式差和管。水出的当口密温度汽度差可和也能等水非于常零的之,高密该。压度力称差之大为超以临界及压水力,冷水在壁该入压力口下加水热的到3欠74. 焓超过一定 2.吸热偏值差引时起流即量会不均出现。因此,工作压力越低,水冷壁入口水温越低,水动力多 值性越严重。 因此当超临界机组在低负荷下运行时,同样的吸热偏差就要引起更大的流量降低,此时更应注意炉内火焰的均匀性。
超临界R134a在ORC系统中的换热特性分析
YAO Yecheng,LI Zhouhang,YUAN Nan ,JIN Yajuan,WANG Hua (School of Metallurgy and Energy Engineering,Kunming University of Science and Technology,Key Laboratory of Complex Nonferrous
相比于超临界水和超临界 CO2,关于超临界 R134a 的研究较少。在超临界压力下,传热恶化机理研究的报 道就更少了。本文旨在分析超临界 R134a 的传热恶化 现象,探究发生恶化的原因以及恶化的程度。通过改变 热流密度、质量流量、流体流向等参数来分析管内流体 的换热特性。采用无量纲 Bo 来分析浮升力的作用,并 使用前者的经验公式来预测 R134a 在光管内的传热规 律并进行评价。
Metals,Kunming 650093,China)
Abstract: This paper uses the FLUENT software to numerically analyze the heat transfer of the heat exchanger which is one of the significance
为了检验模型的正确性,模型的尺寸结构与 Cui[19]
的研究一致,并与他的实验数据进行对比(P=4.5 MPa,
Tin=317 K,G=600 kg(/ m2 · s),q=40/50 kW/m2)。如 图 2 所示是对比分析图,从图 2 中可以看到,网格模型能
很好地预测壁温飞升的位置,并且能更好地预测壁温
—————————————————
收稿日期:2018⁃12⁃07 基金项目:云南省自然基金 (2017FB3087) 作者简介:姚业成 (1993—),男,硕士,研究方向为中低温余
超临界流体的物性分析与工程应用
超临界流体的物性分析与工程应用超临界流体是指温度和压力高于其临界点的物质,因此它具有与常规流体截然不同的物性。
研究超临界流体的物性及其在工程应用中的应用潜力对于相关领域的发展具有重要意义。
本文将对超临界流体的物性进行分析,并探讨其在工程应用中的潜力。
首先,我们来了解一下超临界流体的物性特点。
超临界流体在临界温度和临界压力以上,不再存在液相和气相的明显界面,而是呈现出连续的密度变化和连续性的物理性质变化。
这种特点使得超临界流体具有高溶解性、高扩散性和高传质性能。
由于超临界流体的物质性质可以通过调节温度和压力进行调控,因此在许多领域具有广泛的应用前景。
在化工领域中,超临界流体被广泛应用于萃取、固体废弃物处理和催化反应等方面。
超临界流体具有较高的溶解能力,可以高效地处理废物和回收资源。
此外,在萃取过程中,超临界流体可以替代传统有机溶剂,减少环境污染和成本的同时,提高产品纯度和收率。
超临界流体还可以作为催化剂的介质,在化学反应中提供更高的反应速率和选择性。
因此,超临界流体在化工领域中的应用潜力巨大。
与此同时,在能源领域中,超临界流体也被广泛研究和应用。
超临界流体作为传热介质,具有高传热效率、较低的传热阻力和环境友好等特点,被用于开发高效的传热装置。
此外,超临界流体的压力和温度调控性能使其成为地热能、太阳能和生物质能等可再生能源的转换介质。
通过利用超临界流体在能量转换过程中的特性,可以提高能源转换效率和资源利用效率。
此外,在制药工业和医学领域中,超临界流体也得到了广泛应用。
超临界流体在制药工业中可以替代有机溶剂,降低药物合成过程的毒性和环境污染。
由于超临界流体的渗透性和扩散性能优异,可以用于制备纳米粒子、脂质体和生物膜等载体材料,并用于药物输送和生物医学成像等方面。
这些应用将大大改善药物疗效和治疗效果,促进医学科学的发展。
综上所述,超临界流体的物性分析对于相关领域的发展至关重要。
超临界流体具有独特的物性特点,通过调节温度和压力可以实现其物性的调控。
中低温工业余热ORC回收装置的工质发展与应用
中低温工业余热ORC回收装置的工质发展与应用黄晓艳;吴家正;王海鹰;朱彤【摘要】Selecting safe and efficient working fluids for Organic Rankine Cycle (ORC) to convert waste energy into power from low - grade industrial heat sources is a crucial question in that there are varies types of industrial waste heat. Pure organic working fluids are more favorable for system maintenance in application. This paper presents advances in research of pure organic working fluids for low - grade industrial waste heat recovery ORC system in the past five years. Applications of working fluids for sub - critical and super - critical cycles are reviewed.%工业余热领域热源类型多样,如何筛选安全、稳定、高效的循环工质,成为有机朗肯循环(Organic Rankine Cycle,ORC)研究的关键性问题之一.采用纯工质作为工作流体更有利于工程应用中对系统的维护.本文在综述近五年国内外适用于中低温工业余热有机朗肯循环纯工质研究的基础上,探讨了亚临界循环和超临界循环ORC动力回收装置中循环工质的发展与应用现状.【期刊名称】《节能技术》【年(卷),期】2012(030)001【总页数】6页(P34-38,44)【关键词】工业余热;有机工质;有机朗肯循环;超临界;亚临界【作者】黄晓艳;吴家正;王海鹰;朱彤【作者单位】同济大学机械工程学院,上海200092;同济大学机械工程学院,上海200092;同济大学机械工程学院,上海200092;同济大学机械工程学院,上海200092【正文语种】中文【中图分类】TK11+50 引言现代工业发展粗放的用能方式造成二次能源的极大浪费,并伴随着温室气体的过度排放,引发一系列生态危机。
超临界二氧化碳循环分析1
超临界二氧化碳动力循环与氨动力循环得比较LI前,世界上正在建设与研究得高温气冷堆都就是使用H e作为工质,这就是因为He具有很好得稳定性、化学相容性及热传导性。
但就是,He作为工质存在一些不足,例如动力循环需要较高得温度、难于压缩等,给反应堆与换热部件得结构材料、叶轮机械得设计带来很多困难。
出于降低反应堆结构材料要求、减少技术难度、提高反应堆得安全性与经济性等各方面得考虑,有学者进行了选取CO?作为循环工质得研究、C02虽然在稳定性、热传导性方面比He稍差,但C 02具有合适得临界参数,不需要很高得循环温度就可以达到满意得效率,且具有压缩性好、储量丰富等优点。
采用CO?作为循环工质可以降低循环温度与压缩功,从而提高反应堆得安全性,同时降低反应堆造价、超临界C02得闭式布雷顿循环被推荐在铅冷快堆及钠冷快堆中使用、1、二氧化碳布雷顿循环分析(1)二氧化碳布雷顿循环CO2与He在动力循环中最大得不同点就就是气体性质随压力、温度得变化差别很大(表1—Do高压(7.5 MPa)环境中,CO?得导热系数入、定压比热容J 与压缩因子z均与低压(0.1 MPa)下得参数有很大差异;在循环工况下,He循环可以视为理想气体循环,除密度外,其余参数变化不大。
动力循环得工况,CO2得工作参数在其临界点(7、3 77 MPa, 3 1 °C)附近;因此,CO2动力循环除与He循环有相同得决定因素外,还取决于动力循环得不同实际工况,即超临界压力、跨临界压力及亚临界压力3种循环工况(图1—1)、超临界循环:循环压力及温度均在临界参数以上;跨临界循环:循环高压侧压力高于临界压力,低压侧压力低于临界压力;亚临界压力循环:循环压力均低于临界压力,工作于气相区。
表1-1 C02与He热物性比较(35 °C)工质P/MPa p/kg-m 3 ^W (m- K )-> C「/kJ・(kg・K)一】zCO2 7、5 2 7 7 . 6 0.0 3532 5.9 306 0. 4630、1 1 .95 0.01497 0、828 0.8 7 92 2 2OOO c CC H 4-He7、5 11。
超临界二氧化碳循环分析1
超临界二氧化碳动力轮回与氦动力轮回的比较今朝,世界上正在扶植和研讨的高温气冷堆都是应用He作为工质,这是因为He具有很好的稳固性.化学相容性及热传导性.但是,He作为工质消失一些缺少,例如动力轮回须要较高的温度.难于紧缩等,给反响堆和换热部件的构造材料.叶轮机械的设计带来许多艰苦.出于降低反响堆构造材料请求.削减技巧难度.进步反响堆的安然性与经济性等各方面的斟酌,有学者进行了拔取CO2作为轮回工质的研讨.CO2固然在稳固性.热传导性方面比He稍差,但CO2具有适合的临界参数,不须要很高的轮回温度就可以达到知足的效力,且具有紧缩性好.储量丰硕等长处.采取CO2作为轮回工质可以降低轮回温度和紧缩功,从而进步反响堆的安然性,同时降低反响堆造价.超临界CO2的闭式布雷顿轮回被推举在铅冷快堆及钠冷快堆中应用.(1)二氧化碳布雷顿轮回CO2与He在动力轮回中最大的不合点就是气体性质随压力.温度的变更不同很大(表1-1).高压(7.5 MPa)情况中,CO2的导热系数λ.定压比热容cp和紧缩因子z均与低压(0.1 MPa)下的参数有很大差别;在轮回工况下,He轮回可以视为幻想气体轮回,除密度外,其余参数变更不大.动力轮回的工况,CO2的工作参数在其临界点(7.377 MPa,31℃)邻近;是以,CO2动力轮回除与He轮回有雷同的决议身分外,还取决于动力轮回的不合现实工况,即超临界压力.跨临界压力及亚临界压力3种轮回工况(图1-1).超临界轮回:轮回压力及温度均在临界参数以上;跨临界轮回:轮回高压侧压力高于临界压力,低压侧压力低于临界压力;亚临界压力轮回:轮回压力均低于临界压力,工作于气相区.表1-1 CO2和He热物性比较(35℃)工质P/MPaρ/kg·m-3λ/W·(m·K)-1CP/kJ·(kg·K)-1 zCO2He(2)CO2简略轮回与He轮回的比较剖析以英国改良型气冷堆(AGR)为例.英国改良型气冷堆(AGR)现实运行时 CO2温度高于670℃.斟酌到 CO2高温下与不锈钢材料化学不相容,是以轮回最高温度保守取为650℃,若要采取更高的轮回温度,须要采取其他金属材料.CO2和 He 动力轮回在给定前提下盘算的最优参数见表1- 2,温熵图见图1-1.个中 He 轮回的温熵图略有不合,采取 2 个紧缩机分级紧缩.图1-1 CO2轮回及He轮回温熵图表1-2 CO2简略轮回与He轮回比较从表1-2 可看出,CO2轮回盘算所需初参数比He 轮回多出压力项.如前文所述,He 在轮回工况下取决于温度,只需给定轮回的温度规模即可盘算出不合压力比(ε)下轮回效力(η),而 CO2的 cp 还取决于压力.给定超临界和跨临界压力CO2轮回的最高压力(Pmax)是因为现有技巧前提的限制,保守取为20 MPa.表 2 中的所列的最高η是 Pmax达到限制值的效力,并未达到现实盘算的最大η.He 轮回的 Pmax为现有模块化高温气冷堆 He 轮回最高压力(7MPa).图1-2 分离给出了表 2 中所列初参数下η与ε关系.在所盘算ε下,亚临界压力 CO2轮回与 He轮回类似,η随ε先增大到一个极大值点再迟缓降低.而超临界和跨临界轮回,同样受到 Pmax的限制,在盘算ε下并未达到极大值.3 种 CO2轮回在响应限制前提下达到的最高η与温度前提几乎雷同情况下的 He 轮回邻近.但是,这 3 种轮回均低于 He 在 tmax=800℃下的η,且雷同温度前提下,CO2轮回达到最高η的ε要大于 He 轮回达到最高η的ε.图1-2 CO2简略轮回与He轮回效力在气体汽轮机轮回中,氦气透平带动紧缩机,是以紧缩机耗功也是存眷的问题.界说紧缩功与膨胀功之比 wc/wt为氦气透平做功返回率.从图1-3中可看出,CO2轮回的 wc/wt小;这是因为CO2的 z <1,易于紧缩,而 He的z ≈1,较难紧缩的缘故.He 轮回tmax进步至800℃后,各压力比下的 wc/wt均有所降低,但仍然高于tmax=650℃下的CO2各轮回.在 CO2的3种轮回中,超临界及跨临界压力轮回的wc/wt明显变小;这是因为紧缩进程在临界点邻近进行,而在临界点邻近,cp明显减小,导致 z 减小,更易于紧缩;尤其是跨临界压力轮回的wc/wt,比雷同温度下 He 轮回几乎小了一个量级.图1-3 CO2简略轮回与He轮回氦气透平做功返回率从表1-2 还可看出,CO2轮回单位质量的工质换热量均比 He 轮回要少,这意味着雷同换热功率下 CO2轮回的质量流量 m 较大(图1-4).这是因为 CO2的 cp较 He 小,雷同功率,工质温升不同不大的情况下,CO2轮回须要更大的m.图1-4 热功率310MW时,质量流量与压力比关系但是,这其实不料味 CO2轮回没有优势.流体体积决议了做功和换热部件的尺寸大小,单位体积的做功量或换热量越大,雷同功率下的做功换热部件体积越小,成本越低.CO2气体密度较大,是以各部件气体体积流量(V)较小(图1-5).图1-5热功率310MW时,氦气透平出口体积流量与压力比关系以堆芯换热功率310 MW为例,对表1-1中的2种轮回进行盘算,成果见表1-3.表1-3 CO2简略轮回与He轮回比较从表1-3可以看出,雷同热功率,在几乎雷同的温度前提下,CO2轮回所消费的紧缩功远小于He 轮回所需的紧缩功.3种CO2轮回所须要的V均小于一致温度前提下和较优工况下He轮回的工质体积流量;这标明3种CO2轮回中单位体积流量的CO2气体做功效力均优于2种前提下He轮回单位体积He的换热做功效力.特殊是对于CO2的超临界轮回和跨临界轮回,其工质的V几乎与He轮回相差一个量级,大大减小了做功部件的体积.从表1-3还可以看出,CO2流经叶轮机械前后的V变更远比He流经叶轮机械的V变更大;是以,CO2轮回的叶轮机械进出口叶高变更比He轮回的大.这些都是因为轮回工况下CO2的密度比He大许多,是以固然m大,但是V却远远小于He轮回.2. 超临界CO2轮回改良—超临界CO2再紧缩布雷顿轮回二氧化碳超临界轮回需采取多个回热器(若只采取1个回热器,因为回热器低压侧流体比热较小,换热时高压侧流体温升不敷,会导致换热器消失夹点),使热量得以更好应用.二氧化碳再紧缩轮回示意图如图2-1所示,轮回温熵图如图2-2所示.图2-1 二氧化碳再紧缩示意图图2-2 二氧化碳再紧缩轮回温熵图透平出口的二氧化碳流体先辈入高温回热器进行放热(5至5'),落后入低温回热器(5'至6),尔后,一部分流体直接通往高温紧缩机被紧缩(6至2'),另一部分流体先冷却后(6至1)再进入紧缩机紧缩(1至2).然后,经由过程低温回热器回热(2至2')到与直接被高温紧缩机紧缩的流体雷同的温度,混杂后一路再流经高温回热器(2'至3).换热器(3至4),最后流入透平做功(4至5).(1)轮回数学模子界说Brayton轮回压比ε=Pmax/Pmin.温比τ=tmax/tmin.个中,P 为压力,t为温度.假设经由预冷器的分流量为x(0≤x≤1),低温回热器的回热度αlrec可暗示为:max min 65max min 22lrec )()()(''t mc h h t mc h h x p p ∆-=∆-=α(2-1)个中:max t ∆为高压侧或低压侧出进口温差最大值;h 为比焓,J/kg;m为质量流量,kg/s;cp 为比定压热容,kJ/(kg·K).高温回热器的回热度αhrec 暗示为:),(),(''''''2555525523t p h h h h t p h h h h hrec --=--=α (2-2)αhrec 与αlrec 的盘算办法差别是由分流引起的.个中,回热器高压侧的出口温度须分离知足前提t2+△t≤ t6≤t5'以及t2'+△t'≤ t5' ≤ t5,△t 与△t' 分离为防止回热器内传热恶化而设置的工程上所许可的最小温差,平日取为8℃.全部轮回的效力η可暗示为:3416)(x 1h h h h ---=η(2-3) 式(2-3)是从能量损掉角度来盘算轮回效力,可看出,采取分流设计,Brayton 轮回释放到情况中未被应用的热量削减,热源接收的热量也削减,是以,轮回效力大幅进步.分流措施可在CO2超临界Brayton 轮回中应用是因CO2物性受工作情况下的压力.温度影响较大.在无分流回热时有:—C p,h △th = —C p,l△t1,下标h 暗示回热器高压侧,l 暗示低压侧.个中,—C p,h >—C p,l ,是以,流量相等的情况下导致△th<△t1,即进入堆芯的气体温度较低,在雷同的ε.τ下,高压侧流经堆芯或换热器的流体需接收较多的热量,降低了轮回效力.而分流轮回则是就义一部分功用于紧缩流体,从而使流体回热后温度得到升高.雷同前提下的轮回在堆芯或换热器接收的热量削减,同时预冷损掉的热量降低,增长了轮回效力.(2)超临界CO2动力轮回优化剖析由数学模子可知,超临界CO2 Brayton再紧缩轮回的轮回效力可暗示为:η=η(ϕ,ε,τ,η,ξ,κi)(2-4)个中:ϕ为初始点的工况;η为压气机和透平的等熵效力;ξ为各部件压力损掉;κi为以下4个变量任选其二,即经由预冷器的流量份额x.低温回热器低压侧出口温度与高压侧进口(即回热器冷端)温度之差△t.低温回热器回热度αlrec及高温回热器回热度αhrec.只要肯定了以上参数,并包管回热器不消失传热恶化现象,即可独一肯定超临界CO2 Brayton轮回的效力.作为现实气体的轮回,影响轮回效力的参数较庞杂,有的参数并不是完整自力,拔取有必定规模的限制.为简化评论辩论,选定二氧化碳超临界Brayton轮回的最高参数分离为压力20MPa.温度650℃,并作为盘算初始点.英国AGR反响堆的运行,证实了CO2在670℃以下的安然性.轮回其余各节点的压力.温度均在临界点参数之上.同时逆流换热器冷端温差越小,换热后果越好,但现实情况不克不及相等,是以,给定回热器冷端温差为8℃.对于图2-2所示的轮回,情况温度.ε.τ.低温回热器冷端温差和紧缩机等熵效力肯定,t2.t6和t2’即可肯定.在知足回热器不消失夹点和传热恶化的情况下,当高温回热器低压侧出口温度t5’越接近高压侧进口温度t2’时,高压侧所交流的热量越多,t3越高.而x=(—C p,lrec,l/—C p,lrec,h)·(△t1/△th),—C p,lrec,h.△th=t2’-t2不变,随t5’的减小,—C p,lrec,l增大,△t1=t5’-t6减小,—C p,l /—C p,h 的增幅小于△t1/△th的减幅.最终x减小到一微小值,此时高温回热器回热温度最高,从堆芯接收热量起码,透平做功份额增长弘远于紧缩机耗功份额的增长,是以,在雷同轮回ε.τ下,x最小时对应的轮回效力是所示轮回的最佳轮回效力,且不合的ε.τ对应不合的最小x和最佳轮回效力.(3)压比对最佳轮回效力的影响假定轮回最低温度为35℃,随ε增大,紧缩机进口工况向临界点接近,使二氧化碳的比热产生较大变更.各ε对应的最小分流量及最佳效力如图2-3所示.从图2-3可看出,随轮回ε的增大,各工况下的最佳轮回效力先增长到最大值,然后减小.而最小分流量变更纪律却与效力几乎相反.图2-3中左端取到了1个极限ε,这是因为回热器高下压侧二氧化碳的比热不同不太大,无需进行分流,不必采取再紧缩轮回,同时也可看出,此时的轮回效力其实不高.右端的极限ε是包管该轮回仍为超临界轮回的压比.图2-3 压比对最佳轮回效力和最小分流量的影响对应于各工况,分流量均能取到微小值.此时低温回热器高压侧流体经回热后,已达到知足限制前提的极限换热温升,再减小流量升高温度,易造成低温回热器消失夹点.当回热器低压侧流体越接近临界压力时,—C p,l /—C p,h 逐渐增大,且增长率越来越大(图2-4),而t5’的温度越接近t2’的温度,使得△t1/△th 减小,在最佳ε之后减小速度变慢.在εd t t hp C d h p c /),(1______1,∆∆•=0时消失x 的最小值,此ε下的轮回效力也最高. 图2-4 压比比较热的影响(tmin=35℃)图2-5所示为对应最佳效力时高温回热器及低温回热器的回热度的变更.随ε增大,各最佳效力轮回回热度均增长,但两回热度增大的速度不合,在最优ε之前,高温回热器的回热度曲线斜率较大,之后趋于平缓,而低温回热器回热度在最优ε之前增长较缓,之后增幅逐渐变大.图2-5 压比对最佳轮回效力下回热器回热度的影响随ε变更,对应最佳效力下,流体最高回热温度敏捷上升,超出最佳ε后趋于平缓(图2-6).最佳轮回效力在某压比处达到最大值的原因是:在最佳ε前,回热后流体进入堆芯温度升高,使流体接收热量削减,同时分流量减小使无法应用的热量比例削减,这两处对效力增长的进献较分流导致紧缩机做功增长所带来的损掉大,效力上升.超出最佳ε后,温度上升迟缓,而轮回最小分流量增大,使无法收受接管应用的热量比例增大,同时紧缩机做功增多,效力降低.图2-6 各压比最佳效力下最高回热温度t3随压比ε的变更(4)温比对最佳轮回效力的影响选定ε=2.45,转变低温压气机进口温度.给定压比下,幻想气体的简略回热Brayton 轮回平日热效力随最低轮回温度的减小而增大,但现实二氧化碳气体的轮回却有不合,效力消失最优值.在某个温度以上时,效力随最低轮回温度减小而增大,低于该温度后急速降低(图2-7).分流量x 的变更与效力的变更正好相反.分流量在35℃阁下消失变更的道理(图2-8)类似于前面有关压比接近临界点邻近的阐述,εd t t h p C d h p c /),(1______1,∆∆•=0时,轮回效力最大.图2-7 tmin 对最佳轮回效力和分流量的影响图2-8 tmin 变更比较热的影响(ε=2.45)高温回热器回热度随轮回最低温度的上升,从最低值敏捷增长到最大值,尔后迟缓降低,而低温回热器回热度先略有降低,然后逐渐升高,且较高温回热器所需的回热度低(图2-9).图2-9tmin 对最佳轮回效力下回热器回热度的影响最高回热温度先随轮回最低温度的增长而敏捷增长,在x 达最小值后减缓,超出最佳轮回最低温度后,温度上升迟缓,而轮回最小分流量增大使无法收受接管应用的热量比例增大,紧缩机做功增多(图2-10).是以,轮回效力在x 最小处增长到极大值,然后减小.图2-10 最佳效力下最高回热温度t3随tmin 的变更(5)△t 及x 对轮回效力及回热度的影响选定ε=2.45,轮回最低温度35℃来研讨其他参数的影响.如图2-11所示,给定x,回热度.效力均随△t的变大而降低,因雷同情况下,回热器温差越大,未被应用的热量多,必定导致效力和回热度的降低.在给定ε和τ下,分流量消失最小值,原因同前面剖析雷同,随分流量的增大,效力降低.同时高温回热器回热度也逐渐降低,而低温回热器回热度却迟缓增长,这是因为对回热度有α= q/Q <1,即现实回热量q除以理论最大回热量Q,在冷端温度雷同情况下,低温回热器传热量增大,回热度αlrec=(q+dq)/(Q+dq),低温回热器回热度增长;而高温回热器冷端温差变大(x的增长带来t5' 的升高),换热量削减,但理论最大换热量不变,回热度αlrec=(q-dq)/Q,所以高温回热度降低.图2-11 △t对轮回效力和回热度的影响图2-12 x 对效力.回热度的影响(6)△t及αhrec对轮回参数的影响依据当今紧凑式换热器技巧近况,回热度可达0.98,现保守取αhrec=0.95.给定高温回热器回热度,随低温回热器冷端温差的增大,x在很小的规模内逐渐减小(图2-13),低温回热器的回热度也在减小.x的减小虽有利于效力的进步,但回热度的降低使效力最终呈降低趋向,在给定高温回热器回热度的情况下,冷端温差增长1℃,约使效力降低0.05%.图2-13 △t变更对轮回效力.αhrec及x的影响包管低温回热器冷端温差不变,随高温回热器回热度的增长,5' 点温度必定降低,是以,导致低温回热器高温流体换热量降低(图2-14),而须达到雷同温度,只能削减x,同时导致低温回热器回热度降低,但降幅很小,所以,x减小带来的效力增长弘远于低温回热器回热度降低带来的损掉.是以,低温回热器冷端温度不变的情况下,随高温回热器回热度的增长,效力增长,且增长快率变大.同时,回热度只能在必定规模内变更,低于最低值时不需采取分流设计.图2-14 αhrec对轮回效力.αhrec及x的影响(7)△t及αlrec对轮回参数的影响若给定低温回热器的回热度αlrec=0.9,随冷端温差的增大,换热量必定增大,为使回热温度仍知足轮回设计点,只能增大x,而低温回热器回热度的增大导致高温回热器冷端差的增大,从而导致高温回热器回热度的降低,是以轮回效力降低(图2-15).图2-15 △t变更对轮回效力.αlrec及x的影响若给定低温回热器冷端温差△t,随回热度的升高,高温流体进口温度上升,而低温流体换热后温度不克不及变更,这使x增长.同时,高温回热器换热量减小,其冷端温差变大,回热度减小,轮回效力降低.同样,低温回热器回热度也在必定规模变更,低于最低值无需采取分流设计(图2-16).图2-16αlrec变更对轮回效力.αlrec及x的影响给定轮回最高压力和温度,在知足限制前提的情况下,轮回达到最佳效力时的工况为:△t=8℃,Pmax=20MPa,tmax=650℃,Pmin=7.8MPa,tmin=34.36℃,以及该工况下高温回热度为0.95.0.977时的参数(表2-1).表2-1 最佳轮回工况下的参数比较αhrecαlrec xη/%采取分流式设计的二氧化碳Brayton轮回在较低的轮回最高温度下可达较高的轮回效力,与今朝普遍研讨的氦气轮回在高温下达到的效力相当.采取分流措施防止夹点温差小的问题,改良了轮回特征.二氧化碳轮回的堆芯出口温度较低,包管了反响堆的安然性,同时效力不低于He透平轮回,具有优越的成长远景,能用做第四代先辈核能体系的能量转换方法.。
超临界机组的详细介绍再探讨
超临界机组的详细介绍再探讨超临界机组的详细介绍再探讨引言:随着工业和能源需求的不断增长,人们对发电效率和环保性的追求也日益增强。
超临界机组作为一种先进的发电技术,逐渐受到人们的关注和认可。
本文将对超临界机组进行详细介绍和探讨,以帮助读者更全面地了解这一技术。
一、超临界机组的定义和原理超临界机组是一种利用超临界流体工质进行发电的电厂设备。
超临界流体是指在临界点以上并接近临界参数的流体状态,此时流体的物理性质会发生显著变化。
超临界机组利用超临界流体的高密度和高温特性,提高了发电系统的热效率和燃料利用率。
二、超临界机组的优势1. 提高发电效率:超临界机组的工作参数使得燃烧产生的热能能够更充分地转化为电能,提高了发电效率,降低了燃料消耗。
2. 减少二氧化碳排放:由于超临界机组燃烧效率的提高,相同的发电量下,二氧化碳排放量将明显减少,对环境的影响也相对较小。
3. 灵活适应燃料:超临界机组具有较高的燃料灵活性,可以适应不同种类的燃料,包括煤、天然气和生物质等,减少了对特定燃料的依赖性。
4. 技术成熟可靠:超临界机组已经成熟应用于很多电厂,其设计和运行经验丰富,通常具有较高的可靠性和稳定性。
三、超临界机组的关键技术1. 锅炉设计:超临界机组的锅炉设计需要考虑高温高压下的安全性和热效率。
采用先进的材料和结构设计,能够在高温高压环境下运行稳定可靠。
2. 蒸汽参数控制:超临界机组的发电效率与蒸汽参数密切相关。
通过控制蒸汽温度、压力和流量等参数,可以使发电系统达到最佳工作状态。
3. 污水处理:超临界机组的烟气中含有一定的污染物,需要进行有效的污水处理,以减少对环境的污染。
4. 调控技术:超临界机组需要具备良好的负荷调节能力,以适应电网负荷变化。
控制系统的设计和优化是确保机组稳定运行的关键。
四、超临界机组在能源转型中的应用前景1. 提高发电效率:超临界机组作为高效的发电技术,可以降低燃料消耗和二氧化碳排放,对于提高能源利用效率具有重要意义。
ORC发电技术在低温余热回收利用中的性能分析
ORC发电技术在低温余热回收利用中的性能分析王治红;丁晓明;黄昌猛;裴廷刚;刘统【摘要】以某炼化厂实际产生的余热作为低温热源,参考低温热源物性及有机工质筛选原则,初选出7种适合该炼化厂低温余热发电的有机工质,以最大净输出功率为目标函数,考察过程的循环热效率、蒸发温度(压力)和废热排放量等工艺参数,对7种工质进行了模拟分析.结果表明,工质R-600和R-152a在亚临界区域表现性能最佳,在超临界区域工质R-134a也表现出较好的性能,但亚临界有机朗肯循环表现出更好的热力学性能.对超临界和亚临界有机朗肯循环(ORC )过程中蒸发器内热传递过程做了分析,并采用多因素分析方法对O RC系统工质流量、蒸发温度(压力) 、膨胀机进气温度和过热度等影响因素做了分析研究,为炼化厂低温余热回收工艺设计提供参考.%Taking the actual production parameter of a refinery as the low temperature heat source , seven organic working compounds for the low temperature heat power generation of this refinery were selected , based on the low temperature heat source's physical property and organic working compounds screening principle .Seven refrigerants were simulation analyzed by taking the maximum net output power as the objective function , and the effects of thermal efficiency , evaporation temperature (pressure) ,heat emission and other technological parameters were investigated .The results show that the refrigerant R-600 and R-152a have the best performance in subcritical region , while refrigerant 134a shows a good performance in supercritical region .In general ,the subcritical organic Rankine cycle (ORC ) showed a better thermodynamic performance . By analyzing the evaporator's heat transfer process in bothsubcritical and supercritical ORC , and analyzing the influence factors of refrigerant flow rate , evaporation temperature (pressure ) , expander inlet air temperature and superheat degree of ORC system through multiple factor analysis method ,this study provides the reference for the design of low temperature waste heat recovery process in refinery .【期刊名称】《石油与天然气化工》【年(卷),期】2018(047)003【总页数】7页(P95-100,107)【关键词】有机工质;超临界有机朗肯循环;热传递;多因素分析【作者】王治红;丁晓明;黄昌猛;裴廷刚;刘统【作者单位】西南石油大学化学化工学院 ;西南石油大学化学化工学院 ;长庆油田分公司第一采气厂采气工艺研究所;长庆油田分公司第一采气厂采气工艺研究所;长庆油田分公司第一采气厂采气工艺研究所【正文语种】中文我国为能源消费大国,但能源利用率仅为33%左右,很大部分余热未被充分利用[1]。
窄点温差及工质物性对跨临界有机朗肯循环性能的影响
窄点温差及工质物性对跨临界有机朗肯循环性能的影响于超;徐进良;苗政;杨绪飞【摘要】利用约束热源入口及出口温度的热力学模型,将循环热效率及净输出功统一为一个参数,计算41种工质在473.15K 废热烟气驱动的跨临界有机朗肯循环中的热力学表现,分析蒸发器内窄点温差及工质物性对循环性能的影响。
结果表明,临界温度低于烟气出口温度的工质,及高于0.88倍烟气入口温度的工质,临界温度是循环效率的主要影响因素;临界温度在上述范围之间的工质,干湿性对循环效率影响显著,湿工质效率明显高于干工质。
所有循环中,该临界温度范围内的湿工质热效率最高。
临界温度高于0.88倍烟气入口温度的工质,窄点温差可能出现在蒸发过程中或蒸发器出口,从热力性能角度看,窄点出现在蒸发过程中的循环明显优于窄点出现在蒸发器出口的循环。
改变热源入口及出口温度不会影响上述结论。
%Thermal performance values of 41 working fluids in a trans-critical organic Rankine cycle (ORC) driven by waste heat flue gas of 473.15 K were calculated by means of a theoretical model in which the inlet and outlet temperatures of flue gas were fixed and therefore the thermal efficiency and net work output were unified into one parameter as long as the heat absorbed was given. The influences of pinch point temperature difference (PPTD) in the evaporator and working fluid properties on cycle performance were analyzed. Calculation results showed that for fluids with critical temperatureTc<Tgas,out, and fluids withTc>0.88Tgas,in,Tc had dominant influence on thermal efficiency. For fluids withTc betweenTgas,outand 0.88Tgas,in, fluid dryness had significant influence on cycle performance, and wet fluids outperformed dry fluids apparently. Wetfluids withTc between Tgas,outand 0.88Tgas,in exhibited the highest thermal efficiency. For fluids withTc>0.88Tgas,in, PPTD might lie either inside the evaporator or at the outlet. Thermal performance values of the cycle with PPTD inside the evaporator outperformed that with PPTD at the outlet. Application of such conclusions was confirmed through sensitivity analysis for flue gas inlet and outlet temperatures.【期刊名称】《化工学报》【年(卷),期】2014(000)012【总页数】9页(P4655-4663)【关键词】有机朗肯循环;跨临界循环;临界温度;窄点温差;热力学;热力学过程;热力学性质【作者】于超;徐进良;苗政;杨绪飞【作者单位】华北电力大学低品位能源多相流与传热北京市重点实验室,北京102206;华北电力大学低品位能源多相流与传热北京市重点实验室,北京 102206;华北电力大学低品位能源多相流与传热北京市重点实验室,北京 102206;华北电力大学低品位能源多相流与传热北京市重点实验室,北京 102206【正文语种】中文【中图分类】TK123Key words:organic Rankine cycle; trans-critical cycle; critical temperature; pinch point temperature; thermal dynamic; thermal process; thermal property工业低温余热烟气是重要的余热资源,对其进行回收可以获得经济效益及环保效益[1]。
一种耦合跨临界与亚临界有机朗肯循环系统性能分析
一种耦合跨临界与亚临界有机朗肯循环系统性能分析在能源消耗日益严重的今天,回收余热资源成为了缓解能源危机的一个有效途径。
有机朗肯循环(organic Rankine cycle,ORC)技术能将低品位余热转化为高品位的电能输出,其结构简单、灵活性高、运行费用低、余热回收率高,近年来,ORC技术已成为余热回收利用领域研究的热点。
为了提高回收烟气余热的ORC系统效率,本文构建了一种耦合跨临界与亚临界ORC系统。
基于热力学基本定律和热经济学理论,对耦合ORC系统进行了详细的性能分析,同时,对比了耦合ORC系统与单级跨临界ORC系统的性能,并探讨了工质临界温度及工质组合对耦合ORC系统性能的影响。
研究结果表明:①随着烟气进口温度的增加,耦合ORC系统热力学性能及热经济性能均得到改善;随着烟气出口温度的增加,耦合ORC系统净输出功率减少,而热效率则增加,其?效率先略微减少、后增加,发电成本、动态投资回收年限及静态投资回收年限先略微增加、后减小;随着余热换热器出口烟气温度的增加,耦合ORC系统的热力学性能下降,而热经济性能得到提高。
②一级膨胀机进口压力的升高会使耦合ORC系统净输出功率、热效率及?效率均升高,而热经济性下降,即系统的发电成本、动态投资回收年限及静态投资回收年限均增加。
③随着中间换热器节点温差的增加,耦合ORC系统净输出功率、热效率及?效率均降低,而系统发电成本及投资回收年限先快速减少、后略微增加。
中间换热器节点温差存在临界值,当节点温差小于该临界值时,耦合ORC系统的热力学性能优于单级跨临界ORC系统,临界值变化范围为(0~20)℃。
此外,存在最佳中间换热器节点温差使得系统热经济性能最好,该最佳值变化范围为(7~9)℃。
④在计算范围内,工质临界温度大于150℃时,耦合ORC系统性能较好,同时,耦合ORC系统中工质为等熵工质时的系统性能优于为干工质时系统性能,即等熵工质对系统性能的提高有积极作用。
ORC技术全面分析(###)分析
ORC的发展
ORC的定义:ORC(Organic Rankine Cycle)——有机物朗肯循环 是以有机物代替水作为工质,回收中低品位热能的朗肯动力循环
国外发展历程: 研究最早始于1924年 70年代石油危机的爆发,国外进行了大量的研究 九十年代后期至今,开始广泛工程应用:以色列Ormat,美国UTC 国内发展历程: 最早始于80年代,天津大学,双螺杆膨胀机 80年代——二十世纪末,仅有少数高校,进行理论研究
ORC机组——1.2万~1.3万/kW(蒸发器、冷凝器、汽轮发电机组、工质泵) 普惠280kW机组,离岸价:43万美元 增加辅助配套设备(水泥行业——中间换热器——热水型低压热水锅炉) 投资增加——1.7万~1.8万/kW 如果ORC机组设备实现国产化,成本降低——万元以下/kW
投资回收期3(设备国产,有效利用原系统风机水泵及冷凝系统)-5年
发电机
冷 凝 器
冷 凝 器 工质泵
风机
锅炉给水泵
循环冷却水泵 油泵
循环冷却水泵
由于有机工质物性特点,ORC系统采用径流式汽轮机 ORC系统蒸发器一般针对液相热源设计,因此,若余热形式为烟气,通常需 要设置导热油锅炉,将热源形式进行转换 ORC系统无射抽设备,系统背压运行
系统净发电效率比较: ORC系统:适用于250 ℃以下热源,效率5%—20% 蒸汽系统:适用于300 ℃以上热源,效率20%—25% 系统自用电率比较: ORC系统:机组7%左右,系统20%左右 蒸汽系统:约为7%左右 系统安全性比较: ORC系统:若采用丁烷、戊烷等烷烃类作为系统工质,需考虑防爆要求
针对300~350℃余热资源:
ORC系统 蒸发温度(℃) 冷凝温度(℃) 130~170 40 蒸汽系统 200~250 40
ORC技术全面分析(###)分析
ORC的系统构成及原理
发电机 透平 余热流体 冷却水 蒸 发 器
冷 凝 器
泵
工质泵
冷却水泵
4—1:工质在蒸发器中定压吸热
1—2s:工质在膨胀机中理想膨胀做功
1—2:工质的实际做功过程 2—3:工质在冷凝器中定压放热
Hale Waihona Puke 3—4:工质在工质泵中压缩过程
ORC的特点
(1)蒸发侧形式多样:70—300℃范围的余热资源均可利用 针对不 同热源形式,取热方式多样。
蒸发温度比较:
水临界温度:373.95℃
有机工质临界温度: R123: 183.68 ℃ R245fa: 154.01℃ 正丁烷:151.98 ℃ 正戊烷:196.55 ℃
常用ORC有机工质临界温度均低于200 ℃,对于余热发电系统,一 般不采用超临界循环,因此: 当余热热源温度300~350 ℃时,ORC系统最高蒸发温度不超过200 ℃,蒸汽系统可在200~250 ℃之间选择蒸发温度
动力循环的初参数,但是终参数的提高及冷凝系统设备的
复杂化,也对其应用带来了不利影响。
发电量比较: 通过比较可知: 当汽轮机进口压力高于 6MPa时,Kalina才体现出 发电优势 商用Kalina循环工作压力一 般7-8 Mpa,即: 理论上,Kalina发电量可以达 到9000—10000kW 实际上,蒸汽循环发电 量可保证7000kW以上
发展实施规划:
指导思想:尽快实施,掌握应用 目前能够与亟需解决的问题:
1、热源参数的确定与选取
2、中间取热装置——热水锅炉 3、ORC系统的接入
未来愿景:
采用成熟机组,在水泥线上进行应用,速度快,领先优势,掌握ORC 机组与水泥线的配合。
低温余热发电ORC有机朗肯循环技术及其产业化
西藏羊八井地热发电
3.太阳能
我 国 2/3 的 面 积 年 日 照 时 间 在
2300小时以上,每平方米太阳能年
辐射总量3340-8400MJ,陆地表面每
年接收的太阳辐射能相当于17000亿
吨标准煤,而且分布极为广泛 ,蕴
含的发电能力约1400万亿kWh/a,是
我国一年总发电量的近300倍。
2.透平进排气压力低,蒸汽比体积较大,导致透平通流面 积较大。
3.通常透平进口蒸汽需具有一定的过热度,在余热锅炉中 必然要设置过热蒸汽加热段,导致余热锅炉的结构比较复杂。
4.管道内容易结垢及生锈,维修成本较高,寿命较短。
5.需要较多的运行、维修人员,运行成本较高。
6.单机容量不能太小,系统满负荷运行率不高。
谢 谢
3.通过核心技术的专利转让及技术的工程化市场推广应用, 预计在第一个6年内便可收回全部投资。
4.通过对我国低温热能发电市场需求的初步调查,只需将 单位装机容量成本控制在2万元/kWe以内,每年国内的ORC低温 热能发电设备市场需求量至少在500万kWe。在ORC技术的市场推 广期,保守估算,工程中心每年能完成2万kWe装机容量的ORC低 温余热发电的工程技术设计及设备配套和研发,市场订单可逾3 亿人民币,实现利税约1亿人民币。
7.一般只适用于烟气温度高于350℃以上的余热。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Int. J. of Thermodynamics Vol. 11 (No. 3), pp. 101-108, September 2008ISSN 1301-9724Supercritical Fluid Parameters in Organic Rankine Cycle ApplicationsSotirios Karellas, Andreas Schuster* National Technical University of Athens, Laboratory of steam boilers and thermal plants 9 Heroon Polytechniou, 15780 Athens Greece E-mail: sotokar@mail.ntua.gr Technische Universität München, Institute of Energy Systems Boltzmannstr. 15, 85748 Garching, Germany E-mail: schuster@es.mw.tum.de Abstract Nowadays, the use of Organic Rankine Cycle (ORC) in decentralised applications is linked with the fact that this process allows to use low temperature heat sources and offers an advantageous efficiency in small-scale applications. Many state of the art applications like geothermal and biomass fired power plants as well as new applications like solar desalination with reverse osmosis, waste heat recovery from biogas digestion plants or micro-Combined Heat and Power (micro-CHP) systems can successfully use the ORC process. The investigation of supercritical parameters in ORC applications seems to bring promising results in decentralised energy production. This paper presents the results from the simulation of the ORC process in normal and supercritical fluid parameters and discusses the efficiency variation in various applications. Keywords: Organic Rankine cycle (ORC), supercritical parameters, waste heat recovery.1. Introduction The Organic Rankine cycle (ORC) is a Clausius Rankine cycle in which an organic working fluid is used instead of water-steam. In the last years it became quite popular in energy production processes, due to the fact that it gives the possibility to use heat of small supply rate and low temperature level. One of the main challenges when ORC is used in a process is the choice of the appropriate working fluid and of the particular cycle design with which maximum thermal efficiency can be achieved. The ORC process is similar to the Steam process, which uses water as working fluid. The difference between water and an exemplary organic fluid is shown in Figure 1. The diagram shows the saturation lines and three isobars with the same pressure for water and organic fluid. It can be clearly seen, that the Critical Point (C.P.) of organic fluids is reached at lower pressures and temperatures compared with water. For numerous organic fluids the vapour saturation * Author to whom correspondence should be addressed. schuster@es.mw.tum.de line has a positive inclination. This allows the use of a recuperator for preheating the liquid working fluid by desuperheating the expanded vapour. In the state of the art applications which are discussed nowadays, saturated or slightly superheated vapour is expanded in the turbine. However, the investigation of supercritical fluid parameters is of high importance, since, as it will be discussed later, it leads to higher thermal efficiencies making these plants even more attractive for waste heat applications. The main advantage of the supercritical process is the fact that the average high temperature in which the heat input is taking place is higher than in the case of the subcritical fluid process. Therefore, according to Carnot, the efficiency is higher. Figure 2 shows the process of a sub- and supercritical ORC in a T-s-Diagram for a constant superheated vapour temperature. Even for constant superheated vapour temperatures, the heat input occurs at a higherInt. J. of Thermodynamics, Vol. 11 (No. 3) 101400Water WaterC. P.output is analogue to the enthalpy fall in the turbine minus the enthalpy rise in the pump:300Pmech ~ ( h3 − h4 ) − ( h2 − h1 )p3=30 bar p3=30 bar(2)Temperature [°C]200pp33 C. P. p2 p2 p1 p1p2=10 bar p2=10 bar p1p1=2 bar =2 barThe heat input to the ORC process is done usually with the help of the thermal oil and is analogue to:& QThermal − oil ~ (h3 − h2 )(3)100Organic Fluid Organic Fluid 0 0,0 2,0 4,0 6,0 8,0h1, h2, h3 and h4 are the specific enthalpies according to Figure 2. In the case of supercritical process, the enthalpy fall (h3’-h4’) is much higher than in the subcritical one, whereas the feed pump’s additional specific work to reach supercritical pressure, which corresponds to the enthalpy rise (h2’-h2), is very low. Therefore, according to equation (1), the efficiency of the process is higher in the case of supercritical ORC parameters and this fact provides new frontiers in the investigation of ORC applications. For the heat exchange system that transfers the heat from the heat source to the organic fluid, the efficiency is defined by the following equation:Entropy [kJ/kg]Figure 1. T-S Diagram for organic fluid and water.average temperature level. In reality such big superheating as shown in the diagram would not be realized due to the tremendous heat exchange area needed due to the low heat-exchange coefficient for the gaseous phase.200 Subcritical ORC subcritical ORC Supercritical ORC 3’ supercritical ORC3‘ 3‘‘ 3150η HEx = & Q& QOrganicfluid(4)Heat − sourceTemperature [°C]1004’Finally, the efficiency of the whole system is defined as follows:4η System =Pmech & Q Heat − source= η HEx ⋅ η th(5)5012’ 250 0,75 1,25 1,75 2,25Entropy [kJ/kg]The above presented efficiencies will be used for the qualitative analysis of the ORC applications which will be described in this paper.2. Cycle design Figure 2. Sub- and supercritical ORC. Example of R245fa.The thermal efficiency of the cycle is defined as follows:2.1 Organic FluidsThe first step when designing an ORC cycle application is the choice of the appropriate working fluid. The working fluids which can be used are well known mainly from refrigeration technologies. The selection of the fluid is done according to the process parameters of the cycle. According to the critical pressure and temperature, as well as the boiling temperature in various pressures, the appropriate fluid which provides the highest thermal and system efficiency has to be selected. However, the thermodynamic parameters of the fluid are not the only criteria to select them for efficientη th =Pmech & QThermal − oil(1)Pmech is the net mechanical power produced with the ORC process (which will be assumed as equal the net electrical power). This power102 Int. J. of Thermodynamics, Vol. 11 (No. 3)applications. The Montreal Protocol, an international treaty for the protection of the stratospheric ozone layer, and the EC regulation 2037/2000 restrict the use of ozone depleting substances (European Parliament and council, 2004). Therefore, the cycle designer should always be aware of the global warming potential and the low ozone depletion of the working fluid before designing the ORC application. Finally, safety reasons like the maximum allowable concentration and the explosion limit should be considered. In TABLE I four selected fluids and their characteristics are presented. TABLE I. LIST OF WORKING FLUIDS. Fluid R134a R227ea R236fa R245fa Tc [°C] 101,1 101,7 124,9 154,1 pc [bar] 40,6 29,3 32,0 36,4 Ts, 1 bar [°C] -27,1 -16,5 -1,4 14,9 ps, 20 °C [bar] 5,7 3,9 2,3 1,2Rotary screw compressors are also positive displacement machines. The mechanism for gas compression utilises either a single screw element or two counter rotating intermeshed helical screw elements housed within a specially shaped chamber. As the mechanism rotates, the meshing and rotation of the two helical rotors produces a series of volume-reducing cavities. Gas is drawn in through an inlet port in the casing, captured in a cavity, compressed as the cavity reduces in volume, and then discharged through another port in the casing. Screw type compressors can work in the reverse direction also as expanders providing similar efficiencies. The effectiveness of the screw mechanism is dependent on close fitting clearances between the helical rotors and the chamber for sealing of the compression cavities.3. Applications of the organic Rankine cycleThe use of waste heat from a process is the main application of the Organic Rankine Cycle. Figure shows the general scheme of waste heat recovery by means of ORC process. More specifically, waste heat is transferred via a thermal oil into the organic medium in the evaporator. The organic medium is then expanded in the turbine.The fluids are given in the order of rising critical temperature Tc and normal boiling temperature Ts, 1 bar . pc is the critical pressure and ps the vapour pressure at 20°C. The ORC process can work with a constant superheating of a few Kelvin. Higher superheating in order to avoid liquid in the exhaust vapour is not necessary, because the expansion ends in the area of superheated vapour in contrast to water. Higher superheating of the vapour is favorable for higher efficiencies, but because of the low heat exchange coefficients this would lead to very large and expensive heat exchangers.Evaporator Thermal oil loopTurbineGGeneratorRecuperatorCondenser Cooling CircuitM2.2 The turbineThe power range of ORC process applications can vary from a few kW up to 1 MW. The most commonly used turbines which are available in the market cover a range above 50 kW. Therefore, expanders in the power range below 10 kW have to be found. A very promising solution to this turbine market problem is to use the scroll expander. This expander works in a reverse way as the scroll compressor, which is a positive displacement machine used in air conditioning technologies. Scroll machines have two identical coils the one of which is fixed and the other is orbiting with 180° out of phase forming crescent-shaped chambers, whose volumes accelerate with increasing angle of rotation. Another promising machine for the expansion of the working fluid is the screw type compressor.Feed PumpFigure 3. Main components of the ORC.In this chapter three different types of ORC applications will be discussed: The use of waste heat from biomass combustion, internal combustion engines and geothermal process.3.1. Biomass combustionCombustion is the most common process for energy production from this renewable fuel. The fact that it is CO2-free has lead the countries to the financial support of biomass combustion technologies. Some countries like for example Germany support extra the use of innovative technologies such as ORC process. Therefore,Int. J. of Thermodynamics, Vol. 11 (No. 3) 103many examples of ORC powered Combined Heat and Power plants are working in central Europe like Stadtwärme Lienz Austria 1000 kWel, Sauerlach Bavaria 700 kWel, Toblach South Tyrol 1100 kWel, Fußach Austria 1500 kWel (Duvia et al., 2002; Obernberger et al., 2002). The main reason why the construction of new ORC plants increases is the fact that it is the only proven technology for decentralized applications for the production of power up to 1 MWel from solid fuels like biomass. The electrical efficiency of the ORC process lies between 6-17 % (Karl, 2004). However, even if the efficiency of the ORC is low, it has advantages, like the fact that the system can work without maintenance, which leads to very low personnel costs. Furthermore the organic working fluid has, in comparison with water, a relatively low enthalpy difference between high pressure and expanded vapour. This leads to higher mass flows compared with water. The application of larger turbines due to the higher mass flow reduces the gap losses compared to a water-steam turbine with the same power. The efficiency of an Organic Rankine Cycle turbine is up to 85 % and it has an outstanding part load behavior (Turboden). The exhaust gas from biomass combustion has a temperature of about 1000 °C. For the use of the exhaust heat in the ORC process, the working fluid which is used in most of the biomass applications is octamethyltrisiloxane (OMTS). Drescher et al. (2007) discusses the use of other organic fluids and calculates an efficiency rise of around three percentage points in the case where Butylbenzene is used.Exhaust gas Fuel Air Turbo Thermal oilOrganic Fluid Expander Steam GeneratorGGIC Engine RecuperatorCondenser Feed PumpMotor cooling waterFigure 4. Schematic representation of waste heat recovery for combustion engines.first prototypes for on-road-vehicle applications, where the condition for waste heat is variable. Figure 4 shows the schematic setup of such a system. As shown in the figure, the combustion air is first compressed and then, after being cooled ends at the combustion chamber, where the fuel is being burned. The exhaust gas which leaves the motor at a temperature around 490 °C transfers the needed heat to the thermal oil, which preheats, evaporates and superheats the organic fluid. The superheated organic vapour is expanded in a scroll or a screw type expander, which, coupled with a generator, produces electric power. Due to the fact, that the used working fluid is after the expansion still in the area of superheated vapour, it is used in the recuperator in order to preheat the liquid working fluid. After being desuperheated, the vapour is condensed in a condenser which is cooled back with air or water from an evaporative cooler. The feed pump raises the pressure of the working fluid and forces the fluid again through the heat exchangers. As working fluid for the calculations, the fluorohydrocarbon R245fa was chosen. The fluid has a very broad application range. It is used as foaming agent, refrigerant and filling for thermosiphons as well as working fluid for Organic Rankine Cycle for heat recovery and bottoming cycles (Honyewell, 2000). Due to the negative inclination of the vapour saturation line (see Figure 2) between evaporation (2-3’) and condensation (5-1), the sensible heat which rests in the expanded vapour (4) can be used for preheating the liquid working fluid. The assembly of the system is the same in the cases of sub- and supercritical fluid parameters. Figures 5 and 6 show the Q-T diagrams of sub- and supercritical ORC process in waste heat recovery from an internal3.2. Waste heat recovery from IC enginesA typical example of ORC powered waste heat recovery units comes from the field of Internal Combustion (IC) Engines. ORC process can be found for example in biomass digestion plants. In this case, biogas coming out from the biomass digester is burned in an internal combustion engine. The waste heat from this engine operates the ORC cycle. Depending on the size of the digestion plant and the standard of the insulation of the plant, the thermal need is between 20 … 25 % of the waste heat of the motor (Fachagentur Nachwachsende Rohstoffe, 2004). According to the low temperature level, the digester can be heated with the cooling water of the motor and the turbocharger. For driving the ORC the heat of the exhaust gas can be used. A coupling of the ORC process with internal combustion engines can be also found in104 Int. J. of Thermodynamics, Vol. 11 (No. 3)combustion engine. The exhaust gas heats the thermal oil which temperature reaches the value of about 240°C. In the subcritical case, the preheating, evaporation, and superheating area are clearly distinguished, when, on the other hand, in the case of supercritical parameters this does not happen. This fact has an effect on the exergy losses of the systems. In the second case the thermodynamic efficiency is better and this can be also observed in Figures 5 and 6, since inSH Evaporator EconomizerTABLE II. EFFICIENCIES OF SUB- AND SUPERCRITICAL ORC PROCESSES COMBINED WITH IC ENGINES.SubcriticalSupercritical15,97 % 12,72 %ηTh ηSystem14,62 % 11,27 %relative efficiency gain + 9,2 % + 12,8 %Temperature [°C]600 500 400 300 200 100 0 0 20 40 60 80 100 PP2 PP1Heat [%]Figure 5. Q-T diagrams of subcritical ORC waste heat recovery process.Total heat transferred to the thermal oil and the supercritical mediumTemperature [°C]600 500 400 300 200 100 0 0 20 40 60 80 100higher in the case of supercritical fluid parameters as it has been discussed when presenting equation (1). The total efficiency of the system is also about one percentage point better in the case in which supercritical fluid parameters are used. Therefore, the total efficiency of the system is about 13% higher in the case of supercritical fluid parameters. This result is linked with two facts. First of all, with the fact that, as already mentioned, the thermodynamic efficiency is better in the case of supercritical ORC and the second is that in the supercritical process more heat can be transferred from the exhaust gas into the thermal oil when the pinch point (PP1) difference between them is the same. The total efficiency of the system can be improved further if the internal efficiency of the pump is better. For the above mentioned calculations a pump efficiency of 75 % has been taken into consideration.3.3. Geothermal plants using ORCAnother case where the ORC technology is applied is its combination with the heat coming from geothermal heat sources. Conventional power station technology is not suitable for heat sources with temperatures between 80°C and 160°C. The Kalina process which is a process using a mixture of ammonia and water seems to be the only alternative to ORC. An example of a geothermal plant using the ORC process is the plant Neustadt-Glewe in Germany (Broßmann et al.), which was the first geothermal power plant in Germany (Lund, 2005). This plant is a simple Organic Rankine Cycle Plant which uses nPerfluorpentane (C5F12) as working fluid. It uses water of approximately 98°C located at a depth of 2.250 m and converts this heat to 210 kW electricity by means of an Organic-RankineCycle (ORC) turbine. Another well known geothermal plant using ORC process is the Altheim Rankine Cycle Turbogenerator in the upper Austrian city Altheim. This plant produces 1 MWel power and supply heat to a small district heating system (www.geothermie.de). The thermal power input from the geothermal water is equal to 12,4 MWth.Int. J. of Thermodynamics, Vol. 11 (No. 3) 105PP2PP1Heat [%]Figure 6. Q-T diagrams of supercritical ORC waste heat recovery process.the second diagram, the area between the thermal oil curve and the organic fluid curve is much smaller than in the first one. In both diagrams the minimum temperature difference between the thermal oil and the exhaust gas (pinch point PP1) was kept constant at 40 K. The second pinch point linked with the minimum temperature difference between the thermal oil and the organic medium (PP2) was also kept constant at the value of 10 K. The thermal efficiency as well as the system efficiency for subcritical and supercritical fluid parameters are presented in TABLE II. As presented in TABLE II, the calculations proved that the thermal efficiency of the Organic Rankine cycle is more than one percentage point10Water Water Expander District Heating Net Steam Generator RecuperatorGOrganic FluidR227ea System efficiency [%] 8 6115 Super 10%4105 Sub115 Super 1% 115 Sub2105 Super 1%Feed Pump Bore Hole Injection Bore Hole0 100120140160Figure 7. Geothermal ORC plant.The Geothermal plant which has been taken into consideration during the calculations of the ORC process is shown in Figure 7. As it can be seen in this figure, hot water coming from the earth is pumped and provides heat to a heat exchanger for the district heating net. Another part of it bypasses the heating net and is used as heat sources for the Organic Rankine Process. The cold water is returned to the earth. A difference between the ORC used for the geothermal plant and the processes described before is that in the case of geothermal plants no thermal oil is needed. The hot water coming from the earth has a temperature of around 90°C160°C and provides its heat directly to the ORC fluid. The efficiency of the geothermal power plant has been calculated in various cases.150 Temperature [°C] 100 50 0 -50 -100 0,50 1,00 1,50 2,00 Entropy [kJ/kgK]Heat source temperature [°C]Figure 9. System efficiency for sub- and supercritical cycles (R227ea).In Figure 9 and Figure 10 the variation of the system efficiency in subcritical and supercritical fluid parameters is presented. Two cases of superheated vapour temperature are presented (105°C and 115°C). In the case of supercritical calculations, the cases of 1% and 10% pressure above the critical pressure have been examined. The efficiency of the turbine was set to 80 %, the efficiency of the feed pump to 70 %, condensation temperature to 30 °C and the temperature difference at the pinch point of the recuperator to 5 K. Pressure losses are neglected.10 R134a System efficiency [%] 8 6 4105 SubTC R134a115 Super 1% 115 Super 10% 115 SubR227ea2105 Super 1%0 100120140160Figure 8. R227ea and R134a saturation curves.Two working fluids have been taken into consideration: the working fluids R134a and R227ea. These two working fluids, according to TABLE I are suitable for such plants, since they both have a critical temperature of around 100°C. The form of their saturation lines is also of great interest since the one is with an inclination (227ea) and the other without (see figure 8) The heat source temperature in the calculations varied between 110 °C and 160 °C.Heat source temperature [°C]Figure 10. System efficiency for sub- and supercritical cycles (R134a).Concerning the thermal efficiency of the ORC process, the results from the calculations are presented in TABLE III. In TABLE III, in the cases in which the efficiency is typed bold, the expansion in the turbine ends in the two-phase area (point 4 in Figure 1), so no recuperator can be used. That is the reason why the thermal efficiency in these106 Int. J. of Thermodynamics, Vol. 11 (No. 3)TABLE III. THERMAL EFFICIENCY FOR SUB- AND SUPERCRITICAL FLUID PARAMETERS. sub35,5 bar4. ConclusionsThe Organic Rankine Cycle is nowadays the only proven technology in the power range of a few kW up to 1MW. Various applications are using this technology in order to utilise heat of low temperature level. The main task of the designers of such applications is to choose the right working fluid and the right thermodynamic properties of the working fluid in order to optimize the power output and the efficiency of the system. This paper has shown that supercritical fluid parameters can maximise the efficiency of the system, since they provide systems with better thermodynamic efficiency. The use of supercritical fluid parameters could also be applied in modern applications like thermal desalination (Schuster et al., 2005) or micro CHP.R227ea super super supersuper(1%) (10%) (20%) (30%) 29,5 bar 32,2 bar 35,1 bar 38,0 barTvapour [°C]105 115 125 135ηTh (%)11,21 12,14 12,9 13,58ηTh (%)10,52 12,17 13,19 14,02ηTh (%)8,60 11,8513,16 14,13ηTh (%)8,11 11,0012,95 14,13ηTh (%)7,84 9,7712,52 14,00sub35,9 barR134a super supersupersuper(1%) (10%) (20%) (30%) 40,6 bar 48,7 bar 48,7 bar 52,8 barTvapour [°C]105 115 125 135ηTh (%)10,44 11,56 12,45 13,22ηTh (%)10,34 11,2912,5 13,46ηTh (%)8,7 11,0412,3 13,45ηTh (%)7,97 10,6711,85 13,27ηTh (%)7,61 9,84 11,5012,94Nomenclaturecases of supercritical parameters is much lower than the subcritical ones, in which a recuperator is used. The high content of liquid in the exhaust vapour can be harmful for the turbine blades. It can be seen, that the thermal efficiency declines with rising supercritical pressure beginning from an optimum pressure. This effect can be explained with the characteristics of the isobars in the T-s-diagram. The change from subto supercritical rises the average upper process temperature. A further rise of the pressure at given live vapour temperature moves the starting point of the expansion to the left side, so the enthalpy difference in the turbine declines, whereas the enthalpy difference, that has to be cooled back in the condenser is nearly constant. In TABLE III it can be also observed that the use of supercritical fluid parameters is not always followed by better thermal efficiencies, which is caused by lower internal heat transfer between exhaust gas and liquid working fluid (see Figure 2) in the supercritical process. However, due to the fact that, as discussed in the previous chapter, in the supercritical process more heat can be transferred from the exhaust gas into the thermal oil when the pinch point (PP1) difference between them is the same, the system efficiency is better in the case of supercritical fluid parameters, even if the thermal efficiency in some cases is lower (see Figures 9 and 10).h P p Q s TEnthalpy Power Pressure Heat Specific entropy Temperature[kJ/kgK] [kW] [bar] [kWh] [kJ/kgK] [°C]Greek lettersηsubscriptsEfficiency[%]c HEx mech s thC.P. CHP EC IC ORC OMTS PP SHCritical Heat Exchange system Mechanical Saturation ThermalAbbreviationsCritical Point Combined Heat and Power European Commission Internal Combustion Organic Rankine Cycle OctaMethylTrisilOxane Pinch Point Super HeaterReferencesBroßmann, E., Eckert, F., Möllmann, G.: Technical concept of the geothermal power plant Neustadt-Glewe. (technisches Konzept des geothermischen Kraftwerks Neustadt-Gelewe). Berlin, Germany; http://www.geothermie.de/gte /gte43/technisches_konzept_des_geotherm.htm (in German)Int. J. of Thermodynamics, Vol. 11 (No. 3) 107Drescher I., Brüggemann D. (2007): Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants, Applied Thermal Engineering 27 (2007) 223-228. Duvia, A., Gaia M. (2002): ORC plants for power production from 0,4 MWe to 1,5 MWe: technology, efficiency, practical experiences and economy. 7th Holzenergie Symposium, Zürich, Switzerland, 18. Ocotber 2002. European Parliament and Council (2004): Regulation (EC) No 2037/2000 on substances that deplete the ozone layer, March 2004. Fachagentur nachwachsende Rohstoffe e.V. (2004) (ed.): Assistance for Biogas production and use (Handreichung Biogasgewinnung und – nutzung). Leipzig,. (in German) Honyewell(2000):Genertron®245fa.Applications Development guide. Honeywell Fluorine Products, Morristown, USA, http://www. geothermie.de/gte/gte3637/altheim_gaia.htmKarl, J. (2004): Decentralised energy systems, new technologies in liberalised energy market Dezentrale Energiesysteme , (Neue Technologien im liberalisierten Energiemarkt) Oldenbourg Wissensschaftsverlag, München,. (in German) Lund, J (2005). W.: Combined Heat and Power plant Neustadt-Glewe, Germany. GHC, Bulletin June. Obernberger, I., Thonhofer, P., Reisenhofer E. (2002):Description and evaluation of the new 1000 kWel Organic Rankine Cycle process integrated in the biomass CHP plant in Lienz, Austria. Euroheat& Power, Volume 10/2002. Schuster, A., Karellas, S., Karl, J. (2005): Simulation of an innovative stand-alone solar desalination system with an Organic Rankine Cycle. SIMS 2005, 46th Conference on Simulation and Modeling, Trondheim, Norway, 13-14 October 2005.Turboden High Efficiency Rankine for Renewable Energy and Heat Recovery available at: http://www.turboden.it/orc.asp (Date of access 25.01.06)108 Int. J. of Thermodynamics, Vol. 11 (No. 3)。