二次函数知识点详解和巧记口诀

合集下载

初中二次函数知识点详解助记口诀

初中二次函数知识点详解助记口诀

二次函数知识点详解

知识点一、平面直角坐标系

1,平面直角坐标系

在平面内画两条互相垂直且有公共原点数轴,就组成了平面直角坐标系。

其中,水平数轴叫做x轴或横轴,取向右为正方向;铅直数轴叫做y轴或纵轴,取向上为正方向;两轴交点O(即公共原点)叫做直角坐标系原点;建立了直角坐标系平面,叫做坐标平面。

为了便于描述坐标平面内点位置,把坐标平面被x轴和y轴分割而成四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上点,不属于任何象限。

2、点坐标概念

点坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标位置不能颠倒。平面内点坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点坐标。

知识点二、不同位置点坐标特征

1、各象限内点坐标特征

点P(x,y)在第一象限

点P(x,y)在第二象限

点P(x,y)在第三象限

点P(x,y)在第四象限

2、坐标轴上点特征

点P(x,y)在x轴上,x为任意实数

点P(x,y)在y轴上,y为任意实数

点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)

3、两条坐标轴夹角平分线上点坐标特征

点P(x,y)在第一、三象限夹角平分线上x与y相等

点P(x,y)在第二、四象限夹角平分线上x与y互为相反数

4、和坐标轴平行直线上点坐标特征

位于平行于x轴直线上各点纵坐标相同。

位于平行于y轴直线上各点横坐标相同。

5、关于x轴、y轴或远点对称点坐标特征

点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数

点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数

二次函数速记口诀

二次函数速记口诀

二次函数速记口诀

二次方程零换y,二次函数便出现。

全体实数定义域,图像叫做抛物线。

抛物线有对称轴,两边单调正相反。

A定开口及大小,线轴交点叫顶点。

顶点非高即最低。上低下高很显眼。

如果要画抛物线,平移也可去描点,

提取配方定顶点,两条途径再挑选。

列表描点后连线,平移规律记心间。

左加右减括号内,号外上加下要减。

二次方程零换y,就得到二次函数。

图像叫做抛物线,定义域全体实数。

A定开口及大小,开口向上是正数。

绝对值大开口小,开口向下A负数。

抛物线有对称轴,增减特性可看图。

线轴交点叫顶点,顶点纵标最值出。

如果要画抛物线,描点平移两条路。

提取配方定顶点,平移描点皆成图。

列表描点后连线,三点大致定全图。

若要平移也不难,先画基础抛物线,

顶点移到新位置,开口大小随基础。

二次函数与几何方法

分为:二次函数与线段及角、等腰三角形、直角三角形、相似三角形、平行四边形、

矩形、菱形、正方形、圆、面积等问题)

重要思想:①分类讨论→代表性题型:动态几何问题,存在性讨论问题;

②转化思想(待定系数)

→代表性题型:面积问题,二函数图象与坐标轴的交点距离、二次函数与一次函数交点距离等; ③最短路径→代表性题型:利用二次函数的对称性求三角形的周长最小时点的坐标;

④尺规作图→代表性题型:二次函数中求出直角三角形与等腰三角形时点的坐标,采用直角三角板与圆规进行尺规作图分析;

⑤极端值思想→代表性题型:动态几何问题,动态函数问题;

⑥数形结合思想→代表性题型:函数与几何综合题。

二次函数的常见考法

(1)考查一些带约束条件的二次函数最值;

(2)结合二次函数考查一些创新问题

初三数学二次函数知识点总结

初三数学二次函数知识点总结

初三数学 二次函数 知识点总结

一、二次函数概念:

1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.

2. 二次函数2y ax bx c =++的结构特征:

⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.

二、二次函数的基本形式

1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2

y a x h =-的性质:

左加右减。

4. ()2

y a x h k =-+的性质:

三、二次函数图象的平移

1. 平移步骤:

方法一:⑴ 将抛物线解析式转化成顶点式()2

y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,

处,具体平移方法如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位

2. 平移规律

在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:

⑴c bx ax y ++=2

沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2

变成

m c bx ax y +++=2(或m c bx ax y -++=2)

中考数学二次函数超全知识点记忆口诀

中考数学二次函数超全知识点记忆口诀

中考数学二次函数超全知识点记忆口诀二次函数是中考数学的重点内容之一,掌握二次函数的知识点对于解题非常重要。下面是二次函数的超全知识点记忆口诀:

一、二次函数的定义:

二次函数ax^2 + bx + c (a≠0)

二次项的系数a必定不为零。

二、二次函数的图像:

对于二次函数

抛物线开口向上会往上

抛物线开口向下会往下。

三、二次函数的对称轴:

对称轴方程形如x=k(k为常数)

k代表横坐标的平移,可随意。

四、二次函数的顶点坐标:

顶点坐标是(h,k)

h=k值的相反数

这一点是要记牢的。

五、二次函数的平移:

纵坐标加减h,横坐标加减k

这样可以让函数平移动。六、二次函数的判别式:

Δ=b^2-4ac

Δ大于零,则两根实数

Δ等于零,有相同根

Δ小于零,则无实根。

七、二次函数的根公式:

x1,x2=(-b±√(b^2-4ac))/2a

这个公式是非常重要的。八、二次函数的零点:

根就是函数与x轴的交点

交点的个数和Δ有关。

九、二次函数的单调性:

(a>0)函数开口朝上

(a<0)函数开口朝下。

十、二次函数的最值:

(a>0)最小值在顶点处

(a<0)最大值就能看出。

十一、二次函数的增减性:

判断增减很简单

大于发散,小于集中。

十二、二次函数的平行与垂直关系:

两二次函数平行

斜率a相等;

两二次函数垂直

倒数互为相等。

十三、二次函数与轴交点:

与x轴交点,就是求解方程ax^2+bx+c=0;与y轴交点,就是求函数的常数项c。

十四、二次函数的最后性质:

函数图像至少有一个对称中心

这个中心是顶点。

十五、二次函数的图象变换:

求法很简单

二次函数知识点详解及巧记口诀

二次函数知识点详解及巧记口诀

黄冈中学“没有学不好滴数学”系列之十二

二次函数知识点详解

知识点一、平面直角坐标系

1,平面直角坐标系

在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点,不属于任何象限。

2、点的坐标的概念

点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。

知识点二、不同位置的点的坐标的特征

1、各象限内点的坐标的特征

点P(x,y)在第一象限0,0>>⇔y x

点P(x,y)在第二象限0,0><⇔y x 点P(x,y)在第三象限0,0<<⇔y x 点P(x,y)在第四象限0,0<>⇔y x

2、坐标轴上的点的特征

点P(x,y)在x 轴上0=⇔y ,x 为任意实数

点P(x,y)在y 轴上0=⇔x ,y 为任意实数

点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0)

3、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等

二次函数abc10条口诀

二次函数abc10条口诀

二次函数abc10条口诀

a>0时,抛物线开口向上;a<0时,抛物线开口向下。当抛物线对称轴在y 轴左侧时a,b同号,当抛物线对称轴在y轴右侧时a,b异号。c>0时,抛物线与y轴交点在x轴上方;c<0时,抛物线与y轴交点在x轴下方。a=0时,此图像为一次函数。b=0时,抛物线顶点在y轴上。c=0时,抛物线在x轴上。当抛物线对称轴在y轴左侧时a,b同号,当抛物线对称轴在y轴右侧时a,b异号。

二次函数的基本表示形式为y=ax²+bx+c,a≠0。二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。

二次函数表达式为y=ax²+bx+c且a≠0,它的定义是一个二次多项式。如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。

二次函数abc10条口诀

二次函数abc10条口诀

二次函数abc10条口诀

二次函数是中学数学中一个重要的概念,在学习二次函数时,了解关于二次函数的性质和特点是非常重要的。为了帮助大家更好地记忆和理解二次函数的内容,下面给出了10条关于二次函数的口诀,助您轻松掌握二次函数的重要知识点。

口诀一:二次的意志

在二次函数中,二次项的系数a代表了二次函数的开口方向和大小,关于a的取值有三条重要的规则需要记住:

1.当a>0时,二次函数开口向上;

2.当a<0时,二次函数开口向下;

3.当a=0时,二次函数就退化成了一次函数。

口诀二:顶峰或底谷

二次函数的顶点是函数图像的最高点或最低点,顶点的横坐标就是二次项的系数b的相反数,纵坐标则是带入该横坐标得到的函数值。

口诀三:顺时针或逆时针?

二次函数的抛物线在坐标系中的开口方向由二次项的系数a和平方数的系数c的正负号决定:

1.当a>0且c>0时,抛物线开口向上;

2.当a<0且c>0时,抛物线开口向下;

3.当a>0且c<0时,抛物线开口向下;

4.当a<0且c<0时,抛物线开口向上。

口诀四:判别式开局

判别式是判断二次函数的根的性质的一个重要指标,其值为b2−4ac。根据判别式的值,可以得到以下结论:

1.当判别式>0时,二次函数有两个不相等的实根;

2.当判别式=0时,二次函数有两个相等的实根,此时二次函数的抛物

线与x轴只有一个交点;

3.当判别式<0时,二次函数没有实根,此时二次函数的抛物线与x轴

没有交点。

口诀五:根公式最牛

根据判别式的值,二次函数的根可以通过以下公式计算得到:

二次函数知识点详解口诀

二次函数知识点详解口诀

二次函数知识点详解

知识点一、平面直角坐标系

1,平面直角坐标系

在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点,不属于任何象限。

2、点的坐标的概念

点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。

知识点二、不同位置的点的坐标的特征

1、各象限内点的坐标的特征

点P(x,y)在第一象限0,0>>⇔y x

点P(x,y)在第二象限0,0><⇔y x 点P(x,y)在第三象限0,0<<⇔y x 点P(x,y)在第四象限0,0<>⇔y x

2、坐标轴上的点的特征

点P(x,y)在x 轴上0=⇔y ,x 为任意实数 点P(x,y)在y 轴上0=⇔x ,y 为任意实数

点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0)

3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等 点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数

二次函数口诀

二次函数口诀

精品资料欢迎下载

二次函数图像与性质口诀:

1、基本性质

二次函数抛物线,图象对称是关键;

开口、顶点和交点,它们确定图象限;

开口、大小由a断,c与Y轴来相见,

b的符号较特别,符号与a相关联;

顶点位置先找见,Y轴作为参考线,

左同右异中为0,牢记心中莫混乱;

顶点坐标最重要,一般式配方它就现,

横标即为对称轴,纵标函数最值见。

一般、顶点、交点式,不同表达能互换。

2、待定系数法

二次函数抛物线,选定需要三个点,

a的正负开口判,c的大小y轴看,

△的符号最简便,x轴上数交点,

a、b同号轴左边,抛物线平移a不变。

3、与一元二次方程的关系及平移

二次方程零换y,二次函数便出现。

表中填入组数据,图像叫做抛物线。

抛物线有对称轴,两边增减正相反。

A定开口及大小,线、轴交点叫顶点。

顶点非高即最低。上低下高很显眼。

如果要画抛物线,平移也可去描点,

提取配方定顶点,两条途径再挑选。

列表描点后连线,平移规律记心间。

左加右减括号内,号外上加下要减。

学习二次函数口诀

学习二次函数口诀

学习二次函数口诀:一口二轴三顶点交点之后再增减

口:抛物线开口

轴:对称轴

顶点坐标公式

交点:图像与坐标轴的交点,包括与x轴y轴的交点

增减性:在对称轴两侧的y随x的增加怎样变化的

二次函数的图象与性质

二次函数开口方向对称轴顶点增减性最大(小)值

y = ax2 a>0时,开口向上;a<0抛时,开口向下。

x=0 y=0(0,0)当a>0时,在对称轴左侧,y随x的增大而减小,在对称轴右侧,y随x的增大而增大;

当a<0时,在对称轴左侧,y随x的增大而增大,在对称轴右侧,y随x的增大而减小。当a>0时,当x=0时,y=0;

当a<0时,当x=0时,y=0;

y = ax2+c x=0 (0,c)当a>0时,当x=0时,y=c;

当a<0时,当x=0时,y=c;

y = a(x-h)2 x=h (h,0)当a>0时,当x=h时,y最小=0;当a<0时,当x=h时,y最大=0;

y = a(x-h)2 +k x=h (h,k)当a>0时,当x=h时,y最小=k;

当a<0时,当x=h时,y最大=k;

y = ax2+bx+c x= (),顶点坐标(,)

当a>0时,当x=h时,y最小=k;

当a<0时,当x=h时,y最大=k;

其中h= ,k=

★二次函数y = ax2、y = ax2+c、y = a(x-h)2以及y = a (x-h)2 +k的形状相同,只是位置不同,相互之间可以通过平移得到,一般式y = ax2+bx+c可以通过配方化成y = a(x-h)2 +k 的形式。(上加下减,左加右减)

3.二次函数的解析式

二次函数解析式常见有三种形式:

二次函数必背口诀

二次函数必背口诀

二次函数必背口诀

一、二次函数定义

二次函数是指一般的二次方程可以写成y=ax²+bx+c的函数,其中a、

b、c是常数,且a≠0。

二、二次函数的图像

二次函数的图像是一个抛物线。当a>0时,抛物线开口向上;当

a<0时,抛物线开口向下。

三、二次函数的顶点

二次函数的顶点即抛物线的最低点或最高点。当a>0时,顶点是最低点;当a<0时,顶点是最高点。

四、二次函数的对称轴

二次函数的对称轴是抛物线的中轴线,对称轴的方程是x=-b/2a。五、二次函数的零点

二次函数的零点即方程ax²+bx+c=0的解,可以使用求根公式或配方法来求得。

六、二次函数的平移

二次函数的平移是指将抛物线沿x轴或y轴方向移动一定的距离。平移后的二次函数的顶点、对称轴和零点位置都会发生变化。

七、二次函数的性质

1. 当a>0时,二次函数的图像在顶点处是最小值;当a<0时,二次函数的图像在顶点处是最大值。

2. 当a>0时,二次函数在对称轴两侧递增;当a<0时,二次函数在对称轴两侧递减。

3. 当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

4. 当a>0时,二次函数的零点有两个;当a<0时,二次函数的零点有零个或两个。

5. 当a>0时,二次函数的对称轴是x=-b/2a;当a<0时,二次函数的对称轴是x=-b/2a。

6. 当a>0时,二次函数的顶点是最低点;当a<0时,二次函数的顶点是最高点。

八、二次函数的应用

二次函数在现实生活中有广泛的应用。例如,抛物线的运动轨迹、物体的抛射运动、电磁波的传播和反射等都可以用二次函数来描述和分析。

(完整版)初中二次函数知识点详解最新助记口诀

(完整版)初中二次函数知识点详解最新助记口诀
① ,抛物线经过原点;
② ,与 轴交于正半轴;
③ ,与 轴交于负半轴.
以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在 轴右侧,则 .
二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。
<0时,抛物线开口向下
与对称轴有关:对称轴为x=
表示抛物线与y轴的交点坐标:(0, )
3、二次函数与一元二次方程的关系
一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标。
因此一元二次方程中的 ,在二次函数中表示图像与x轴是否有交点。
当 >0时,图像与x轴有两个交点;
当 =0时,图像与x轴有一个交点;
绝对值大开口小,开口向下A负数。
抛物线有对称轴,增减特性可看图。
线轴交点叫顶点,顶点纵标最值出。
如果要画抛物线,描点平移两条路。
提取配方定顶点,平移描点皆成图。
列表描点后连线,三点大致定全图。
若要平移也不难,先画基础抛物线,
顶点移到新位置,开口大小随基础。
【注】基础抛物线

二次函数必背知识点(精辟)

二次函数必背知识点(精辟)

二次函数必背知识点 冲刺中考

1.定义:一般地,如果c b a c bx ax y ,,(2

++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2

ax y =的性质

(1)抛物线2

ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2

ax y =的图像与a 的符号关系.

①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;

②当0

(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2

ax y =)(0≠a .

3.二次函数

c bx ax y ++=2

的图像是对称轴平行于(包括重合)y 轴的抛物线.

4.二次函数c bx ax y ++=2

用配方法可化成:()k h x a y +-=2

的形式,其中

a

b a

c k a b h 4422

-=-=,.

5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2

③()2

h x a y -=;④()k h x a y +-=2

;⑤c bx ax y ++=2

.

6.抛物线的三要素:开口方向、对称轴、顶点.

①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0

a 相等,抛物线的开口大小、形状相同.

②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .

7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.

8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 44222

二次函数知识点汇总[全]

二次函数知识点汇总[全]

二次函数知识点

一、二次函数概念:

1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:

⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.

二、二次函数的基本形式

1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2

y a x h =-的性质:

左加右减。

4. ()2

y a x h k =-+的性质:

三、二次函数图象的平移

1. 平移步骤:

方法一:⑴ 将抛物线解析式转化成顶点式()2

y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,

处,具体平移方法如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位

2. 平移规律

在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:

⑴c bx ax y ++=2

沿

y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成

m c bx ax y +++=2(或m c bx ax y -++=2)

二次函数知识点总结

二次函数知识点总结

二次函数知识点

一、二次函数概念:

1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这

里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,

可以为零.二次函数的定义域是全体实数.

2. 二次函数2y ax bx c =++的结构特征:

⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.

⑵ a b c ,

,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式

1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2

y a x h =-的性质:

左加右减。

4. ()2

y a x h k =-+的性质:

三、二次函数图象的平移

1. 平移步骤:

方法一:⑴ 将抛物线解析式转化成顶点式()2

y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位

2. 平移规律

在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:

⑴c bx ax y ++=2

沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2

变成

m c bx ax y +++=2(或m c bx ax y -++=2)

二次函数知识点及解题方法总结

二次函数知识点及解题方法总结

二次函数知识点及解题方法总结

一、二次函数概念:

1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.

2. 二次函数2y ax bx c =++的结构特征:

⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式

1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质:上加下减。

3. ()2

y a x h =-的性质:左加右减。

4. ()2

y a x h k =-+的性质:

三、二次函数图象的平移 1. 平移步骤:

方法一:①将抛物线解析式转化成顶点式()2

y a x h k =-+,确定其顶点坐标()h k ,;②保持抛物线

2y ax =的形状不变,将其顶点平移到()h k ,

处,具体平移方法如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位

方法二:

①c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m

c bx ax y +++=2(或m c bx ax y -++=2):②c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,

c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄冈中学“没有学不好滴数学”系列之十二

二次函数知识点详解(最新原创助记口诀)

内含 <全文看完后 再决定下不下载> 十二个知识点 最新原创助记口诀

用心背后就知好 二次函数疑难问题一扫光 简洁实用 直指中考高分

知识点一、平面直角坐标系

1,平面直角坐标系

在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点,不属于任何象限。

2、点的坐标的概念

点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。

知识点二、不同位置的点的坐标的特征

1、各象限内点的坐标的特征

点P(x,y)在第一象限0,0>>⇔y x

点P(x,y)在第二象限0,0><⇔y x 点P(x,y)在第三象限0,0<<⇔y x 点P(x,y)在第四象限0,0<>⇔y x

2、坐标轴上的点的特征

点P(x,y)在x 轴上0=⇔y ,x 为任意实数

点P(x,y)在y 轴上0=⇔x ,y 为任意实数

点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0)

3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等 点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数

4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。 位于平行于y 轴的直线上的各点的横坐标相同。

5、关于x 轴、y 轴或远点对称的点的坐标的特征

点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数 点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数

6、点到坐标轴及原点的距离

点P(x,y)到坐标轴及原点的距离: (1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x

(3)点P(x,y)到原点的距离等于22y x +

知识点三、函数及其相关概念

1、变量与常量

在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。

2、函数解析式

用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点 (1)解析法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法

把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图像法

用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

知识点四,正比例函数和一次函数

1、正比例函数和一次函数的概念

一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。

特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。这时,y 叫做x 的正比例函数。

2、一次函数的图像

所有一次函数的图像都是一条直线

3、一次函数、正比例函数图像的主要特征:

一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。

k 的符号 b 的符号

函数图像

图像特征

k>0

b>0

y

0 x

图像经过一、二、三象限,y 随x 的增大而增大。

b<0

y

0 x

图像经过一、三、四象限,y 随x 的增大而增大。

K<0

b>0

y

0 x

图像经过一、二、四象限,y 随x 的增大而减小

b<0

y

0 x

图像经过二、三、四象限,y 随x 的增大而减小。

注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。

4、正比例函数的性质

一般地,正比例函数kx y =有下列性质:

(1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大; (2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小。

5、一次函数的性质

一般地,一次函数b kx y +=有下列性质: (1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小

6、正比例函数和一次函数解析式的确定

确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b 。解这类问题的一般方法是待定系数法

相关文档
最新文档