人教版七年级数学下册第六章实数知识点汇总

合集下载

人教版七年级下册第六章实数知识点

人教版七年级下册第六章实数知识点

人教版七年级下册第六章实数知识点
实数是数学中最基本的概念之一,是指可以用数字表示的所有数。

实数由有理数和无理数两部分组成。

有理数是可以表示成两个整数之比的数,包括整数、分数、小数等,而无理数则不能表示成有理数的形式,如圆周率π、自然对数的底数e等。

在七年级数学下册第六章中,我们将学习实数的相关知识,包括实数的分类、实数的运算、实数的比较等。

一、实数的分类
1.有理数:有理数包括正整数、负整数、零、正分数、负分数和整数。

2.无理数:无理数是不能表示成有理数的形式的数,它们包括无限不循环小数和根号下无理数等。

二、实数的运算
1.加法:实数的加法满足交换律、结合律和分配律。

2.减法:实数的减法可以转化成加法,即a-b=a+(-b)。

3.乘法:实数的乘法满足交换律、结合律和分配律。

4.除法:实数的除法可以转化成乘法,即a÷b=a×(1/b),其中b≠0。

5.乘方:实数的乘方表示数的自我乘积,即a的n次幂表示为an。

三、实数的比较
1.正数比较大小:正数比较大小时,数值越大的数越大。

2.负数比较大小:负数比较大小时,数值越小的数越大。

3.正数和负数比较大小:正数比负数大。

4.零和正数、负数比较大小:零比负数大,比正数小。

5.一般实数比较大小:需要将实数转化成同一种形式再比较大小。

以上就是七年级数学下册第六章实数知识点的简单介绍,希望对大家有所帮助。

在学习实数时,我们需要多做练习,多思考,才能真正掌握实数的相关知识。

七年级下册数学实数知识点

七年级下册数学实数知识点

七年级下册数学实数知识点一、实数的定义实数包括所有的有理数和无理数。

有理数是可以表示为两个整数之比的数,例如分数和整数。

无理数则不能表示为两个整数之比,它们的小数部分是无限不循环的,例如π和√2。

二、实数的性质1. 有序性:实数具有大小顺序,可以比较大小。

2. 封闭性:实数的加法、减法、乘法和除法(除数不为零)都是封闭的。

3. 完备性:任何实数序列都有极限,即可以找到一个实数作为该序列的极限值。

三、实数的分类1. 正实数:大于零的实数。

2. 负实数:小于零的实数。

3. 零:既不是正数也不是负数的特殊实数。

4. 整数:分正整数、负整数和零。

5. 分数:可以表示为两个整数之比的数。

6. 无理数:无限不循环小数,如π和√2。

四、实数的运算1. 加法:两个实数相加,和的符号由绝对值较大的数决定,同号实数相加保持符号,异号实数相加取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

2. 减法:减去一个实数等于加上这个数的相反数。

3. 乘法:两个正实数相乘得正,两个负实数相乘得正,正实数与负实数相乘得负。

4. 除法:除以一个非零实数,等于乘以这个数的倒数。

五、实数的比较1. 正实数都大于零、负实数和零。

2. 负实数都小于零、正实数和零。

3. 两个负实数比较大小时,绝对值大的反而小。

六、实数的近似表示1. 有效数字:从一个数的最高位开始,到最低位的所有数字(包括零)都是有效数字。

2. 四舍五入:根据要求保留的位数,对下一位进行四舍五入。

3. 科学记数法:表示为a×10^n的形式,其中1≤|a|<10,n为整数。

七、实数的应用1. 测量和计数:在物理、化学、经济学等领域中,实数用于表示测量结果和统计数据。

2. 几何图形的计算:实数在计算面积、体积等几何属性时非常重要。

3. 工程和科学计算:在工程和科学研究中,实数是进行精确计算的基础。

八、实数的图形表示1. 坐标轴:实数可以在数轴上表示,数轴上的每个点都对应一个实数。

七年级下册数学第六章实数主要知识点归纳总结

七年级下册数学第六章实数主要知识点归纳总结

第六章 实数主要知识点6.1 平方根1、平方根(1)平方根的定义:如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根.即:如果a x =2,那么x 叫做a 的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。

(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算;0的平方根是0.(5)符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.(6)a x =2 <—> a x ±=a 是x 的平方 x 的平方是ax 是a 的平方根(除0外,x 的值一正一负互为相反数)a 的平方根是x(除0外,x 的值一正一负互为相反数)2、算术平方根(1)算术平方根的定义: 一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式a x =2 (x≥0)中,规定a x =。

(2)a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数。

(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。

(4)夹值法及估计一个(无理)数的大小(5)a x =2 (x≥0) <—> a x =a 是x 的平方 x 的平方是ax 是a 的算术平方根(x 的取值为非负数) a 的算术平方根是x(x 的取值为非负数)(6)正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥0(7)平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。

人教版七年级数学下册第六章实数知识点汇总

人教版七年级数学下册第六章实数知识点汇总

人教版七年级数学下册第六章实数知识点汇总【知识点一】实数的分类1、按定义分类: 2.按性质符号分类:注:0既不是正数也不是负数.【知识点二】实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数. 0 的相反数是 0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称 .(3) 互为相反数的两个数之和等于0.a、 b 互为相反数a+b=0.2.绝对值|a| ≥0.3.倒数( 1) 0 没有倒数 (2) 乘积是 1 的两个数互为倒数. a、 b 互为倒数 .▲▲ 平方根【知识要点】1.算术平方根:正数 a 的正的平方根叫做 a 的算术平方根,记作“a”。

2.如果 x2=a,则 x 叫做 a 的平方根,记作“± a”(a称为被开方数)。

3. 正数的平方根有两个,它们互为相反数;0 的平方根是0;负数没有平方根。

4.平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个。

联系:( 1)被开方数必须都为非负数;( 2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。

( 3)0 的算术平方根与平方根同为 0。

5.如果 x3=a,则 x 叫做 a 的立方根,记作“3 a”( a 称为被开方数)。

6.正数有一个正的立方根; 0 的立方根是 0;负数有一个负的立方根。

7.求一个数的平方根(立方根)的运算叫开平方(开立方)。

8.立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有 2 个,并且互为相反数,0 的平方根只有一个且为0.9.一般来说,被开放数扩大(或缩小)n 倍,算术平方根扩大(或缩小) n 倍,例如25 5, 2500 50.10.平方表:(自行完成)222221 = 6 =11 =16 =21 =22=72=122=172=222=32=82=132=182=232=42=92=142=192=242=52=102=152=202=252=题型规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0 和 1;立方根是其本身的数是0 和±1。

七年级下册人教版数学第六章实数知识要点及经典题型

七年级下册人教版数学第六章实数知识要点及经典题型

七年级下册人教版数学第六章实数知识要点及经典题型
实数知识要点:
1. 整数与有理数的关系:整数包含了有理数的全部内容,即整数是有理数的一种特殊形式。

2. 无理数:不能表示为两个整数的比的数,无理数是一类不是有理数的实数。

3. 实数的分类:实数可以分为有理数和无理数两种。

4. 实数的四则运算法则:实数的加减、乘除运算满足相应的运算法则。

5. 整式的运算:根据四则运算法则,对整式进行加减乘除运算。

6. 实数的比较:对于任意两个实数a和b,有以下三种情况:
a>b,a=b,a<b。

7. 绝对值的定义:实数a的绝对值表示为|a|,定义为a的值和
0的距离,即|a|=a(a≥0),|a|=-a(a<0)。

经典题型:
例1:计算下列各式的值:a) -3+5; b) 4-(-7); c) -2×3.
解答:
a) -3+5 = 5-3 = 2
b) 4-(-7) = 4+7 = 11
c) -2×3 = -6
例2:比较大小:a) -5和-3;b) -3和4-7.
解答:
a) -5<-3
b) -3<4-7,即-3<-3,两个数比较大小结果相同。

例3:计算下列各式的绝对值:a) |5|; b) |-7|; c) |-3+4|.
解答:
a) |5| = 5
b) |-7| = 7
c) |-3+4| = |1| = 1。

初一数学 第六章 实数 知识点归纳

初一数学  第六章   实数  知识点归纳

第六章 实数 知识点归纳一、实数的概念及分类 (3分)1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数整数包括正整数、零、负整数。

正整数又叫自然数。

正整数、零、负整数、正分数、负分数统称为有理数。

2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定结构的数,如0.1010010001…等;(3)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; 3. 实数与数轴上点的关系:实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。

与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大二、实数的倒数、相反数和绝对值 (3分)1、相反数从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

4、 无限小数是有理数(×) 无限小数是无理数(×)有理数是无限小数(×) 无理数是无限小数(√)数轴上的点都可以用有理数表示(×) 有理数都可以由数轴上的点表示(√) 数轴上的点都可以用无理数表示(×) 无理数都可以由数轴上的点表示(√) 数轴上的点都可以用实数表示(√) 实数都可以由数轴上的点表示(√)三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

新人教版七年级下册数学第六章实数知识点总结与阶梯练习

新人教版七年级下册数学第六章实数知识点总结与阶梯练习

考点一、实数的概念及分类 1、实数的分类f 耳理數-窖 卜有除卜数和无删16环彳囁斓彳 L员」厂正无理数3无理数 T 卜 无0环循环4蠟匕员无理数 j2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳 起来有四类(1 )开方开不尽的数,如.7, 3 2等;(2)有特定意义的数,如圆周率 n,或化简后含有 n 的数,如_兀+8 等;3(3 )有特定结构的数,如 0.1010010001,等; (4)某些三角函数,女口sin60°等(这类在初三会出现)判断一个数是否是无理数,不能只看形式,要看运算结果,如 3、有理数与无理数的区别(1) 有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数; (2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。

考点二、平方根、算术平方根、立方根 1、概念、定义(1) 如果一个正数 x 的平方等于 a ,即; 」,那么这个正数 x 叫做a 的算术平方根。

(2)如果一个数的平方等于 a ,那么这个数就叫做 a 的平方根(或二次方跟) 。

如果- L !,那么x 叫做a的平方根。

f一 ...................................................... J *(3)如果一个数的立方等于 a ,那么这个数就叫做 a 的立方根(或 a 的三次方根)。

如果】 L ,那么x叫做a 的立方根。

2、运算名称第六章实数,而不是无理数。

(1)求一个正数a的平方根的运算,叫做开平方。

平方与开平方互为逆运算。

(2)求一个数的立方根的运算,叫做开立方。

开立方和立方互为逆运算。

3、运算符号(1)正数a的算术平方根,记作“.a ”。

(2) a(a > 0)的平方根的符号表达为(3) 一个数a 的立方根,用 表示,其中 a 是被开方数,3是根指数。

4、运算公式I a a>0 §(耐“(“巧好+”;:;;旺护關* 游―韵縛齡渊明期《号内卿拿團根号外面,.4、开方规律小结艇总a显a(1 )若a > 0,贝U a 的平方根是 ,a 的算术平方根 ;正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。

人教版七年级数学下册第六章实数知识点汇总

人教版七年级数学下册第六章实数知识点汇总

人教版七年级数学下册第六章实数知识点汇总【知识点一】实数的分类1、按定义分类: 2.按性质符号分类:注:0既不是正数也不是负数.【知识点二】实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于、b互为相反数 a+b=0.2.绝对值|a|≥0.3.倒数(1)0没有倒数 (2)乘积是1的两个数互为倒数.a、b互为倒数 .▲▲平方根【知识要点】1.算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”。

2. 如果x2=a,则x叫做a的平方根,记作“±a”(a称为被开方数)。

3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

4. 平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个。

联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。

(3)0的算术平方根与平方根同为0。

5. 如果x3=a,则x叫做a的立方根,记作“a”(a称为被开方数)。

6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

7. 求一个数的平方根(立方根)的运算叫开平方(开立方)。

8. 立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.9. 一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n 倍,例如502500,525==. 10.平方表:(自行完成)题型规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

人教版七年级数学下册第六章实数知识点汇总

人教版七年级数学下册第六章实数知识点汇总

人教版七年级数学下册第六章实数知识点汇总【知识点一】实数的分类 1、按定义分类: 2.按性质符号分类:注:0既不是正数也不是负数.【知识点二】实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.2.绝对值|a|≥0.3.倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数.▲▲平方根【知识要点】1.算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”。

2. 如果x2=a,则x叫做a的平方根,记作“±a”(a称为被开方数)。

3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

4. 平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个。

联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。

(3)0的算术平方根与平方根同为0。

5. 如果x3=a,则x叫做a的立方根,记作“3a”(a称为被开方数)。

6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

7. 求一个数的平方根(立方根)的运算叫开平方(开立方)。

8.立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.9. 一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如502500,525==.10.平方表:(自行完成)____________________________________________________________________________________________________题型规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

新人教版七年级下册数学第六章实数知识点总结及阶梯练习

新人教版七年级下册数学第六章实数知识点总结及阶梯练习

新人教版七年级下册数学第六章实数知识点总结及阶梯练习第六章实数 (3)如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。

如果,那么x叫做a的立方根。

知识网络: 2、运算名称求一个正数a的平方根的运算,叫做开平方。

平方与开平方互为逆运算。

(1)(2)求一个数的立方根的运算,叫做开立方。

开立方和立方互为逆运算。

3、运算符号”。

(1)正数a的算术平方根,记作“a(2)a(a?0)的平方根的符号表达为。

(3)一个数a的立方根,用表示,其中a是被开方数,3是根指数。

4、运算公式考点一、实数的概念及分类1、实数的分类4、开方规律小结2、无理数 ,aa(1)若a?0,则a的平方根是,a的算术平方根;正数的平方根有两个,它们互为相反数,其在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。

3(1)开方开不尽的数,如等; 7,2实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。

正数的立方根π是正数,负数的立方根是负数,0的立方根是0。

(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;3(2)若a<0,则a没有平方根和算术平方根;若a为任意实数,则a的立方根是。

(3)有特定结构的数,如0.1010010001…等;o(4)某些三角函数,如sin60等(这类在初三会出现) (3)正数的两个平方根互为相反数,两个互为相反数的实数的立方根也互为相反数。

0,,16考点三、实数的性质判断一个数是否是无理数,不能只看形式,要看运算结果,如是有理数,而不是无理数。

有理数的一些概念,如倒数、相反数、绝对值等,在实数范围内仍然不变。

3、有理数与无理数的区别 1、相反数 (1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数; (1)实数a的相反数是-a;实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数相反数是零) 形式。

人教版七年级数学下册第六章实数知识点汇总

人教版七年级数学下册第六章实数知识点汇总

人教版七年级数学下册第六章实数知识点汇总-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN人教版七年级数学下册第六章实数知识点汇总【知识点一】实数的分类1、按定义分类: 2.按性质符号分类:注:0既不是正数也不是负数. 【知识点二】实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.2.绝对值|a|≥0.3.倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数 .▲▲平方根【知识要点】1.算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”。

2. 如果x2=a,则x叫做a的平方根,记作“±a”(a称为被开方数)。

3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

4. 平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个。

联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。

(3)0的算术平方根与平方根同为0。

5. 如果x3=a,则x叫做a的立方根,记作“a”(a称为被开方数)。

6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

27. 求一个数的平方根(立方根)的运算叫开平方(开立方)。

8. 立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.9. 一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如502500,525==.10.平方表:(自行完成)题型规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

【最新】人教版七年级数学下册第6章实数知识点.doc

【最新】人教版七年级数学下册第6章实数知识点.doc

1 实数第6章实数知识点1.有理数,无理数概念:有理数:任何有限小数和无限循环小数都是有理数。

无理数:无限不循环小数叫做无理数。

2.平方根和算术平方根的概念及其性质:(1)概念:如果2x a ,那么x 是a 的平方根,记作:a ;其中a 叫做a 的算术平方根。

(2)性质:①当a ≥0时,a ≥0;当a <0时,a 无意义;②2a =a ;③2a a 。

(3)开平方:求一个数a 的平方根的运算,叫做开平方,期中a 叫做被开方数。

3.立方根的概念及其性质:(1)概念:若3xa ,那么x 是a 的立方根,记作:3a ;(2)性质:①33a a ;②33a a ;③3a =3a(3)开立方:求一个数a 的立方根的运算,叫做开立方,期中a 叫做被开方数。

4.实数的概念及其分类:(1)概念:实数是有理数和无理数的统称;(2)分类:a 按定义分无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数负整数负有理数零正分数正整数正有理数有理数实数b 按大小分: 负实数零正实数在数轴上表示的两个实数,右边的数总比左边的数大.5.与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。

每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。

因此,数轴正好可以被实数填满。

6.算术平方根的运算律:(a ≥0,b ≥0);(a ≥0,b >0);a b ab ;aa bb。

人教版七年级数学下册第六章实数知识点汇总

人教版七年级数学下册第六章实数知识点汇总

人教版七年级数学下册第六章实数知识点汇总【知识点一】实数的分类1、按定义分类:2、按性质符号分类: 注:0既不就是正数也不就是负数、【知识点二】实数的相关概念1、相反数(1)代数意义:只有符号不同的两个数,我们说其中一个就是另一个的相反数.0的相反数就是0、(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称、(3)互为相反数的两个数之与等于0、a、b互为相反数a+b=0、2、绝对值|a|≥0.3、倒数(1)0没有倒数(2)乘积就是1的两个数互为倒数.a、b互为倒数、▲▲平方根【知识要点】1、算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”。

2、如果x2=a,则x叫做a的平方根,记作“±a”(a称为被开方数)。

3、正数的平方根有两个,它们互为相反数;0的平方根就是0;负数没有平方根。

4、平方根与算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个。

联系:(1)被开方数必须都为非负数;(2)正数的负平方根就是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。

(3)0的算术平方根与平方根同为0。

5、如果x3=a,则x叫做a的立方根,记作“3a”(a称为被开方数)。

6、正数有一个正的立方根;0的立方根就是0;负数有一个负的立方根。

7、求一个数的平方根(立方根)的运算叫开平方(开立方)。

8、立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数与0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0、9、一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n 倍,例如502500,525==、10、平方表:(自行完成)题型规律总结:1、平方根就是其本身的数就是0;算术平方根就是其本身的数就是0与1;立方根就是其本身的数就是0与±1。

人教版七年级数学下册课件第六章《实数》单元复习

人教版七年级数学下册课件第六章《实数》单元复习

②按正负分类:
正实数
正有理数
正无理数
实数 0
负实数
负有理数
负无理数
(3)实数与数轴上的点是一一对应的.
6.把下列各数填入相应的大括号中(只填序号):

①-3,②
·

,③ ,④0,⑤0.7,⑥ ,⑦π,⑧-1..
(1)整数:{ ②③④ …};
(2)负分数:{ ①⑧ …};
(3)无理数:{ ⑥⑦ …}.
所示:
化简:2 (b-a)2 +|b+c|- (a-c)2 -2|a|.
解:原式=2(b-a)+b+c+a-c+2a
=2b-2a+b+c+a-c+2a
=3b+a.
A.0.09 的平方根是 0.3
B. 16=±4
C.0 的立方根是 0
D.1 的立方根是±1
3
5.计算: -8= -2
.
知识点三:实数
(1)实数的概念:有理数和 无理
数统称为实数.
(2)实数的分类
①按定义分类:
实数
正有理数
有理数 0
有限小数或无限循环小数
负有理数
无理数
正无理数
负无理数
无限不循环小数
第六章
实数
单元复习
知识要点
知识点一:算术平方根与平方根
(1)算术平方根:a 的算术平方根记为 a.
①正数有 1
②负数 没有
个算术平方根;
算术平方根;
③0的算术平方根是 0 .
(2)平方根:正数 a 的平方根记为± a.
①一个正数有 2
②负数 没有
个平方根,它们互为 相反
平方根;
③0的平方根是 0 .
(1)实数之间不仅可以进行加、减、乘、除(除数不为0)、乘

人教版七年级数学下册第六章实数知识点汇总(K12教育文档)

人教版七年级数学下册第六章实数知识点汇总(K12教育文档)

人教版七年级数学下册第六章实数知识点汇总(word版可编辑修改) 人教版七年级数学下册第六章实数知识点汇总(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版七年级数学下册第六章实数知识点汇总(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版七年级数学下册第六章实数知识点汇总(word版可编辑修改)的全部内容。

人教版七年级数学下册第六章实数知识点汇总【知识点一】实数的分类1、按定义分类:2。

按性质符号分类: 注:0既不是正数也不是负数.【知识点二】实数的相关概念1。

相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0。

(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0。

2.绝对值|a|≥0.3.倒数(1)0没有倒数 (2)乘积是1的两个数互为倒数.a、b互为倒数。

▲▲平方根【知识要点】1。

算术平方根:正数a的正的平方根叫做a的算术平方根,记作“错误!”。

2. 如果x2=a,则x叫做a的平方根,记作“±错误!”(a称为被开方数)。

3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根.4. 平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个。

联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根.(3)0的算术平方根与平方根同为0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学下册第六章实数知识点汇总
【知识点一】实数的分类 1、按定义分类: 2.按性质符号分类:注:0既不是正数也不是负数.【知识点二】实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.2.绝对值|a|≥0.3.倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数.▲▲平方根【知识要点】
1.算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”。

2. 如果x2=a,则x叫做a的平方根,记作“±a”
(a称为被开方数)。

3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

4. 平方根和算术平方根的区别与联系:
区别:正数的平方根有两个,而它的算术平方根只有一个。

联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。

(3)0的算术平方根与平方根同为0。

5. 如果x3=a,则x叫做a的立方根,记作“3a”
(a称为被开方数)。

6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

7. 求一个数的平方根(立方根)的运算叫开平方(开立方)。

8.立方根与平方根的区别:
一个数只有一个立方根,并且符号与这个数一致;只有正数和0
有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.
9. 一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如50
2500
,5
25=
=.
10.平方表:(自行完成)
__________________________________________________
__________________________________________________
题型规律总结:
1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±
1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

3
0a ≥0。

4、公式:⑴2=a (a ≥0)=(a 取任何数)。

5、区分2=a (a ≥0),与 2a =a
6.非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。

【知识点三】实数与数轴数轴定义: 规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.【知识点四】实数大小的比较 1.对于数轴上的任意两个点,靠右边的点所表示的数较大. 2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小. 3.无理数的比较大小:【知识点五】实数的运算1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.2.减法:减去一个数等于加上这个数的相反数.3.乘法几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个
因数为0,积就为0.4.除法除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5.乘方与开方
(1)a n 所表示的意义是n 个a 相乘,正数的任何次幂是正数,负数的偶
次幂是正数,负数的奇次幂是负数. (2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方. 【典型例题】1.下列语句中,正确的是( )
A .一个实数的平方根有两个,它们互为相反数
B .负数没有立方根
C .一个实数的立方根不是正数就是负数
D .立方根是这个数本身的数
__________________________________________________
共有三个
2. 下列说法正确的是( )
A .-2是(-2)2的算术平方根
B .3是-9的算术平方根C16的平方根是±4 D 27的立方根是±3
3.已知实数x ,y 满足
2
=0,则x-y 等于
4.求下列各式的值(1)81±;(2)16-;(3)
25
9;(4)2
)4(- 5. 已知实数x ,y 满足
2
=0,则x-y 等于
6. 计算(1)64的立方根是
(2)下列说法中:①3±都是27的立方根,②y y =33
,③64的
立方根是2,④()4832
±=±。

其中正确的有 ( )A 、1个 B 、
2个 C 、3个 D 、4个 7.易混淆的三个数
(1)2a (2)2)(a (3)33
a 综合演练一、填空题
1、(-0.7)2的平方根是
2、若2a =25,b =3,则a+b=
3、已知一个正数的两个平方根分别是2a ﹣2和a ﹣4,则a 的值是
4、ππ-+-43= ____________
5、
若m 、n 互为相反数,则n m +-5=_________
6、若 a a -=2,则a______0
7、若73-x 有意义,则x 的取值范围是
8、16的平方根是±4”用数学式子表示为9、大于-2,小于10的整数有______个。

10、一个正数x 的两个平方根分别是a+2和a-4,则a=_____,x=_____。

11、当_______x 时,3x -有意义。

12、当_______x 时,32-x 有意义。

15、若14+a 有意义,则a 能取的最小整数为
__________________________________________________
二、选择题
1. 9的算术平方根是( )A .-3 B .3 C .±3 D .81
2.下列计算正确的是( )
A
±2 B
636=± D.992-=- 3.下列说法中正确的是( )
A .9的平方根是3 B

2
4. 64的平方根是( )A .±8 B .±4 C .±2 D .
5. 4的平方的倒数的算术平方根是( )A .4 B .18 C .-1
4
D .14
6.下列结论正确的是( )
A 6)6(2-=--
B 9)3(2=-
C 16)16(2±=-
D 25
1625162
=⎪⎪⎭⎫ ⎝

-
-
7.以下语句及写成式子正确的是( )
A 、7是49的算术平方根,即749±=
B 、7是2)7(-的平方根,即7)7(2=-
C 、7±是49的平方根,即749=±
D 、7±是
49的平方根,即
749±=
8.下列语句中正确的是( )
A 、9-的平方根是3-
B 、9的平方根是3
C 、9的算术平方根是3±
D 、9的算术平方根是3
9.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9
的平方根;(4)9的平方根是3,其中正确的有( ) A .3个 B .2个C .1个 D .4个 10.下列语句中正确的是( )
A 、任意算术平方根是正数
B 、只有正数才有算术平方根
C 、∵3的平方是9,∴9的平方根是3
D 、1-是1的平方根 三、利用平方根解下列方程.
(1)(2x-1)2
-169=0; (2)4(3x+1)2
-1=0;
__________________________________________________
四、解答题 1、求9
7
2的平方根和算术平方根。

2、计算
33
841627-+-+的值
3、若0)13(12=-++-y x x ,求2
5y x +的值。

4、若a 、b 、c 满足01)5(32
=-+++-c b a ,求代数式a
c
b -的值。

相关文档
最新文档