2018-2019学年数学高考(文)二轮专题复习习题:第5部分小题提速练5-1-3-含答案

合集下载

2019年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

 2019年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

2019年普通高等学校招生全国统一考试(全国Ⅱ卷)文科数学一、选择题1.已知集合A={x|x>-1},B={x|x<2},则A∩B等于()A.(-1,+∞) B.(-∞,2)C.(-1,2) D.∅答案 C解析A∩B={x|x>-1}∩{x|x<2}={x|-1<x<2}.2.设z=i(2+i),则等于()A.1+2i B.-1+2iC.1-2i D.-1-2i答案 D解析∵z=i(2+i)=-1+2i,∴=-1-2i.3.已知向量a=(2,3),b=(3,2),则|a-b|等于()A. B.2 C.5 D.50答案 A解析∵a-b=(2,3)-(3,2)=(-1,1),∴|a-b|==.4.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A. B. C. D.答案 B解析设5只兔子中测量过某项指标的3只为a1,a2,a3,未测量过这项指标的2只为b1,b2,则从5只兔子中随机取出3只的所有可能情况为(a1,a2,a3),(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a1,b1,b2),(a2,a3,b1),(a2,a3,b2),(a2,b1,b2),(a3,b1,b2),共10种可能.其中恰有2只测量过该指标的情况为(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a2,a3,b1),(a2,a3,b2),共6种可能.故恰有2只测量过该指标的概率为=.5.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙答案 A解析由于三人成绩互不相同且只有一个人预测正确.若甲预测正确,则乙、丙预测错误,于是三人按成绩由高到低的次序为甲、乙、丙;若甲预测错误,则甲、乙按成绩由高到低的次序为乙、甲,再假设丙预测正确,则乙、丙按成绩由高到低的次序为丙、乙,于是甲、乙、丙按成绩由高到低排序为丙、乙、甲,从而乙的预测也正确,与事实矛盾;若甲、丙预测错误,则可推出乙的预测也错误.综上所述,三人按成绩由高到低的次序为甲、乙、丙.6.设f(x)为奇函数,且当x≥0时,f(x)=e x-1,则当x<0时,f(x)等于()A.e-x-1 B.e-x+1C.-e-x-1 D.-e-x+1答案 D解析当x<0时,-x>0,∵当x≥0时,f(x)=e x-1,∴f(-x)=e-x-1.又∵f(x)为奇函数,∴f(x)=-f(-x)=-e-x+1.7.设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面答案 B解析对于A,α内有无数条直线与β平行,当这无数条直线互相平行时,α与β可能相交,所以A不正确;对于B,根据两平面平行的判定定理与性质知,B正确,对于C,平行于同一条直线的两个平面可能相交,也可能平行,所以C不正确;对于D,垂直于同一平面的两个平面可能相交,也可能平行,如长方体的相邻两个侧面都垂直于底面,但它们是相交的,所以D不正确,综上可知选B.8.若x1=,x2=是函数f(x)=sin ωx(ω>0)两个相邻的极值点,则ω等于()A.2 B. C.1 D.答案 A解析由题意及函数y=sin ωx的图象与性质可知,T=-,∴T=π,∴=π,∴ω=2.9.若抛物线y2=2px(p>0)的焦点是椭圆 4+=1的一个焦点,则p等于()A.2 B.3 C.4 D.8答案 D解析由题意知,抛物线的焦点坐标为,椭圆的焦点坐标为(±,0),所以=,解得p=8,故选D.10.曲线y=2sin x+cos x在点(π,-1)处的切线方程为()A.x-y-π-1=0 B.2x-y-2π-1=0C.2x+y-2π+1=0 D.x+y-π+1=0答案 C解析设y=f(x)=2sin x+cos x,则f′(x)=2cos x-sin x,∴f′(π)=-2,∴曲线在点(π,-1)处的切线方程为y-(-1)=-2(x-π),即2x+y-2π+1=0.11.已知α∈,2sin 2α=cos 2α+1,则sin α等于()A. B. C. D.答案 B解析由2sin 2α=cos 2α+1,得4sin αcos α=1-2sin2α+1,即2sin αcos α=1-sin2α.因为α∈,所以cos α=,所以2sin α=1-sin2α,解得sin α=,故选B.12.设F为双曲线C:-=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q 两点.若|PQ|=|OF|,则C的离心率为()A. B. C.2 D.答案 A解析如图,由题意知,以OF为直径的圆的方程为2+y2=①,将x2+y2=a2记为②式,①-②得x=,则以OF为直径的圆与圆x2+y2=a2的相交弦所在直线的方程为x=,所以|PQ|=2. 由|PQ|=|OF|,得2=c,整理得c4-4a2c2+4a4=0,即e4-4e2+4=0,解得e=,故选A.二、填空题13.若变量x,y满足约束条件则z=3x-y的最大值是________.答案9解析作出已知约束条件对应的可行域,如图中阴影部分(含边界)所示,由图易知,当直线y=3x-z过点C时,-z最小,即z最大.由解得即C点坐标为(3,0),故z max=3×3-0=9.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.答案0.98解析经停该站高铁列车所有车次的平均正点率的估计值为=0.98.15.△ABC的内角A,B,C的对边分别为a,b,c.已知b sin A+a cos B=0,则B=________.答案解析∵b sin A+a cos B=0,∴=,由正弦定理,得-cos B=sin B,∴tan B=-1,又B∈(0,π),∴B=.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为________.答案26-1解析依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,因此题中的半正多面体共有26个面.注意到该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x,则x+x+x=1,解得x=-1,故题中的半正多面体的棱长为-1.三、解答题17.如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥E-BB1C1C的体积.(1)证明由已知得B1C1⊥平面ABB1A1,BE⊂平面ABB1A1,故B1C1⊥BE.又BE⊥EC1,B1C1∩EC1=C1,B1C1,EC1⊂平面EB1C1,所以BE⊥平面EB1C1.(2)解由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以∠AEB=∠A1EB1=45°,故AE=AB=3,AA1=2AE=6.如图,作EF⊥BB1,垂足为F,则EF⊥平面BB1C1C,且EF=AB=3.所以四棱锥E-BB1C1C的体积V=×3×6×3=18.18.已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求{a n}的通项公式;(2)设b n=log2a n,求数列{b n}的前n项和.解(1)设{a n}的公比为q,由题设得2q2=4q+16,即q2-2q-8=0,解得q=-2(舍去)或q=4.因此{a n}的通项公式为a n=2×4n-1=22n-1.(2)由(1)得b n=log222n-1=(2n-1)log22=2n-1,因此数列{b n}的前n项和为1+3+…+2n-1=n2.19.某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:≈8.602.解(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为=0.21.产值负增长的企业频率为=0.02.用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)=×(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30,s2=i(y i-)2=×[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402×7]=0.029 6,s==0.02×≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17.20.已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.解(1)连接PF1.由△POF2为等边三角形可知在△F1PF2中,∠F1PF2=90°,|PF2|=c,|PF1|=c,于是2a=|PF1|+|PF2|=(+1)c,故C的离心率为e==-1.(2)由题意可知,若满足条件的点P(x,y)存在,则|y|·2c=16,·=-1,即c|y|=16,①x2+y2=c2,②又+=1.③由②③及a2=b2+c2得y2=.又由①知y2=,故b=4.由②③及a2=b2+c2得x2=(c2-b2),所以c2≥b2,从而a2=b2+c2≥2b2=32,故a≥4.当b=4,a≥4时,存在满足条件的点P.所以b=4,a的取值范围为[4,+∞).21.已知函数f(x)=(x-1)ln x-x-1.证明:(1)f(x)存在唯一的极值点;(2)f(x)=0有且仅有两个实根,且两个实根互为倒数.证明(1)f(x)的定义域为(0,+∞).f′(x)=+ln x-1=ln x-(x>0).因为y=ln x在(0,+∞)上单调递增,y=在(0,+∞)上单调递减,所以f′(x)在(0,+∞)上单调递增.又f′(1)=-1<0,f′(2)=ln 2-=>0,故存在唯一x0∈(1,2),使得f′(x0)=0.又当0<x<x0时,f′(x)<0,f(x)单调递减,当x>x0时,f′(x)>0,f(x)单调递增,因此,f(x)存在唯一的极值点.(2)由(1)知f(x0)<f(1)=-2,又f(e2)=e2-3>0,所以f(x)=0在(x0,+∞)内存在唯一根x=α.由1<x0<α得0<<1<x0.又f=ln--1===0,故是f(x)=0在(0,x0)的唯一根.综上,f(x)=0有且仅有两个实根,且两个实根互为倒数.22.[选修4-4:坐标系与参数方程]在极坐标系中,O为极点,点M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sin θ上,直线l过点A(4,0)且与OM垂直,垂足为P.(1)当θ0=时,求ρ0及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.解(1)因为M(ρ0,θ0)在C上,当θ0=时,ρ0=4sin =2.由已知得|OP|=|OA|cos =2.设Q(ρ,θ)为l上除P的任意一点,连接OQ,在Rt△OPQ中,ρcos=|OP|=2. 经检验,点P在曲线ρcos=2上.所以,l的极坐标方程为ρcos=2.(2)设P(ρ,θ),在Rt△OAP中,|OP|=|OA|cos θ=4cos θ,即ρ=4cos θ.因为P在线段OM上,且AP⊥OM,故θ的取值范围是.所以,P点轨迹的极坐标方程为ρ=4cos θ,θ∈.23.[选修4-5:不等式选讲]已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.解(1)当a=1时,f(x)=|x-1|x+|x-2|(x-1).当x<1时,f(x)=-2(x-1)2<0;当x≥1时,f(x)≥0.所以,不等式f(x)<0的解集为(-∞,1).(2)因为f(a)=0,所以a≥1.当a≥1,x∈(-∞,1)时,f(x)=(a-x)x+(2-x)(x-a)=2(a-x)(x-1)<0. 所以,a的取值范围是[1,+∞).祝福语祝你考试成功!。

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案普通高等学校招生全国统一考试模拟试题——文科数学(二)本试卷满分150分,考试时间120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上。

2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题纸上,写在本试卷上无效。

3.考试结束后,将本试卷和答题纸一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合 $A=\{x|x-\frac{1}{2}<0\}$,$B=\{x|x-\frac{(2a+8)}{a(a+8)}<0\}$,若 $A\cap B=A$,则实数 $a$ 的取值范围是A。

$(-4,-3)$B。

$[-4,-3]$C。

$(-\infty,-3)\cup(4,+\infty)$D。

$(-3,4)$2.已知复数 $z=\frac{3+i}{2-3i}$,则 $z$ 的实部与虚部的和为A。

$-\frac{2}{5}+\frac{1}{5}i$B。

$-\frac{2}{5}-\frac{1}{5}i$C。

$\frac{2}{5}+\frac{1}{5}i$D。

$\frac{3}{5}+\frac{2}{5}i$3.某景区管理部门为征求游客对景区管理方面的意见及建议,从景区出口处随机选取 $5$ 人,其中 $3$ 人为跟团游客,$2$ 人为自驾游散客,并从中随机抽取 $2$ 人填写调查问卷,则这 $2$ 人中既有自驾游散客也有跟团游客的概率是A。

$\frac{2}{3}$B。

$\frac{1}{5}$C。

$\frac{2}{5}$D。

$\frac{3}{5}$4.已知双曲线 $E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为$\frac{\sqrt{10}}{3}$,斜率为 $-\frac{3}{2}$ 的直线 $l$ 经过双曲线的右顶点 $A$,与双曲线的渐近线分别交于 $M$,$N$ 两点,点 $M$ 在线段$AN$ 上,则 $\frac{AN}{AM}$ 等于A。

吉林省东辽五中2019届高三第二次模拟考试卷+文科数学+Word版含答案

吉林省东辽五中2019届高三第二次模拟考试卷+文科数学+Word版含答案

2019届高三第二次模拟考试卷文 科 数 学(四)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019·遵义联考]设集合{}220A x x x x =--<∈N 且,则集合A 的真子集有( ) A .3个B .4个C .5个D .6个2.[2019·龙岩期末]如图所示的茎叶图记录了CBA 球员甲、乙两人在2018-2019赛季某月比赛过程中的得分成绩,则下列结论正确的是( )A .甲的平均数大于乙的平均数B .甲的平均数小于乙的平均数C .甲的中位数大于乙的中位数D .甲的方差小于乙的方差3.[2019·江南十校]已知i 是虚数单位,则化简20181i 1i +⎛⎫⎪-⎝⎭的结果为( )A .iB .i -C .1-D .14.[2019·四川一诊]如图,某校一文化墙上的一幅圆形图案的半径为6分米,其内有一边长为1分米的正六边形的小孔,现向该圆形图案内随机地投入一飞镖(飞镖的大小忽略不计),则该飞镖落在圆形图案的正六边形小孔内的概率为( )ABC .16D5.[2019·长沙一模]已知1F ,2F 是双曲线22:1C y x -=的上、下焦点,点P 是其一条渐近线上一点,且以12F F 为直径的圆经过点P ,则12PF F △的面积为( ) ABC .2D .16.[2019·清远期末]在正方体1111ABCD A B C D -中,M ,N 分别是线段1AB ,1BC 的中点,以下结论:①1AA MN ⊥;②MN 与AC 异面;③MN ⊥面11BDD B ;其中正确的是( )A .①B .①②C .①③D .②③7.[2019·宁德期末]已知点()2,1A ,点B 为不等式组0260y x y x y ⎧⎪⎨-≤+-≤⎪⎩≥所表示平面区域上的任意一点,则AB 的最小值为( )A .12BC .1D .28.[2019·福建质检]给出下列说法: ①“π4x =”是“tan 1x =”的充分不必要条件; ②定义在[],a b 上的偶函数()()25f x x a x b =+++的最大值为30; ③命题“0x ∃∈R ,0012x x +≥”的否定形式是“x ∀∈R ,12x x+>”. 其中正确说法的个数为( ) A .0B .1C .2D .39.[2019·衡水中学]已知函数()1y f x =+关于直线1x =-对称,且()f x 在()0,+∞上单调递增,此卷只装订不密封班级 姓名 准考证号 考场号 座位号31log 5a f ⎛⎫=- ⎪⎝⎭,()032b f -=-.,()32log 2c f =,则a ,b ,c 的大小关系是( ) A .a b c << B .b a c << C .c a b << D .b c a <<10.[2019·哈尔宾六中]《九章算术》中盈不足章中有这样一则故事:“今有良马与驽马发长安,至齐. 齐去长安三千里.良马初日行一百九十三里,日增一十二里;驽马初日行九十七里,日减二里.”为了计算每天良马和驽马所走的路程之和,设计框图如下图.若输出的S 的值为350,则判断框中可填( )A .6?i >B .7?i >C .8?i >D .9?i >11.[2019·湖北联考]在ABC △中,角A 、B 、C 的对边分别是a 、b 、c ,若cos cos 2ca Bb A -=, 则cos cos cos a A b B a B+的最小值为( )ABCD12.[2019·衡水金卷]椭圆()2222:10x y C a b a b+=>>与抛物线2:4E y x =相交于点M ,N ,过点()1,0P -的直线与抛物线E 相切于M ,N 点,设椭圆的右顶点为A ,若四边形PMAN 为平行四边形, 则椭圆的离心率为( ) ABCD二、填空题:本大题共4小题,每小题5分,共20分.13.[2019·九江一模]已知向量(=a,(2,=b ,则b 在a 方向上的投影等于__________. 14.[2019·江西名校联考]若()(log 1log 0a a a +<<,则实数a 的取值范围是__________.15.[2019·姜堰中学]已知函数()()2sin π0,,π2f x x ωϕωϕ⎛⎫⎡⎤=+>∈ ⎪⎢⎥⎣⎦⎝⎭的部分图象如图所示,其中()01f =,52MN =,则()1f =______.16.[2019·邵东月考]已知三棱锥A BCD -中,平面ABD ⊥平面BCD ,BC CD ⊥,4BC CD ==,AB AD ==A BCD -的外接球的表面积为__________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)[2019·泉州质检]已知等差数列{}n a 的公差0d ≠,36a =,且1a ,2a ,4a 成等比数列. (1)求{}n a 的通项公式;(2)设2n a n b =,求数列{}n n a b +的前n 项和n S .18.(12分)[2019·泰安一中]如图,在四棱柱1111ABCD A B C D -中,AD BC ∥,22AD AB BC ==,M 为边AD 的中点,1CB ⊥底面ABCD .求证:(1)1C M ∥平面11AA B B ; (2)平面1BMB ⊥平面1ACB .19.(12分)[2019·佛山质检]下表中的数据是一次阶段性考试某班的数学、物理原始成绩:用这44人的两科成绩制作如下散点图:学号为22号的A同学由于严重感冒导致物理考试发挥失常,学号为31号的B同学因故未能参加物理学科的考试,为了使分析结果更客观准确,老师将A,B两同学的成绩(对应于图中A,B两点)剔除后,用剩下的42个同学的数据作分析,计算得到下列统计指标:数学学科平均分为110.5,标准差为18.36,物理学科的平均分为74,标准差为11.18,数学成绩()x与物理成绩()y的相关系数为0.8222γ=,回归直线l(如图所示)的方程为0.500618.68y x=+.(1)若不剔除A,B两同学的数据,用全部44人的成绩作回归分析,设数学成绩()x与物理成绩()y的相关系数为γ,回归直线为l,试分析γ与γ的大小关系,并在图中画出回归直线l的大致位置;(2)如果B同学参加了这次物理考试,估计B同学的物理分数(精确到个位);(3)就这次考试而言,学号为16号的C同学数学与物理哪个学科成绩要好一些?(通常为了比较某个学生不同学科的成绩水平,可按公式iiX XZs-=统一化成标准分再进行比较,其中iX为学科原始分,X为学科平均分,s为学科标准差).20.(12分)[2019·聊城一中]已知焦点在y轴上的抛物线1C过点()2,1,椭圆2C的两个焦点分别为1F,2F,其中2F与1C的焦点重合,过1F与长轴垂直的直线交椭圆1F于A,B两点且3AB=,曲线3C是以原点为圆心以1OF为半径的圆.(1)求1C与2C及3C的方程;(2)若动直线l与圆3C相切,且与2C交与M,N两点,三角形OMN的面积为S,求S的取值范围.21.(12分)[2019·榆林一模]已知函数()2f x x x =-.(1)设()()()ln g x x f x f x '=-,求()g x 的最大值及相应的x 值; (2)对任意正数x 恒有()11ln f x f x m x x ⎛⎫⎛⎫+≥+ ⎪ ⎪⎝⎭⎝⎭,求m 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】[2019·山南期中]以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρ=[]0,πθ∈),直线l 的参数方程为2cos 2sin x t y t αα=+=+⎧⎨⎩(t 为参数).(1)点D 在曲线C 上,且曲线C 在点D 处的切线与直线20x y ++=垂直,求点D 的直角坐标和 曲线C 的参数方程;(2)设直线l 与曲线C 有两个不同的交点,求直线l 的斜率的取值范围.23.(10分)【选修4-5:不等式选讲】[2019·四川一诊]已知函数()211f x x a x =-+--(a ∈R )的一个零点为1, (1)求不等式()1f x ≤的解集; (2)若()120,11a m n m n +=>>-,求证:211m n +≥.2019届高三第二次模拟考试卷文科数学(四)答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】A【解析】因为集合{}{}22012A x x x x x x x =--<∈=-<<∈N N 且且,所以{}0,1A =, ∵根据集合的元素数目与真子集个数的关系,n 元素的子集有2n 个, 集合A 有2个元素,则其真子集个数为2213-=,故选A . 2.【答案】B 【解析】甲的平均数()114182222242425262828293238445128.315x =++++++++++++++=甲, 乙的平均数()117202224262728293232333344495131.115x =++++++++++++++=乙, 故x x <甲乙,故选项A 不成立,选项B 成立;甲的中位数是26,乙的中位数是29,故甲的中位数小于乙的中位数,故选项C 错误; 甲的方差大于乙的方差,故选项D 错误. 3.【答案】C 【解析】依题意()()()()1i 1i 1i 2ii 1i 1i 1i 2+++===--+,201820162450422i i i i 1+⨯+====-.故选C . 4.【答案】B【解析】半径为6的圆形图案的面积为36π,其圆内接正六边形的面积为161sin 602⨯⨯⨯︒=236πP ==,故选B . 5.【答案】A【解析】等轴双曲线22:1C y x -=的渐近线方程为y x =±,不妨设点P 在渐近线y x =上,则()00,P x x ,以12F F 为直径的圆为222x y +=, 又()00,P x x 在圆222x y +=上,解得01x =,12112PF F S =⨯=△A .6.【答案】C【解析】连接1B C ,BD ,11B D ,由MN 为1ACB △的中位线可得MN AC ∥,故②错误;由1AA ⊥平面AC ,可得1AA AC ⊥,即有1AA MN ⊥,故①正确;由BD AC ⊥,1AC B B ⊥,可得AC ⊥平面11BDD B ,AC MN ∥, 即有MN ⊥面11BDD B ,故③正确,故选C . 7.【答案】B【解析】结合不等式,绘制可行域,可得计算A 点到该区域最小值,即计算点A 到0x y -=的最小值,d ==,故选B . 8.【答案】C【解析】对于①,当π4x =时,一定有tan 1x =,但是当tan 1x =时,ππ4x k =+,k ∈Z ,所以“π4x =”是“tan 1x =”的充分不必要条件,所以①正确; 对于②,因为()f x 为偶函数,所以5a =-,因为定义域为[],a b ,所以5b =, 所以函数()25f x x =+,[]5,5x ∈-的最大值为()()5530f f -==,所以②正确; 对于③,命题“0x ∃∈R ,0012x x +≥”的否定形式是“x ∀∈R ,12x x+<”,所以③是错误的; 故正确命题的个数为2,故选C . 9.【答案】D【解析】因为()1y f x =+关于直线1x =-对称,所以()f x 关于y 轴对称, 因为()f x 在()0,+∞上单调递增,所以()f x 在(),0-∞上单调递减,()331log log 55a f f ⎛⎫=-= ⎪⎝⎭,()0303122b f f -⎡⎤⎛⎫=-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦..,()3log 4c f =, 因为33log 5log 41>>,031120⎛⎫-<- ⎪⎝⎭<.,根据函数对称性及单调性可知b c a <<,所以选D .10.【答案】B【解析】模拟程序的运行,可得0S =,1i =; 执行循环体,290S =,2i =;不满足判断框内的条件,执行循环体,300S =,3i =; 不满足判断框内的条件,执行循环体,310S =,4i =; 不满足判断框内的条件,执行循环体,320S =,5i =; 不满足判断框内的条件,执行循环体,330S =,6i =; 不满足判断框内的条件,执行循环体,340S =,7i =; 不满足判断框内的条件,执行循环体,350S =,8i =;由题意,此时,应该满足判断框内的条件,退出循环,输出S 的值为350. 可得判断框中的条件为7i >?,故选B . 11.【答案】D【解析】∵cos cos 2ca Bb A -=,∴由正弦定理化简得:()1111sin cos sin cos sin sin sin cos cos sin 2222A B B A C A B A B A B -==+=+,整理得sin cos 3cos sin A B A B =,∴cos cos 0A B >,∴tan 3tan A B =,∴则cos cos cos cos sin cos cos cos sin a A b B A b A B a B B a B A +=+=+≥===.∴可得cos cos cos a A b Ba B+D .12.【答案】B【解析】设过点()1,0P -的直线方程为1x my =-, 联立方程组2214404x my y my y x⎧⎨⎩=-⇒-+==,因为直线与抛物线相切,所以2161601Δm m =-=⇒=±, 所以切线方程分别为1x y =-或1x y =--.此时1x =,2y =或1x =,2y =-,即切点()1,2M 或()1,2N -.又椭圆的右顶点(),0A a ,因为四边形PMAN 为平行四边形,所以PM AN k k =,即得()()02203111a a ---=⇒=---.又交点()1,2在椭圆上,所以22149192b b +=⇒=,所以22292c a b c =-=⇒=23c e a ===,故选B .二、填空题:本大题共4小题,每小题5分,共20分. 13.【答案】12-【解析】向量(=a,(2,=b ,则向量b 在a方向上的投影为12⋅==-a b a , 故答案为12-.14.【答案】1,14⎛⎫⎪⎝⎭【解析】由01a a >≠且,可得1a +>()(log 1log a a a +<,可得01a <<,由(log 0a <,得1>,所以114a <<. 15.【答案】1-【解析】函数()()2sin π0,,π2f x x ωϕωϕ⎛⎫⎡⎤=+>∈ ⎪⎢⎥⎣⎦⎝⎭的部分图象如图所示,()02sin 1f ϕ==,5π6ϕ∴=.52MN ==π3ω=,∴函数()π5π2sin 36f x x ⎛⎫=+ ⎪⎝⎭, ()7π12sin16f ∴==-,故答案为1-. 16.【答案】36π【解析】如图取BD 的中点E ,连接AE ,CE ,则AE BD ⊥,CE BD ⊥.∵平面ABD ⊥平面BCD ,平面ABD 平面BCD BD =,∴AE ⊥平面BCD ,又∵CE ⊂平面BCD ,∴AE CE ⊥.设ABD △的外接圆的圆心为O ,半径为r .∵AB AD =,∴圆心O 在AE 所在的直线上,∴()22222r BE OE BE r AE ==++-. ∵在BCD Rt △中,BD,∴BE EC ==∴在ABE Rt △中,2AE =.∴()2282r r +-=,解得3r =,∴1OE =.在OEC Rt △中,3OC =,∴3OA OB OC OD ====. ∴点O 是三棱锥A BCD -的外接球的球心,且球半径3R =. ∴球的表面积24π36πS R ==.故答案为36π.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)2n a n =;(2)12443n n n +-++.【解析】(1)根据题意,得214236a a a a ⋅==⎧⎪⎨⎪⎩,即()()211113 26a a d a d a d ⎧⎪⎨=++=⎪⎩+,解得122a d ==⎧⎨⎩,或160a d ==⎧⎨⎩(不合,舍去),所以()()112212n a a n d n n =+-=+-=.(2)由(1)得2224n a n n n b ===,所以数列n b 是首项为4,公比为4的等比数列. 所以()()123123n n n S a a a a b b b b =+++++++++()()1232244442n n n +=+++++12443n n n +-=++. 18.【答案】(1)见证明;(2)见证明.【解析】(1)因为1111ABCD A B C D -为四棱柱,所以11B C BC ∥且11B C BC =, 又M 为边AD 的中点,所以//BC AM ,即11B C AM ∥,又2AD BC =,所以BC AM =,即11B C AM =,所以四边形11B C MA 为平行四边形, 则11C M B A ∥,又1B A ⊂平面11AA B B ,1C M ⊄平面11AA B B ,所以1C M ∥平面11AA B B .(2)由(1)知四边形BCMA 为平行四边形,且AM AB =,所以四边形BCMA 为菱形,所以BM AC ⊥, 又1CB ⊥底面ABCD ,所以1CB BM ⊥,所以BM ⊥平面1ACB , 所以平面1BMB ⊥平面1ACB .19.【答案】(1)0γγ<,理由见解析;(2)81分;(3)物理成绩要好一些. 【解析】(1)0γγ<,说明理由可以是:①离群点A ,B 会降低变量间的线性关联程度;②44个数据点与回归直线0l 的总偏差更大,回归效果更差,所以相关系数更小; ③42个数据点与回归直线l 的总偏差更小,回归效果更好,所以相关系数更大; ④42个数据点更加贴近回归直线l ;⑤44个数据点与回归直线0l 更离散,或其他言之有理的理由均可.要点:直线0l 斜率须大于0且小于l 的斜率,具体为止稍有出入没关系,无需说明理由. (2)令125x =,代入0.500618.680.500612518.68y x =+=⨯+, 得62.57518.6881y =+≈所以,估计B 同学的物理分数大约为81分.(3)由表中知C 同学的数学原始分为122,物理原始分为82, 数学标准分为16161122110511.50.6318.3618.36x x Z s --===≈., 物理标准分为16162827480.7211.1811.18y y Z s --===≈, 0.720.63>,故C 同学物理成绩比数学成绩要好一些.20.【答案】(1)21:4C x y =,222:143y x C +=,223:1C x y +=;(2)32OMN S ≤≤△ 【解析】(1)由已知设抛物线方程为()220x py p =>,则42p =,解得2p =, 即1C 的方程为24x y =,焦点坐标为()20,1F ,所以椭圆中1c =,其焦点也在y 轴上设方程为()222210y x a b a b+=>>,由222211y x a by +==-⎧⎪⎨⎪⎩,得2b x a =±,223b AB a ==,又221a b =+,解得2a =,b 椭圆方程为22143y x +=,又11OF =所以所求圆的方程为221x y +=.(2)因为直线l 与圆3C 相切,所以圆心O 到直线的距离为1,所以1122OMN MN S MN =⨯⨯=△, 当直线l 的斜率不存在时方程为1x =±,两种情况所得到的三角形OMN 面积相等, 由221431y x x +==⎧⎪⎨⎪⎩得y =,不妨设M ⎛ ⎝⎭,1,N ⎛ ⎝⎭,MN =此时112OMN S MN =⨯⨯=△ 当直线l 的斜率存在时设为k ,直线方程为y kx m =+, 所以圆心O1=,即221m k =+,由22143y x y kx m +==+⎧⎪⎨⎪⎩,得()2224363120k x kmx m +++-=, 所以()()()()()()22222222236443312361443394823Δk m k m k k k k k =-+-=+-+-=+ 恒大于0,设(),M M M x y ,(),N N N x y ,则2634M N kmx x k -+=+,2231234M N m x x k -=+,所以2OMN MN S ==△==,令234k t +=,则243t k -=,4t ≥,1104t <≤,所以OMNS △ 是关于1t 的二次函数开口向下,在1104t <≤时单调递减,所以32OMN S ≤<△32OMN S ≤≤△21.【答案】(1)当1x =时,()g x 取得最大值()10g =;(2)01m <≤. 【解析】(1)∵()2f x x x =-,∴()21f x x '=-,∴()()()()()232ln ln 21ln 23g x x f x f x x x x x x x x x '=-=---=-+-,则()()()221611661x x g x x x x x-+'=-+-=,∵()g x 的定义域为()0,+∞,∴2610x x+>,①当01x <<时,()0g x '>;②当1x =时,()0g x '=;③当1x >时,()0g x '<,因此()g x 在(]0,1x ∈上是增函数,在[)1,x ∈+∞上是减函数, 故当1x =时,()g x 取得最大值()10g =.(2)由(1)可知,()222111112f x f x x x x x x x x x ⎛⎫⎛⎫⎛⎫+=-+-=+--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不等式()11ln f x f x m x x ⎛⎫⎛⎫+≥+ ⎪ ⎪⎝⎭⎝⎭可化为21112ln x x x m x x x ⎛⎫⎛⎫⎛⎫+--+≥+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭①因为0x >,所以12x x+≥(当且仅当1x =取等号) 设()12x s s x +=≥,则把①式可化为22ln s s s m --≥,即2ln 1m s s≤--(对2s ≥恒成立) 令()21h s s s=--,此函数在[)2,+∞上是增函数, 所以()21h s s s=--的最小值为()20h =, 于是ln 0m ≤,即01m <≤.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.【答案】(1)()1,1-,曲线C的参数方程为x y ββ==⎧⎪⎨⎪⎩(β为参数,[]0,πβ∈);(2)(22-.【解析】(1)由[])0,πρθ∈得曲线C 的直角坐标方程为()2220x y y +=≥,所以曲线C的参数方程为x y ββ==⎧⎪⎨⎪⎩(β为参数,[]0,πβ∈),设D点坐标为)ββ,由已知得C 是以()0,0O因为C 在点D 处的切线与l 垂直,所以直线OD 与直线20x y ++=的斜率相同,3π4β=, 故D 点的直角坐标为()1,1-.(2)设直线():22l y k x =-+与半圆()2220x y y +=≥=∴2410k k-+=,∴2k =,2k =, 设点()B,2AB k =,故直线l的斜率的取值范围为(22-.23.【答案】(1)403x x ⎧⎫≤≤⎨⎬⎩⎭;(2)证明见解析. 【解析】(1)因为函数()211f x x a x =-+--(a ∈R )的一个零点为1, 所以1a =,又当1a =时,()1211f x x x =-+--,()11212f x x x ≤⇒-+-≤,上述不等式可化为1 21122x x x ⎧⎪⎨-+-≤⎪⎩≤,或1121212x x x ⎧⎪⎨<-+-≤⎪⎩<,或11212x x x ≥-+-≤⎧⎨⎩, 解得120x x ⎧≤≥⎪⎨⎪⎩,或11 22x x <<≤⎧⎪⎨⎪⎩,或143x x ⎧≥≤⎪⎨⎪⎩,所以102x ≤≤或112x <<或413x ≤≤,所以原不等式的解集为403x x ⎧⎫≤≤⎨⎬⎩⎭. (2)由(1)知1211a m n +==-,因为0m >,1n >, 所以()()()2112221215911n m m n m n m n n m -⎛⎫+-=+-+=++≥⎡⎤ ⎪⎣⎦--⎝⎭, 当且仅当3m =,4n =时取等号,所以211m n +≥.。

【解析】陕西省咸阳市2018-2019学年高二下学期期末考试教学质量检测数学(文)试题

【解析】陕西省咸阳市2018-2019学年高二下学期期末考试教学质量检测数学(文)试题
4.若命题“ ”是假命题,“ ”也是假命题,则( )
A. 命题“ ”为真命题,命题“ ”为假命题
B. 命题“ ”为真命题,命题“ ”为真命题
C. 命题“ ”为假命题,命题“ ”为假命题
D. 命题“ ”为假命题,命题“ ”为真命题
【答案】D
【分析】
根据复合命题“ ”是假命题,“ ”是假命题,判断出 的真假,即可求解.
【详解】由题意,命题“若 ,则 ”的否命题是:“若 ,则 ”所以A不正确;
命题“若 ,则 互为相反数”的逆命题是:若 互为相反数,则 ,是真命题,正确;
命题“ , ”的否定是:“ , ”所以C不正确;
命题“若 ,则 ”的逆否命题是:“若 ,则 ”所以D不正确;
故选:B.
【点睛】本题主要考查了命题的真假的判断与应用,涉及命题的真假,命题的否定,四种命题的逆否关系,,着重考查了推理能力,属于基础题.
8.已知椭圆 的左、右焦点分别为 、 ,短轴长为 ,离心率为 ,过点 的直线交椭圆于 , 两点,则 的周长为( )
A.4B.8C.16D.32
【答案】C
分析】
利用椭圆的定义,结合 ,即可求解,得到答案.
【详解】由题意,椭圆 的短轴长为 ,离心率为 ,
所以 , ,则 ,所以 ,
所以 的周长为 ,
故选:C.
15.先后抛掷三次一枚质地均匀的硬币,落在水平桌面上,设事件 为“第一次正面向上”,事件 为“后两次均反面向上”,则 ________.
【答案】
【分析】
先列出事件 与事件 的基本事件的个数,再利用独立事件与条件概率的求法可得 ,即可求解.
【详解】由题意,先后抛掷三次一枚质地均匀的硬币,事件A为“第一次正面向上”,
C. 为 的极大值点D. 为 的极小值点

数学浙江专三维二轮专题复习 选择填空提速专练(一)

数学浙江专三维二轮专题复习 选择填空提速专练(一)

选择填空提速专练(一)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知A={x|y2=x},B={y|y2=x},则( )A.A∪B=A B.A∩B=AC.A=B D.(∁R A)∩B=∅解析:选B 因为A={x|x≥0},B={y|y∈R},所以A∩B=A,故选B.2.设a,b是两条不同的直线,α,β是两个不同的平面,则下列四个命题错误的是()A.若a⊥b,a⊥α,b⊄α,则b∥αB.若a⊥b,a⊥α,b⊥β,则α⊥βC.若a⊥β,α⊥β,则a∥α或a⊂αD.若a∥α,α⊥β,则a⊥β解析:选D 易知A,B,C均正确;D中a和β的位置关系有三种可能,a∥β,a⊂β或a与β相交,故D错误,故选D.3.已知函数f(2x)=x·log32,则f(39)的值为( )A。

错误!B。

错误!C.6 D.9解析:选D 令t=2x(t>0),则x=log2t,于是f(t)=log2t·log32=log3t(t>0),故函数f(x)=log3x(x>0),所以f(39)=log339=9,故选D。

4.在复平面内,已知复数z=错误!,则z在复平面上对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限解析:选B 因为z=错误!=错误!=错误!=错误!+错误!i,所以复数z 在复平面上对应的点为错误!,显然此点在第二象限,故选B.5.将函数y=cos(2x+φ)的图象向右平移错误!个单位,得到的函数为奇函数,则|φ|的最小值为()A.错误!B.错误!C。

错误! D.错误!解析:选B 设y=cos(2x+φ)向右平移错误!个单位长度得到的函数为g(x),则g(x)=cos错误!,因为g(x)=cos错误!为奇函数,且在原点有定义,所以-错误!+φ=kπ+错误!(k∈Z),解得φ=kπ+错误!(k ∈Z),故当k=-1时,|φ|min=错误!,故选B.6.已知实数a,b,则“|a+b|+|a-b|≤1”是“a2+b2≤1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A 由绝对值三角不等式|a±b|≤|a|+|b|可得错误!即错误!此不等式组表示边长为1的正方形区域(含边界),而a2+b2≤1表示单位圆域(含边界),故由错误!可以推出a2+b2≤1,但是反之不成立,故选A。

高考数学二轮复习课件高考5个大题题题研诀窍函数与导数综合问题巧在“转”、难在“分”讲义理(含解析)

高考数学二轮复习课件高考5个大题题题研诀窍函数与导数综合问题巧在“转”、难在“分”讲义理(含解析)

函数与导数综合问题巧在“转”、难在“分”[思维流程——找突破口] [技法指导——迁移搭桥]函数与导数问题一般以函数为载体,以导数为工具,重点考查函数的一些性质,如含参函数的单调性、极值或最值的探求与讨论,复杂函数零点的讨论,函数不等式中参数范围的讨论,恒成立和能成立问题的讨论等,是近几年高考试题的命题热点.对于这类综合问题,一般是先转化(变形),再求导,分解出基本函数,分类讨论研究其性质,再根据题意解决问题.[典例] 已知函数f (x )=eln x -ax (a ∈R). (1)讨论f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x+2e x ≤0. [快审题] 求什么 想什么 讨论函数的单调性,想到利用导数判断. 证明不等式,想到对所证不等式进行变形转化. 给什么 用什么 已知函数的解析式,利用导数解题.差什么 找什么 证不等式时,对不等式变形转化后还不能直接判断两函数的关系,应找出所构造函数的最值.[稳解题](1)f ′(x )=ex-a (x >0),①若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增; ②若a >0,则当0<x <e a 时,f ′(x )>0,当x >ea时,f ′(x )<0,故f (x )在⎝⎛⎭⎪⎫0,e a 上单调递增,在⎝ ⎛⎭⎪⎫e a ,+∞上单调递减.(2)证明:法一:因为x >0,所以只需证f (x )≤exx-2e ,当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以f (x )max=f (1)=-e.记g (x )=exx-2e(x >0),则g ′(x )=x -1e xx 2,所以当0<x <1时,g ′(x )<0,g (x )单调递减; 当x >1时,g ′(x )>0,g (x )单调递增, 所以g (x )min =g (1)=-e.综上,当x >0时,f (x )≤g (x ),即f (x )≤exx-2e ,即xf (x )-e x+2e x ≤0. 法二:证xf (x )-e x+2e x ≤0, 即证e x ln x -e x 2-e x+2e x ≤0, 从而等价于ln x -x +2≤exe x .设函数g (x )=ln x -x +2, 则g ′(x )=1x-1.所以当x ∈(0,1)时,g ′(x )>0; 当x ∈(1,+∞)时,g ′(x )<0,故g (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 从而g (x )在(0,+∞)上的最大值为g (1)=1. 设函数h (x )=e xe x,则h ′(x )=exx -1e x2. 所以当x ∈(0,1)时,h ′(x )<0,当x ∈(1,+∞)时,h ′(x )>0,故h (x )在(0,1)上单调递减,在(1,+∞)上单调递增, 从而h (x )在(0,+∞)上的最小值为h (1)=1. 综上,当x >0时,g (x )≤h (x ), 即xf (x )-e x+2e x ≤0.[题后悟道] 函数与导数综合问题的关键(1)会求函数的极值点,先利用方程f (x )=0的根,将函数的定义域分成若干个开区间,再列成表格,最后依表格内容即可写出函数的极值;(2)证明不等式,常构造函数,并利用导数法判断新构造函数的单调性,从而可证明原不等式成立;(3)不等式恒成立问题除了用分离参数法,还可以从分类讨论和判断函数的单调性入手,去求参数的取值范围.[针对训练]已知函数f (x )=x ln x ,g (x )=ax 22,直线l :y =(k -3)x -k +2.(1)若曲线y =f (x )在x =e 处的切线与直线l 平行,求实数k 的值; (2)若至少存在一个x 0∈[1,e]使f (x 0)<g (x 0)成立,求实数a 的取值范围; (3)设k ∈Z ,当x >1时,函数f (x )的图象恒在直线l 的上方,求k 的最大值. 解:(1)由已知得,f ′(x )=ln x +1,且y =f (x )在x =e 处的切线与直线l 平行, 所以f ′(e)=ln e +1=2=k -3,解得k =5.(2)因为至少存在一个x 0∈[1,e]使f (x 0)<g (x 0)成立,所以至少存在一个x 使x ln x <ax 22成立,即至少存在一个x 使a >2ln x x成立.令h (x )=2ln x x ,当x ∈[1,e]时,h ′(x )=21-ln xx 2≥0恒成立,因此h (x )=2ln x x在[1,e]上单调递增.故当x =1时,h (x )min =0,所以实数a 的取值范围为(0,+∞).(3)由已知得,x ln x >(k -3)x -k +2在x >1时恒成立,即k <x ln x +3x -2x -1.令F (x )=x ln x +3x -2x -1,则F ′(x )=x -ln x -2x -12.令m (x )=x -ln x -2,则m ′(x )=1-1x =x -1x>0在x >1时恒成立.所以m (x )在(1,+∞)上单调递增,且m (3)=1-ln 3<0,m (4)=2-ln 4>0, 所以在(1,+∞)上存在唯一实数x 0(x 0∈(3,4))使m (x 0)=0,即x 0-ln x 0-2=0. 当1<x <x 0时,m (x )<0,即F ′(x )<0,当x >x 0时,m (x )>0,即F ′(x )>0, 所以F (x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增. 故F (x )min =F (x 0)=x 0ln x 0+3x 0-2x 0-1=x 0x 0-2+3x 0-2x 0-1=x 0+2∈(5,6).故k <x 0+2(k ∈Z),所以k 的最大值为5. [总结升华]函数与导数压轴题堪称“庞然大物”,所以征服它需要一定的胆量和勇气,可以参变量分离、可把复杂函数分离为基本函数、可把题目分解成几个小题、也可把解题步骤分解为几个小步,也可从逻辑上重新换叙.注重分步解答,这样,即使解答不完整,也要做到尽可能多拿步骤分.同时要注意分类思想、数形结合思想、化归与转化等数学思想的运用.[专题过关检测] 1.(2018·武汉调研)已知函数f (x )=ln x +a x(a ∈R). (1)讨论函数f (x )的单调性; (2)当a >0时,证明:f (x )≥2a -1a.解:(1)f ′(x )=1x -a x 2=x -ax2(x >0).当a ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增.当a >0时,若x >a ,则f ′(x )>0,函数f (x )在(a ,+∞)上单调递增; 若0<x <a ,则f ′(x )<0,函数f (x )在(0,a )上单调递减. (2)证明:由(1)知,当a >0时,f (x )min =f (a )=ln a +1. 要证f (x )≥2a -1a ,只需证ln a +1≥2a -1a,即证ln a +1a-1≥0.令函数g (a )=ln a +1a-1,则g ′(a )=1a -1a 2=a -1a2(a >0),当0<a <1时,g ′(a )<0,当a >1时,g ′(a )>0,所以g (a )在(0,1)上单调递减,在(1,+∞)上单调递增, 所以g (a )min =g (1)=0. 所以ln a +1a-1≥0恒成立,所以f (x )≥2a -1a.2.(2018·全国卷Ⅱ)已知函数f (x )=e x-ax 2. (1)若a =1,证明:当x ≥0时,f (x )≥1;(2)若f (x )在(0,+∞)只有一个零点,求a .解:(1)证明:当a =1时,f (x )≥1等价于(x 2+1)e -x-1≤0. 设函数g (x )=(x 2+1)e -x-1,则g ′(x )=-(x 2-2x +1)e -x=-(x -1)2e -x. 当x ≠1时,g ′(x )<0,所以g (x )在(0,+∞)上单调递减.而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1. (2)设函数h (x )=1-ax 2e -x.f (x )在(0,+∞)上只有一个零点等价于h (x )在(0,+∞)上只有一个零点.(ⅰ)当a ≤0时,h (x )>0,h (x )没有零点; (ⅱ)当a >0时,h ′(x )=ax (x -2)e -x. 当x ∈(0,2)时,h ′(x )<0; 当x ∈(2,+∞)时,h ′(x )>0. 所以h (x )在(0,2)上单调递减, 在(2,+∞)上单调递增.故h (2)=1-4ae 2是h (x )在(0,+∞)上的最小值.①当h (2)>0,即a <e24时,h (x )在(0,+∞)上没有零点.②当h (2)=0,即a =e24时,h (x )在(0,+∞)上只有一个零点.③当h (2)<0,即a >e24时,因为h (0)=1,所以h (x )在(0,2)上有一个零点.由(1)知,当x >0时,e x>x 2,所以h (4a )=1-16a 3e 4a =1-16a3e2a2>1-16a32a4=1-1a>0,故h (x )在(2,4a )上有一个零点.因此h (x )在(0,+∞)上有两个零点.综上,当f (x )在(0,+∞)上只有一个零点时,a =e24.3.(2018·西安质检)设函数f (x )=ln x +k x(k ∈R).(1)若曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围. 解:(1)由条件得f ′(x )=1x -kx2(x >0),∵曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直,∴f ′(e)=0,即1e -ke 2=0,得k =e ,∴f ′(x )=1x -e x 2=x -ex2(x >0).由f ′(x )<0,得0<x <e ;由f ′(x )>0,得x >e , ∴f (x )在(0,e)上单调递减,在(e ,+∞)上单调递增, 当x =e 时,f (x )取得极小值,且f (e)=ln e +ee =2.∴f (x )的极小值为2.(2)由题意知对任意的x 1>x 2>0,f (x 1)-x 1<f (x 2)-x 2恒成立, 设h (x )=f (x )-x =ln x +k x-x (x >0), 则h (x )在(0,+∞)上单调递减,∴h ′(x )=1x -kx2-1≤0在(0,+∞)上恒成立,即当x >0时,k ≥-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14恒成立,∴k ≥14.故k 的取值范围是⎣⎢⎡⎭⎪⎫14,+∞. 4.(2018·全国卷Ⅲ)已知函数f (x )=(2+x +ax 2)·ln(1+x )-2x . (1)若a =0,证明:当-1<x <0时,f (x )<0;当x >0时,f (x )>0; (2)若x =0是f (x )的极大值点,求a .解:(1)证明:当a =0时,f (x )=(2+x )ln(1+x )-2x ,f ′(x )=ln(1+x )-x1+x. 设函数g (x )=ln(1+x )-x1+x ,则g ′(x )=x1+x2.当-1<x <0时,g ′(x )<0;当x >0时,g ′(x )>0, 故当x >-1时,g (x )≥g (0)=0, 且仅当x =0时,g (x )=0,从而f ′(x )≥0,且仅当x =0时,f ′(x )=0. 所以f (x )在(-1,+∞)上单调递增. 又f (0)=0,故当-1<x <0时,f (x )<0;当x >0时,f (x )>0.(2)①若a ≥0,由(1)知,当x >0时,f (x )≥(2+x )ln(1+x )-2x >0=f (0), 这与x =0是f (x )的极大值点矛盾. ②若a <0, 设函数h (x )=f x 2+x +ax 2=ln(1+x )-2x2+x +ax2.由于当|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,2+x +ax 2>0, 故h (x )与f (x )符号相同. 又h (0)=f (0)=0, 故x =0是f (x )的极大值点, 当且仅当x =0是h (x )的极大值点. h ′(x )=11+x-22+x +ax 2-2x 1+2ax2+x +ax22=x 2a 2x 2+4ax +6a +1x +1ax 2+x +22.若6a +1>0,则当0<x <-6a +14a,且|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,h ′(x )>0, 故x =0不是h (x )的极大值点.若6a +1<0,则a 2x 2+4ax +6a +1=0存在根x 1<0,故当x ∈(x 1,0),且|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,h ′(x )<0, 所以x =0不是h (x )的极大值点.若6a +1=0,则h ′(x )=x 3x -24x +1x 2-6x -122,则当x ∈(-1,0)时,h ′(x )>0; 当x ∈(0,1)时,h ′(x )<0. 所以x =0是h (x )的极大值点, 从而x =0是f (x )的极大值点. 综上,a =-16.。

2018年广东省肇庆市高考数学二模试卷(文科)(2)

2018年广东省肇庆市高考数学二模试卷(文科)(2)

2018年广东省肇庆市高考数学二模试卷(文科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设复数z满足z(1+i)=2,i为虚数单位,则复数z的模是()A.2 B.C.D.2.(5分)M={﹣1,0,1,2},N={x|x2﹣x≤0},则M∩N=()A.{﹣1,0}B.{0,1}C.{﹣1,2}D.{1,2}3.(5分)已知地铁列车每10分钟一班,在车站停1分钟.则乘客到达站台立即乘上车的概率是()A.B.C.D.4.(5分)已知f(x)=lg(10+x)+lg(10﹣x),则f(x)是()A.f(x)是奇函数,且在(0,10)是增函数B.f(x)是偶函数,且在(0,10)是增函数C.f(x)是奇函数,且在(0,10)是减函数D.f(x)是偶函数,且在(0,10)是减函数5.(5分)如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为()A.9 B.18 C.20 D.356.(5分)下列说法错误的是()A.“x>0”是“x≥0”的充分不必要条件B.命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”C.若p∧q为假命题,则p,q均为假命题D.命题p:∃x∈R,使得x2+x+1<0,则¬p:∀x∈R,均有x2+x+1≥07.(5分)已知实数x,y满足约束条件,若z=2x+y的最小值为3,则实数b=()A.B.C.1 D.8.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知b=a(cosC﹣sinC),a=2,c=,则角C=()A. B.C.D.9.(5分)能使函数f(x)=sin(2x+φ)+cos(2x+φ)的图象关于原点对称,且在区间[0,]上为减函数的φ的一个值是()A.B. C. D.10.(5分)已知t>1,x=log2t,y=log3t,z=log5t,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z11.(5分)如图是某几何体的三视图,则该几何体的体积为()A.B.C.8 D.412.(5分)已知函数f(x)=,若|f(x)|≥ax,则实数a的取值范围为()A.[﹣2,1]B.[﹣4,1]C.[﹣2,0]D.[﹣4,0]二、填空题:本大题共4小题,每小题5分.13.(5分)已知||=||=|+|=1,则|﹣|=.14.(5分)函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,则f()的值是.15.(5分)正项数列{a n}中,满足a1=1,a2=,=(n∈N*),那么a n=.16.(5分)在三棱锥V﹣ABC中,面VAC⊥面ABC,VA=AC=2,∠VAC=120°,BA ⊥BC则三棱锥V﹣ABC的外接球的表面积是.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)△ABC的内角A、B、C的对边分别为a、b、c,已知△ABC的面积为acsin2B.(Ⅰ)求sinB的值;(Ⅱ)若C=5,3sin2C=5sin2B•sin2A,且BC的中点为D,求△ABD的周长.18.(12分)设正项数列{a n}的前n项和为S n,已知S n,a n+1,4成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,设b n的前n项和为T n,求证:T n.19.(12分)保险公司统计的资料表明:居民住宅区到最近消防站的距离x(单位:千米)和火灾所造成的损失数额y(单位:千元)有如下的统计资料:距消防站距离x(千米)火灾损失费用y(千元)如果统计资料表明y与x有线性相关关系,试求:参考数据:y i x i y i(x i﹣)(y i﹣(x i﹣)2(y i﹣)2≈≈参考公式:相关系数r=,回归方程=+t 中斜率和截距的最小二乘估计公式分别为:=,=﹣x.20.(12分)如图1,在高为2的梯形ABCD中,AB∥CD,AB=2,CD=5,过A、B分别作AE⊥CD,BF⊥CD,垂足分别为E、F.已知DE=1,将梯形ABCD沿AE、BF同侧折起,使得AF⊥BD,DE∥CF,得空间几何体ADE﹣BCF,如图2.(Ⅰ)证明:BE∥面ACD;(Ⅱ)求三棱锥B﹣ACD的体积.21.(12分)已知函数f(x)=ae x﹣x,f′(x)是f(x)的导数.(Ⅰ)讨论不等式f′(x)g(x﹣1)>0的解集;(Ⅱ)当m>0且a=1时,若f(x)<e2﹣2在x∈[﹣m,m]恒成立,求m的取值范围.四.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.作答时,请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(t为参数,0≤α<π),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ+=4cosθ+4sinθ.(Ⅰ)当α=时,直接写出C1的普通方程和极坐标方程,直接写出C2的普通方程;(Ⅱ)已知点P(1,),且曲线C1和C2交于A,B两点,求|PA|•|PB|的值.[选修4-5:不等式选讲]23.已知f(x)=|x+3|+|x﹣1|,g(x)=﹣x2+2mx.(Ⅰ)求不等式f(x)>4的解集;(Ⅱ)若对任意的x1,x2,f(x1)≥g(x2)恒成立,求m的取值范围.2018年广东省肇庆市高考数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设复数z满足z(1+i)=2,i为虚数单位,则复数z的模是()A.2 B.C.D.【解答】解:由z(1+i)=2,得z=,∴|z|=.故选:C.2.(5分)M={﹣1,0,1,2},N={x|x2﹣x≤0},则M∩N=()A.{﹣1,0}B.{0,1}C.{﹣1,2}D.{1,2}【解答】解:N={x|x2﹣x≤0}={x|0≤x≤1},则M∩N={0,1},故选:B3.(5分)已知地铁列车每10分钟一班,在车站停1分钟.则乘客到达站台立即乘上车的概率是()A.B.C.D.【解答】解:由于地铁列车每10分钟一班,列车在车站停1分钟,乘客到达站台立即乘上车的概率为P==.故选:A.4.(5分)已知f(x)=lg(10+x)+lg(10﹣x),则f(x)是()A.f(x)是奇函数,且在(0,10)是增函数B.f(x)是偶函数,且在(0,10)是增函数C.f(x)是奇函数,且在(0,10)是减函数D.f(x)是偶函数,且在(0,10)是减函数【解答】解:由得:x∈(﹣10,10),故函数f(x)的定义域为(﹣10,10),关于原点对称,又由f(﹣x)=lg(10﹣x)+lg(10+x)=f(x),故函数f(x)为偶函数,而f(x)=lg(10+x)+lg(10﹣x)=lg(100﹣x2),y=100﹣x2在(0,10)递减,y=lgx在(0,10)递增,故函数f(x)在(0,10)递减,故选:D.5.(5分)如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为()A.9 B.18 C.20 D.35【解答】解:初始值n=3,x=2,程序运行过程如下表所示:v=1i=2 v=1×2+2=4i=1 v=4×2+1=9i=0 v=9×2+0=18i=﹣1 跳出循环,输出v的值为18.故选:B.6.(5分)下列说法错误的是()A.“x>0”是“x≥0”的充分不必要条件B.命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”C.若p∧q为假命题,则p,q均为假命题D.命题p:∃x∈R,使得x2+x+1<0,则¬p:∀x∈R,均有x2+x+1≥0【解答】解:A.“x>0”是“x≥0”的充分不必要条件,正确,故A正确,B.命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”正确,C.若p∧q为假命题,则p,q至少有一个为假命题,故C错误,D.命题p:∃x∈R,使得x2+x+1<0,则¬p:∀x∈R,均有x2+x+1≥0,正确,故错误的是C,故选:C.7.(5分)已知实数x,y满足约束条件,若z=2x+y的最小值为3,则实数b=()A.B.C.1 D.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最小,此时z最小为3,即2x+y=3.由,解得,即A(,),此时点A也在直线y=﹣x+b上.即=﹣+b,即b=.故选:A8.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知b=a(cosC﹣sinC),a=2,c=,则角C=()A. B.C.D.【解答】解:∵b=a(cosC﹣sinC),∴由正弦定理可得:sinB=sinAcosC﹣sinAsinC,可得:sin(A+C)=sinAcosC+cosAsinC=sinAcosC﹣sinAsinC,∴cosAsinC=﹣sinAsinC,由sinC≠0,可得:sinA+cosA=0,∴tanA=﹣1,由A为三角形内角,可得A=,∵a=2,c=,∴由正弦定理可得:sinC===,∴由c<a,可得C=.故选:B.9.(5分)能使函数f(x)=sin(2x+φ)+cos(2x+φ)的图象关于原点对称,且在区间[0,]上为减函数的φ的一个值是()A.B. C. D.【解答】解:函数f(x)=sin(2x+φ)+cos(2x+φ)的图象关于原点对称,∴函数f(x)是奇函数,满足f(0)=sinφ+cosφ=0,得tanφ=﹣,∴φ=﹣+kπ,k∈Z;又f(x)=sin(2x+φ)+cos(2x+φ)=2sin(2x+φ+)在区间[0,]上是减函数,∴φ+≤2x+θ+≤φ+,令t=2x+φ+,得集合M={t|φ+≤t≤φ+},且M⊆[+2mπ,+2mπ],m∈Z;由此可得:取k=1,m=0;∴φ=,M=[π,]满足题设的两个条件.故选:C.10.(5分)已知t>1,x=log2t,y=log3t,z=log5t,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【解答】解:∵t>1,∴lgt>0.又0<lg2<lg3<lg5,∴2x=2>0,3y=3>0,5z=>0,∴=>1,可得5z>2x.=>1.可得2x>3y.综上可得:3y<2x<5z.故选:D.11.(5分)如图是某几何体的三视图,则该几何体的体积为()A.B.C.8 D.4【解答】解:由三视图可知:该几何体为一个三棱锥,底面是腰为2的等腰直角三角形,高为2,该几何体的体积V=,故选:B12.(5分)已知函数f(x)=,若|f(x)|≥ax,则实数a的取值范围为()A.[﹣2,1]B.[﹣4,1]C.[﹣2,0]D.[﹣4,0]【解答】解:|f(x)|=,画函数|f(x)|的图象,如图所示,、当x>0时,|f(x)|=ln(x+1)>0,当x<0时,|f(x)|=x2﹣4x>0从图象上看,即要使得直线y=ax都在y=|f(x)|图象的下方,故a≤0,且y=x2﹣4x在x=0处的切线的斜率k≤a.又y'=[x2﹣4x]'=2x﹣4,∴y=x2﹣4x在x=0处的切线的斜率k=﹣4∴﹣4≤a≤0.故选:D.二、填空题:本大题共4小题,每小题5分.13.(5分)已知||=||=|+|=1,则|﹣|=.【解答】解:根据题意,||=||=|+|=1,则有|+|2=2+2•+2=2+2•=1,解可得:•=﹣,则有|﹣|2=2﹣2•+2=2﹣2•=3,则有|﹣|=;故答案为:14.(5分)函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,则f()的值是.【解答】解:根据函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)的部分图象,可得A=,==﹣,∴ω=2.再根据五点法作图可得2×+φ=π,∴φ=,∴f(x)=sin(2x+),∴f()=sin=,故答案为:.15.(5分)正项数列{a n}中,满足a1=1,a2=,=(n∈N*),那么a n=.【解答】解:由=(n∈N*),可得a2n=a n•a n+2,+1∴数列{a n}为等比数列,∵a1=1,a2=,∴q=,∴a n=,故答案为:16.(5分)在三棱锥V﹣ABC中,面VAC⊥面ABC,VA=AC=2,∠VAC=120°,BA ⊥BC则三棱锥V﹣ABC的外接球的表面积是16π.【解答】解:如图,设AC中点为M,VA中点为N,∵面VAC⊥面ABC,BA⊥BC,∴过M作面ABC的垂线,球心O必在该垂线上,连接ON,则ON⊥AV.在Rt△OMA中,AM=1,∠OAM=60°,∴OA=2,即三棱锥V﹣ABC的外接球的半径为2,∴三棱锥V﹣ABC的外接球的表面积S=4πR2=16π.故答案为:16π.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)△ABC的内角A、B、C的对边分别为a、b、c,已知△ABC的面积为acsin2B.(Ⅰ)求sinB的值;(Ⅱ)若C=5,3sin2C=5sin2B•sin2A,且BC的中点为D,求△ABD的周长.【解答】解:(Ⅰ)由△ABC的面积为acsinB=acsin2B.得sinB=2sinBcosB,∵0<B<π,∴sinB>0,故cosB=,∴sinB==;(Ⅱ)由(Ⅰ)和3sin2C=5sin2B•sin2A得16sin2C=25sin2A,由正弦定理得16c2=25a2,∵c=5,∴a=4,BD=a=2,在△ABD中,由余弦定理得:AD2=c2+BD2﹣2c•BD•cosB=25+4﹣2×5×2×=24∴AD=2,∴△ABD的周长为c=BD+AD=7+2.18.(12分)设正项数列{a n}的前n项和为S n,已知S n,a n+1,4成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,设b n的前n项和为T n,求证:T n.【解答】解:(Ⅰ)∵S n,a n+1,4成等比数列,∴(a n+1)2=4S n,∴S n=(a n+1)2,当n=1时,a1=(a1+1)2,∴a1=1,当n≥2时,,∴两式相减得,即(a n+a n﹣1)(a n﹣a n﹣1﹣2)=0又a n>0,∴,∴数列{a n}的首项为1,公差为2的等差数列,即a n=2n﹣1,证明:(Ⅱ),∴,∴.19.(12分)保险公司统计的资料表明:居民住宅区到最近消防站的距离x(单位:千米)和火灾所造成的损失数额y(单位:千元)有如下的统计资料:距消防站距离x(千米)火灾损失费用y(千元)如果统计资料表明y与x有线性相关关系,试求:参考数据:y i x i y i(x i﹣)(y i﹣(x i﹣)2(y i﹣)2≈≈参考公式:相关系数r=,回归方程=+t 中斜率和截距的最小二乘估计公式分别为:=,=﹣x.【解答】解:(Ⅰ)…(2分)(Ⅱ)依题意得…(3分)…(4分),,所以,…(6分)又因为故线性回归方程为(+(III)当x=10时,根据回归方程有:20.(12分)如图1,在高为2的梯形ABCD中,AB∥CD,AB=2,CD=5,过A、B分别作AE⊥CD,BF⊥CD,垂足分别为E、F.已知DE=1,将梯形ABCD沿AE、BF同侧折起,使得AF⊥BD,DE∥CF,得空间几何体ADE﹣BCF,如图2.(Ⅰ)证明:BE∥面ACD;(Ⅱ)求三棱锥B﹣ACD的体积.【解答】(Ⅰ)证明:证法一、连接BE交AF于O,取AC的中点H,连接OH,则OH是△AFC的中位线,∴OH∥CF,OH=.由已知得DE∥CF,DE=,∴DE∥OH,DE=OH,连接DH,则四边形DHOE是平行四边形,∴EO∥DH,又∵EO⊄面ADC,DH⊂面ADC,∴EO∥面ACD,即BE∥面ACD;证法二、延长FE,CD交于点K,连接AK,则面CKA∩面ABFE=KA,由已知得DE∥CF,DE=,∴DE是△KFC的中位线,则KE=EF.∴KE∥AB,KE=AB,则四边形ABEK是平行四边形,得AK∥BE.又∵BE⊄面ADC,KA⊂面ADC,∴BE∥面ACD;证法三、取CF的中点G,连接BG,EG,得DE∥CG,DE=CG,即四边形CDEG是平行四边形,则EG∥DC,又GE⊄面ADC,DC⊂面ADC,∴GE∥面ADC,又∵DE∥GF,DE=GF,∴四边形DGFE是平行四边形,得DG∥EF,DG=EF,又ABFE是平行四边形,∴AB∥EF,AB=EF,得AB∥DG,AB=DG,∴四边形ABGD是平行四边形,则BG∥AD,又GB⊄面ADC,DA⊂面ADC,∴GB∥面ADC,又GB∩GE=G,∴面GBE∥面ADC,又BE⊂面GBE,∴BE∥面ACD;=V E﹣ACD ,(Ⅱ)解:∵GB∥面ADC,∴V B﹣ACD由已知得,四边形ABFE为正方形,且边长为2,则在图2中,AF⊥BE,由已知AF⊥BD,且BE∩BD=B,可得AF⊥平面BDE,又DE⊂平面BDE,∴AF⊥DE,又AE⊥DE,AF∩AE=A,∴DE⊥平面ABFE,且AE⊥EF,∴AE⊥面CDE,∴AE是三棱锥A﹣DEC的高,∵四边形DEFC是直角梯形.且AE=2,DE=1,EF=2,∴.21.(12分)已知函数f(x)=ae x﹣x,f′(x)是f(x)的导数.(Ⅰ)讨论不等式f′(x)g(x﹣1)>0的解集;(Ⅱ)当m>0且a=1时,若f(x)<e2﹣2在x∈[﹣m,m]恒成立,求m的取值范围.【解答】解:(Ⅰ)f'(x)=ae x﹣1…(1分)f'(x)•(x﹣1)=(ae x﹣1)(x﹣1)>0,当a≤0时,不等式的解集为{x|x<1}…(2分)当时,,不等式的解集为…(3分)当时,,不等式的解集为{x|x≠1}…(4分)当时,,不等式的解集为…(5分)(Ⅱ)法一:当a=1时,由f'(x)=e x﹣1=0得x=0,当x∈[﹣m,0]时,f'(x)≤0,f(x)单调递减,当x∈[0,m]时,f'(x)≥0,f(x)单调递增;f(x)max是f(﹣m)、f(m)的较大者.f(m)﹣f(﹣m)=e m﹣e﹣m﹣2m,…(7分)令g(x)=e x﹣e﹣x﹣2x,,…(9分)所以g(x)是增函数,所以当m>0时,g(m)>g(0)=0,所以f(m)>f(﹣m),所以.…(10分)f(x)<e2﹣2恒成立等价于,由f(x)单调递增以及f(2)=e2﹣2,得0<m<2…(12分)法二:当a=1时,由f'(x)=e x﹣1=0得x=0,当x∈[﹣m,0]时,f'(x)≤0,f(x)单调递减,当x∈[0,m]时,f'(x)≥0,f(x)单调递增;f(x)max是f(﹣m)、f(m)的较大者.…(7分)由f(m)=e m﹣m<e2﹣2,由f(x)单调递增以及f(2)=e2﹣2,得0<m<2.…(9分)当0<m<2时,﹣2<﹣m<0,因为当x<0时,f(x)单调递减,所以f(﹣m)<f(﹣2)=e﹣2+2<e2﹣2,综上m的范围是0<m<2…(12分)四.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.作答时,请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(t为参数,0≤α<π),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ+=4cosθ+4sinθ.(Ⅰ)当α=时,直接写出C1的普通方程和极坐标方程,直接写出C2的普通方程;(Ⅱ)已知点P(1,),且曲线C1和C2交于A,B两点,求|PA|•|PB|的值.【解答】(本小题满分10分)解:(Ⅰ)∵曲线C1的参数方程为(t为参数,0≤α<π),∴消去参数t,得:得直线l的直角坐标方程为:sinαx﹣cosαy+cosα=0.曲线C1的极坐标方程为ρcos2θ=4sinθ,即ρ2cos2θ=4ρsinθ,曲线C的1标准方程:x2=4y.…(4分)∵曲线C2的极坐标方程是ρ+=4cosθ+4sinθ,即ρ2+7=4ρcosθ+4ρsinθ,∴C2的普通方程为x2+y2+7=4x+4y,即(x﹣2)2+(y﹣2)2=1.…(6分)(Ⅱ)方法一:∵C2的普通方程为(x﹣2)2+(y﹣2)2=1,∴C2是以点E(2,2)为圆心,半径为1的圆,∵,∴P在圆外,过P做圆的切线PH,切线长…(8分)由切割线定理知|PA|•|PB|=|PH|2=4…(10分)方法二:将代入(x﹣2)2+(y﹣2)2=1中,化简得t2﹣2(sinα+2cosα)t+4=0,…8分∴|PA|•|PB|=|t1•t2|=4.…(10分)[选修4-5:不等式选讲]23.已知f(x)=|x+3|+|x﹣1|,g(x)=﹣x2+2mx.(Ⅰ)求不等式f(x)>4的解集;(Ⅱ)若对任意的x1,x2,f(x1)≥g(x2)恒成立,求m的取值范围.【解答】解:(Ⅰ)法一:不等式f(x)>4,即|x+3|+|x﹣1|>4.可得,或或…(3分)解得x<﹣3或x>1,所以不等式的解集为{x|x<﹣3或x>1}.…(5分)法二:|x+3|+|x﹣1|≥|x+3﹣(x﹣1)|=4,…(2分)当且仅当(x+3)(x﹣1)≤0即﹣3≤x≤1时等号成立.…(4分)所以不等式的解集为{x|x<﹣3或x>1}.…(5分)(Ⅱ)依题意可知f(x)min>g(x)max…(6分)由(Ⅰ)知f(x)min=4,g(x)=﹣x2+2mx=﹣(x﹣m)2+m2所以…(8分)由m2<4的m的取值范围是﹣2<m<2…(10分)。

2018-2019学年度广东省中山市高二第二学期期末水平测试文科数学试题(含答案)

2018-2019学年度广东省中山市高二第二学期期末水平测试文科数学试题(含答案)

高二文科数学试卷 第1页(共18页)2018-2019学年度中山市高二级第二学期期末统一考试数学试卷(文科)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.i 是虚数单位,则ii21-的虚部是( ) A .-2B .-1C .i -D .i 2-2.用反证法证明“方程)0(02≠=++a c bx ax 至多有两个解”的假设中,正确的是( ) A .至少有两个解 B .有且只有两个解 C .至少有三个解 D .至多有一个解 3. 若抛物线ay x =2的焦点到准线的距离为1,则a=( ) A. 2B .4C .±2D .±44. ”的>”是“>“33ba22b a ( ) A. 充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件5.甲、乙、丙、丁四位同学各自对A 、B 两变量的线性相关性作试验,并用回归分析方法分别求得相关系数r 与残差平方和m 如下表:则哪位同学的试验结果体现A、B两变量有更强的线性相关性?()A.甲B.乙C.丙D.丁6.二分法是求方程近似解的一种方法,其原理是“一分为二,无限逼近”。

执行如图所示的程序框图,若输入11x=,22x=,0.1d=,则输出n的值为()高二文科数学试卷第2页(共18页)高二文科数学试卷 第3页(共18页)A. 2 B . 3 C . 4 D . 5 7. 某学校为了了解该校学生对于某项运动的爱好是否与性别有关,通过随机抽查110名学 生,得到如下22⨯的列联表:由公式))()()(()(22d b c a d c b a bc ad n K ++++-=,算得82.72≈K附表:参照附表,以下结论正确的是( )A. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C. 有99%以上的把握认为“爱好该项运动与性别无关”D. 有99%以上的把握认为“爱好该项运动与性别有关”8.(a +b )n(n ∈N *)当n =1,2,3,4,5,6时展开式的二项式系数表示形式高二文科数学试卷 第4页(共18页)借助上面的表示形式,判断λ与μ的值分别是( ) A .5,9B .5,10C .6,10D .6,99. A . a c b << B . C .b c a <<D . <10.已知 , 是椭圆C :12222=+by a x ( > > )的左右焦点,B 为椭圆C 短轴的一个端点,直线 与C 的另一个交点为A ,若△BAF 2是等腰三角形,则21AF AF =( )A .31B .21 C .32D .311.函数x x x x f sin )(2+=的图像大致为()高二文科数学试卷 第5页(共18页)12.已知双曲线)0,(12222>=-b a by a x ,过x 轴上点p 的直线l 与双曲线的右支交于M ,N两点(M 在第一象限),直线MO 交双曲线左支于点 Q (O 为坐标原点),连接QN ,若∠MPO =60°,∠MNQ =30°,则该双曲线的离心率为 ( )A .2B .3C . 2D . 4二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡相应横线上)13.曲线 在点(0,-1)处的切线方程为_______。

高考数学二轮复习练习:专题限时集训6 数列 含答案

高考数学二轮复习练习:专题限时集训6 数列  含答案

专题限时集训(六)数列(限时:120分钟)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填写在题中横线上.)1.(四川省凉山州2019届高中毕业班第一次诊断性检测)设数列{a n }满足a 1=a ,a n +1=a 2n -2a n +1(n ∈N *),若数列{a n }是常数列,则a =________.-2[因为数列{a n }是常数列,所以a =a 2=a 21-2a 1+1=a 2-2a +1,即a (a +1)=a 2-2,解得a =-2.]2.(江苏省南京市、盐城市2019届高三第一次模拟)设{a n }是等差数列,若a 4+a 5+a 6=21,则S 9=________.63[由a 4+a 5+a 6=21得a 5=7,所以S 9=a 1+a 92=9a 5=63.]3.数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为________.1830[当n =2k 时,a 2k +1+a 2k =4k -1; 当n =2k -1时,a 2k -a 2k -1=4k -3. 所以a 2k +1+a 2k -1=2,所以a 2k +1+a 2k +3=2, 所以a 2k -1=a 2k +3,所以a 1=a 5=…=a 61. 所以a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61) =3+7+11+…+(2×60-1) =30×3+1192=30×61=1830.]4.(江苏省泰州中学2019届高三上学期第二次月考)等差数列{a n }的前n 项和S n ,若a 1=2,S 3=12,则a 6=________.12[∵S 3=12,∴S 3=3a 1+3×22d =3a 1+3d =12.解得d =2,则a 6=a 1+5d =2+2×5=12.]5.已知等比数列{a n }的前n 项和为S n ,公比q =3,S 3+S 4=533,则a 3=________.3[∵等比数列{a n }的前n 项和为S n ,公比q =3,S 3+S 4=533,∴a 13-3-1+a 14-3-1=533,解得a 1=13.则a 3=13×32=3.] 6.设等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列.且a 2+a 5=4,则a 8的值为________.2[∵等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列.且a 2+a 5=4,∴⎩⎪⎨⎪⎧2×a 1-q 91-q =a 1-q 31-q +a 1-q61-q,a 1q +a 1q 4=4,解得a 1q =8,q 3=-12,∴a 8=a 1q 7=(a 1q )(q 3)2=8×14=2.]7.《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则该竹子最上面一节的容积为________升. 1322[设最上面一节的容积为a 1, 由题设知⎩⎪⎨⎪⎧4a 1+4×32d =3,⎝⎛⎭⎪⎫9a 1+9×82d -⎝ ⎛⎭⎪⎫6a 1+6×52d =4,解得a 1=1322.]8.已知{a n }是公差不为0的等差数列,S n 是其前n 项和,若a 2a 3=a 4a 5,S 9=1,则a 1的值是________.【导学号:56394041】-527[设等差数列{a n }的公差为d (d ≠0), ∵a 2a 3=a 4a 5,S 9=1,∴⎩⎪⎨⎪⎧a 1+d a 1+2d =a 1+3d a 1+4d ,9a 1+9×82d =1,解得a 1=-527.]9.(广东湛江市2019届高三上学期期中调研考试)在各项均为正数的等比数列{a n }中,若log 2a 2+log 2a 8=1,则a 3·a 7=________.2[由log 2a 2+log 2a 8=1得log 2(a 2a 8)=1,所以a 2a 8=2,由等比数列性质可得a 3a 7=a 2a 8=2.] 10.记公比为正数的等比数列{a n }的前n 项和为S n .若a 1=1,S 4-5S 2=0,则S 5的值为________.31[若等比数列的公比等于1,由a 1=1,则S 4=4,5S 2=10,与题意不符. 设等比数列的公比为q (q ≠1), 由a 1=1,S 4=5S 2,得a 1-q 41-q=5a 1(1+q ),解得q =±2.∵数列{a n }的各项均为正数,∴q =2. 则S 5=1-251-2=31.]11.(广东郴州市2019届高三第二次教学质量监测试卷)在△ABC 中,A 1,B 1分别是边BA ,CB 的中点,A 2,B 2分别是线段A 1A ,B 1B 的中点,…,A n ,B n 分别是线段A n -1A ,B n -1B (n ∈N *,n >1)的中点,设数列{a n },{b n }满足:向量B n A n →=a n CA →+b n CB →(n ∈N *),有下列四个命题,其中假命题是:________.【导学号:56394042】①数列{a n }是单调递增数列,数列{b n }是单调递减数列; ②数列{a n +b n }是等比数列; ③数列⎩⎨⎧⎭⎬⎫a nb n 有最小值,无最大值;④若△ABC 中,C =90°,CA =CB ,则|B n A n →|最小时,a n +b n =12.③[由BA n →=⎝ ⎛⎭⎪⎫1-12n BA →=⎝ ⎛⎭⎪⎫1-12n (CA →-CB →),B n B →=12n CB →,B n A n →=B n B →+BA n →=⎝ ⎛⎭⎪⎫1-12n CA →+⎝ ⎛⎭⎪⎫12n -1-1CB →,所以a n =1-12n ,b n =12n -1-1.则数列{a n }是单调递增数列,数列{b n }是单调递减数列,故①正确;数列{a n +b n }即为⎩⎨⎧⎭⎬⎫12n 是首项和公比均为12的等比数列,故②正确;而当n =1时,a 1=12,b 1=0,a n b n 不存在;n >1时,a n b n =2n-12-2n =-1+12-2n 在n ∈N *上递增,无最小值和最大值,故③错误;在△ABC 中,C =90°,CA =CB ,则|B n A n →|2=(a 2n +b 2n )CA →2+2a n b n CA →·CB →=5⎝ ⎛⎭⎪⎫12n -352-15,当n =1时,取得最小值,即有|B n A n →|最小时,a n +b n =12,故④正确.]12.(天津六校2019届高三上学期期中联考)已知数列{a n }满足:a 1=1,a n +1=a na n +2(n ∈N *).若b n +1=(n -2λ)·⎝ ⎛⎭⎪⎫1a n +1(n ∈N *),b 1=-λ,且数列{b n }是单调递增数列,则实数λ的取值范围是________.⎝ ⎛⎭⎪⎫-∞,23[因为a n +1=a n a n +2⇒1a n +1=2a n +1⇒1a n +1+1=2⎝ ⎛⎭⎪⎫1a n +1⇒1a n +1=⎝ ⎛⎭⎪⎫1a 1+12n -1=2n ,所以b n +1=(n -2λ)·2n,因为数列{b n }是单调递增数列,所以当n ≥2时b n +1>b n ⇒(n -2λ)·2n>(n -1-2λ)·2n -1⇒n >2λ-1⇒2>2λ-1⇒λ<32;当n =1时,b 2>b 1⇒(1-2λ)·2>-λ⇒λ<23,因此λ<23.]13.(山西大学附属中学2019级上学期11月模块诊断)设等差数列{a n }的前n 项和为S n ,且满足S 17>0,S 18<0,则S 1a 1,S 2a 2,…,S 15a 15中最大的项为________.S 9a 9[S 17>0⇒a 1+a 172>0⇒a 92>0⇒a 9>0,S 18<0⇒a 1+a 182<0⇒a 9+a 102<0⇒a 10+a 9<0⇒a 10<0,因此S 1a 1>0,S 2a 2>0,…,S 8a 8>0,S 9a 9>0,S 10a 10<0,而S 1<S 2<…<S 9,a 1>a 2>…>a 8>a 9,所以S 1a 1<S 2a 2<…<S 8a 8<S 9a 9.] 14.(云南大理2019届高三第一次统测)若数列{a n }的首项a 1=2,且a n +1=3a n +2(n ∈N *);令b n=log 3(a n +1),则b 1+b 2+b 3+…+b 100=________. 5050[由a n +1=3a n +2(n ∈N *)可知a n +1+1=3(a n +1),∴a n +1+1a n +1=3,所以数列{a n +1}是以3为首项,3为公比的等比数列,所以a n +1=3n,∴a n =3n-1,所以b n =log 3(a n +1)=n ,因此b 1+b 2+b 3+…+b 100=+2=5050.]二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)(泰州中学2019届高三上学期期中考试)已知{a n }是一个公差大于0的等差数列,且满足a 3a 6=55,a 2+a 7=16. (1)求数列{a n }的通项公式;(2)等比数列{b n }满足:b 1=a 1,b 2=a 2-1,若数列c n =a n ·b n ,求数列{c n }的前n 项和S n . [解](1)设等差数列{a n }的公差为d ,则依题意设d >0.由a 2+a 7=16,得2a 1+7d =16.① 由a 3a 6=55,得(a 1+2d )(a 1+5d )=55.②4分由①得2a 1=16-7d 将其代入②得(16-3d )(16+3d )=220.即256-9d 2=220,∴d 2=4,又d >0,∴d =2.代入①得a 1=1,∴a n =1+(n -1)2=2n -1.6分(2)∵b 1=1,b 2=2,∴b n =2n -1,∴c n =a n b n =(2n -1)2n -1, 8分S n =1·20+3·21+…+(2n -1)·2n -1,2S n =1·21+3·22+…+(2n -1)·2n .两式相减可得:-S n =1·20+2·21+2·22+…+2·2n -1-(2n -1)·2n=1+2×-2n -11-2-(2n -1)·2n, 10分∴-S n =1+-2n -11-2-(2n -1)·2n =1+2n +1-4-(2n -1)·2n =2n +1-3-(2n -1)·2n ,∴S n =3+(2n -1)·2n-2n +1=3+(2n -3)·2n.14分16.(本小题满分14分)(河南省豫北名校联盟2019届高三年级精英对抗赛)已知各项均不相等的等差数列{a n }的前五项和S 5=20,且a 1,a 3,a 7成等比数列. (1)求数列{a n }的通项公式;(2)若T n 为数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和,且存在n ∈N *,使得T n -λa n +1≥0成立,求实数λ的取值范围.[解](1)设数列{a n }的公差为d ,则 ⎩⎪⎨⎪⎧5a 1+5×42d =20,a 1+2d 2=a 1a 1+6d ,即⎩⎪⎨⎪⎧a 1+2d =4,2d 2=a 1d .2分又因为d ≠0,所以⎩⎪⎨⎪⎧a 1=2,d =1.4分 所以a n =n +1. 5分(2)因为1a n a n +1=1n +n +=1n +1-1n +2, 所以T n =12-13+13-14+…+1n +1-1n +2=12-1n +2=nn +. 7分因为存在n ∈N *,使得T n -λa n +1≥0成立, 所以存在n ∈N *,使得n n +-λ(n +2)≥0成立, 即存在n ∈N *,使λ≤n n +2成立.10分又n n +2=12⎝⎛⎭⎪⎫n +4n+4≤116(当且仅当n =2时取等号),所以λ≤116.即实数λ的取值范围是⎝⎛⎦⎥⎤-∞,116. 14分17.(本小题满分14分)(四川省凉山州2019届高中毕业班第一次诊断性检测)已知数列{a n }满足a 1=1,a n a n +1=2n ,n ∈N *.(1)若函数f (x )=A sin(2x +φ)(A >0,0<φ<π)在x =π6处取得最大值a 4+1,求函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的值域; (2)求数列{a n }的通项公式. [解](1)∵a n a n +1=2n,则a n +1a n +2=2n +1,∴a n +2a n=2, 又a 1=1,故a 1a 2=21,即a 2=2,∴a 3=2,a 4=4,∴A =a 4+1=5,故f (x )=5sin(2x +φ),4分 又x =π6时,f (x )=5,∴sin ⎝ ⎛⎭⎪⎫π3+φ=1,且0<φ<π,解得φ=π6, ∴f (x )=5sin ⎝⎛⎭⎪⎫2x +π6,6分而x ∈⎣⎢⎡⎦⎥⎤-π12,π2,故2x +π6∈⎣⎢⎡⎦⎥⎤0,7π6,从而sin ⎝⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1,综上知f (x )∈⎣⎢⎡⎦⎥⎤-52,5. 8分18.(本小题满分16分)(天津六校2019届高三上学期期中联考)已知各项都是正数的数列{a n }的前n 项和为S n ,S n =a 2n +12a n ,n ∈N *.(1)求数列{a n }的通项公式;(2)设数列{b n }满足:b 1=1,b n -b n -1=2a n (n ≥2),数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和为T n ,求证:T n <2;(3)若T n ≤λ(n +4)对任意n ∈N *恒成立,求λ的取值范围.【导学号:56394043】[解](1)n =1时,a 1=a 21+12a 1,∴a 1=12.⎩⎪⎨⎪⎧S n -1=a 2n -1+12a n -1S n =a 2n +12a n⇒a n =a 2n -a 2n -1+12a n -12a n -1,⇒(a n +a n -1)⎝ ⎛⎭⎪⎫a n -a n -1-12=0,∵a n >0,∴a n -a n -1=12, ∴{a n }是以12为首项,12为公差的等差数列.∴a n =12n .4分(2)证明:b n -b n -1=n ,⎩⎪⎨⎪⎧b 2-b 1=2b 3-b 2=3⋮b n -b n -1=n⇒b n -b 1=n +n -2⇒b n =n n +2.1b n =2n n +=2⎝ ⎛⎭⎪⎫1n -1n +1,∴T n =2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1,即T n <2.12分(3)由2n n +1≤λ(n +4)得λ≥2nn +n +=2n +4n +5,当且仅当n =2时,2n +4n+5有最大值29,∴λ≥29.16分19.(本小题满分16分)(中原名校豫南九校2019届第四次质量考评)设等差数列{a n }的前n 项和为S n ,且S 5=a 5+a 6=25. (1)求{a n }的通项公式;(2)若不等式2S n +8n +27>(-1)nk (a n +4)对所有的正整数n 都成立,求实数k 的取值范围. [解](1)设公差为d ,则5a 1+5×42d =a 1+4d +a 1+5d =25,∴a 1=-1,d =3.∴{a n }的通项公式为a n =3n -4. 6分(2)S n =-n +3nn -2,2S n +8n +27=3n 2+3n +27,a n +4=3n ;8分(-1)nk <n +1+9n,当n 为奇数时,k >-⎝ ⎛⎭⎪⎫n +1+9n ;当n 为偶数时,k <n +1+9n,∵n +1+9n ≥7,当且仅当n =3时取等号,∴当n 为奇数时,n +1+9n的最小值为7,当n为偶数时,n =4时,n +1+9n 的最小值为294,∴-7<k <294.16分20.(本小题满分16分)设A (x 1,y 1),B (x 2,y 2)是函数f (x )=12+log 2x1-x的图象上任意两点,且OM →=12(OA →+OB →),已知点M 的横坐标为12.(1)求证:M 点的纵坐标为定值;(2)若S n =f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫2n +…+f ⎝⎛⎭⎪⎫n -1n ,n ∈N *,且n ≥2,求S n; (3)已知a n=⎩⎪⎨⎪⎧23,n =1,1S n+Sn +1+,n ≥2.其中n ∈N *.T n 为数列{a n }的前n 项和,若T n <λ(S n +1+1)对一切n ∈N *都成立,试求λ的取值范围.【导学号:56394044】[解](1)证明:∵OM →=12(OA →+OB →),∴M 是AB 的中点.设M 点的坐标为(x ,y ),由12(x 1+x 2)=x =12,得x 1+x 2=1,则x 1=1-x 2或x 2=1-x 1.2分 而y =12(y 1+y 2)=12[f (x 1)+f (x 2)]=12⎝ ⎛⎭⎪⎫12+log 2x 11-x 1+12+log 2x 21-x 2 =12⎝ ⎛⎭⎪⎫1+log 2x 11-x 1+log 2x 21-x 2=12⎝ ⎛⎭⎪⎫1+log 2x 11-x 1·x 21-x 2 =12⎝ ⎛⎭⎪⎫1+log 2x 1x 2x 1x 2=12()1+0=12,∴M 点的纵坐标为定值12. 5分(2)由(1),知x 1+x 2=1,f (x 1)+f (x 2)=y 1+y 2=1,S n =f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫n 2+…+f ⎝ ⎛⎭⎪⎫n -1n ,S n =f ⎝ ⎛⎭⎪⎫n -1n +f ⎝ ⎛⎭⎪⎫n -2n +…+f ⎝ ⎛⎭⎪⎫1n , 两式相加,得2S n =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫n -1n +⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫2n +f ⎝ ⎛⎭⎪⎫n -2n +…+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫n -1n +f ⎝ ⎛⎭⎪⎫1n =1+1+…+1n -1,∴S n=n -12(n ≥2,n ∈N *).8分(3)当n ≥2时,a n =1S n +S n +1+=4n +n +=4⎝⎛⎭⎪⎫1n +1-1n +2.10分T n =a 1+a 2+a 3+…+a n =23+4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=23+4⎝ ⎛⎭⎪⎫13-1n +2=2n n +2. 12分由T n <λ(S n +1+1),得2n n +2<λ·n +22.∴λ>4n n +2=4nn 2+4n +4=4n +4n+4.∵n +4n≥4,当且仅当n =2时等号成立,∴4n +4n+4≤44+4=12. 因此λ>12,即λ的取值范围是⎝ ⎛⎭⎪⎫12,+∞. 16分。

2018届高考数学(文)二轮专题复习习题:第1部分 专题二 函数、不等式、导数 1-2-3

2018届高考数学(文)二轮专题复习习题:第1部分 专题二 函数、不等式、导数 1-2-3

限时规范训练六 导数的简单应用 限时45分钟,实际用时________ 分值81分,实际得分________一、选择题(本题共6小题,每小题5分,共30分)1.设函数f (x )=x 24-a ln x ,若f ′(2)=3,则实数a 的值为( )A .4B .-4C .2D .-2解析:选B.f ′(x )=x 2-a x ,故f ′(2)=22-a2=3,因此a =-4.2.曲线y =e x在点A 处的切线与直线x -y +3=0平行,则点A 的坐标为( ) A .(-1,e -1) B .(0,1) C .(1,e)D .(0,2)解析:选B.设A (x 0,e x 0),y ′=e x,∴y ′|x =x 0=e x 0.由导数的几何意义可知切线的斜率k =e x 0.由切线与直线x -y +3=0平行可得切线的斜率k =1. ∴e x 0=1,∴x 0=0,∴A (0,1).故选B.3.若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为 ( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B.⎝⎛⎭⎪⎫32,+∞ C.⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞ D.⎝⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫32,+∞ 解析:选D.若函数f (x )=x 3-2cx 2+x 有极值点,则f ′(x )=3x 2-4cx +1=0有两根,故Δ=(-4c )2-12>0,从而c >32或c <-32. 4.已知f (x )=a ln x +12x 2(a >0),若对任意两个不等的正实数x 1,x 2都有f x 1-f x 2x 1-x 2≥2恒成立,则实数a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(0,1)D .(0,1]解析:选A.由条件可知在定义域上函数图象的切线斜率大于等于2,所以函数的导数f ′(x )=a x+x ≥2.可得x =a 时,f ′(x )有最小值2.∴a ≥1.5.若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .f ⎝ ⎛⎭⎪⎫1k<1kB .f ⎝ ⎛⎭⎪⎫1k >1k -1C .f ⎝⎛⎭⎪⎫1k -1<1k -1D .f ⎝⎛⎭⎪⎫1k -1>1k -1解析:选C.构造函数g (x )=f (x )-kx +1,则g ′(x )=f ′(x )-k >0,∴g (x )在R 上为增函数. ∵k >1,∴1k -1>0,则g ⎝ ⎛⎭⎪⎫1k -1>g (0). 而g (0)=f (0)+1=0, ∴g ⎝⎛⎭⎪⎫1k -1=f ⎝ ⎛⎭⎪⎫1k -1-k k -1+1>0,即f ⎝⎛⎭⎪⎫1k -1>k k -1-1=1k -1,所以选项C 错误,故选C.6.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:选C.因为当x ∈(-∞,1)时,(x -1)f ′(x )<0,所以f ′(x )>0,所以函数f (x )在(-∞,1)上是单调递增函数,所以a =f (0)<f ⎝ ⎛⎭⎪⎫12=b ,又f (x )=f (2-x ),所以c =f (3)=f (-1),所以c =f (-1)<f (0)=a ,所以c <a <b ,故选C.二、填空题(本题共3小题,每小题5分,共15分)7.(2017·高考全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为________.解析:∵y ′=2x -1x2,∴y ′|x =1=1,即曲线在点(1,2)处的切线的斜率k =1, ∴切线方程为y -2=x -1, 即x -y +1=0. 答案:x -y +1=08.已知函数f (x )=-12x 2-3x +4ln x 在(t ,t +1)上不单调,则实数t 的取值范围是________.解析:由题意得,f (x )的定义域为(0,+∞),∴t >0, ∴f ′(x )=-x -3+4x=0在(t ,t +1)上有解,∴x 2+3x -4x=0在(t ,t +1)上有解,∴x 2+3x -4=0在(t ,t +1)上有解,由x 2+3x -4=0得x =1或x =-4(舍去),∴1∈(t ,t +1),∴t ∈(0,1),故实数t 的取值范围是(0,1).答案:(0,1)9.已知函数f (x )=1-xax+ln x ,若函数f (x )在[1,+∞)上为增函数,则正实数a 的取值范围为________.解析:∵f (x )=1-x ax +ln x ,∴f ′(x )=ax -1ax2(a >0).∵函数f (x )在[1,+∞)上为增函数,∴f ′(x )=ax -1ax 2≥0在x ∈[1,+∞)上恒成立,∴ax -1≥0在x ∈[1,+∞)上恒成立,即a ≥1x在x ∈[1,+∞)上恒成立,∴a ≥1.答案:[1,+∞)三、解答题(本题共3小题,每小题12分,共36分) 10.(2017·高考全国卷Ⅱ)设函数f (x )=(1-x 2)e x. (1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1,求a 的取值范围. 解:(1)f ′(x )=(1-2x -x 2)e x.令f ′(x )=0得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)单调递减,在(-1-2,-1+2)单调递增.(2)f (x )=(1+x )(1-x )e x.当a ≥1时,设函数h (x )=(1-x )e x,则h ′(x )=-x e x<0(x >0),因此h (x )在[0,+∞)单调递减.而h (0)=1,故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1.当0<a <1时,设函数g (x )=e x-x -1,则g ′(x )=e x-1>0(x >0),所以g (x )在[0,+∞)单调递增.而g (0)=0,故e x≥x +1.当0<x <1时,f (x )>(1-x )(1+x )2,(1-x )(1+x )2-ax -1=x (1-a -x -x 2),取x 0=5-4a -12,则x 0∈(0,1),(1-x 0)(1+x 0)2-ax 0-1=0,故f (x 0)>ax 0+1. 当a ≤0时,取x 0=5-12,则x 0∈(0,1),f (x 0)>(1-x 0)(1+x 0)2=1≥ax 0+1. 综上,a 的取值范围是[1,+∞).11.(2017·河南郑州质量检测)设函数f (x )=12x 2-m ln x ,g (x )=x 2-(m +1)x .(1)求函数f (x )的单调区间;(2)当m ≥0时,讨论函数f (x )与g (x )图象的交点个数.解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=x 2-mx,当m ≤0时,f ′(x )>0,所以函数f (x )的单调递增区间是(0,+∞),无单调递减区间. 当m >0时,f ′(x )=x +mx -mx,当0<x <m 时,f ′(x )<0,函数f (x )单调递减;当x >m 时,f ′(x )>0,函数f (x )单调递增.综上,当m ≤0时,函数f (x )的单调递增区间是(0,+∞),无单调递减区间;当m >0时,函数f (x )的单调递增区间是(m ,+∞),单调递减区间是(0,m ).(2)令F (x )=f (x )-g (x )=-12x 2+(m +1)x -m ln x ,x >0,问题等价于求函数F (x )的零点个数,当m =0时,F (x )=-12x 2+x ,x >0,有唯一零点;当m ≠0时,F ′(x )=-x -x -m x,当m =1时,F ′(x )≤0,函数F (x )为减函数,注意到F (1)=32>0,F (4)=-ln 4<0,所以F (x )有唯一零点.当m >1时,0<x <1或x >m 时,F ′(x )<0;1<x <m 时,F ′(x )>0,所以函数F (x )在(0,1)和(m ,+∞)上单调递减,在(1,m )上单调递增,注意到F (1)=m +12>0,F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.当0<m <1时,0<x <m 或x >1时,F ′(x )<0;m <x <1时,F ′(x )>0,所以函数F (x )在(0,m )和(1,+∞)上单调递减,在(m,1)上单调递增,易得ln m <0, 所以F (m )=m2(m +2-2ln m )>0,而F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即两函数图象有一个交点. 12.(2017·河南洛阳模拟)已知函数f (x )=ln x -a x +x -1,曲线y =f (x )在点⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫12处的切线平行于直线y =10x +1.(1)求函数f (x )的单调区间;(2)设直线l 为函数g (x )=ln x 的图象上任意一点A (x 0,y 0)处的切线,在区间(1,+∞)上是否存在x 0,使得直线l 与曲线h (x )=e x也相切?若存在,满足条件的x 0有几个?解:(1)∵函数f (x )=ln x -a x +x -1,∴f ′(x )=1x+2a x -2,∵曲线y =f (x )在点⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫12处的切线平行于直线y =10x +1, ∴f ′⎝ ⎛⎭⎪⎫12=2+8a =10,∴a =1,∴f ′(x )=x 2+1x x -2.∵x >0且x ≠1,∴f ′(x )>0,∴函数f (x )的单调递增区间为(0,1)和(1,+∞). (2)存在且唯一,证明如下:∵g (x )=ln x ,∴切线l 的方程为y -ln x 0=1x 0(x -x 0),即y =1x 0x +ln x 0-1 ①,设直线l 与曲线h (x )=e x相切于点(x 1,e x 1), ∵h ′(x )=e x,∴e x 1=1x 0,∴x 1=-ln x 0,∴直线l 的方程也可以写成y -1x 0=1x 0(x +ln x 0),即y =1x 0x +ln x 0x 0+1x 0②,由①②得ln x 0-1=ln x 0x 0+1x 0,∴ln x 0=x 0+1x 0-1.证明:在区间(1,+∞)上x 0存在且唯一. 由(1)可知,f (x )=ln x -x +1x -1在区间(1,+∞)上单调递增, 又f (e)=-2e -1<0,f (e 2)=e 2-3e 2-1>0,结合零点存在性定理,说明方程f (x )=0必在区间(e ,e 2)上有唯一的根,这个根就是所求的唯一x 0.。

2019数学(文)通用版二轮精准提分练习第二篇 第20练 圆锥曲线的定义、方程与性质

2019数学(文)通用版二轮精准提分练习第二篇 第20练 圆锥曲线的定义、方程与性质

第20练圆锥曲线的定义、方程与性质[小题提速练][明晰考情]1。

命题角度:圆锥曲线的定义、方程与几何性质是高考考查的热点.2.题目难度:中等偏难.考点一圆锥曲线的定义及标准方程方法技巧(1)应用圆锥曲线的定义解题时,一定不要忽视定义中的隐含条件。

(2)凡涉及椭圆或双曲线上的点到焦点的距离、抛物线上的点到焦点距离,一般可以利用定义进行转化.(3)求解圆锥曲线的标准方程的方法是“先定型,后计算”。

1.已知A(0,7),B(0,-7),C(12,2),以C为一个焦点作过A,B的椭圆,则椭圆的另一个焦点F的轨迹方程是()A.y2-错误!=1B.x2-错误!=1C.y2-错误!=1(y≤-1) D。

x2-错误!=1(x≥1)答案C解析由两点间距离公式,可得|AC|=13,|BC|=15,|AB|=14,因为A,B都在椭圆上,所以|AF|+|AC|=|BF|+|BC|,|AF|-|BF|=|BC|-|AC|=2〈14,故F的轨迹是以A,B为焦点的双曲线的下支。

由c=7,a=1,得b2=48,所以F的轨迹方程是y2-错误!=1(y≤-1),故选C。

2.已知双曲线错误!-错误!=1(a>0,b>0)的焦距为2错误!,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.错误!-y 2=1B 。

x 2-错误!=1 C.错误!-错误!=1D 。

错误!-错误!=1答案 A 解析 依题意得错误!=错误!,①又a 2+b 2=c 2=5,②联立①②得a =2,b =1.∴所求双曲线的方程为错误!-y 2=1.3.已知椭圆错误!+错误!=1的两个焦点是F 1,F 2,点P 在该椭圆上,若|PF 1|-|PF 2|=2,则△PF 1F 2的面积是________.答案 错误!解析 由椭圆的方程可知a =2,c =2,且|PF 1|+|PF 2|=2a =4,又|PF 1|-|PF 2|=2,所以|PF 1|=3,|PF 2|=1.又|F 1F 2|=2c =2错误!,所以有|PF 1|2=|PF 2|2+|F 1F 2|2,即△PF 1F 2为直角三角形,且∠PF 2F 1为直角,所以12PF F S =错误!|F 1F 2||PF 2|=错误!×2错误!×1=错误!.4.已知P 是抛物线y 2=4x 上的一个动点,Q 是圆(x -3)2+(y -1)2=1上的一个动点,N (1,0)是一个定点,则|PQ |+|PN |的最小值为________.答案 3解析 由抛物线方程y 2=4x ,可得抛物线的焦点F (1,0),又N (1,0),所以N 与F 重合。

高考文科数学二轮复习题导数及其应用专题

高考文科数学二轮复习题导数及其应用专题

高考文科数学二轮复习题导数及其应用专题高考文科数学二轮复习题导数及其应用专题一、选择题1.函数f(x)=12x2-ln x的单调递减区间为 ( ).A.(-1,1] B.(0,1]C.[1,+∞) D.(0,+∞)解析由题意知,函数的定义域为(0,+∞),又由f′(x)=x-1x≤0,解得0<x≤1,所以函数的单调递减区间为(0,1].答案 B2.(2014全国新课标Ⅱ卷)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a= ( ).A.0 B.1C.2 D.3解析令f(x)=ax-ln(x+1),则f′(x)=a-1x+1.由导数的几何意义可得在点(0,0)处的切线的斜率为f′(0)=a-1.又切线方程为y=2x,则有a-1=2,∴a=3.答案 D3.已知函数y=f(x)(x∈R)的图象如图所示,则不等式xf′(x)<0的解集为( ).A.-∞,12∪12,2B.-∞,0∪12,2C.-∞,12∪12,+∞D.-∞,12∪2,+∞解析xf′(x)<0x>0,f′x<0或x<0f′x>0.当x∈12,2时,f(x)单调递减,此时f′(x)<0.当x∈(-∞,0)时,f(x)单调递增,此时f′(x)>0.故选B.答案 B4.已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是 ( ).A.(0,2] B.(0,2)C.[3,2) D.(3,2)解析由题意可知f′(x)=0的两个不同解都在区间(-1,1)内.因为f′(x)=3x2+2ax+1,所以根据导函数图象可得Δ=2a2-4×3×1>0,-1<-2a6<1,f′-1=3-2a+1>0,f′1=3+2a+1>0,又a>0,解得3<a<2,故选D.答案 D5.(2013浙江卷)已知e为自然对数的底数,设函数f(x)=(ex-1)(x-1)k(k=1,2),则 ( ).A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值解析当k=1时,f′(x)=exx-1,f′(1)≠0,∴f(1)不是极值,故A,B错;当k=2时,f′(x)=(x-1)(xex+ex-2),显然f′(1)=0,且x在1的左侧附近f′(x)<0,x在1的右侧附近f′(x)>0,∴f(x)在x=1处取得极小值.故选C.答案 C6.(2014潍坊模拟)已知函数y=f(x)是定义在R上的奇函数,且当x<0时,不等式f(x)+xf′(x)<0成立,若a=30.3f(30.3),b=logπ3f(logπ3),c=log319flog319,则a,b,c间的大小关系是 ( ).A.a>b>c B.c>b>aC.c>a>b D.a>c>b解析设g(x)=xf(x),则g′(x)=f(x)+xf′(x)<0(x<0),∴当x<0时,g(x)=xf(x)为减函数.又g(x)为偶函数,∴当x>0时,g(x)为增函数.∵1<30.3<2,0<logπ3<1,log319=-2,又g(-2)=g(x),∴g(-2)>g(30.3)>g(logπ3),即c>a>b.答案 C二、填空题7.(2013江西卷)设函数f(x)在(0,+∞)内可导,且f(ex)=x+ex,则f′(1)=________.解析设ex=t,则x=ln t(t>0),∴f(t)=ln t+t,即f(x)=ln x+x,∴f′(x)=1x+1,∴f′(1)=2.答案 28.(2014江西卷)若曲线y=e-x上点P处的切线平行于直线2x +y+1=0,则点P的坐标是________.解析设P(x0,y0),∵y=e-x,∴y′=-e-x,∴点P处的切线斜率为k=-e-x0=-2,∴-x0=ln 2,∴x0=-ln 2,∴y0=eln 2=2,∴点P的坐标为(-ln 2,2).答案 (-ln 2,2)9.(2014盐城调研)若a>0,b>0,且函数f(x)=4x3-ax2-2bx +2在x=1处有极值,则ab的最大值为________.解析依题意知f′(x)=12x2-2ax-2b,∴f′(1)=0,即12-2a-2b=0,∴a+b=6.又a>0,b>0,∴ab≤a+b22=9,当且仅当a=b=3时取等号,∴ab的最大值为9.答案 910.已知函数f(x)=aln x+x在区间[2,3]上单调递增,则实数a的取值范围是________.解析∵f(x)=aln x+x.∴f′(x)=ax+1.又∵f(x)在[2,3]上单调递增,∴ax+1≥0在x∈[2,3]上恒成立,∴a≥(-x)max=-2,∴a∈[-2,+∞).答案 [-2,+∞)11.(2013新课标全国Ⅰ卷)若函数f(x)=(1-x2)(x2+ax+b)的图象关于直线x=-2对称,则f(x)的最大值是________.解析由题意知f0=f-4,f-1=f-3,即b=-15×16-4a+b,0=9-3a+b,解得a=8,b=15,所以f(x)=(1-x2)(x2+8x+15),则f′(x)=-4(x+2)(x2+4x-1).令f′(x)=0,得x=-2或x=-2-5或x=-2+5,当x<-2-5时,f′(x)>0;当-2-5<x<-2时,f′(x)<0;-2<x<-2+5时,f′(x)<0;当x>-2+5时,f′(x)<0,所以当x=-2-5时,f(x)极大值=16;当x=-2+5时,f(x)极大值=16,所以函数f(x)的最大值为16.答案 16三、解答题12.已知f(x)=ex-ax-1.(1)求f(x)的单调增区间;(2)若f(x)在定义域R内单调递增,求a的取值范围.解(1)∵f(x)=ex-ax-1(x∈R),∴f′(x)=ex-a.令f′(x)≥0,得ex≥a.当a≤0时,f′(x)>0在R上恒成立;当a>0时,有x≥ln a.综上,当a≤0时,f(x)的单调增区间为(-∞,+∞);当a>0时,f(x)的单调增区间为(ln a,+∞).(2)由(1)知f′(x)=ex-a.∵f(x)在R上单调递增,∴f′(x)=ex-a≥0恒成立,即a≤ex在R上恒成立.∵x∈R时,ex>0,∴a≤0,即a的取值范围是(-∞,0].13.(2014西安五校二次联考)已知函数f(x)=12ax2-(2a+1)x+2ln x,a∈R.(1)若曲线y=f(x)在x=1和x=3处的'切线互相平行,求a的值;(2)求f(x)的单调区间.解f′(x)=ax-(2a+1)+2x(x>0).(1)由题意得f′(1)=f′(3),解得a=23.(2)f′(x)=ax-1x-2x(x>0).①当a≤0时,x>0,ax-1<0.在区间(0,2)上,f′(x)>0;在区间(2,+∞)上,f′(x)<0,故f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞).②当0<a<12时,1a>2.在区间(0,2)和1a,+∞上,f′(x)>0;在区间2,1a上,f′(x)<0.故f(x)的单调递增区间是(0,2)和1a,+∞,单调递减区间是2,1a.③当a=12时,f′(x)=x-222x≥0,故f(x)的单调递增区间是(0,+∞).④当a>12时,0<1a<2,在区间0,1a和(2,+∞)上,f′(x)>0;在区间1a,2上,f′(x)<0.故f(x)的单调递增区间是0,1a和(2,+∞),单调递减区间是1a,2.14.(2014江西卷)已知函数f(x)=(4x2+4ax+a2)x,其中a<0.(1)当a=-4时,求f(x)的单调递增区间;(2)若f(x)在区间[1,4]上的最小值为8,求a的值.解 (1)当a=-4时,由f′(x)=25x-2x-2x=0得x=25或x=2.由f′(x)>0得x∈0,25或x∈(2,+∞),故函数f(x)的单调递增区间为0,25和(2,+∞),(2)因为f′(x)=10x+a2x+a2x,a<0,由f′(x)=0得x=-a10或x=-a2.当x∈0,-a10时,f(x)单调递增;当x∈-a10,-a2时,f(x)单调递减;当x∈-a2,+∞时,f(x)单调递增,易知f(x)=(2x+a)2x≥0,且f-a2=0.①当-a2≤1,即-2≤a<0时,f(x)在[1,4]上的最小值为f(1),由f(1)=4+4a+a2=8,得a=±22-2,均不符合题意.②当1<-a2≤4,即-8≤a<-2时,f(x)在[1,4]上的最小值为f-a2=0,不符合题意.③当-a2>4,即a<-8时,f(x)在[1,4]上的最小值可能在x=1或x=4上取得,而f(1)≠8,由f(4)=2(64+16a+a2)=8得a=-10或a=-6(舍去),当a=-10时,f(x)在(1,4)上单调递减,f(x)在[1,4]上的最小值为f(4)=8,符合题意.综上有a=-10.。

2018数学高考(文)二轮复习检测:题型练8大题专项函数与导数综合问题Word版含

2018数学高考(文)二轮复习检测:题型练8大题专项函数与导数综合问题Word版含

2018数学高考(文)二轮复习检测:题型练8大题专项函数与导数综合问题Word版含题型练8大题专项(六)函数与导数综合问题1.(2017全国Ⅰ,文21)已知函数f(x)=ex(ex-a)-a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.2.设f(x)=xlnx-ax2+(2a-1)x,a∈R.(1)令g(x)=f'(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值.求实数a的取值范围.3.已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c-a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(-∞,-3)∪,求c的值.4.已知函数f(x)=-2xlnx+x2-2ax+a2,其中a>0.(1)设g(x)是f(x)的导函数,讨论g(x)的单调性;(2)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.5.已知函数f(x)=x2-ax,g(x)=lnx,h(x)=f(x)+g(x)(a∈R).(1)若不等式f(x)≥g(x)恒成立,求实数a的取值范围.(2)若函数h(x)有两个极值点x1,x2.①求实数a的取值范围;②当x1∈时,求证:h(x1)-h(x2)>-ln 2.6.设函数f(x)=,g(x)=-x+(a+b)(其中e为自然对数的底数,a,b∈R,且a≠0),曲线y=f(x)在点(1,f(1))处的切线方程为y=ae(x-1).(1)求b的值;(2)若对任意x∈,f(x)与g(x)有且只有两个交点,求a的取值范围.##题型练8大题专项(六)函数与导数综合问题1.解(1)函数f(x)的定义域为(-∞,+∞),f'(x)=2e2x-aex-a2=(2ex+a)(ex-a).①若a=0,则f(x)=e2x,在区间(-∞,+∞)单调递增.②若a>0,则由f'(x)=0得x=lna.当x∈(-∞,lna)时,f'(x)<0;当x∈(lna,+∞)时,f'(x)>0.故f(x)在区间(-∞,lna)单调递减,在区间(lna,+∞)单调递增.③若a<0,则由f'(x)=0得x=ln.当x∈时,f'(x)<0;当x∈时,f'(x)>0.故f(x)在区间单调递减,在区间单调递增.(2)①若a=0,则f(x)=e2x,所以f(x)≥0.②若a>0,则由(1)得,当x=lna时,f(x)取得最小值,最小值为f(lna)=-a2lna.从而当且仅当-a2lna≥0,即a≤1时,f(x)≥0.③若a<0,则由(1)得,当x=ln时,f(x)取得最小值,最小值为f=a2.从而当且仅当a2≥0,即a≥-2时f(x)≥0.综上,a的取值范围是[-2,1].2.解(1)由f'(x)=lnx-2ax+2a,可得g(x)=lnx-2ax+2a,x∈(0,+∞).则g'(x)=-2a=,当a≤0时,x∈(0,+∞)时,g'(x)>0,函数g(x)单调递增;当a>0时,x∈时,g'(x)>0,函数g(x)单调递增,x∈时,函数g(x)单调递减.所以当a≤0时,g(x)的单调增区间为(0,+∞);当a>0时,g(x)单调增区间为,单调减区间为.(2)由(1)知,f'(1)=0.①当a≤0时,f'(x)单调递增,所以当x∈(0,1)时,f'(x)<0,f(x)单调递减.当x∈(1,+∞)时,f'(x)>0,f(x)单调递增.所以f(x)在x=1处取得极小值,不合题意.②当0<a1,由(1)知f'(x)在区间内单调递增,</a可得当x∈(0,1)时,f'(x)<0,x∈时,f'(x)>0.所以f(x)在区间(0,1)内单调递减,在区间内单调递增,所以f(x)在x=1处取得极小值,不合题意.③当a=时,=1,f'(x)在区间(0,1)内单调递增,在区间(1,+∞)内单调递减,所以当x∈(0,+∞)时,f'(x)≤0,f(x)单调递减,不合题意.④当a>时,0<<1,当x∈时,f'(x)>0,f(x)单调递增,当x∈(1,+∞)时,f'(x)<0,f(x)单调递减,所以f(x)在x=1处取极大值,合题意.综上可知,实数a的取值范围为a>.3.解(1)f'(x)=3x2+2ax,令f'(x)=0,解得x1=0,x2=-.当a=0时,因为f'(x)=3x2>0(x≠0),所以函数f(x)在区间(-∞,+∞)内单调递增;当a>0时,x∈∪(0,+∞)时,f'(x)>0,x∈时,f'(x)<0,所以函数f(x)在区间,(0,+∞)内单调递增,在区间上单调递减;当a<0时,x∈(-∞,0)∪时,f'(x)>0,x∈时,f'(x)<0,所以函数f(x)在区间(-∞,0),内单调递增,在区间内单调递减.(2)由(1)知,函数f(x)的两个极值为f(0)=b,fa3+b,则函数f(x)有三个零点等价于f(0)·f=b<0,从而又b=c-a,所以当a>0时,a3-a+c>0或当a<0时,a3-a+c<0.设g(a)=a3-a+c,因为函数f(x)有三个零点时,a的取值范围恰好是(-∞,-3)∪,则在(-∞,-3)内g(a)<0,且在内g(a)>0均恒成立,从而g(-3)=c-1≤0,且g=c-1≥0,因此c=1.此时,f(x)=x3+ax2+1-a=(x+1)[x2+(a-1)x+1-a],因函数有三个零点,则x2+(a-1)x+1-a=0有两个异于-1的不等实根,所以Δ=(a-1)2-4(1-a)=a2+2a-3>0,且(-1)2-(a-1)+1-a≠0,解得a∈(-∞,-3)∪.综上c=1.4.(1)解由已知,函数f(x)的定义域为(0,+∞),g(x)=f'(x)=2(x-1-lnx-a),所以g'(x)=2-.当x∈(0,1)时,g'(x)<0,g(x)单调递减;当x∈(1,+∞)时,g'(x)>0,g(x)单调递增.(2)证明由f'(x)=2(x-1-lnx-a)=0,解得a=x-1-lnx.令φ(x)=-2xlnx+x2-2x(x-1-lnx)+(x-1-lnx)2=(1+lnx)2-2xlnx, 则φ(1)=1>0,φ(e)=2(2-e)<0.于是,存在x0∈(1,e),使得φ(x0)=0.令a0=x0-1-lnx0=u(x0),其中u(x)=x-1-lnx(x≥1).由u'(x)=1-≥0知,函数u(x)在区间(1,+∞)内单调递增.故0=u(1)<a< bdsfid="163" p=""></a<>0=u(x0)<1.< bdsfid="166" p=""><1.<>即a0∈(0,1).当a=a0时,有f'(x0)=0,f(x0)=φ(x0)=0.再由(1)知,f'(x)在区间(1,+∞)内单调递增, 当x∈(1,x0)时,f'(x)<0,从而f(x)>f(x0)=0;当x∈(x0,+∞)时,f'(x)>0,从而f(x)>f(x0)=0;又当x∈(0,1]时,f(x)=(x-a0)2-2xlnx>0.故x∈(0,+∞)时,f(x)≥0.综上所述,存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.5.解(1)由f(x)≥g(x),得a≤x-(x>0),令φ(x)=x-(x>0),得φ'(x)=.∴当0<x<1时,x2-1<0,lnx<0,< bdsfid="186" p=""></x<1时,x2-1<0,lnx<0,<>从而φ'(x)<0,∴φ(x)在区间(0,1)内是减函数.当x>1时,x2-1>0,lnx>0,从而φ'(x)>0,∴φ(x)在区间(1,+∞)内是增函数,∴φ(x)min=φ(1)=1,∴a≤1,即实数a的取值范围是(-∞,1].(2)①(方法一)∵h(x)=x2-ax+lnx(x>0),∴h'(x)=2x+-a,∴h'(x)≥2-a,当a≤2时,h'(x)≥0,函数h(x)在区间(0,+∞)内单调递增,函数h(x)无极值点,当a>2时,h'(x)=,当x∈时,h'(x)>0;当x∈时,h'(x)<0;当x∈时,h'(x)>0.故函数h(x)在区间内单调递增,在区间内单调递减,在区间内单调递增.函数h(x)有两个极值点x1=,x2=,综上所述,实数a的取值范围是(2,+∞).(方法二)∵h(x)=x2-ax+lnx(x>0),∴h'(x)=2x+-a=问题等价于方程2x2-ax+1=0有两相异正根x 1,x 2,∴解得a>2,故实数a的取值范围是(2,+∞).②证明:由①知,x1,x2即方程2x2-ax+1=0的两个根,x1x2=,∴h(x1)-h(x2)=-a(x1-x2)+lnx1-lnx2.又2+1=ax1,2+1=ax2,∴h(x1)-h(x2)=+2lnx1+ln 2.令k(x)=-x2+2lnx+ln 2,x∈,得k'(x)=-<0,∴k(x)在为减函数,∴k(x)>k-ln 2.∴h(x1)-h(x2)>-ln 2.6.解(1)由f(x)=,得f'(x)=,由题意得f'(1)=ab=ae.∵a≠0,∴b=e.(2)令h(x)=x(f(x)-g(x))=x2-(a+e)x+aelnx,则任意x∈,f(x)与g(x)有且只有两个交点,等价于函数h(x)在区间有且只有两个零点.由h(x)=x2-(a+e)x+aelnx,得h'(x)=,①当a≤时,由h'(x)>0得x>e;由h'(x)<0得<x<e.< bdsfid="243" p=""></x<e.<>此时h(x)在区间内单调递减,在区间(e,+∞)内单调递增.∵h(e)=e2-(a+e)e+aeln e=-e2<0,∵h(e2)=e4-(a+e)e2+2ae=e(e-2)(e2-2a)≥e(e-2)>0(或当x→+∞时,h(x)>0亦可),∴要使得h(x)在区间内有且只有两个零点, 则只需h+aeln≥0,即a≤.②当<a0得<xe;由h'(x)<0得a<x<e.< bdsfid="251" p=""></x<e.<></x</a此时h(x)在区间(a,e)内单调递减,在区间和(e,+∞)内单调递增.此时h(a)=-a2-ae-aelna<-a2-ae+aeln e=-a2<0,∴此时h(x)在区间内至多只有一个零点,不合题意.③当a>e时,由h'(x)>0得<xa,由h'(x)<0得e<x<a,<bdsfid="257" p=""></x<a,<></x此时h(x)在区间和(a,+∞)内单调递增,在区间(e,a)上单调递减,且h(e)=-e2<0, ∴h(x)在区间内至多只有一个零点,不合题意.综上所述,a的取值范围为.。

2018年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

 2018年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

2018年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)i(2+3i)=()A.3﹣2i B.3+2i C.﹣3﹣2i D.﹣3+2i2.(5分)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}3.(5分)函数f(x)=的图象大致为()A.B.C.D.4.(5分)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.05.(5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6B.0.5C.0.4D.0.36.(5分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x7.(5分)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.28.(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+49.(5分)在正方体ABCD﹣A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()A.B.C.D.10.(5分)若f(x)=cosx﹣sinx在[0,a]是减函数,则a的最大值是()A.B.C.D.π11.(5分)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()A.1﹣B.2﹣C.D.﹣112.(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.50二、填空题:本题共4小题,每小题5分,共20分。

2019高考数学二轮复习课时跟踪检测十三概率统计统计案例小题练理

2019高考数学二轮复习课时跟踪检测十三概率统计统计案例小题练理

课时跟踪检测(十三) 概率、统计、统计案例 (小题练)A 级——12+4提速练一、选择题1.(2018·长春模拟)已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为( )A .95,94B .92,86C .99,86D .92,91解析:选B 由茎叶图可知,此组数据由小到大排列依次为76,79,81,83,86,86,87,91,92,94,95,96,98,99,101,103,114,共17个,故92为中位数,出现次数最多的为众数,故众数为86,故选B.2.在样本的频率分布直方图中,共有4个小长方形,这4个小长方形的面积由小到大依次构成等比数列{a n }(n =1,2,3,4).已知a 2=2a 1,且样本容量为300,则小长方形面积最小的一组的频数为( )A .20B .40C .30D .无法确定解析:选A 由已知,得4个小长方形的面积分别为a 1,2a 1,4a 1,8a 1,所以a 1+2a 1+4a 1+8a 1=1,得a 1=115,因此小长方形面积最小的一组的频数为115×300=20.3.(2018·许昌二模)某校共有在职教师140人,其中高级教师28人,中级教师56人,初级教师56人,现采用分层抽样的方法从在职教师中抽取5人进行职称改革调研,然后从抽取的5人中随机抽取2人进行深入了解,则抽取的这2人中至少有1人是初级教师的概率为( )A.710B.310C.320D.720解析:选 A 由题意得,应从高级、中级、初级教师中抽取的人数分别为5×28140=1,5×56140=2,5×56140=2,则从5人中随机抽取2人,这2人中至少有1人是初级教师的概率为C12C13+C22C25=710.4.(2018·昆明模拟)如图是1951~2016年我国的年平均气温变化的折线图,根据图中信息,下列结论正确的是( )A .1951年以来,我国的年平均气温逐年增高B .1951年以来,我国的年平均气温在2016年再创新高C .2000年以来,我国每年的年平均气温都高于1981~2010年的平均值D .2000年以来,我国的年平均气温的平均值高于1981~2010年的平均值解析:选D 由图可知,1951年以来,我国的年平均气温变化是有起伏的,不是逐年增高的,所以选项A 错误;1951年以来,我国的年平均气温最高的不是2016年,所以选项B 错误;由图可知,1981~2010年的气温平均值为9.5,2012年的年平均气温低于1981~2010年的平均值,所以选项C 错误;2000年以来,我国的年平均气温的平均值高于1981~2010年的平均值,所以选项D 正确.5.(2018·全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A.112B.114C.115D.118解析:选C 不超过30的所有素数为2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有C210=45种情况,而和为30的有7+23,11+19,13+17这3种情况,∴所求概率为345=115.故选C.6.(2018·合肥一模)某广播电台只在每小时的整点和半点开始播放新闻,时长均为5分钟,则一个人在不知道时间的情况下打开收音机收听该电台,能听到新闻的概率是( )A.114B.112C.17D.16解析:选D 由题意知,该广播电台在一天内播放新闻的时长为24×2×5=240分钟,即4个小时,所以所求的概率为424=16,故选D.7.(2018·石家庄模拟)某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( )A.110B.15C.25D.12解析:选C 设“开关第一次闭合后出现红灯”为事件A ,“开关第二次闭合后出现红灯”为事件B ,则“开关两次闭合后都出现红灯”为事件AB ,“开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯”为事件B |A ,由题意得P (B |A )==25,故选C.8.(2019届高三·辽宁五校联考)为考察某种药物对预防禽流感的效果,在四个不同的实验室取相同的个体进行动物试验,根据四个实验室得到的列联表画出如下四个等高条形图,最能体现该药物对预防禽流感有显著效果的图形是( )解析:选D 分析四个等高条形图得选项D 中,不服用药物与服用药物患病的差异最大,所以最能体现该药物对预防禽流感有显著效果,故选D.9.(2018·郑州、湘潭联考)已知a ∈{-2,0,1,2,3},b ∈{3,5},则函数f (x )=(a 2-2)ex+b 为减函数的概率是( )A.310B.35C.25D.15解析:选C 由题意知a ,b 的组合共有10种,函数f (x )=(a 2-2)e x+b 为减函数,则a 2-2<0,又a ∈{-2,0,1,2,3},故只有a =0,a =1满足题意,又b ∈{3,5},所以当a =0时,b 可取3,5;当a =1时,b 可取3,5,满足题意的组合有4种,所以函数f (x )=(a 2-2)ex+b 为减函数的概率是410=25.故选C.10.为比较甲、乙两地某月11时的气温情况,随机选取该月中的5天,将这5天中11时的气温数据(单位:℃)制成如图所示的茎叶图,给出以下结论: ①甲地该月11时的平均气温低于乙地该月11时的平均气温; ②甲地该月11时的平均气温高于乙地该月11时的平均气温;③甲地该月11时的气温的标准差小于乙地该月11时的气温的标准差; ④甲地该月11时的气温的标准差大于乙地该月11时的气温的标准差.其中根据茎叶图能得到的正确结论的编号为( )A .①③B .①④C .②③D .②④解析:选C 由茎叶图和平均数公式可得甲、乙两地的平均数分别是30,29,则甲地该月11时的平均气温高于乙地该月11时的平均气温,①错误,②正确,排除A 和B ;又甲、乙两地该月11时的标准差分别是s 甲=4+1+1+45=2,s 乙= 9+1+4+45=185,则甲地该月11时的气温的标准差小于乙地该月11时的气温的标准差,③正确,④错误,故选项C 正确.11.由不等式组⎩⎪⎨⎪⎧x≤0,y≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组⎩⎪⎨⎪⎧x +y≤1,x +y≥-2确定的平面区域记为Ω2.在Ω1中随机取一点,则该点恰好在Ω2内的概率为( )A.18B.14C.34D.78解析:选D 由题意作图,如图所示,Ω1的面积为12×2×2=2,图中阴影部分的面积为2-12×12×1=74,则所求的概率P =742=78.12.(2018·内蒙古包头铁路一中调研)甲、乙、丙三人参加一次考试,他们合格的概率分别为23,34,25,那么三人中恰有两人合格的概率是( )A.25B.1130C.715D.16解析:选C 三人中恰有两人合格的概率P =23×34×⎝ ⎛⎭⎪⎫1-25+23×⎝⎛⎭⎪⎫1-34×25+⎝ ⎛⎭⎪⎫1-23×34×25=715,故选C. 二、填空题13.(2018·南昌模拟)某校高三(2)班现有64名学生,随机编号为0,1,2,…,63,依编号顺序平均分成8组,组号依次为1,2,3,…,8.现用系统抽样方法抽取一个容量为8的样本,若在第1组中随机抽取的号码为5,则在第6组中抽取的号码为________.解析:由题知分组间隔为648=8,又第1组中抽取的号码为5,所以第6组中抽取的号码为5×8+5=45.答案:4514.(2018·天津和平区调研)从混有5张假钞的20张百元钞票中任意抽取两张,将其中一张放到验钞机上检验发现是假钞,则两张都是假钞的概率是________.解析:设事件A 为“抽到的两张都是假钞”,事件B 为“抽到的两张至少有一张假钞”,则所求的概率为P (A |B ),因为P (AB )=P (A )=C25C220=119,P (B )=C25+C15C115C220=1738,所以P (A |B )==1191738=217. 答案:21715.某篮球比赛采用7局4胜制,即若有一队先胜4局,则此队获胜,比赛就此结束.由于参加比赛的两队实力相当,每局比赛两队获胜的可能性均为12.据以往资料统计,第一局比赛组织者可获得门票收入40万元,以后每局比赛门票收入比上一局增加10万元,则组织者在此次比赛中获得的门票收入不少于390万元的概率为________.解析:依题意,每局比赛获得的门票收入组成首项为40,公差为10的等差数列,设此数列为{a n },则易知首项a 1=40,公差d =10,故S n =40n +-2×10=5n 2+35n .由S n ≥390,得n 2+7n ≥78,所以n ≥6.所以要使获得的门票收入不少于390万元,则至少要比赛6局.①若比赛共进行6局,则P 6=C35×⎝ ⎛⎭⎪⎫125=516;②若比赛共进行了7局,则P 7=C36×⎝ ⎛⎭⎪⎫126=516.所以门票收入不少于390万元的概率P =P 6+P 7=1016=58.答案:5816.(2018·石家庄摸底)为了判断高中三年级学生选修文理科是否与性别有关,现随机抽取50名学生,得到2×2列联表:已知P (K 2≥3.841)≈0.05,P (K 2≥5.024)≈0.025.根据表中数据,得到K 2=-23×27×20×30≈4.844,则认为选修文理科与性别有关系出错的可能性约为________.解析:由K 2=4.844>3.841.故认为选修文理科与性别有关系出错的可能性约为5%.答案:5%B 级——难度小题强化练1.(2018·成都模拟) 小明在花店定了一束鲜花,花店承诺将在第二天早上7:30~8:30之间将鲜花送到小明家.若小明第二天离开家去公司上班的时间在早上8:00~9:00之间,则小明在离开家之前收到这束鲜花的概率是( )A.18B.14C.34D.78解析:选D 如图,设送花人到达小明家的时间为x ,小明离家去上班的时间为y ,记小明离家前能收到鲜花为事件A .(x ,y )可以看成平面中的点,试验的全部结果所构成的区域为Ω={(x ,y )|7.5≤x ≤8.5,8≤y ≤9},这是一个正方形区域,面积为S Ω=1×1=1,事件A 所构成的区域为A ={(x ,y )|y ≥x,7.5≤x ≤8.5,8≤y ≤9},即图中的阴影部分,面积为S A =1-12×12×12=78.这是一个几何概型,所以P (A )=SA S Ω=78,故选D.2.(2018·福州四校联考)某汽车的使用年数x 与所支出的维修总费用y 的统计数据如下表:根据上表可得y 关于x 的线性回归方程y =b x -0.69,若该汽车维修总费用超过10万元就不再维修,直接报废,据此模型预测该汽车最多可使用(不足1年按1年计算)( )A .8年B .9年C .10年D .11年解析:选D 由y 关于x 的线性回归直线y ^=b ^x -0.69过样本点的中心(3,2.34),得b ^=1.01,即线性回归方程为y ^=1.01x -0.69,由y ^=1.01x -0.69=10得x ≈10.6,所以预测该汽车最多可使用11年,故选D.3.(2018·长春模拟)如图所示是某学校某年级的三个班在一学期内的六次数学测试的平均成绩y 关于测试序号x 的函数图象,为了容易看出一个班级的成绩变化,将离散的点用虚线连接,根据图象,给出下列结论:①一班成绩始终高于年级平均水平,整体成绩比较好;②二班成绩不够稳定,波动程度较大;③三班成绩虽然多数时间低于年级平均水平,但在稳步提升.其中正确结论的个数为( )A .0B .1C .2D .3解析:选D ①由图可知一班每次考试的平均成绩都在年级平均成绩之上,故①正确.②由图可知二班平均成绩的图象高低变化明显,可知成绩不稳定,波动程度较大,故②正确.③由图可知三班平均成绩的图象呈上升趋势,并且图象的大部分都在年级平均成绩图象的下方,故③正确.故选D.4.(2018·郑州模拟)我市某高中从高三年级甲、乙两个班中各选出7名学生参加2018年全国高中数学联赛(河南初赛),他们取得的成绩(满分140分)的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,若正实数a ,b 满足a ,G ,b 成等差数列且x ,G ,y 成等比数列,则1a +4b的最小值为( )A.49 B .2 C.94D .9解析:选C 由甲班学生成绩的中位数是81,可知81为甲班7名学生的成绩按从小到大的顺序排列的第4个数,故x =1.由乙班学生成绩的平均数为86,可得(-10)+(-6)+(-4)+(y -6)+5+7+10=0,解得y =4.由x ,G ,y 成等比数列,可得G 2=xy =4,由正实数a ,b 满足a ,G ,b 成等差数列,可得G =2,a +b =2G =4,所以1a+4b =⎝ ⎛⎭⎪⎫1a +4b ×⎝ ⎛⎭⎪⎫a 4+b 4=14⎝ ⎛⎭⎪⎫1+b a +4a b +4≥14×(5+4)=94(当且仅当b =2a 时取等号).故1a +4b 的最小值为94,选C.5.正六边形ABCDEF 的边长为1,在正六边形内随机取点M ,则使△MAB 的面积大于34的概率为________.解析:如图所示,作出正六边形ABCDEF ,其中心为O ,过点O 作OG⊥AB ,垂足为G ,则OG 的长为中心O 到AB 边的距离.易知∠AOB =360°6=60°,且OA =OB ,所以△AOB 是等边三角形,所以OA =OB =AB =1,OG =OA ·sin 60°=1×32=32,即对角线CF 上的点到AB 的距离都为32.设△MAB 中AB 边上的高为h ,则由S △MAB =12×1×h >34,解得h >32.所以要使△MAB 的面积大于34,只需满足h >32,即需使M 位于CF 的上方. 故由几何概型得,△MAB 的面积大于34的概率P =S 梯形CDEF S 正六边形ABCDEF =12.答案:126.某班运动队由足球运动员18人、篮球运动员12人、乒乓球运动员6人组成(每人只参加一项),现从这些运动员中抽取一个容量为n 的样本,若分别采用系统抽样法和分层抽样法,则都不用剔除个体;当样本容量为n +1时,若采用系统抽样法,则需要剔除1个个体,那么样本容量n 为________.解析:总体容量为6+12+18=36.当样本容量为n 时,由题意可知,系统抽样的抽样距为36n ,分层抽样的抽样比是n36,则采用分层抽样法抽取的乒乓球运动员人数为6×n 36=n 6,篮球运动员人数为12×n 36=n3,足球运动员人数为18×n 36=n2,可知n 应是6的倍数,36的约数,故n =6,12,18.当样本容量为n +1时,剔除1个个体,此时总体容量为35,系统抽样的抽样距为35n +1,因为35n +1必须是整数,所以n 只能取6,即样本容量n 为6.答案:6。

2019-2020年高考数学二轮复习 第2部分 大专题综合测3 数列(含解析)

2019-2020年高考数学二轮复习 第2部分 大专题综合测3 数列(含解析)

2019-2020年高考数学二轮复习第2部分大专题综合测3 数列(含解析)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(文)(xx·北京西城区二模)数列{a n}为等差数列,满足a2+a4+…+a20=10,则数列{a n}前21项的和等于( )A.212B.21C.42 D.84[答案] B[解析] 由a2+a4+…+a20=10a11=10得a11=1,所以等差数列{a n}的前21项和S21=21a11=21,故选B.(理)已知等差数列{a n}的前n项和为S n,且S10=⎠⎛3(1+2x)d x,S20=17,则S30为( ) A.15 B.20C.25 D.30[答案] A[解析] S10=⎠⎛3(1+2x)d x=(x+x2)|30=12.又S10,S20-S10,S30-S20成等差数列.即2(S20-S10)=S10+(S30-S20),∴S30=15.2.(文)(xx·北京东城练习)已知{a n}为各项都是正数的等比数列,若a4·a8=4,则a5·a6·a7=( )A.4 B.8C.16 D.64[答案] B[解析] 由题意得a4a8=a26=4,又因为数列{a n}为正项等比数列,所以a6=2,则a5a6a7=a36=8,故选B.(理)(xx·河北衡水中学二调)已知等比数列{a n}的前n项和为S n,若S2n=4(a1+a3+a5+…+a2n-1), a1a2a3=27,则a6=( )A.27 B.81C. 243 D.729[答案] C[解析] ∵a1a2a3=a32=27,∴a2=3,∵S2n=4(a1+a3+a5+…+a2n-1),∴S2=4a1,∴a1+a 2=4a 1,∴a 2=3a 1=3,∴a 1=1,∴q =a 2a 1=3,∴a 6=a 1q 5=35=243.3.(xx·杭州第二次质检)设等比数列{a n }的各项均为正数,若a 12+a 22=2a 1+2a 2,a 34+a 44=4a 3+4a 4,则a 1a 5=( ) A .24 2 B .8 C .8 2 D .16[答案] C[解析] 利用等比数列的通项公式求解.设此正项等比数列的公比为q ,q >0,则由a 12+a 22=2a 1+2a 2得a 1+a 22=2a 1+a 2a 1a 2,a 1a 2=4,同理由a 34+a 44=4a 3+4a 4得a 3a 4=16,则q 4=a 3a 4a 1a 2=4,q =2,a 1a 2=2a 21=4,a 21=22,所以a 1a 5=a 21q 4=82,故选C. 4.(文)(xx·青岛市质检)“∀n ∈N *,2a n +1=a n +a n +2”是“数列{a n }为等差数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] C[解析] 本题考查等差数列的定义以及充要条件的判断,难度较小.由2a n +1=a n +a n +2,可得a n +1-a n =a n +2-a n +1,由n 的任意性可知,数列从第二项起每一项与前一项的差是固定的常数,即数列{a n }为等差数列,反之,若数列{a n }为等差数列,易得2a n +1=a n +a n +2,故“∀n ∈N *,2a n +1=a n +a n +2”是“数列{a n }为等差数列”的充要条件,故选C.(理)“lg x ,lg y ,lg z 成等差数列”是“y 2=xz ”成立的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不充分也不必要条件[答案] A[解析] “lg x ,lg y ,lg z 成等差数列”⇔2lg y =lg x +lg z ⇒y 2=xz ,但y 2=xz ⇒/ 2lg y =lg x +lg z ,∴选A.5.(文)(xx·福州质检)在等差数列{a n }中,若a 2=1,a 8=2a 6+a 4,则a 5的值为( ) A .-5 B .-12C .12 D .52[答案] B[解析] 本题考查等差数列的通项公式,难度中等.设等差数列{a n }的公差为d ,因为a 8=2a 6+a 4,故a 2+6d =2a 2+8d +a 2+2d ,解得d =-12,故a 5=a 2+3d =1-32=-12,故选B . (理)已知正数组成的等差数列{a n },前20项和为100,则a 7·a 14的最大值是( ) A .25 B .50 C .100 D .不存在[答案] A [解析] ∵S 20=a 1+a 202×20=100,∴a 1+a 20=10.∵a 1+a 20=a 7+a 14,∴a 7+a 14=10. ∵a n >0,∴a 7·a 14≤(a 7+a 142)2=25.当且仅当a 7=a 14时取等号.6.(文)在直角坐标系中,O 是坐标原点,P 1(x 1,y 1),P 2(x 2,y 2)是第一象限内的两个点,若1,x 1,x 2,4依次成等差数列,而1,y 1,y 2,8依次成等比数列,则△OP 1P 2的面积是( )A .1B .2C .3D .4[答案] A[解析] 由等差、等比数列的性质,可求得x 1=2,x 2=3,y 1=2,y 2=4,∴P 1(2,2),P 2(3,4),∴S △OP 1P 2=1.(理)(xx·长沙市一模)等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( )A .6B .5C .4D .3[答案] C[解析] 设等比数列{a n }的公比为q ,则q =a 5a 4=52,a n =a 4q n -4=2×(52)n -4,则lg a n =lg2+(n -4)lg 52,数列{lg a n }成等差数列,所以前8项和等于8lg a 1+lg a 82=4(lg2-3lg 52+lg2+4lg 52)=4,故选C.7.(xx·河南商丘市二模)在递增的等比数列{a n }中,已知a 1+a n =34,a 3·a n -2=64,且前n 项和为S n =42,则n =( )A .6B .5C .4D .3[答案] D[解析] 由已知得a 1+a 1qn -1=34,a 21qn -1=64,∴a 1+64a 1=34,解得:a 1=32或a 1=2,当a 1=32时,q n -1<1不适合题意,故a 1=2,q n -1=16,又S n =a 11-q n 1-q =21-16q1-q=42,解得q =4,∴4n -1=16,n -1=2,n =3.8.(文)两个正数a 、b 的等差中项是52,一个等比中项是6,且a >b ,则双曲线x 2a 2-y2b 2=1的离心率e 等于( )A.32B .152C .13D .133[答案] D[解析] 由已知可得a +b =5,ab =6,解得⎩⎪⎨⎪⎧a =3,b =2或⎩⎪⎨⎪⎧a =2,b =3(舍去).则c =a 2+b 2=13,故e =c a=133. (理)△ABC 的三边分别为a 、b 、c ,若b 既是a 、c 的等差中项,又是a 、c 的等比中项,则△ABC 是( )A .等腰直角三角形B .等腰三角形C .等边三角形D .直角三角形[答案] C[解析] ∵b 是a 、c 的等差中项,∴b =a +c2.又∵b 是a 、c 的等比中项,∴b =ac ,∴(a +c2)2=ac ,∴(a -c )2=0,∴a =c ,∴b =a +c2=a ,故△ABC 是等边三角形.9.(xx·天津十二区县联考)数列{a n }满足a 1=1,且对于任意的n ∈N *都有a n +1=a 1+a n+n ,则1a 1+1a 2+…+1a 2015等于( )A.40282015 B .20142015 C.20151008D .20152016[答案] C[解析] 本题考查数列的递推公式、裂项法求和,难度中等.依题意a n +1=a n +n +1,故a n +1-a n =n +1,由累加法可得a n -a 1=n 2+n -22,a n =n 2+n2,故1a n =2n 2+n =2(1n -1n +1),故1a 1+1a 2+…+1a 2015=2(1-12+12-13+…+12015-12016)=40302016=20151008,故选C. 10.(文)已知数列{a n },若点(n ,a n )(n ∈N *)在经过点(5,3)的定直线l 上,则数列{a n }的前9项和S 9=( )A .9B .10C .18D .27[答案] D[解析] 由条件知a 5=3,∴S 9=9a 5=27.(理)(xx·郑州市质检)已知实数4,m,9构成一个等比数列,则圆锥曲线x 2m+y 2=1的离心率为( )A.306 B .7 C.306或7 D .56或7 [答案] C[解析] 由题意知m 2=36,m =±6,当m =6时,该圆锥曲线表示椭圆,此时a =6,b =1,c =5,e =306;当m =-6时,该圆锥曲线表示双曲线,此时a =1,b =6,c =7,e =7,故选C.11.(文)(xx·重庆市调研)已知等差数列{a n }的前n 项和为S n ,若a 2=7,a 6+a 8=-6,则S n 取最大值时,n 的值为( )A .3B .4C .5D .6[答案] C[解析] a 7=12(a 6+a 8)=-3,公差d =a 7-a 27-2=-2,a n =a 2-2(n -2)=11-2n ,因此在等差数列{a n }中,前5项均为正,从第6项起以后各项均为负,当S n 取最大值时,n 的值为5,故选C.(理)等差数列{a n }的首项为a 1,公差为d ,前n 项和为S n ,则“d >|a 1|”是“S n 的最小值为S 1,且S n 无最大值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] 依题意,当d >|a 1|时,数列{a n }是递增的数列,无论a 1的取值如何,S n 的最小值为S 1,且S n 无最大值;反过来,当S n 的最小值为S 1,且S n 无最大值时,如当a 1=1,d =13时,此时S n 的最小值为S 1,且S n 无最大值,但不满足d >|a 1|.综上所述,“d >|a 1|”是“S n 的最小值为S 1,且S n 无最大值”的充分不必要条件.12.(文)已知数列{a n }的各项均为正数,执行程序框图(如下图),当k =4时,输出S =13,则a xx =( ) A .xx B .xx C .xx D .xx[答案] D[解析] 由程序框图可知,{a n }是公差为1的等差数列, 且1a 1a 2+1a 2a 3+1a 3a 4+1a 4a 5=13, ∴1a 1-1a 2+1a 2-1a 3+1a 3-1a 4+1a 4-1a 5=1a 1-1a 5=13, ∴1a 1-1a 1+4=13,解得a 1=2,∴a xx =a 1+xx d =2+xx =xx. (理)已知曲线C :y =1x(x >0)上两点A 1(x 1,y 1)和A 2(x 2,y 2),其中x 2>x 1.过A 1、A 2的直线l 与x 轴交于点A 3(x 3,0),那么( )A .x 1,x 32,x 2成等差数列B .x 1,x 32,x 2成等比数列C .x 1,x 3,x 2成等差数列D .x 1,x 3,x 2成等比数列 [答案] A[解析] 直线A 1A 2的斜率k =y 2-y 1x 2-x 1=1x 2-1x 1x 2-x 1=-1x 1x 2,所以直线A 1A 2的方程为y -1x 1=-1x 1x 2(x -x 1),令y =0解得x =x 1+x 2,∴x 3=x 1+x 2,故x 1,x 32,x 2成等差数列,故选A.二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上)13.(xx·海口市调研)在数列{a n }中,已知a 1=1,a n +1-a n =sin n +1π2,记S n 为数列{a n }的前n 项和,则S xx =________.[答案] 1008[解析] 由a n +1-a n =sinn +1π2⇒a n +1=a n +sinn +1π2,∴a 2=a 1+sinπ=1+0=1,a 3=a 2+sin 3π2=1+(-1)=0,a 4=a 3+sin2π=0+0=0,a 5=a 4+sin 5π2=0+1=1,∴a 5=a 1,如此继续可得a n +4=a n (n ∈N *),数列{a n }是一个以4为周期的周期数列,而xx =4×503+2,因此S xx =503×(a 1+a 2+a 3+a 4)+a 1+a 2=503×(1+1+0+0)+1+1=1008.14.(文)定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,函数f (x )=⎪⎪⎪⎪⎪⎪x -12-x x +3图象的顶点坐标是(m ,n ),且k ,m ,n ,r 成等差数列,则k +r 的值为________.[答案] -9[解析] f (x )=(x -1)(x +3)+2x =x 2+4x -3=(x +2)2-7的顶点坐标为(-2,-7), ∵m =-2,n =-7,∴k +r =m +n =-9.(理)已知数列{a n }的通项为a n =7n +2,数列{b n }的通项为b n =n 2.若将数列{a n }、{b n }中相同的项按从小到大顺序排列后记作数列{c n },则c 9的值是________.[答案] 961[解析] 设数列{a n }中的第n 项是数列{b n }中的第m 项,则m 2=7n +2,m 、n ∈N *.令m =7k +i ,i =0,1,2,…,6,k ∈Z ,则i 2除以7的余数是2,则i =3或4,所以数列{c n }中的项依次是{b n }中的第3,4,10,11,17,18,24,25,31,32,…,故c 9=b 31=312=961.15.(xx·辽宁省协作校联考)若数列{a n }与{b n }满足b n +1a n +b n a n +1=(-1)n +1,b n =3+-1n -12,n ∈N +,且a 1=2,设数列{a n }的前n 项和为S n ,则S 63=________.[答案] 560[解析] ∵b n =3+-1n -12=⎩⎪⎨⎪⎧2n 为奇数1n 为偶数,又a 1=2,∴a 2=-1,a 3=4,a 4=-2,a 5=6,a 6=-3,…,∴S 63=a 1+a 2+a 3+…a 63=(a 1+a 3+a 5+…+a 63)+(a 2+a 4+a 6+…+a 62)=(2+4+6+…+64)-(1+2+3+…+31)=1056-496=560.16.(xx·山西大学附中月考)已知无穷数列{a n }具有如下性质:①a 1为正整数;②对于任意的正整数n ,当a n 为偶数时,a n +1=a n 2;当a n 为奇数时,a n +1=a n +12.在数列{a n }中,若当n ≥k 时,a n =1,当1≤n <k 时,a n >1(k ≥2,k ∈N *),则首项a 1可取数值的个数为________(用k 表示).[答案] 2k -2[解析] 当n ≥k 时,a n =1,∴a k =1,当n <k 时,若a k =a k -1+12,则a k -1=1这与a k -1>1矛盾,∴a k =a k -12,∴a k -1=2,同理可得a k -2=3或4,a k -3=5,6,7或8,…,倒推下去,∵k -(k -2)=2,∴倒推(k -2)步可求得a 1,∴a 1有2k -2个可能取值.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本题满分10分)(文)(xx·江苏宿迁摸底)已知数列{a n }的各项均为正数,其前n 项和S n =12(a n -1)(a n +2),n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =(-1)na n a n +1,求数列{b n }的前2n 项的和T 2n . [解析] (1)当n =1时,S 1=12(a 1-1)(a 1+2)=a 1,解得a 1=-1或a 1=2, 因为a 1>0,所以a 1=2.当n ≥2时,S n =12(a n -1)(a n +2),S n -1=12(a n -1-1)(a n -1+2),两式相减得(a n +a n -1)(a n -a n -1-1)=0, 又因为a n >0,所以a n +a n -1>0,所以a n -a n -1=1, 所以{a n }是首项为2,公差为1的等差数列, 所以a n =n +1.(2)T 2n =-a 1a 2+a 2a 3-a 3a 4+a 4a 5-a 5a 6+…+a 2n -2a 2n -1-a 2n -1a 2n +a 2n a 2n +1=2(a 2+a 4+…+a 2n ),又a 2,a 4,…,a 2n 是首项为3,公差为2的等差数列, 所以a 2+a 4+…+a 2n =n 3+2n +12=n 2+2n ,故T 2n =2n 2+4n .[易错分析] 本题有两个易错点:一是数列{a n }的通项公式求解错误或者不认真审题导致求解过程出现增根;二是在数列求和时,不能够合理地分类与整合.(理)(xx·临沂三校联考)已知等比数列{a n }的公比q >1,42是a 1和a 4的一个等比中项,a 2和a 3的等差中项为6,若数列{b n }满足b n =log 2a n (n ∈N *).(1)求数列{a n }的通项公式; (2)求数列{a n b n }的前n 项和S n .[解析] (1)因为42是a 1和a 4的一个等比中项, 所以a 1·a 4=(42)2=32.由题意可得⎩⎪⎨⎪⎧a 2·a 3=32,a 2+a 3=12.因为q >1,所以a 3>a 2.解得⎩⎪⎨⎪⎧a 2=4,a 3=8.所以q =a 3a 2=2.故数列{a n }的通项公式a n =2n.(2)由于b n =log 2a n (n ∈N *),所以a n b n =n ·2n,S n =1·2+2·22+3·23+…+(n -1)·2n -1+n ·2n ,①2S n =1·22+2·23+…+(n -1)·2n +n ·2n +1.②①-②得,-S n =1·2+22+23+ (2)-n ·2n +1=21-2n1-2-n ·2n +1.所以S n =2-2n +1+n ·2n +1.18.(本题满分12分)(文)已知数列{a n }的首项为1,对任意的n ∈N *,定义b n =a n +1-a n .(1)若b n =n +1,①求a 3的值和数列{a n }的通项公式; ②求数列{1a n}的前n 项和S n ;(2)若b n +1=b n +2b n (n ∈N *),且b 1=2,b 2=3,求数列{b n }的前3n 项的和. [解析] (1)①a 1=1,a 2=a 1+b 1=1+2=3,a 3=a 2+b 2=3+3=6 当n ≥2时,由a n +1-a n =n +1得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+b 1+b 2+…+b n -1=n n +12而a 1=1适合上式,所以a n =n n +12(n ∈N *).②由①得:1a n =2nn +1=2(1n -1n +1),S n =1a 1+1a 2+1a 3+…+1a n=2(1-12)+2(12-13)+2(12-13)+…+2(1n -1n +1)=2(1-1n +1)=2n n +1.(2)因为对任意的n ∈N *有b n +6=b n +5b n +4=b n +4b n +3b n +4=1b n +3=b n , 所以数列{b n }为周期数列,周期为6.又数列{b n }的前6项分别为2,3,32,12,13,23,且这六个数的和为8.设数列{b n }的前n 项和为S n ,则 当n =2k (k ∈N *)时,S 3n =S 6k =k (b 1+b 2+b 3+b 4+b 5+b 6)=8k ,当n =2k +1(k ∈N *)时,S 3n =S 6k +3=k (b 1+b 2+b 3+b 4+b 5+b 6)+b 6k +1+b 6k +2+b 6k +3=8k +b 1+b 2+b 3=8k +132,当n =1时,S 3=132所以,当n 为偶数时,S 3n =4n ; 当n 为奇数时,S 3n =4n +52.(理)(xx·郑州市质检)已知数列{a n }的前n 项和为S n ,且S n =2a n -2. (1)求数列{a n }的通项公式;(2)设b n =log 2a 1+log 2a 2+…+log 2a n ,求使(n -8)b n ≥nk 对任意n ∈N *恒成立的实数k 的取值范围.[解析] (1)由S n =2a n -2可得a 1=2,因为S n =2a n -2, 所以,当n ≥2时,a n =S n -S n -1=2a n -2a n -1, 即:a na n -1=2. 数列{a n }是以a 1=2为首项,公比为2的等比数列, 所以,a n =2n(n ∈N *). (2)b n =log 2a 1+log 2a 2+…log 2a n =1+2+3+…+n =n n +12.(n -8)b n ≥nk 对任意n ∈N *恒成立,等价于n -8n +12≥k 对n ∈N *恒成立;设c n =12(n -8)(n +1),则当n =3或4时,c n 取得最小值为-10,所以k ≤-10.19.(本题满分12分)(文)(xx·河北衡水中学三调)已知数列{a n }满足a 1=12,a n +1a n +1-1-1a n -1=0,n ∈N *.(1)求数列{a n }的通项公式; (2)设b n =a n +1a n -1,数列{b n }的前n 项和为S n ,证明S n <34. [解析] (1)由已知a n +1a n +1-1-1a n -1=0,n ∈N *.即a n +1-1+1a n +1-1-1a n -1=0,1+1a n +1-1-1a n -1=0.即1a n +1-1-1a n -1=-1(常数)∴数列⎩⎨⎧⎭⎬⎫1a n -1是以1a 1-1=-2为首项,以-1为公差的等差数列.可得1a n -1=-2+(n -1)×(-1)=-(n +1), ∴a n =nn +1(2)由(1)可得a n =nn +1.∵b n =a n +1a n -1=n +12n n +2-1=1n n +2=12⎝ ⎛⎭⎪⎫1n -1n +2∴S n =b 1+b 2+…+b n =12⎝ ⎛⎭⎪⎫1-13+12⎝ ⎛⎭⎪⎫12-14+12⎝ ⎛⎭⎪⎫13-15+…+12⎝ ⎛⎭⎪⎫1n -1-1n +1+12⎝ ⎛⎭⎪⎫1n -1n +2=12⎝⎛⎭⎪⎫1+12-1n +1-1n +2<12×⎝ ⎛⎭⎪⎫1+12=34.(理)已知数列{a n }具有性质:①a 1为整数;②对于任意的正整数n ,当a n 为偶数时,a n+1=a n 2;当a n 为奇数时,a n +1=a n -12; (1)若a 1为偶数,且a 1,a 2,a 3成等差数列,求a 1的值;(2)设a 1=2m+3(m >3且m ∈N ),数列{a n }的前n 项和为S n ,求证:S n ≤2m +1+3;(3)若a n 为正整数,求证:当n >1+log 2a 1(n ∈N )时,都有a n =0. [解析] (1)设a 1=2k ,则a 2=k , 由条件知2k +a 3=2k ,∴a 3=0. 分两种情况讨论: 若k 是奇数,则a 3=a 2-12=k -12=0,∴k =1,a 1=2,a 2=1,a 3=0,若k 是偶数,则a 3=a 22=k2=0,∴k =0,a 1=0,a 2=0,a 3=0,∴a 1的值为2或0.(2)当m >3时,a 1=2m+3,a 2=2m -1+1,a 3=2m -2,a 4=2m -3,a 5=2m -4,…,a m =2,a m +1=1,a m +2=…=a n =0,∴S n ≤S m +1=1+2+ (2)+4=2m +1+3.(3)∵n >1+log 2a 1,∴n -1>log 2a 1,∴2n -1>a 1,由定义可知:a n +1=⎩⎪⎨⎪⎧a n2,a n是偶数a n-12,a n是奇数,∴a n +1≤a n 2,∴a n +1a n ≤12.∴a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1≤12n -1a 1, ∴a n <12n -1·2n -1=1,∵a n ∈N ,∴a n =0,综上可知:当n >1+log 2a 1(n ∈N )时,都有a n =0.20.(本题满分12分)(文)(xx·江西八校联考)已知数列{a n }的首项a 1=4,前n 项和为S n ,且S n +1-3S n -2n -4=0(n ∈N *).(1)求数列{a n }的通项公式;(2)设函数f (x )=a n x +a n -1x 2+a n -2x 3+…+a 1x n,f ′(x )是函数f (x )的导函数,令b n=f ′(1),求数列{b n }的通项公式,并研究其单调性.[解析] (1)由S n +1-3S n -2n -4=0(n ∈N *)得S n -3S n -1-2n +2-4=0(n ≥2), 两式相减得a n +1-3a n -2=0,可得a n +1+1=3(a n +1)(n ≥2),又由已知a 2=14,所以a 2+1=3(a 1+1),即{a n +1}是一个首项为5,公比q =3的等比数列,所以a n =5×3n -1-1(n ∈N *).(2)因为f ′(x )=a n +2a n -1x +…+na 1x n -1,所以f ′(1)=a n +2a n -1+…+na 1 =(5×3n -1-1)+2(5×3n -2-1)+…+n (5×30-1) =5[3n -1+2×3n -2+3×3n -3+…+n ×30]-n n +12令S =3n -1+2×3n -2+3×3n -3+…+n ×30,则3S =3n +2×3n -1+3×3n -2+…+n ×31,作差得S =-n 2-3-3n +14,所以f ′(1)=5×3n +1-154-n n +62,即b n =5×3n +1-154-nn +62,而b n +1=5×3n +2-154-n +1n +72,作差得b n +1-b n =15×3n2-n -72>0,所以{b n }是单调递增数列.(理)已知数列{a n }的首项a 1=5,且a n +1=2a n +1(n ∈N *). (1)证明:数列{a n +1}是等比数列,并求数列{a n }的通项公式;(2)令f (x )=a 1x +a 2x 2+…+a n x n,求数列f (x )在点x =1处的导数f ′(1). [解析] (1)证明:∵a n +1=2a n +1, ∴a n +1+1=2(a n +1),∴a n +1+1a n +1=2, ∴数列{a n +1}是以a 1+1为首项,2为公比的等比数列, ∴a n +1=(a 1+1)·2n -1=6·2n -1=3·2n,∴a n =3·2n-1.(2)∵f (x )=a 1x +a 2x 2+…+a n x n, ∴f ′(x )=a 1+2a 2x +…+na n xn -1,∴f ′(1)=a 1+2a 2+3a 3+…+na n=(3·21-1)+2(3·22-1)+3(3·23-1)+…+n (3·2n-1) =3(2+2×22+3×23+…+n ×2n)-(1+2+3+…+n ), 令T n =2+2×22+3×23+…+n ×2n,∴2T n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1,∴-T n =2+22+23+…+2n -n ·2n +1=21-2n1-2-n ·2n +1=-(n -1)·2n +1-2,∴T n =(n -1)·2n +1+2,∴f ′(1)=3(n -1)·2n +1-n n +12+6.21.(本题满分12分)(文)(xx·广东文,19)设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1.(1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列;(3)求数列{a n }的通项公式.[分析] 考查:1.等比数列的定义;2.等比数列的通项公式;3.等差数列的通项公式. (1)令n =2可得a 4的值;(2)先利用a n =S n -S n -1将4S n +2+5S n =8S n +1+S n -1(n ≥2)转化为4a n +2+a n =4a n +1,再利用等比数列的定义可证⎩⎨⎧⎭⎬⎫a n +1-12a n 是等比数列;(3)由(2)可得数列⎩⎨⎧⎭⎬⎫a n +1-12a n 的通项公式,再将数列⎩⎨⎧⎭⎬⎫a n +1-12a n 的通项公式转化为数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n⎝ ⎛⎭⎪⎫12n 是等差数列,进而可得数列{a n }的通项公式.[解析] (1)当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝ ⎛⎭⎪⎫1+32+54+a 4+5⎝ ⎛⎭⎪⎫1+32=8⎝ ⎛⎭⎪⎫1+32+54+1, 解得:a 4=78.(2)因为4S n +2+5S n =8S n +1+S n -1(n ≥2), 所以4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1(n ≥2), 因为4a 3+a 1=4×54+1=6=4a 2,所以4a n +2+a n =4a n +1,对于n =1成立. 因为a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n =4a n +1-a n -2a n +14a n +1-2a n=2a n +1-a n 22a n +1-a n =12,所以数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,公比为12的等比数列.(3)由(2)知:数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,公比为12的等比数列,所以a n +1-12a n =⎝ ⎛⎭⎪⎫12n -1. 即a n +1⎝ ⎛⎭⎪⎫12n +1-a n⎝ ⎛⎭⎪⎫12n=4,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n ⎝ ⎛⎭⎪⎫12n 是以a 112=2为首项,4为公差的等差数列,所以a n⎝ ⎛⎭⎪⎫12n =2+(n -1)×4=4n -2,即a n =(4n -2)×⎝ ⎛⎭⎪⎫12n =(2n -1)×⎝ ⎛⎭⎪⎫12n -1,所以数列{a n }的通项公式是a n =(2n -1)×⎝ ⎛⎭⎪⎫12n -1.(理)(xx·辽宁葫芦岛市一模)已知数列{a n }为等差数列,a 3=5,a 4+a 8=22; (1)求数列{a n }的通项公式a n 及前n 项和公式S n ; (2)令b n =n +1S n S n +2,求证:b 1+b 2+…+b n <516. [解析] (1)由a 4+a 8=22得:a 6=11,又a 3=5,∴d =2,a 1=1,∴a n =2n -1,S n =n a 1+a n 2=n 1+2n -12=n 2.(2)b n =n +1S n S n +2=n +1n 2·n +22=14⎝ ⎛⎭⎪⎫1n2-1n +22当n =1时,b 1=14⎝ ⎛⎭⎪⎫1-19=29<516,原不等式成立;当n ≥2时,b 1+b 2+…+b n =14⎝ ⎛⎭⎪⎫112-132+⎝ ⎛⎭⎪⎫122-142+⎝ ⎛⎭⎪⎫132-152+⎝ ⎛⎭⎪⎫142-162+…+⎝⎛⎭⎪⎫1n -22-1n 2+⎝⎛⎭⎪⎫1n -12-1n +12+⎝⎛⎭⎪⎫1n 2-1n +22=14⎝ ⎛⎭⎪⎫112+122-1n +12-1n +22<14⎝ ⎛⎭⎪⎫112+122=516∴b 1+b 2+…+b n <516(n ∈N *)22.(本题满分12分)已知数列{a n }满足a n +1=-1a n +2,a 1=-12. (1)求证{1a n +1}是等差数列; (2)求数列{a n }的通项公式;(3)设T n =a n +a n +1+…+a 2n -1.若T n ≥p -n 对任意的n ∈N *恒成立,求p 的最大值. [解析] (1)证明:∵a n +1=-1a n +2, ∴a n +1+1=-1a n +2+1=a n +2-1a n +2=a n +1a n +2, 由于a n +1≠0,∴1a n +1+1=a n +2a n +1=1+1a n +1,∴{1a n +1}是以2为首项,1为公差的等差数列. (2)由(1)题结论知:1a n +1=2+(n -1)=n +1, ∴a n =1n +1-1=-n n +1(n ∈N *). (3)∵T n =a n +a n +1+…+a 2n -1≥p -n , ∴n +a n +a n +1+…+a 2n -1≥p ,即(1+a n )+(1+a n +1)+(1+a n +2)+…+(1+a 2n -1)≥p ,对任意n ∈N *恒成立, 而1+a n =1n +1, 设H (n )=(1+a n )+(1+a n +1)+…+(1+a 2n -1), ∴H (n )=1n +1+1n +2+…+12n , H (n +1)=1n +2+1n +3+…+12n +12n +1+12n +2, ∴H (n +1)-H (n )=12n +1+12n +2-1n +1=12n +1-12n +2>0,∴数列{H (n )}单调递增,∴n ∈N *时,H (n )≥H (1)=12,故p ≤12.∴p 的最大值为12.反馈练习一、选择题1.等比数列{a n }中,a 1+a 3=5,a 2+a 4=10,则a 6+a 8等于( ) A .80 B .96 C .160 D .320[答案] C [解析] ∵a 2+a 4a 1+a 3=q a 1+a 3a 1+a 3=q =105=2, ∴a 6+a 8=(a 2+a 4)q 4=10×24=160.2.(xx·广州二测)已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为( )A .10B .20C .30D .40[答案] A[解析] 设这个数列的项数为2n ,于是有2×n =25-15=10,即这个数列的项数为10,故选A.[易错分析] 考生不会利用奇数项和与偶数项和的关系去求解数列的项数,导致无法解题.3.已知等差数列{a n }的公差d ≠0,a 1,a 5,a 17依次成等比数列,则这个等比数列的公比是( )A .4B .3C .2D .12[答案] B[解析] 解法1:由条件知a 25=a 1a 17,即(a 1+4d )2=a 1(a 1+16d ),得a 1=2d ,a 5=a 1+4d =6d ,∴q =a 5a 1=6d2d=3,故选B .解法2:q =a 5a 1=a 17a 5=a 17-a 5a 5-a 1=12d4d=3,故选B . 4.以S n 表示等差数列{a n }的前n 项和,若S 5>S 6,则下列不等关系不一定成立的是( ) A .2a 3>3a 4 B .5a 5>a 1+6a 6 C .a 5+a 4-a 3<0 D .a 3+a 6+a 12<2a 7[答案] D[解析] 依题意得a 6=S 6-S 5<0,2a 3-3a 4=2(a 1+2d )-3(a 1+3d )=-(a 1+5d )=-a 6>0,2a 3>3a 4;5a 5-(a 1+6a 6)=5(a 1+4d )-a 1-6(a 1+5d )=-2(a 1+5d )=-2a 6>0,5a 5>a 1+6a 6;a 5+a 4-a 3=(a 3+a 6)-a 3=a 6<0.综上所述知选D .5.(文)在等差数列{a n }中,7a 5+5a 9=0,且a 5<a 9,则使数列前n 项和S n 取得最小值的n 等于( )A .5B .6C .7D .8[答案] B[解析] ∵7a 5+5a 9=0,a 5<a 9, ∴d >0,且a 1=-173d ,∴S n =na 1+n n -12d =-173nd +n n -12d =d 2(n 2-37n 3),∴当n =6时,S n 取到最小值.(理)(xx·辽宁理,8)设等差数列{a n }的公差为d ,若数列{2a 1a n }为递减数列,则( ) A .d <0 B .d >0 C .a 1d <0 D .a 1d >0[答案] C[解析] 数列{2a 1a n }递减,∴{a 1a n }递减. ∴a 1a n -a 1a n -1=a 1(a n -a n -1)=a 1d <0.6.(文)设等比数列{a n }的公比为q ,前n 项和为S n ,且a 1>0,若S 2>2a 3,则q 的取值范围是( )A .(-1,0)∪(0,12)B .(-12,0)∪(0,1)C .(-∞,-1)∪(12,+∞)D .(-∞,-12)∪(1,+∞)[答案] B[解析] ∵S 2>2a 3,∴a 1+a 1q >2a 1q 2, ∵a 1>0,∴2q 2-q -1<0, ∴-12<q <1且q ≠0,故选B .(理)已知公差不等于0的等差数列{a n }的前n 项和为S n ,如果S 3=-21,a 7是a 1与a 5的等比中项,那么在数列{na n }中,数值最小的项是( )A .第4项B .第3项C .第2项D .第1项[答案] B[解析] 设等差数列{a n }的公差为d ,则由S 3=a 1+a 2+a 3=3a 2=-21,得a 2=-7,又由a 7是a 1与a 5的等比中项,得a 27=a 1·a 5,即(a 2+5d )2=(a 2-d )(a 2+3d ),将a 2=-7代入,结合d ≠0,解得d =2,则na n =n [a 2+(n -2)·d ]=2n 2-11n ,对称轴方程n =234,又n ∈N *,结合二次函数的图象知,当n =3时,na n 取最小值,即在数列{na n }中数值最小的项是第3项.7.在数列{a n }中,a 1=2,na n +1=(n +1)a n +2(n ∈N *),则a 10为( ) A .34 B .36 C .38 D .40[答案] C[解析] 由na n +1=(n +1)a n +2,得 a n +1n +1-a n n =2n n +1=2⎝ ⎛⎭⎪⎫1n -1n +1, 则有a n n -a n -1n -1=2⎝ ⎛⎭⎪⎫1n -1-1n ,a n -1n -1-a n -2n -2=2⎝ ⎛⎭⎪⎫1n -2-1n -1,……a 22-a 11=2⎝ ⎛⎭⎪⎫11-12,累加得a n n -a 1=2⎝ ⎛⎭⎪⎫1-1n . ∵a 1=2,∴a n =4n -2,∴a 10=38.8.(文)设等差数列{a n }的前n 项和为S n ,若S 9>0,S 10<0,则2a 1,22a 2,…,29a 9中最大的是( )A.2a 1B .25a 5C .26a 6D .29a 9[答案] B[解析] ∵S 9=92(a 1+a 9)=9a 5>0,∴a 5>0.又∵S 10=102(a 1+a 10)=5(a 5+a 6)<0,∴a 5+a 6<0,即得a 6<0,且|a 6|>a 5,则数列{a n }的前5项均为正数,从第6项开始均为负数,则当n ≤5时,数列{2na n}是递增的正数项数列,其最大项为25a 5,当n >6时,各项均为负数,即可得25a 5最大,故应选B .(理)等比数列{a n }的首项为2,项数为奇数,其奇数项之和为8532,偶数项之和为2116,这个等比数列前n 项的积为T n (n ≥2),则T n 的最大值为( )A.14 B .12 C .1 D .2[答案] D[解析] 由题意知S 奇-2=S 偶·q ,S 奇=8532,S 偶=2116,∴q =12,∵a 1=2,q =12,∴{T n }为递减数列且a 2=1,a k <1(k >2), ∴T 2=a 1a 2=2为最大值.9.(xx·南昌市二模)已知{a n }是等差数列,a 1=5,a 8=18,数列{b n }的前n 项和S n =3n,若a m =b 1+b 4,则正整数m 等于( )A .29B .28C .27D .26[答案] A[解析] 由题意得:a 8=a 1+7d =5+7d =18,∴d =137,∴a m =5+137(m -1),又S n =3n,∴b n =⎩⎪⎨⎪⎧3,n =12·3n -1,n ≥2,∴5+137(m -1)=3+2·33=57,解得m =29.10.设f (x )是定义在R 上恒不为零的函数,且对任意的实数x 、y ∈R ,都有f (x )·f (y )=f (x +y ),若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 为( )A .2n-1 B .1-2nC .(12)n-1D .1-(12)n[答案] D[解析] 由已知可得a 1=f (1)=12,a 2=f (2)=[f (1)]2=(12)2,a 3=f (3)=f (2)·f (1)=[f (1)]3=(12)3,…,a n =f (n )=[f (1)]n=(12)n ,∴S n =12+(12)2+(12)3+…+(12)n =12[1-12n ]1-12=1-(12)n,故选D .11.(文)数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n,0≤a n<122a n-1,12≤a n<1,若a 1=35,则a xx =( )A.15 B .25 C .35 D .45[答案] A[解析] 由题可得a 1=35,a 2=15,a 3=25,a 4=45,a 5=35,a 6=15,…,所以数列{a n }是一个周期为4的周期数列,又因为xx =503×4+2,所以a xx =a 2=15,故选A.(理)(xx·山西太原市一模)已知数列{a n }的通项公式为a n =(-1)n(2n -1)·cos n π2+1(n ∈N *),其前n 项和为S n ,则S 60=( )A .-30B .-60C .90D .120[答案] D[解析] 由a n 的通项公式得:a 1=a 3=a 5=…=a 59=1,当n =2p (p 为奇数时),a n =-(2n -1)+1=2-2n ;当n =2q (q 为偶数时)a n =(2n -1)+1=2n ,∴S 60=30×1+⎣⎢⎡⎦⎥⎤-2×15+15×142×-8+⎣⎢⎡⎦⎥⎤8×15+15×142×8=120. 12.(文)已知数列{a n }满足a 1=1,a 2=2,a n +2=(1+cos 2n π2)a n +sin2n π2,则该数列的前10项和为( )A .2101B .1067C .1012D .xx[答案] B[解析] 当n 为奇数时,a n +2=a n +1,这是一个首项为1,公差为1的等差数列;当n 为偶数时,a n +2=2a n +1,这是一个以2为首项,公比为2的等比数列,所以S 18=a 1+a 2+…+a 17+a 18=(a 1+a 3+…+a 17)+(a 2+a 4+…+a 18)=9+99-12×1+21-291-2=9+36+1022=1067.(理)已知等差数列{a n }的前n 项和为S n ,若OB →=a 2OA →+a xx OC →,且A 、B 、C 三点共线(该直线不过原点O ),则下列各式中正确的是( )A .S xx =1B .S xx =20132C .S xx =20152D .S xx =1007[答案] C[解析] ∵A 、B 、C 共线,且该直线不过O 点,OB →=a 2OA →+a xx OC →, ∴OB →-OA →=(a 2-1)OA →+a xx OC →,即AB →=(a 2-1)OA →+a 2004OC →=kCA →=kOA →-kOC →,由共线向量定理得a 2-1=-a xx ,∴a 2+a xx =1, ∴S xx =2015×a 1+a 20152=2015×a 2+a 20142=20152.二、填空题13.各项均为实数的等比数列{a n }的前n 项和记为S n ,若S 10=10,S 30=70,则S 40=________.[答案] 150[解析] 设每10项一组的和依次组成的数列为{b n },由已知可得:b 1=10,b 1+b 2+b 3=70.①设原等比数列{a n }的公比为q , 则b 2b 1=a 11+a 12+…+a 20a 1+a 2+…+a 10=a 1q 10+a 2q 10+…+a 10q 10a 1+a 2+…+a 10=q 10.同理:b 3b 2=q 10,b 4b 3=q 10,…,∴{b n }构成等比数列,且公比q ′=q 10. 由①可得10+10q ′+10(q ′)2=70,即(q ′)2+q ′-6=0,解得q ′=2或q ′=-3. ∵q ′=q 10>0,∴q ′=2.∴{b n }的前4项依次是:10,20,40,80. ∴S 40=150.14.等差数列{a n }中,a 1+a 2+a 8=10,a 14+a 15=50,则此数列的前15项之和是________. [答案] 180[解析] ∵⎩⎪⎨⎪⎧a 1+a 2+a 8=10,a 14+a 15=50,∴⎩⎪⎨⎪⎧3a 1+8d =10,2a 1+27d =50,∴⎩⎪⎨⎪⎧a 1=-2,d =2.∴S 15=15a 1+15×142d =180.15.(xx·山东青岛摸底)设曲线y =xn +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则log xx x 1+log xx x 2+…+log xx x xx 的值为________.[答案] -1[解析] 因为y ′=(n +1)x n,所以在点(1,1)处的切线的斜率k =n +1, 所以0-1x n -1=n +1,所以x n =nn +1,所以log xx x 1+log xx x 2+…+log xx x xx =log xx (x 1·x 2·…·x xx )=log xx (12·23·…·20142015)=log xx 12015=-1.16.(文)(xx·合肥质检)定义等积数列:在一个数列中,若每一项与它的后一项的积是同一常数,那么这个数列叫做等积数列,且称此常数为公积.已知在等积数列{a n }中,a 1=2,公积为5,当n 为奇数时,这个数列的前n 项和S n =________.[答案]9n -14[解析] 由题可知,等积数列{a n }为2,52,2,52,…,当n 为奇数时,其前n 项和S n ,可分两部分组成,n +12个2之和与n -12个52之和,所以S n =2×n +12+52×n -12=9n -14. (理)已知数列{a n }满足a 1=1,11+a n +1=11+a n +1,则a 10=________.[答案] -1719[解析] 由11+a n +1=11+a n +1,得11+a n +1-11+a n =1,又11+a 1=12,故数列{11+a n}是首项为12,公差为1的等差数列,故11+a 10=12+(10-1)×1,得a 10=-1719.三、解答题17.(文)已知首项为32的等比数列{a n }不是..递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N *),求数列{T n }的最大项的值与最小项的值.[解析] (1)设等比数列{a n }的公比为q ,因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列,所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3,于是q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为a n =32×(-12)n -1=(-1)n -1·32n .(2)由(1)得S n=1-(-12)n=⎩⎪⎨⎪⎧1+12n,n 为奇数,1-12n,n 为偶数.当n 为奇数时,S n 随n 的增大而减小, 所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712. 综上,对于n ∈N *,总有-712≤S n -1S n ≤56.所以数列{T n }最大项的值为56,最小项的值为-712.(理)已知等差数列{a n }的首项a 1≠0,前n 项和为S n ,且S 4+a 2=3S 3;等比数列{b n }满足b 1=a 2,b 2=a 4.(1)求证:数列{b n }中的每一项都是数列{a n }中的项; (2)若a 1=2,设c n =2log 2b n ·log 2b n +1,求数列{c n }的前n 项和T n ;(3)在(2)的条件下,若有f (n )=log 3T n ,求f (1)+f (2)+…+f (n )的最大值. [解析] (1)设等差数列{a n }的公差为d , 由S 4+a 2=2S 3,得4a 1+6d +a 1+d =6a 1+6d , ∴a 1=d ,则a n =a 1+(n -1)d =na 1,∴b 1=2a 1,b 2=4a 1, 等比数列{b n }的公比q =b 2b 1=2, 则b n =2a 1·2n -1=2n·a 1,∵2n∈N *,∴{b n }中的每一项都是{a n }中的项. (2)当a 1=2时,b n =2n +1,c n =2n +1n +2=2(1n +1-1n +2) 则T n =c 1+c 2+…+c n=2(12-13+13-14+…+1n +1-1n +2)=2(12-1n +2)=n n +2.(3)f (n )=log 3T n =log 3nn +2,∴f (1)+f (2)+…+f (n )=log 313+log 324+…+log 3n n +2=log 3(13·24·…·nn +2)=log 32n +1n +2≤log 321+11+2=-1,即f (1)+f (2)+…+f (n )的最大值为-1.18.(文)(xx·日照市诊断)已知等差数列{a n }中,公差d >0,其前n 项和为S n ,且满足:a 2a 3=45,a 1+a 4=14.(1)求数列{a n }的通项公式; (2)通过公式b n =S nn +c构造一个新的数列{b n }.若{b n }也是等差数列,求非零常数c ;(3)对于(2)中得到的数列{b n },求f (n )=b nn +25·b n +1(n ∈N *)的最大值.[解析] (1)∵数列{a n }是等差数列. ∴a 2+a 3=a 1+a 4=14.又a 2a 3=45,∴⎩⎪⎨⎪⎧a 2=5a 3=9或⎩⎪⎨⎪⎧a 2=9a 3=5.∵公差d >0,∴a 2=5,a 3=9. ∴d =a 3-a 2=4,a 1=a 2-d =1. ∴a n =a 1+(n -1)d =4n -3.(2)∵S n =na 1+12n (n -1)d =n +2n (n -1)=2n 2-n ,∴b n =S nn +c =2n 2-nn +c.∵数列{b n }是等差数列,∴2b 2=b 1+b 3, ∴2·6c +2=1c +1+15c +3,解得c =-12(c =0舍去). ∴b n =2n 2-n n -12=2n .显然{b n }成等差数列,符合题意,故c =-12.。

高考复习试卷习题资料之高考数学试卷文科高考模拟卷 2

高考复习试卷习题资料之高考数学试卷文科高考模拟卷 2

高考复习试卷习题资料之高考数学试卷(文科)高考模拟卷 (2)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0}B.{﹣1,0}C.{0,1}D.{﹣1,0,1}2.(5分)设a,b,c∈R,且a>b,则()A.ac>bcB.C.a2>b2D.a3>b33.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A. B.y=e﹣x C.y=lg|x| D.y=﹣x2+14.(5分)在复平面内,复数i(2﹣i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限5.(5分)在△ABC中,a=3,b=5,sinA=,则sinB=()A. B. C. D.16.(5分)执行如图所示的程序框图,输出的S值为()A.1B.C.D.7.(5分)双曲线的离心率大于的充分必要条件是()A. B.m≥1 C.m>1 D.m>28.(5分)如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有()A.3个B.4个C.5个D.6个二、填空题共6小题,每小题5分,共30分.9.(5分)若抛物线y2=2px的焦点坐标为(1,0),则p=;准线方程为.10.(5分)某四棱锥的三视图如图所示,该四棱锥的体积为.11.(5分)若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q=;前n项和Sn=.12.(5分)设D为不等式组表示的平面区域,区域D上的点与点(1,0)之间的距离的最小值为.13.(5分)函数f(x)=的值域为.14.(5分)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数f(x)=(2cos2x﹣1)sin 2x+cos 4x.(1)求f(x)的最小正周期及最大值;(2)若α∈(,π),且f(α)=,求α的值.16.(13分)如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)17.(13分)如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.18.(13分)已知函数f(x)=x2+xsinx+cosx.(Ⅰ)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(Ⅱ)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.19.(14分)直线y=kx+m(m≠0)与椭圆相交于A,C两点,O是坐标原点. (Ⅰ)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(Ⅱ)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.20.(14分)给定数列a1,a2,…,an.对i=1,2,…,n﹣1,该数列前i项的最大值记为Ai,后n﹣i项ai+1,ai+2,…,an的最小值记为Bi,di=Ai﹣Bi.(Ⅰ)设数列{an}为3,4,7,1,写出d1,d2,d3的值;(Ⅱ)设a1,a2,…,an﹣1(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…,dn﹣1是等比数列;(Ⅲ)设d1,d2,…,dn﹣1是公差大于0的等差数列,且d1>0.证明:a1,a2,…,an﹣1是等差数列.高考复习试卷习题资料之高考数学试卷(文科)高考模拟卷 (2)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0}B.{﹣1,0}C.{0,1}D.{﹣1,0,1}【分析】找出A与B的公共元素,即可确定出两集合的交集.【解答】解:∵A={﹣1,0,1},B={x|﹣1≤x<1},∴A∩B={﹣1,0}.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)设a,b,c∈R,且a>b,则()A.ac>bcB.C.a2>b2D.a3>b3【分析】对于A、B、C可举出反例,对于D利用不等式的基本性质即可判断出.【解答】解:A、3>2,但是3×(﹣1)<2×(﹣1),故A不正确;B、1>﹣2,但是,故B不正确;C、﹣1>﹣2,但是(﹣1)2<(﹣2)2,故C不正确;D、∵a>b,∴a3>b3,成立,故D正确.故选:D.【点评】熟练掌握不等式的基本性质以及反例的应用是解题的关键.3.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A. B.y=e﹣x C.y=lg|x| D.y=﹣x2+1【分析】利用基本函数的奇偶性、单调性逐项判断即可.【解答】解:A中,y=为奇函数,故排除A;B中,y=e﹣x为非奇非偶函数,故排除B;C中,y=lg|x|为偶函数,在x∈(0,1)时,单调递减,在x∈(1,+∞)时,单调递增,所以y=lg|x|在(0,+∞)上不单调,故排除C;D中,y=﹣x2+1的图象关于y轴对称,故为偶函数,且在(0,+∞)上单调递减,故选:D.【点评】本题考查函数的奇偶i性、单调性的判断证明,属基础题,定义是解决该类题目的基本方法,熟记基本函数的有关性质可简化问题的解决.4.(5分)在复平面内,复数i(2﹣i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】首先进行复数的乘法运算,得到复数的代数形式的标准形式,根据复数的实部和虚部写出对应的点的坐标,看出所在的象限.【解答】解:∵复数z=i(2﹣i)=﹣i2+2i=1+2i∴复数对应的点的坐标是(1,2)这个点在第一象限,故选:A.【点评】本题考查复数的代数表示法及其几何意义,本题解题的关键是写成标准形式,才能看出实部和虚部的值.5.(5分)在△ABC中,a=3,b=5,sinA=,则sinB=()A. B. C. D.1【分析】由正弦定理列出关系式,将a,b及sinA的值代入即可求出sinB的值.【解答】解:∵a=3,b=5,sinA=,∴由正弦定理得:sinB===.故选:B.【点评】此题考查了正弦定理,熟练掌握正弦定理是解本题的关键.6.(5分)执行如图所示的程序框图,输出的S值为()A.1B.C.D.【分析】从框图赋值入手,先执行一次运算,然后判断运算后的i的值与2的大小,满足判断框中的条件,则跳出循环,否则继续执行循环,直到条件满足为止.【解答】解:框图首先给变量i和S赋值0和1.执行,i=0+1=1;判断1≥2不成立,执行,i=1+1=2;判断2≥2成立,算法结束,跳出循环,输出S的值为.故选:C.【点评】本题考查了程序框图,考查了直到型结构,直到型循环是先执行后判断,不满足条件执行循环,直到条件满足结束循环,是基础题.7.(5分)双曲线的离心率大于的充分必要条件是()A. B.m≥1 C.m>1 D.m>2【分析】根据双曲线的标准形式,可以求出a=1,b=,c=.利用离心率e大于建立不等式,解之可得 m>1,最后利用充要条件的定义即可得出正确答案.【解答】解:双曲线,说明m>0,∴a=1,b=,可得c=,∵离心率e>等价于⇔m>1,∴双曲线的离心率大于的充分必要条件是m>1.故选:C.【点评】本题虽然小巧,用到的知识却是丰富的,具有综合性特点,涉及了双曲线的标准方程、几何性质等几个方面的知识,是这些内容的有机融合,是一个极具考查力的小题.8.(5分)如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有()A.3个B.4个C.5个D.6个【分析】建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB|=3,即可得到各顶点的坐标,利用两点间的距离公式即可得出.【解答】解:建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB|=3,则A(3,0,0),B(3,3,0),C(0,3,0),D(0,0,0),A1(3,0,3),B1(3,3,3),C1(0,3,3),D1(0,0,3),∴=(﹣3,﹣3,3),设P(x,y,z),∵=(﹣1,﹣1,1),∴=(2,2,1).∴|PA|=|PC|=|PB1|==,|PD|=|PA1|=|PC1|=,|PB|=,|PD1|==.故P到各顶点的距离的不同取值有,3,,共4个.故选:B.【点评】熟练掌握通过建立空间直角坐标系及两点间的距离公式是解题的关键.二、填空题共6小题,每小题5分,共30分.9.(5分)若抛物线y2=2px的焦点坐标为(1,0),则p=2;准线方程为x=﹣1. 【分析】由抛物线的性质可知,知=1,可知抛物线的标准方程和准线方程.【解答】解:∵抛物线y2=2px的焦点坐标为(1,0),∴=1,p=2,抛物线的方程为y2=4x,∴其标准方程为:x=﹣1,故答案为:2,x=﹣1.【点评】本题考查抛物线的简单性质,属于基础题.10.(5分)某四棱锥的三视图如图所示,该四棱锥的体积为3.【分析】利用三视图判断几何体的形状,然后通过三视图的数据求解几何体的体积.【解答】解:几何体为底面边长为3的正方形,高为1的四棱锥,所以体积.故答案为:3.【点评】本题考查几何体与三视图的对应关系,几何体体积的求法,考查空间想象能力与计算能力.11.(5分)若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q=2;前n项和Sn= 2n+1﹣2.【分析】利用等比数列的通项公式和已知即可得出,解出即可得到a1及q,再利用等比数列的前n项和公式即可得出.【解答】解:设等比数列{an}的公比为q,∵a2+a4=a2(1+q2)=20①a3+a5=a3(1+q2)=40②∴①②两个式子相除,可得到==2即等比数列的公比q=2,将q=2带入①中可求出a2=4则a1===2∴数列{an}时首项为2,公比为2的等比数列.∴数列{an}的前n项和为:Sn===2n+1﹣2.故答案为:2,2n+1﹣2.【点评】熟练掌握等比数列的通项公式和等比数列的前n项和公式是解题的关键.12.(5分)设D为不等式组表示的平面区域,区域D上的点与点(1,0)之间的距离的最小值为.【分析】首先根据题意作出可行域,欲求区域D上的点与点(1,0)之间的距离的最小值,由其几何意义为点A(1,0)到直线2x﹣y=0距离为所求,代入点到直线的距离公式计算可得答案.【解答】解:如图可行域为阴影部分,由其几何意义为点A(1,0)到直线2x﹣y=0距离,即为所求,由点到直线的距离公式得:d==,则区域D上的点与点(1,0)之间的距离的最小值等于.故答案为:.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.13.(5分)函数f(x)=的值域为(﹣∞,2).【分析】通过求解对数不等式和指数不等式分别求出分段函数的值域,然后取并集得到原函数的值域.【解答】解:当x≥1时,f(x)=;当x<1时,0<f(x)=2x<21=2.所以函数的值域为(﹣∞,2).故答案为(﹣∞,2).【点评】本题考查了函数值域的求法,分段函数的值域要分段求,最后取并集.是基础题.14.(5分)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为3.【分析】设P的坐标为(x,y),根据,结合向量的坐标运算解出,再由1≤λ≤2、0≤μ≤1得到关于x、y的不等式组,从而得到如图的平行四边形CDEF及其内部,最后根据坐标系内两点间的距离公式即可算出平面区域D的面积. 【解答】解:设P的坐标为(x,y),则=(2,1),=(1,2),=(x﹣1,y+1),∵,∴,解之得∵1≤λ≤2,0≤μ≤1,∴点P坐标满足不等式组作出不等式组对应的平面区域,得到如图的平行四边形CDEF及其内部其中C(4,2),D(6,3),E(5,1),F(3,0)∵|CF|==,点E(5,1)到直线CF:2x﹣y﹣6=0的距离为d==∴平行四边形CDEF的面积为S=|CF|×d=×=3,即动点P构成的平面区域D的面积为3故答案为:3【点评】本题在平面坐标系内给出向量等式,求满足条件的点P构成的平面区域D的面积.着重考查了平面向量的坐标运算、二元一次不等式组表示的平面区域和点到直线的距离公式等知识,属于中档题.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数f(x)=(2cos2x﹣1)sin 2x+cos 4x.(1)求f(x)的最小正周期及最大值;(2)若α∈(,π),且f(α)=,求α的值.【分析】(Ⅰ)利用二倍角的正弦函数以及两角和的正弦函数化简函数为一个角的一个三角函数的形式,通过周期公式求f(x)的最小正周期,利用三角函数的最值求出函数的最大值;(Ⅱ)通过,且,求出α的正弦值,然后求出角即可.【解答】解:(Ⅰ)因为==∴T==,函数的最大值为:.(Ⅱ)∵f(x)=,,所以,∴,k∈Z,∴,又∵,∴.【点评】本题考查二倍角的余弦函数正弦函数的应用,两角和的正弦函数,三角函数的周期与最值的求法,以及角的求法,考查计算能力.16.(13分)如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【分析】(Ⅰ)由图查出13天内空气质量指数小于100的天数,直接利用古典概型概率计算公式得到答案;(Ⅱ)用列举法写出此人在该市停留两天的空气质量指数的所有情况,查出仅有一天是重度污染的情况,然后直接利用古典概型概率计算公式得到答案;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳定,由图直接看出答案.【解答】解:(Ⅰ)由图看出,1日至13日13天的时间内,空气质量优良的是1日、2日、3日、7日、12日、13日共6天.由古典概型概率计算公式得,此人到达当日空气质量优良的概率P=;(Ⅱ)此人在该市停留期间两天的空气质量指数(86,25)、(25,57)、(57,143)、(143,220)、(220,160)(160,40)、(40,217)、(217,160)、(160,121)、(121,158)、(158,86)、(86,79)、(79,37)共13种情况.其中只有1天空气重度污染的是(143,220)、(220,160)、(40,217)、(217,160)共4种情况,所以,此人在该市停留期间只有1天空气重度污染的概率P=;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳定,由图看出从5日开始连续5、6、7三天的空气质量指数方差最大.【点评】本题考查了古典概型及其概率计算公式,考查了一组数据的方差和标准差,训练了学生的读图能力,是基础题.19.(14分)直线y=kx+m(m≠0)与椭圆相交于A,C两点,O是坐标原点. (Ⅰ)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(Ⅱ)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.【分析】(I)先根据条件得出线段OB的垂直平分线方程为y=,从而A、C的坐标为(,),根据两点间的距离公式即可得出AC的长;(II)欲证明四边形OABC不可能为菱形,只须证明若OA=OC,则A、C两点的横坐标相等或互为相反数.设OA=OC=r,则A、C为圆x2+y2=r2与椭圆的交点,从而解得,则A、C两点的横坐标相等或互为相反数.于是结论得证.【解答】解:(I)∵点B的坐标为(0,1),当四边形OABC为菱形时,AC⊥OB,而B (0,1),O(0,0),∴线段OB的垂直平分线为y=,将y=代入椭圆方程得x=±,因此A、C的坐标为(,),如图,于是AC=2.(II)欲证明四边形OABC不可能为菱形,利用反证法,假设四边形OABC为菱形,则有OA=OC,设OA=OC=r,则A、C为圆x2+y2=r2与椭圆的交点,故,x2=(r2﹣1),则A、C两点的横坐标相等或互为相反数.从而得到点B是W的顶点.这与题设矛盾.于是结论得证.【点评】本题主要考查了椭圆的简单性质,直线与椭圆的位置关系,考查等价转化思想,属于基础题.20.(14分)给定数列a1,a2,…,an.对i=1,2,…,n﹣1,该数列前i项的最大值记为Ai,后n﹣i项ai+1,ai+2,…,an的最小值记为Bi,di=Ai﹣Bi.(Ⅰ)设数列{an}为3,4,7,1,写出d1,d2,d3的值;(Ⅱ)设a1,a2,…,an﹣1(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…,dn﹣1是等比数列;(Ⅲ)设d1,d2,…,dn﹣1是公差大于0的等差数列,且d1>0.证明:a1,a2,…,an﹣1是等差数列.【分析】(Ⅰ)当i=1时,A1=3,B1=1,从而可求得d1,同理可求得d2,d3的值;(Ⅱ)依题意,可知an=a1qn﹣1(a1>0,q>1),由dk=ak﹣ak+1⇒dk﹣1=ak﹣1﹣ak (k≥2),从而可证(k≥2)为定值.(Ⅲ)依题意,0<d1<d2<…<dn﹣1,可用反证法证明a1,a2,…,an﹣1是单调递增数列;再证明am为数列{an}中的最小项,从而可求得是ak=dk+am,问题得证.【解答】解:(Ⅰ)当i=1时,A1=3,B1=1,故d1=A1﹣B1=2,同理可求d2=3,d3=6;(Ⅱ)由a1,a2,…,an﹣1(n≥4)是公比q大于1的等比数列,且a1>0,则{an}的通项为:an=a1qn﹣1,且为单调递增的数列.于是当k=1,2,…n﹣1时,dk=Ak﹣Bk=ak﹣ak+1,进而当k=2,3,…n﹣1时,===q为定值.∴d1,d2,…,dn﹣1是等比数列;(Ⅲ)设d为d1,d2,…,dn﹣1的公差,对1≤i≤n﹣2,因为Bi≤Bi+1,d>0,所以Ai+1=Bi+1+di+1≥Bi+di+d>Bi+di=Ai,又因为Ai+1=max{Ai,ai+1},所以ai+1=Ai+1>Ai≥ai.从而a1,a2,…,an﹣1为递增数列.因为Ai=ai(i=1,2,…n﹣1),又因为B1=A1﹣d1=a1﹣d1<a1,所以B1<a1<a2<…<an﹣1,因此an=B1.所以B1=B2=…=Bn﹣1=an.所以ai=Ai=Bi+di=an+di,因此对i=1,2,…,n﹣2都有ai+1﹣ai=di+1﹣di=d,即a1,a2,…,an﹣1是等差数列.【点评】本题考查等差数列与等比数列的综合,突出考查考查推理论证与抽象思维的能力,考查反证法的应用,属于难题.17.(13分)如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.【分析】(Ⅰ)根据条件,利用平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)根据已知条件判断ABED为平行四边形,故有BE∥AD,再利用直线和平面平行的判定定理证得BE∥平面PAD.(Ⅲ)先证明ABED为矩形,可得BE⊥CD ①.现证CD⊥平面PAD,可得CD⊥PD,再由三角形中位线的性质可得EF∥PD,从而证得CD⊥EF ②.结合①②利用直线和平面垂直的判定定理证得CD⊥平面BEF,再由平面和平面垂直的判定定理证得平面BEF⊥平面PCD.【解答】解:(Ⅰ)∵PA⊥AD,平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,由平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)∵AB∥CD,AB⊥AD,CD=2AB,E和F分别是CD和PC的中点,故四边形ABED为平行四边形,故有BE∥AD.又AD⊂平面PAD,BE不在平面PAD内,故有BE∥平面PAD.(Ⅲ)平行四边形ABED中,由AB⊥AD可得,ABED为矩形,故有BE⊥CD ①.由PA⊥平面ABCD,可得PA⊥AB,再由AB⊥AD可得AB⊥平面PAD,∴CD⊥平面PAD,故有CD⊥PD.再由E、F分别为CD和PC的中点,可得EF∥PD,∴CD⊥EF ②.而EF和BE是平面BEF内的两条相交直线,故有CD⊥平面BEF.由于CD⊂平面PCD,∴平面BEF⊥平面PCD.【点评】本题主要考查直线和平面垂直的判定定理,直线和平面平行的判定定理,平面和平面垂直的判定定理、性质定理的应用,属于中档题.18.(13分)已知函数f(x)=x2+xsinx+cosx.(Ⅰ)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(Ⅱ)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.【分析】(I)由题意可得f′(a)=0,f(a)=b,联立解出即可;(II)利用导数得出其单调性与极值即最值,得到值域即可.【解答】解:(I)f′(x)=2x+xcosx=x(2+cosx),∵曲线y=f(x)在点(a,f(a))处与直线y=b相切,∴f′(a)=a(2+cosa)=0,f(a)=b,联立,解得,故a=0,b=1.(II)∵f′(x)=x(2+cosx).令f′(x)=0,得x=0,x,f(x),f′(x)的变化情况如表:x (﹣∞,0) 0 (0,+∞)f(x)﹣ 0 +f′(x) 1所以函数f(x)在区间(﹣∞,0)上单调递减,在区间(0,+∞)上单调递增,f(0)=1是f(x)的最小值.当b≤1时,曲线y=f(x)与直线x=b最多只有一个交点;当b>1时,f(﹣2b)=f(2b)≥4b2﹣2b﹣1>4b﹣2b﹣1>b,f(0)=1<b,所以存在x1∈(﹣2b,0),x2∈(0,2b),使得f(x1)=f(x2)=b.由于函数f(x)在区间(﹣∞,0)和(0,+∞)上均单调,所以当b>1时曲线y=f(x)与直线y=b有且只有两个不同的交点.综上可知,如果曲线y=f(x)与直线y=b有且只有两个不同的交点,那么b的取值范围是(1,+∞).【点评】熟练掌握利用导数研究函数的单调性、极值与最值及其几何意义是解题的关键.高考模拟复习试卷试题模拟卷【考情解读】1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用. 【重点知识梳理】 1.函数的概念 (1)函数的定义:一般地,设A ,B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应;那么就称f :A→B 为从集合A 到集合B 的一个函数.记作y =f(x),x ∈A.(2)函数的定义域、值域:在函数y =f(x),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)|x ∈A}叫做函数的值域.显然,值域是集合B 的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.2.函数的表示法表示函数的常用方法有:解析法、图象法、列表法. 3.映射的概念设A ,B 是两个非空的集合,如果按照某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么称对应f :A→B 为集合A 到集合B 的一个映射.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.【高频考点突破】 考点一、函数的基本概念 例1、有以下判断:(1)f(x)=|x|x 与g(x)=⎩⎪⎨⎪⎧1,x≥0,-1,x<0表示同一函数;(2)函数y =f(x)的图象与直线x =1的交点最多有1个; (3)f(x)=x2-2x +1与g(t)=t2-2t +1是同一函数;(4)若f(x)=|x -1|-|x|,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0.其中正确判断的序号是________.【特别提醒】两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x 表示,但也可用其他字母表示,如:f(x)=2x -1,g(t)=2t -1,h(m)=2m -1均表示同一函数.【变式探究】试判断以下各组函数是否表示同一函数. (1)y =1,y =x0;(2)y =x -2·x +2,y =x2-4; (3)y =x ,y =3t3; (4)y =|x|,y =(x)2. 考点二、求函数的解析式例2、(1)已知f ⎝ ⎛⎭⎪⎫x +1x =x2+1x2,求f(x)的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f(x)的解析式;(3)已知f(x)是二次函数,且f(0)=0,f(x +1)=f(x)+x +1,求f(x). 【方法技巧】函数解析式的求法(1)配凑法:由已知条件f (g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x 替代g(x),便得f(x)的解析式(如例(1));(2)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法(如例(3)); (3)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围(如例(2));(4)方程思想:已知关于f(x)与f ⎝⎛⎭⎫1x 或f(-x)的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x)(如A 级T6).【变式探究】(1)已知f(x +1)=x +2x ,求f(x)的解析式;(2)设y =f(x)是二次函数,方程f(x)=0有两个相等实根,且f′(x)=2x +2,求f(x)的解析式. 考点三、分段函数例3、设函数f(x)=⎩⎪⎨⎪⎧2-x ,x ∈-∞,1,x2,x ∈[1,+∞,若f(x)>4,则x 的取值范围是______.【方法技巧】求分段函数的函数值时,应根据所给自变量值的大小选择相应的解析式求解,有时每段交替使用求值.若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值或范围是否符合相应段的自变量的取值范围.【变式探究】已知f(x)的图象如图,则f (x)的解析式为________.考点四 函数的定义域 例4、(1)函数y =ln x +1-x2-3x +4的定义域为______________.(2)若函数y =f(x)的定义域是[0,2],则函数g(x)=f2xx -1的定义域是()A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)【拓展提高】(1)求函数的定义域,其实质就是以函数解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集.(2)已知f(x)的定义域是[a ,b],求f[g(x)]的定义域,是指满足a≤g(x)≤b 的x 的取值范围,而已知f[g(x)]的定义域是[a ,b],指的是x ∈[a ,b].【变式探究】(1)若函数f(x)=x -4mx2+4mx +3的定义域为R ,则实数m 的取值范围是__________.(2)已知f(x)的定义域是[0,4],则f(x +1)+f(x -1)的定义域是__________. 【真题感悟】1.【高考湖北,文6】函数256()4||lg 3x x f x x x -+=-+-的定义域为( )A .(2,3)B .(2,4]C .(2,3)(3,4] D .(1,3)(3,6]-3.【高考重庆,文3】函数22(x)log (x 2x 3)f 的定义域是()(A) [3,1] (B) (3,1)(C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞3.【高考四川,文8】某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系kx b y e +=( 2.718...e =为自然对数的底数,,k b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )(A)16小时 (B)20小时 (C)24小时 (D)21小时1.(·安徽卷)若函数f(x)(x ∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=⎩⎪⎨⎪⎧x (1-x ),0≤x≤1,sin πx ,1<x≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=______.2.(·北京卷)下列函数中,定义域是R 且为增函数的是( ) A .y =e -x B .y =x3 C .y =ln x D .y =|x|3.(·江西卷)将连续正整数1,2,…,n(n ∈N*)从小到大排列构成一个数123…n ,F(n)为这个数的位数(如n =12时,此数为123456789101112,共有15个数字,F(12)=15),现从这个数中随机取一个数字,p(n)为恰好取到0的概率.(1)求p(100);(2)当n≤时,求F(n)的表达式;(3)令g(n)为这个数中数字0的个数,f(n)为这个数中数字9的个数,h(n)=f(n)-g(n),S ={n|h(n)=1,n≤100,n ∈N*},求当n ∈S 时p(n)的最大值.4.(·山东卷)函数f(x)=1log2x -1的定义域为( ) A .(0,2) B .(0,2] C .(2,+∞) D .[2,+∞)5.(·安徽卷)定义在R 上的函数f(x)满足f(x +1)=2f(x),若当0≤x≤1时,f(x)=x(1-x),则当-1≤x≤0时,f(x)=________.6.(·安徽卷)函数y =ln1+1x +1-x2的定义域为________. 7.(·福建卷)已知函数f(x)=⎩⎪⎨⎪⎧2x3,x<0,-tanx ,0≤x <π2,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫π4=________.8.(·江西卷)设函数f(x)=⎩⎨⎧1a x ,0≤x≤a ,11-a (1-x ),a<x≤1.a 为常数且a ∈(0,1).(1)当a =12时,求f ⎝⎛⎭⎫f ⎝⎛⎭⎫13; (2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2;(3)对于(2)中的x1,x2,设A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),记△ABC 的面积为S(a),求S(a)在区间⎣⎡⎦⎤13,12上的最大值和最小值.9.(·辽宁卷)已知函数f(x)=x2-2(a +2)x +a2,g(x)=-x2+2(a -2)x -a2+8.设 H1(x)=m ax{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p ,q}表示p ,q 中的较大值,min{p ,q}表示p ,q 中的较小值),记H1(x)的最小值为A ,H2(x)的最大值为B ,则A -B =( )A .a2-2a -16B .a2+2a -16C .-16D .1610.(·辽宁卷)已知函数f(x)=ln(1+9x2-3x)+1,则f(lg 2)+flg 12=( ) A .-1 B .0 C .1 D .211.(·新课标全国卷Ⅱ] 经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图1-9所示.经销商为下一个销售季度购进了130 t 该产品.以X(单位:t ,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.图1-9(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率. 11.(·山东卷)函数f(x)=1-2x +1x +3的定义域为( ) A .(-3,0] B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1]12.(·四川卷)已知圆C 的方程为x2+(y -4)2=4,点O 是坐标原点.直线l :y =kx 与圆C 交于M ,N 两点.(1)求k 的取值范围;(2)设Q(m ,n)是线段MN 上的点,且2|OQ|2=1|OM|2+1|ON|2.请将n 表示为m 的函数. 13.(·浙江卷)已知函数f(x)= x -1.若f(a)=3,则实数a = ________.14.(·重庆卷)函数y =1log2(x -2)的定义域是( )A .(-∞,2)B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞) 【押题专练】1.已知f(x)=⎩⎪⎨⎪⎧log3x ,x>0,ax +b ,x≤0,且f(0)=2,f(-1)=3,则f(f(-3))=( )A .-2B .2C .3D .-32.已知函数f(x)=⎩⎪⎨⎪⎧2x ,x>0,x +1,x≤0.若f (a)+f(1)=0,则实数a 的值为( )A .-3B .-1C .1D .33.若函数f(x)=1log 122x +1,则f(x)的定义域为( )A.⎝⎛⎭⎫-12,0B.⎝⎛⎦⎤-12,0C.⎝⎛⎭⎫-12,+∞D.()0,+∞ 4.下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln xxC .y =xexD .y =sin xx5.已知函数f ⎝⎛⎭⎫x -1x =x2+1x2,则f(3)=( )A .8B .9C .11D .106.具有性质:f ⎝⎛⎭⎫1x =-f(x)的函数,我们称为满足“倒负”交换的函数,下列函数:①f(x)=x -1x ;②f(x)=x +1x ;③f(x)=⎩⎪⎨⎪⎧x ,0<x<1,0,x =1,-1x ,x>1.满足“倒负”变换的函数是( )A .①②B .①③C .②③D .只有①7.现向一个半径为R 的球形容器内匀速注入某种液体,下面图形中能表示在注入过程中容器的液面高度h 随时间t 变化的函数关系的是( )8.若函数f(x)= 2x2+2ax -a -1的定义域为R ,则a 的取值范围为________.9.已知函数f(x)=⎩⎪⎨⎪⎧x2+1,x≥0,1,x<0,则满足不等式f(1-x2)>f(2x)的x 的取值范围是________.10.(1)已知f ⎝⎛⎭⎫2x +1=lg x ,求f(x); (2)已知f(x)是一次函数,且满足3f(x +1)-2f(x -1)=2x +17,求f(x); (3)定义在(-1,1)内的函数f(x)满足2f(x)-f(-x)=lg(x +1),求函数f(x)的解析式.11.已知函数f(x)=2x -1,g(x)=⎩⎪⎨⎪⎧x2,x≥0,-1 x<0,求f[g(x)]和g[f(x)]的解析式.12.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2 km ,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y(km)与时间x(分)的关系.试写出y =f(x)的函数解析式.13.(1)已知函数f(x)的定义域为(0,1),求f(x 2)的定义域; (2)已知函数f(2x +1)的定义域为(0,1),求f(x)的定义域;(3)已知函数f(x +1)的定义域为[-2,3],求f(2x2-2)的定义域.高考模拟复习试卷试题模拟卷。

2022年高考数学(文科)二轮复习闯关练习--主观题专练 立体几何(6)

2022年高考数学(文科)二轮复习闯关练习--主观题专练 立体几何(6)

立体几何(6)1.[2020·大同市测试试题]如图,在直三棱柱ABC -A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.(1)求证AC⊥BC1;(2)求证AC1∥平面CDB1;(3)求异面直线AC1与B1C所成角的余弦值.2.[2020·惠州市高三第一次调研考试试题]如图,在四棱锥P-ABCD中,P A⊥平面ABCD,△ABC是正三角形,AC与BD的交点为M,P A=AB=4,AD=CD,N是CD的中点.(1)求证:MN∥平面P AD;(2)求点M到平面PBC的距离.3.[2020·广东省七校联合体高三第一次联考试题]如图所示,四棱锥P -ABCD中,P A⊥底面ABCD,P A=2,∠ABC=90°,AB=3,BC=1,AD=23,CD=4,E为CD的中点.(1)求证:AE∥平面PBC;(2)求三棱锥C -PBE的体积.4.[2020·唐山市高三年级摸底考试]如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,侧棱PD ⊥底面ABCD ,PD =DC =2,点E 是PC 的中点.(1)求证:P A ∥平面BED ;(2)若直线BD 与平面PBC 所成的角为30°,求四棱锥P -ABCD 的体积.5.[2020·石家庄市重点高中高三毕业班摸底考试]如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,△ACD 是边长为2的等边三角形,且AB =BC =2,P A =2.(1)求证:平面P AC ⊥平面PBD ;(2)若点M 是棱PC 的中点,求直线PD 与BM 所成角的余弦值.6.[2020·南昌十中期中]如图,直角梯形ABCD 所在平面与等腰直角三角形ABE 所在平面互相垂直,∠AEB =π2,AB ∥CD ,AB ⊥BC ,AB =2CD =2BC . (1)求证:AB ⊥DE .(2)求证:平面AED ⊥平面BCE .(3)线段EA 上是否存在一点F ,使EC ∥平面FBD ?若存在,求出EF EA的值;若不存在,说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小题提速练(三)(满分80分,押题冲刺,45分钟拿下客观题满分)一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M ={x |x 2-2x -3<0},N ={x |log 2x <0},则M ∩N 等于( ) A .(-1,0) B .(-1,1) C .(0,1)D .(1,3)解析:选 C.由题干条件可知,M ={x |-1<x <3},N ={x |0<x <1},所以M ∩N ={x |0<x <1}.2.若复数z 的实部为1,且|z |=2,则复数z 的虚部是( ) A .- 3 B .± 3 C .±3iD .3i解析:选B.复数z 的实部为1,设z =1+b i ,|z |=2,可得1+b 2=2,解得b =±3,复数z 的虚部是± 3.3.若命题p :∃α∈R ,cos(π-α)=cos α;命题q :∀x ∈R ,x 2+1>0,则下面结论正确的是( )A .p 是假命题B .﹁q 是真命题C .p ∧q 是假命题D .p ∨q 是真命题解析:选D.当α=π2时,cos ⎝⎛⎭⎪⎫π-π2=cos π2=0, ∴命题p :∃α∈R ,cos(π-α)=cos α是真命题,∵∀x ∈R ,x 2+1≥1>0,∴命题q 是真命题,∴A 中p 是假命题是错误的;B 中﹁q 是真命题是错误的;C 中p ∧q 是假命题是错误的;D 中p ∨q 是真命题是正确的.4.如图是某班50位学生期中考试数学成绩的频率分布直方图,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],则图中x 的值等于( )A .0.120B .0.180C .0.012D .0.018解析:选D.由30×0.006+10×0.01+10×0.054+10x =1,解得x =0.018.5.若一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为( )A .1B .2C .3D .4解析:选 D.由题意可知,该几何体是三棱锥,其放置在长方体中形状如图所示,利用长方体模型可知,此三棱锥的四个面中,全部是直角三角形.6.若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,ln x ,x >1,则f (f (e))=(其中e 为自然对数的底数)( )A .0B .1C .2D .(e 2+1)解析:选C.由题意得,f (e)=ln e =1,所以f (f (e))=f (1)=1+1=2.7.函数f (x )=⎝ ⎛⎭⎪⎫1-2x1+2x cos x 的图象大致为( )解析:选C.依题意,注意到f (-x )=1-2-x1+2-x cos(-x )=2x 1-2-x 2x 1+2-xcos x =2x-12x +1cos x =-f (x ),因此函数f (x )是奇函数,其图象关于原点对称,结合各选项知,选项A ,B 均不正确;当0<x <1时,1-2x1+2x <0,cos x >0,f (x )<0,因此结合选项知,C 正确,选C.8.已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意n ∈N *都有1a 1+1a 2+…+1a n<t ,则实数t 的取值范围为( )A.⎝ ⎛⎭⎪⎫13,+∞ B .⎣⎢⎡⎭⎪⎫13,+∞C.⎝ ⎛⎭⎪⎫23,+∞ D .⎣⎢⎡⎭⎪⎫23,+∞ 解析:选D.依题意得,当n ≥2时,a n =a 1a 2a 3…a n a 1a 2a 3…a n -1=2n 22n -12=2n 2-(n -1)2=22n -1,又a 1=21=22×1-1,因此a n =22n -1,1a n =122n -1,数列{1a n }是以12为首项,14为公比的等比数列,等比数列{1a n }的前n 项和等于12⎝ ⎛⎭⎪⎫1-14n 1-14=23⎝ ⎛⎭⎪⎫1-14n <23,因此实数t 的取值范围是⎣⎢⎡⎭⎪⎫23,+∞,选D.9.若函数f (x )=2sin ⎝ ⎛⎭⎪⎫π8x +π4(-2<x <14)的图象与x 轴交于点A ,过点A 的直线l 与函数的图象交于B ,C 两点,则(OB →+OC →)·OA →=(其中O 为坐标原点)( )A .-32B .32C .-72D .72解析:选D.由f (x )=2sin ⎝ ⎛⎭⎪⎫π8x +π4=0可得π8x +π4=k π,∴x =8k -2,k ∈Z ,∵-2<x<14,∴x =6即A (6,0),设B (x 1,y 1),C (x 2,y 2),∵过点A 的直线l 与函数的图象交于B ,C 两点,∴B ,C 两点关于点A 对称即x 1+x 2=12,y 1+y 2=0,则(OB →+OC →)·OA →=(x 1+x 2,y 1+y 2)·(6,0)=6(x 1+x 2)=72.10.双曲线C 1的中心在原点,焦点在x 轴上,若C 1的一个焦点与抛物线C 2:y 2=12x 的焦点重合,且抛物线C 2的准线交双曲线C 1所得的弦长为43,则双曲线C 1的实轴长为( )A .6B .2 6 C. 3D .2 3解析:选D.由题意可得双曲线C 1的一个焦点为(3,0),∴c =3,可设双曲线C 1的标准方程为x 2a 2-y 29-a 2=1,由⎩⎪⎨⎪⎧x =-3,x 2a 2-y 29-a2=1,解得y =±9-a2a,∴2×9-a 2a=43,解得a =3,∴双曲线C 1的实轴长为2a =2 3.11.已知点P 是椭圆x 216+y 28=1上非顶点的动点,F 1,F 2分别为椭圆的左、右焦点,O 是坐标原点,若M 是∠F 1PF 2的角平分线上一点,且F 1M →·MP →=0,则|OM →|的取值范围是( )A .[0,3)B .(0,22)C .[22,3)D .(0,4]解析:选B.如图,当点P 在椭圆与y 轴交点处时,点M 与原点O 重合,此时|OM →|取最小值0.当点P 在椭圆与x 轴交点时,点M 与焦点F 1重合,此时|OM →|取大值22.∵xy ≠0,∴|OM →|的取值范围是(0,22).12.已知函数f (x )=⎩⎪⎨⎪⎧x 2+x +a ,x <0,ln x ,x >0,若函数f (x )的图象在A ,B 两点处的切线重合,则实数a 的取值范围是( )A .(-2,-1)B .(1,2)C .(-1,+∞)D .(-ln 2,+∞)解析:选C.当x <0时,f (x )=x 2+x +a 的导数为f ′(x )=2x +1;当x >0时,f (x )=ln x 的导数为f ′(x )=1x,设A (x 1,f (x 1)),B (x 2,f (x 2))为该函数图象上的两点,且x 1<x 2,当x 1<x 2<0,或0<x 1<x 2时,f ′(x 1)≠f ′(x 2),故x 1<0<x 2,当x 1<0时,函数f (x )在点A (x 1,f (x 1))处的切线方程为y -(x 21+x 1+a )=(2x 1+1)(x -x 1);当x 2>0时,函数f (x )在点B (x 2,f (x 2))处的切线方程为y -ln x 2=1x 2(x -x 2),两直线重合的充要条件是1x 2=2x 1+1①,ln x 2-1=-x 21+a ②,由①及x 1<0<x 2得0<1x 2<1,由①②得a =ln x 2+14⎝ ⎛⎭⎪⎫1x 2-12-1,令t =1x 2,则0<t <1,且a =-ln t +14t 2-12t -34,设h (t )=-ln t +14t 2-12t -34(0<t <1),则h ′(t )=-1t +12t -12<0,即h (t )在(0,1)为减函数,则h (t )>h (1)=-ln 1-1=-1,则a >-1,可得函数f (x )的图象在点A ,B 处的切线重合,a 的取值范围是(-1,+∞).二、填空题(本题共4小题,每小题5分;共20分)13.若直线ax -by +1=0平分圆C :x 2+y 2+2x -4y +1=0的周长,则ab 的取值范围是________.解析:∵直线ax -by +1=0平分圆C :x 2+y 2+2x -4y +1=0的周长, ∴直线ax -by +1=0过圆C 的圆心(-1,2),∴有a +2b =1,∴ab =(1-2b )b =-2⎝ ⎛⎭⎪⎫b -142+18≤18,∴ab 的取值范围是⎝ ⎛⎦⎥⎤-∞,18. 答案:⎝⎛⎦⎥⎤-∞,1814.若某程序框图如图所示,则该程序运行后输出的i 值为________.解析:由程序框图知:程序第一次运行n =10,i =2;第二次运行n =5,i =3;第三次运行n =3×5+1=16,i =4;第四次运行n =8,i =5;第五次运行n =4,i =6;第六次运行n =2,i =7;第七次运行n =1,i =8.满足条件n =1.程序运行终止,输出i =8.答案:815.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -2y +4≤0,y ≥2,x -4y +k ≥0,且目标函数z =3x +y 的最小值为-1,则实常数k =________.解析:由题意作出目标函数的平面区域如图所示,结合图象可知,当过点A (x,2)时,目标函数z =3x +y 取得最小值-1,故3x +2=-1,解得x =-1,故A (-1,2),故-1=4×2-k ,故k =9.答案:916.在一个棱长为4的正方体内,最多能放入________个直径为1的球.解析:根据球体的特点,最多应该是放5层,第一层能放16个;第2层放在每4个小球中间的空隙,共放9个;第3层继续往空隙放,可放16个;第4层同第2层放9个;第5层同第1、3层能放16个,所以最多可以放入小球的个数:16+9+16+9+16=66(个).答案:66。

相关文档
最新文档