2018-2019年高考数学(文)二轮复习:第1部分 重点强化专题 专题1 突破点3 平面向量PPT课件
届数学统考第二轮专题复习第1讲函数的图像与性质的简单应用学案理含解析
第1讲 函数的图像与性质的简单应用高考年份全国卷Ⅰ 全国卷Ⅱ 全国卷Ⅲ2020函数单调性的应用·T12对数大小的判断·T11 函数的奇偶性与单调性·T9函数的性质·T162019 函数图像的判断·T5函数的建模与应用·T4 函数图像的判断·T7 2018函数图像的判断·T3函数图像的判断·T71。
[2019·全国卷Ⅰ]函数f (x )=sinx+x cosx+x 2在[-π,π]的图像大致为( )A BC D图M1-1-12。
[2018·全国卷Ⅲ]函数y=-x 4+x 2+2的图像大致为 ( )图M1-1-23。
[2019·全国卷Ⅱ]若a〉b,则 ()A。
ln(a—b)>0 B。
3a〈3bC。
a3—b3〉0 D.|a|>|b|4。
[2020·全国卷Ⅱ]若2x-2y〈3—x-3-y,则()A.ln(y-x+1)〉0B.ln(y—x+1)〈0C.ln|x-y|〉0D。
ln|x-y|〈05.[2020·北京卷]已知函数f(x)=2x—x—1,则不等式f(x)〉0的解集是()A.(—1,1)B。
(-∞,—1)∪(1,+∞)C.(0,1)D。
(-∞,0)∪(1,+∞)6.[2020·全国新高考Ⅰ卷]若定义在R的奇函数f(x)在(-∞,0)单调递减,且f(2)=0,则满足xf(x-1)≥0的x的取值范围是()B。
[—3,—1]∪[0,1]C.[—1,0]∪[1,+∞)D.[-1,0]∪[1,3]7.[2020·全国卷Ⅲ]已知55〈84,134<85。
设a=log53,b=log85,c=log138,则()A。
a<b〈c B.b<a〈cC。
b<c〈a D.c<a〈b8。
[2020·全国卷Ⅲ]Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎,累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=K1+e-0.23(t-53)其中K为最大确诊病例数。
2018-2019年最新最新高考总复习数学(文)二轮复习模拟试题答案解析版
2018年高考数学二模试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)设集合A={x|(x﹣1)(x﹣2)≤0},集合B={x|x|<1},则A∪B=()A.∅B.{x|x=1} C.{x|1≤x≤2} D.{x|﹣1<x≤2}【考点】:并集及其运算.【专题】:集合.【分析】:求出集合的等价条件,根据集合的基本运算进行求解即可.【解析】:解:A={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2},由B={x|x|<1}得{x|﹣1<x<1},则A∪B={x|﹣1<x≤2},故选:D【点评】:本题主要考查集合的基本运算,比较基础.2.(5分)在如图所示的正方形中随机掷一粒豆子,豆子落在该正方形内切圆的四分之一圆(如图阴影部分)中的概率是()A.B.C.D.【考点】:几何概型.【专题】:概率与统计.【分析】:设正方形的边长,求出面积以及内切圆的四分之一圆面积,利用几何概型求概率.【解析】:解:设正方形的边长为2,则面积为4;圆与正方形内切,圆的半径为1,所以圆的面积为π,则阴影部分的面积为,所以所求概率为P==.故选:C.【点评】:本题考查了几何概型概率的求法,属于基础题.3.(5分)实数x,y满足不等式组,则目标函数z=x+3y的最小值是()A.﹣12 B.﹣8 C.﹣4 D.0【考点】:简单线性规划.【专题】:不等式的解法及应用.【分析】:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解析】:解:由约束条件作出可行域如图,化目标函数z=x+3y为,由图可知,当直线过A(﹣2,2)时,直线在y轴上的截距最小,z有最小值为﹣8.故选:B.【点评】:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.4.(5分)已知非零平面向量,,则“与共线”是“+与﹣共线”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】:平行向量与共线向量.【专题】:平面向量及应用.【分析】:设出两个命题,利用充分必要条件的定义对p⇒q,q⇒p分别进行判断.【解析】:解:设命题q:“与共线”,设命题“+与﹣共线”,显然命题q成立时,命题p成立,所以q是P成立的充分条件;当“+与﹣共线”时,根据共线的定义有+=λ(﹣),则,由于非零平面向量,,所以λ=±1,那么,所以与共线,所以q是p 必要条件;综上可得,q是p的充要条件;故选:C.【点评】:本题考查了共线向量以及充分必要条件的判断,关键是判断条件与结论的关系.5.(5分)执行如图所示的程序框图,输出S的值为()A.0 B.﹣1 C.﹣D.﹣【考点】:程序框图.【专题】:图表型;算法和程序框图.【分析】:模拟执行程序框图,依次写出每次循环得到的S,n 的值,当n=7时n大于5退出循环,输出S的值为0.【解析】:解:模拟执行程序框图,可得S=0,n=1S=,n=3,n不大于5S=﹣,n=5,n不大于5S=0,n=7,n大于5退出循环,输出S的值为0,故选:A.【点评】:本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的S,n的值是解题的关键,属于基础题.6.(5分)函数f(x)=的零点个数是()A.0 B.1 C.2 D.3【考点】:函数零点的判定定理.【专题】:计算题;作图题;函数的性质及应用.【分析】:作函数f(x)=的图象,利用数形结合求解.【解析】:解:作函数f(x)=的图象如下,由图象可知,函数f(x)=的零点个数是2,故选:C.【点评】:本题考查了学生的作图与用图的能力,属于基础题.7.(5分)已知点A为抛物线C:x2=4y上的动点(不含原点),过点A的切线交x轴于点B,设抛物线C的焦点为F,则△ABF ()A.一定是直角B.一定是锐角C.一定是钝角D.上述三种情况都可能【考点】:抛物线的简单性质.【专题】:综合题;圆锥曲线的定义、性质与方程.【分析】:求导数,确定过A的切线方程,可得B的坐标,求出=(x 0,),=(﹣x0,1),可得•=0,即可得出结论.【解析】:解:由x2=4y可得y=x2,∴y′=x,设A(x0,),则过A的切线方程为y﹣=x 0(x﹣x0),令y=0,可得x=x,∴B(x0,0),∵F(0,1),∴=(x 0,),=(﹣x0,1),∴•=0,∴∠ABF=90°,故选:A.【点评】:本题考查直线与抛物线的位置关系,考查向量知识的运用,考查学生分析解决问题的能力,属于中档题.8.(5分)已知某校一间办公室有四位老师甲、乙、丙、丁.在某天的某个时段,他们每人各做一项工作,一人在查资料,一人在写教案,一人在批改作业,另一人在打印材料.若下面4个说法都是正确的:①甲不在查资料,也不在写教案;②乙不在打印材料,也不在查资料;③丙不在批改作业,也不在打印材料;④丁不在写教案,也不在查资料.此外还可确定:如果甲不在打印材料,那么丙不在查资料.根据以上信息可以判断()A.甲在打印材料B.乙在批改作业C.丙在写教案D.丁在打印材料【考点】:进行简单的合情推理.【专题】:简易逻辑.【分析】:若甲不在打印资料,则丙不在查资料,则甲在改作业,丙只能写教案,乙不管是写教案还是改作业都与甲或丙在做一样的事,与题设矛盾,从而得解.【解析】:解:把已知条件列表如下:若甲不在打印资料,则丙不在查资料,则甲在改作业,丙只能写教案,乙不管是写教案还是改作业都与甲或丙在做一样的事,与题设矛盾.所以甲一定在打印资料,此时丁在改作业,乙在写教案,丙在查资料.故选:A.【点评】:这是一个典型的逻辑推理应用题,解题方法是由确定项开始用排除法,逐个推论确定各自的正确选项,最终解决问题.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.(5分)设i为虚数单位,则i(1﹣i)= 1+i .【考点】:复数代数形式的乘除运算.【专题】:数系的扩充和复数.【分析】:直接利用复数代数形式的乘法运算化简求值.【解析】:解:i(1﹣i)=i﹣i2=1+i.故答案为:1+i.【点评】:本题考查了复数代数形式的乘法运算,考查了虚数单位i的运算性质,是基础题.10.(5分)若中心在原点的双曲线C的一个焦点是F1(0,﹣2),一条渐近线的方程是x﹣y=0,则双曲线C的方程为﹣=1 .【考点】:双曲线的简单性质.【专题】:计算题;圆锥曲线的定义、性质与方程.【分析】:设双曲线的方程为﹣=1(a,b>0)则c=2,由渐近线方程y=±x,可得a=b,再由a,b,c的关系,解得a,b,进而得到双曲线方程.【解析】:解:设双曲线的方程为﹣=1(a,b>0)则c=2,由渐近线方程y=±x,由题意可得a=b,又c2=a2+b2,解得a=b=2,则双曲线的方程为﹣=1.故答案为:﹣=1.【点评】:本题考查双曲线的方程和性质,主要考查双曲线的焦点和渐近线方程,属于基础题.11.(5分)一个四棱锥的三视图如图所示,则这个四棱锥的体积为;表面积为3+.【考点】:由三视图求面积、体积.【专题】:计算题;作图题;空间位置关系与距离.【分析】:由题意作出其直观图,从而求体积及表面积即可.【解析】:解:由题意可知,其直观图如下,其底面为正方形,S=1×1=1,高为2;故V=×1×2=;其表面积S=1+(2+2+)=3+;故答案为:,3+.【点评】:本题考查了学生的空间想象力与作图能力,属于基础题.12.(5分)已知在△ABC中,C=,cosB=,AB=5,则sinA=;△ABC的面积为14 .【考点】:正弦定理.【专题】:解三角形.【分析】:由C=,cosB=,可得sinC=cosC=,sinB=,sinA=sin(B+C)=sinBcosC+cosBsinC.由正弦定理可得:,可得b=,再利用三角形面积计算公式即可得出.【解析】:解:∵C=,cosB=,∴sinC=cosC=,sinB==.∴sinA=sin(B+C)=sinBcosC+cosBsinC==.由正弦定理可得:,可得b===4,∴S=×=14.故答案分别为:,14.【点评】:本题考查了正弦定理的应用、同角三角函数基本关系式、两角和差的正弦公式,考查了推理能力与计算能力,属于中档题.13.(5分)在圆C:(x﹣2)2+(y﹣2)2=8内,过点P(1,0)的最长的弦为AB,最短的弦为DE,则四边形ADBE的面积为4.【考点】:圆的切线方程.【专题】:直线与圆.【分析】:由圆的知识可知过(1,0)的最长弦为直径,最短弦为过(1,0)且垂直于该直径的弦,然后利用对角线垂直的四边形的面积等于对角线乘积的一半求出即可.【解析】:解:圆的标准方程为(x﹣2)2+(y﹣2)2=8,由题意得最长的弦|AB|=4,圆心(2,2),圆心与点(1,0)的距离d==,根据勾股定理得最短的弦|DE|=2=2=2,且AB⊥DE,四边形ABCD的面积S=|AB|•|DE|=×4×2=4,故答案为:4.【点评】:本题考查学生灵活运用几何知识决数学问题的能力,掌握对角线垂直的四边形的面积计算方法为对角线乘积的一半是解决问题的关键,属中档题.14.(5分)关于函数f(x)=的性质,有如下四个命题:①函数f(x)的定义域为R;②函数f(x)的值域为(0,+∞);③方程f(x)=x有且只有一个实根;④函数f(x)的图象是中心对称图形.其中正确命题的序号是①③④.【考点】:命题的真假判断与应用;函数的定义域及其求法;函数的值域;函数的图象.【专题】:简易逻辑.【分析】:直接利用函数的定义域、值域判断①②的正误;利用函数的零点与函数的图象的关系判断③的正误;利用函数的对称性判断④的正误;【解析】:解:对于①,函数f(x)=的定义域为R;所以①正确;对于②,函数f(x)的值域为(0,+∞);显然不正确,因为函数减函数函数的值域是:(),所以②不正确;对于③方程f(x)=x有且只有一个实根;如图,作出两个是的图象,可知可知方程只有一个根,所以③正确;对于④,函数f(x)的图象是中心对称图形.因为f(x+1)+f (﹣x)=,==,∴f(x)关于()对称,所以④正确.故答案为:①③④.【点评】:本题考查函数的简单性质的应用,函数的零点的判断,考查数形结合以及基本知识的应用,考查逻辑推理能力.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数f(x)=cosx(2sinx+cosx)﹣sin2x.(Ⅰ)求函数f(x)在区间[,π]上的最大值及相应的x的值;(Ⅱ)若f(x0)=2,且x0∈(0,2π),求x0的值.【考点】:三角函数中的恒等变换应用;正弦函数的图象.【专题】:计算题;三角函数的求值.【分析】:(Ⅰ)由三角函数中的恒等变换应用化简函数解析式可得f(x)=2sin(2x+),由x∈[,π],可求sin(2x+)∈[﹣1,],从而可求当且仅当2x+=,即x=π时,f(x)=1.max(Ⅱ)由题意,2sin(2x 0+)=2,又x0∈(0,2π),可得2x 0+∈(,),即可解得x0的值.【解析】:解:(Ⅰ)f(x)=cosx(2sinx+cosx)﹣sin2x =cosx(2sinx+cosx)﹣sin2x=2sinxcosx+cos2x﹣sin2x=sin2x+cos2x=2sin(2x+),∵x∈[,π],∴2x+∈[,],∴sin(2x+)∈[﹣1,],∴当且仅当2x+=,即x=π时,f(x)max=1;…8分(Ⅱ)由题意,2sin(2x 0+)=2,所以sin(2x0+)=1,又x 0∈(0,2π),所以2x0+∈(,),所以2x 0+=或2x0+=,所以x 0=或x0=.…13分【点评】:本题主要考查了三角函数中的恒等变换应用,正弦函数的图象和性质,属于基本知识的考查.16.(13分)已知递增的等差数列{a n}(n∈N*)的前三项之和为18,前三项之积为120.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若点A1(a1,b1),A2(a2,b2),…,A n(a n,b n)(n ∈N*)从左至右依次都在函数y=3的图象上,求这n个点A1,A2,A3,…,A n的纵坐标之和.【考点】:数列的求和.【专题】:等差数列与等比数列.【分析】:(Ⅰ)通过前三项之和、前三项之积可得公差及首项,根据公式计算即可;(Ⅱ)根据题意及(I),可得=9,问题转化为求首项为3、公比为9的等比数列{b n}的前n项和,计算即可.【解析】:解:(Ⅰ)设数列{a n}的公差为d,∵前三项之和为18,∴a2=6,a1=6﹣d,a3=6+d,又∵前三项之积为120,∴(6﹣d)×6×(6+d)=120,解得d=4或﹣4(舍),∴a1=6﹣4=2,∴a n=4n﹣2;(Ⅱ)根据题意及(I),可得b n=32n﹣1,∴求这n个点A1,A2,A3,…,A n的纵坐标之和即为数列{b n}的前n项和T n,∵=9,b1=32×1﹣1=3,∴数列{b n}是首项为3、公比为9的等比数列,==(9n﹣1).∴T【点评】:本题考查等差中项的性质,求通项及前n项和,注意解题方法的积累,属于中档题.17.(13分)某学科测试,要求考生从A,B,C三道试题中任选一题作答.考试结束后,统计数据显示共有420名学生参加测试,选择A,B,C题作答的人数如表:(Ⅰ)某教师为了解参加测试的学生答卷情况,现用分层抽样的方法从420份试卷中抽出若干试卷,其中从选择A题作答的试卷中抽出了3份,则应从选择B,C题作答的试卷中各抽出多少份?(Ⅱ)若在(Ⅰ)问被抽出的试卷中,选择A,B,C题作答得优的试卷分别有2份,2份,1份.现从被抽出的选择A,B,C题作答的试卷中各随机选1份,求这3份试卷都得优的概率.【考点】:列举法计算基本事件数及事件发生的概率.【专题】:概率与统计.【分析】:(Ⅰ)根据分层抽样即可得到应从选择B,C题作答的试卷中各抽出得份数;(Ⅱ)记(Ⅰ)中抽取得选择A题作答的试卷分别为a1,a2,a3,其中a1,a2得优,选择B题作答的试卷分别为b1,b2,其中b1,b2得优,选择C题作答的试卷分别为c1,c2其中c1得优,一一列举出所有得结果,再找到满足条件的基本结果,根据概率公式计算即可.【解析】:解(Ⅰ)由题意可得,试卷的抽出比例为=,所以应从选择B题作答试卷中抽取2份,从选择C题作答试卷中抽出2份,(Ⅱ)记(Ⅰ)中抽取得选择A题作答的试卷分别为a1,a2,a3,其中a1,a2得优,选择B题作答的试卷分别为b1,b2,其中b1,b2得优,选择C题作答的试卷分别为c1,c2其中c1得优,从三种试一份卷中分别抽取所有得结果如下,{a1,b1,c1},{a1,b1,c2},{a1,b2,c1},{a1,b2,c2},{a2,b1,c1},{a2,b1,c2},{a2,b2,c1},{a2,b2,c2},{a3,b1,c1},{a3,b1,c2},{a3,b2,c1},{a3,b2,c2},所以结果共有12种可能,其中3份都得优得有{a1,b1,c1},{a1,b2,c1},{a2,b1,c1},{a2,b2,c1},共4种,故这3份试卷都得优的概率P==.【点评】:本题考查了分层抽样和古典概率的问题,关键是不重不漏的列举所有得基本事件,属于基础题.18.(14分)如图,在矩形ABCD中,AB=2AD,M为CD的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.点O是线段AM的中点.(Ⅰ)求证:平面DOB⊥平面ABCM;(Ⅱ)求证:AD⊥BM;(Ⅲ)过D点是否存在一条直线l,同时满足以下两个条件:①l⊂平面BCD;②l∥AM.请说明理由.【考点】:平面与平面垂直的判定;空间中直线与直线之间的位置关系.【专题】:空间位置关系与距离.【分析】:(Ⅰ)根据面面垂直的判定定理进行判断即可证明平面DOB⊥平面ABCM;(Ⅱ)根据线面垂直的性质定理即可证明AD⊥BM;(Ⅲ)利用反证法结合线面平行的性质进行证明.【解析】:证明:(Ⅰ)由已知DA=DM,O是AM的中点,∴DO⊥AM,∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,DO⊂平面DOB,∴平面DOB⊥平面ABCM;(Ⅱ)在矩形ABCD中,AB=2AD,M为CD的中点,∴AM=BM=AD=AB,∴AM⊥BM,由(1)知,DO⊥平面ABCM;∵BM⊂平面ABCM,∴DO⊥BM,∵DO,AM⊂平面ADM,DO∩AM=0,∴BM⊥平面ADM,而AD⊂平面ADM,∴AD⊥BM;(Ⅲ)过D点是不存在一条直线l,同时满足以下两个条件:①l⊂平面BCD;②l∥AM.证明(反证法)假设过D存在一条直线l满足条件,则∵l∥AM,L⊄平面ABCM,AM⊂平面ABCM,∴l∥平面ABCM,∵l⊂平面BCD,平面ABCM∩平面BCD=BC,∴l∥BC,即AM∥BC,由图易知,AM,BC相交,此时矛盾,∴过D点不存在一条直线l满足题设条件.【点评】:本题主要考查空间直线和平面平行,垂直以及面面垂直的判定,利用相应的判定定理是解决本题的关键.19.(14分)已知椭圆C:+y2=1,O为坐标原点,直线l与椭圆C交于A,B两点,且∠AOB=90°.(Ⅰ)若直线l平行于x轴,求△AOB的面积;(Ⅱ)若直线l始终与圆x2+y2=r2(r>0)相切,求r的值.【考点】:椭圆的简单性质.【专题】:向量与圆锥曲线;圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.【分析】:(Ⅰ)由题意设出A,B两点的坐标,结合∠AOB=90°,得,进一步得到A的横纵坐标的关系,代入椭圆方程求得坐标,得到B的坐标,然后代入三角形的面积公式得答案;(Ⅱ)当直线l的斜率存在时,设其方程为y=kx+m,联立方程组,得到关于x的一元二次方程,写出判别式大于0,再由根与系数关系得到A,B两点横纵坐标的和与积,代入x1x2+y1y2=0得到m与k的关系,结合判别式大于0求得m的范围,再由直线l始终与圆x2+y2=r2(r>0)相切,得到圆的半径与m的关系,从而求得r的值,当直线l的斜率不存在时,由直线l与圆x2+y2=r2(r>0)相切直接求得r的值,则r值可求.【解析】:解:(Ⅰ)不妨设直线l在x轴上方,则A,B两点关于y轴对称,设A(x1,y1),B(﹣x1,y1),(x1<0,y1>0),则,由∠AOB=90°,得,∴.又∵点A在椭圆上,∴.由于x 1<0,解得:.则A(),B().∴.(Ⅱ)当直线l的斜率存在时,设其方程为y=kx+m,设A(x1,y1),B(x2,y2),联立方程组,整理得:(4k2+1)x2+8kmx+4m2﹣4=0.方程的判别式△=4k2﹣m2+1>0,.由∠AOB=90°,得,即x 1x2+y1y2=0.而y1y2=(kx1+m)(kx2+m),则+m2=0∴.整理得:5m2﹣4k2﹣4=0.把4k2=5m2﹣4代入△=4k2﹣m2+1>0,得.而4k2=5m2﹣4≥0,∴,满足.直线l始终与圆x2+y2=r2(r>0)相切,得,由,得.∵r>0,∴r=.当直线l的斜率不存在时,若直线l与圆x2+y2=r2(r>0)相切,此时直线l的方程为:x=,r=.综上所述:r=.【点评】:本题考查了向量在解圆锥曲线问题中的应用,考查了直线与圆锥曲线,圆与圆锥曲线的位置关系,涉及直线和圆锥曲线的位置关系问题,常采用联立直线和圆锥曲线,利用一元二次方程的根与系数关系求解,特点是运算量大,要求考生具有较强的运算能力,是压轴题.20.(13分)已知函数f(x)=asinx+cosx,其中a>0.(Ⅰ)当a≥1时,判断f(x)在区间[0,]上的单调性;(Ⅱ)当0<a<1时,若不等式f(x)<t2+at+2对于x ∈[0,]恒成立,求实数t的取值范围.【考点】:三角函数中的恒等变换应用;正弦函数的图象.【专题】:导数的概念及应用;三角函数的求值.【分析】:(Ⅰ)由题意求导数可得f′(x)≥0,可得f(x)在区间[0,]上单调递增;(Ⅱ)由f′(x)=0可得方程a=tanx在(0,)上必有一根,记为x 0,易得∴f(x)max=f(x0)=(a2+1)cosx0=,问题转化为(t﹣2)a+(t2+2)>0当0<a<1时恒成立,构造函数h(a)=(t﹣2)a+(t2+2),可得,解不等式组可得答案.【解析】:解:(Ⅰ)∵a≥1,x∈[0,],∴f′(x)=acosx﹣sinx≥cosx﹣sinx≥0,∴f(x)在区间[0,]上单调递增;(Ⅱ)令f′(x)=0可得acosx=sinx,∵x∈[0,],∴cosx≠0,∴a=tanx,∵0<a<1,∴tanx∈(0,1),∵函数y=tanx在(0,)上单调递增,∴方程a=tanx在(0,)上必有一根,记为x 0,则f′(x0)=acosx0﹣sinx0=0,∵f′(x)=acosx﹣sinx在x∈[0,]上单调递减,∴当x∈(0,x0)时,f′(x)>f′(x0)=0,当x∈(x 0,)时,f′(x)<f′(x0)=0,∴函数f(x)在(0,x 0)单调递增,在(x0,)单调递减,∴f(x)max=f(x0)=asinx0﹣cosx0,又∵acosx0=sinx0,cos2x0+sin2x0=1,∴(a2+1)cos2x0=1,∴cos2x0=,∴f(x)max=f(x0)=(a2+1)cosx0=∵当0<a<1时,若不等式f(x)<t2+at+2对于x∈[0,]恒成立,∴<t2+at+2,即(t﹣2)a+(t2+2)>0当0<a<1时恒成立,令h(a)=(t﹣2)a+(t2+2),则,解不等式组可得t≤﹣1或t≥0【点评】:本题考查三角函数恒等变换,涉及导数法判函数的单调性和恒成立问题,属中档题.。
【高考数学】2018-2019学年高三高考数学二轮复习专题训练+14+Word版含答案
(2)记 ,求数列 的前 项和 。
解:(1)由 得 , ,又 ,
数列 是首项为1公比为 的等比数列, ,
;
由 得 ,由 得 ,...,
同理,当 为偶数时, ;当 为奇数时, ;
因此 , 。
(2) ,
当 为奇数时:
当 为偶数时:
令 ①
①× 得: ②
①—②得
,
。
6、数列 的通项公式为 ,其前 项和为 。
故数列 的通项公式为
(2)由(1)知, ,
......①, ......②
①—②得, ,
所以 ;
要证明当 时, 成立,只需证明当 时, 成立。
令 ,则 ,
当 时, ,因此当 时,
于是当 时, ,
综上所述,当 时, 。
4Hale Waihona Puke 已知数列 的首项 , , …。(1)证明:数列 是等比数列;
(2)数列 的前 项和 。
解:(1) , , ,
又 , ,数列 是以为 首项, 为公比的等比数列。
(2)由(1)知 ,即 , 。
设 … ,①
则 … ,②
由①—②得 … , 。又 … 。
数列 的前 项和 。
5、设数列 满足 , , , 。数列 满足 是非零整数,且对任意的正整数 和自然数 ,都有 。
数列04
1、已知数列 的首项 ,通项公式 ( 为常数),且 成等差数列,求:
(1) 的值;
(2)数列 的前 项的和 的公式。
解:(1)由 ,得 ,又 , ,且 ,得 ,解得 , 。
(1) 。
2、在数列 中, , 。
(1)设 。证明:数列 是等差数列;
(2)求数列 的前 项和 。
2023年高考数学二轮复习 第1部分 专题突破 专题1 培优点2 对数平均不等式、切线不等式
由对数平均不等式知 ln
x1-x2 x1-ln
x2>
x1x2=1,
又x2>x1>0, ∴x1-x2<0,ln x1-ln x2<0,
∴0<ln
x1-ln x1-x2
x2<1,
∴fxx11- -xf2x2=-2+alnxx11--xl2n x2<-2+a,
即证原不等式成立.
考点二
以泰勒公式为背景的切线不等式
(1)当a>0时,求函数f(x)的单调递增区间;
f(x)的定义域为(0,+∞), f′(x)=ax-(2a+1)+2x=ax-1xx-2, 当 0<1a<2,即 a>12时,在0,1a和(2,+∞)上,f′(x)>0,f(x)单调递增;
当1a=2,即 a=12时,f′(x)≥0,f(x)在(0,+∞)上单调递增; 当1a>2,即 0<a<12时,在(0,2)和1a,+∞上,f′(x)>0,f(x)单调递增. 综上所述,当 a>12时,f(x)的单调递增区间为0,1a和(2,+∞);
即eex≥x,ex≥ex,当 x=1 时等号成立,
即e-ln x≥e(-ln x),
所以1x≥e(-ln x), 即 ln x≥-e1x,当 x=1e时等号成立,
所以
exln
x+e2x≥ex-e1x+e2x=eexx >1(等号不同时成立).
方法二 由(1)知,f(x)=exln x+2eexx, 从而 f(x)>1 等价于 xln x>exx-2e. 设函数g(x)=xln x,则g′(x)=1+ln x.
构造函数 f(t)=2ln t-t+1t (t>1), 则 f′(t)=2t -1-t12=-t-t212<0,
高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第二讲 函数的图象与性质教案 理-
第二讲函数的图象与性质年份卷别考查角度及命题位置命题分析2018Ⅱ卷函数图象的识别·T3 1.高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等方面,多以选择、填空题形式考查,一般出现在第5~10或第13~15题的位置上,难度一般.主要考查函数的定义域,分段函数求值或分段函数中参数的求解及函数图象的判断.2.此部分内容有时出现在选择、填空题压轴题的位置,多与导数、不等式、创新性问题结合命题,难度较大.函数奇偶性、周期性的应用·T11Ⅲ卷函数图象的识别·T72017Ⅰ卷函数单调性、奇偶性与不等式解法·T5Ⅲ卷分段函数与不等式解法·T152016Ⅰ卷函数的图象判断·T7Ⅱ卷函数图象的对称性·T12函数及其表示授课提示:对应学生用书第5页[悟通——方法结论]求解函数的定义域时要注意三式——分式、根式、对数式,分式中的分母不为零,偶次方根中的被开方数非负,对数的真数大于零.底数大于零且不大于1.解决此类问题的关键在于准确列出不等式(或不等式组),求解即可.确定条件时应先看整体,后看部分,约束条件一个也不能少.[全练——快速解答]1.(2016·高考全国卷Ⅱ)以下函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=x B.y=lg xC .y =2xD .y =1x解析:函数y =10lg x的定义域与值域均为(0,+∞).结合选项知,只有函数y =1x的定义域与值域均为(0,+∞).应选D.答案:D2.(2018·某某名校联考)函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2,e x,-2≤x ≤2,f (-x ),x <-2,那么f (-2 017)=( )A .1B .eC .1eD .e 2解析:由题意f (-2 017)=f (2 017),当x >2时,4是函数f (x )的周期,所以f (2 017)=f (1+4×504)=f (1)=e.答案:B3.函数f (x )=x -1ln (1-ln x )的定义域为________.解析:由函数解析式可知,x 需满足⎩⎪⎨⎪⎧x -1≥01-ln x >0x >01-ln x ≠1,解得1<xf (x )=x -1ln (1-ln x )的定义域为(1,e).答案:(1,e)4.(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,那么满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值X 围是__________.解析: 当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x 的取值X 围是⎝ ⎛⎭⎪⎫-14,+∞.答案:⎝ ⎛⎭⎪⎫-14,+∞求函数的定义域,其实质就是以函数解析式所含运算有意义为准那么,列出不等式或不等式组,然后求出解集即可.2.分段函数问题的5种常见类型及解题策略 常见类型 解题策略求函数值弄清自变量所在区间,然后代入对应的解析式,求“层层套〞的函数值,要从最内层逐层往外计算求函数最值 分别求出每个区间上的最值,然后比较大小解不等式根据分段函数中自变量取值X 围的界定,代入相应的解析式求解,但要注意取值X 围的大前提求参数 “分段处理〞,采用代入法列出各区间上的方程利用函数性质求值必须依据条件找到函数满足的性质,利用该性质求解函数图象及应用授课提示:对应学生用书第5页[悟通——方法结论]1.作函数图象有两种基本方法:一是描点法、二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换等.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.(1)(2017·高考全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )解析:令函数f (x )=sin 2x 1-cos x ,其定义域为{x |x ≠2k π,k ∈Z },又f (-x )=sin (-2x )1-cos (-x )=-sin 2x 1-cos x =-f (x ),所以f (x )=sin 2x1-cos x 为奇函数,其图象关于原点对称,故排除B ;因为f (1)=sin 2 1-cos 1>0,f (π)=sin 2π1-cos π=0,故排除A 、D ,选C.答案:C(2)(2017·高考全国卷Ⅲ)函数y =1+x +sin xx2的部分图象大致为( )解析:法一:易知函数g (x )=x +sin xx2是奇函数,其函数图象关于原点对称,所以函数y =1+x +sin xx2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D.法二:当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin xx2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx2>0,故排除选项A 、C.选D.答案:D由函数解析式识别函数图象的策略[练通——即学即用]1.(2018·高考全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )解析:法一:ƒ′(x )=-4x 3+2x ,那么ƒ′(x )>0的解集为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫0,22,ƒ(x )单调递增;ƒ′(x )<0的解集为⎝ ⎛⎭⎪⎫-22,0∪⎝ ⎛⎭⎪⎫22,+∞,ƒ(x )单调递减. 应选D.法二:当x =1时,y =2,所以排除A ,B 选项.当x =0时,y =2,而当x =12时,y =-116+14+2=2316>2,所以排除C 选项.应选D. 答案:D 2.函数f (x )=⎝⎛⎭⎪⎫21+e x -1cos x 的图象的大致形状是( )解析:∵f (x )=⎝⎛⎭⎪⎫21+e x -1cos x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1cos(-x )=-⎝ ⎛⎭⎪⎫21+e x -1cosx =-f (x ),∴函数f (x )为奇函数,其图象关于原点对称,可排除选项A ,C ,又当x ∈⎝⎛⎭⎪⎫0,π2时,e x >e 0=1,21+ex -1<0,cos x >0,∴f (x )<0,可排除选项D ,应选B.答案:B3.(2018·某某调研)函数f (x )的图象如下图,那么f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x解析:由函数图象可知,函数f (xf (x )=x -1x,那么当x →+∞时,f (x )→+∞,排除D ,应选A.答案:A函数的性质及应用授课提示:对应学生用书第6页[悟通——方法结论]1.判断函数单调性的一般规律对于选择、填空题,假设能画出图象,一般用数形结合法;而对于由基本初等函数通过加、减运算或复合运算而成的函数常转化为基本初等函数单调性的判断问题;对于解析式为分式、指数函数式、对数函数式等较复杂的函数,用导数法;对于抽象函数,一般用定义法.2.函数的奇偶性(1)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.3.记住几个周期性结论(1)假设函数f(x)满足f(x+a)=-f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(2)假设函数f(x)满足f(x+a)=1f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(1)(2017·高考全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2) B.(-∞,1)C.(1,+∞)D.(4,+∞)解析:由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).答案:D(2)(2017·高考全国卷Ⅰ)函数f(x)在(-∞,+∞)单调递减,且为奇函数.假设f(1)=-1,那么满足-1≤f(x-2)≤1的x的取值X围是( )A.[-2,2] B.[-1,1]C.[0,4] D.[1,3]解析:∵f(x)为奇函数,∴f(-x)=-f(x).∵f(1)=-1,∴f(-1)=-f(1)=1.故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,∴-1≤x-2≤1,∴1≤x≤3.答案:D(3)(2018·高考全国卷Ⅲ)函数ƒ(x )=ln(1+x 2-x )+1,ƒ(a )=4,那么ƒ(-a )=________.解析:∵ƒ(x )+ƒ(-x )=ln(1+x 2-x )+1+ln(1+x 2+x )+1=ln(1+x 2-x 2)+2=2,∴ƒ(a )+ƒ(-a )=2,∴ƒ(-a )=-2. 答案:-21.掌握判断函数单调性的常用方法数形结合法、结论法(“增+增〞得增、“减+减〞得减及复合函数的“同增异减〞)、定义法和导数法.2.熟知函数奇偶性的3个特点(1)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称. (3)对于偶函数而言,有f (-x )=f (x )=f (|x |).3.周期性:利用周期性可以转化函数的解析式、图象和性质,把不在区间上的问题,转化到区间上求解.4.注意数形结合思想的应用.[练通——即学即用]1.(2018·某某模拟)以下函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x解析:选项A 、B 显然是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0,+∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.答案:D2.(2018·某某八中摸底)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,那么以下结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1)D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:因为函数f (x +2)是偶函数, 所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称. 又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52, 即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 答案:B授课提示:对应学生用书第116页一、选择题1.以下四个函数: ①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:①y =3-x 的定义域和值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝ ⎛⎭⎪⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0)的定义域和值域均为R ,所以定义域与值域相同的函数是①④,共有2个,应选B.答案:B2.设定义在R 上的奇函数y =f (x )满足对任意的x ∈R ,都有f (x )=f (1-x ),且当x ∈[0,12]时,f (x )=(x +1),那么f (3)+f (-32)的值为( )A .0B .1C .-1D .2解析:由于函数f (x )是奇函数,所以f (x )=f (1-x )⇒f (x )=-f (x +1)⇒f (x +1)=-f (x )⇒f (x +2)=f (x ),所以f (3)=f (1)=f (1-1)=f (0)=0,f (-32)=f (12)=32f (3)+f (-32)=-1.答案:C3.函数f (x )=1+ln ()x 2+2的图象大致是( )解析:因为f (0)=1+ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D.答案:D4.(2017·高考某某卷)奇函数f (x )在R 上是增函数,g (x )=xf (x ).假设a =g (-log 2 5.1),b =g (2),c =g (3),那么a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:奇函数f (x )在R 上是增函数,当x >0时,f (x )>f (0)=0,当x 1>x 2>0时,f (x 1)>f (x 2)>0,∴x 1f (x 1)>x 2f (x 2),∴g (x )在(0,+∞)上单调递增,且g (x )=xf (x )是偶函数,∴a =g (-log 2 5.1)=g (log 2 5.1).易知2<log 2 5.1<3,1<2<2,由g (x )在(0,+∞)上单调递增,得g (2)<g (log 2 5.1)<g (3),∴b <a <c ,应选C.答案:C5.(2018·某某模拟)函数f (x )=e xx 的图象大致为( )解析:由f (x )=e x x ,可得f ′(x )=x e x -e x x 2=(x -1)e x x2, 那么当x ∈(-∞,0)和x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.又当x <0时,f (x )<0,应选B.答案:B6.定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,那么( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,那么f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).答案:D7.(2018·某某模拟)函数f (x )=ex -1+4x -4,g (x )=ln x -1x ,假设f (x 1)=g (x 2)=0,那么( )A .0<g (x 1)<f (x 2)B .f (x 2)<g (x 1)<0C .f (x 2)<0<g (x 1)D .g (x 1)<0<f (x 2) 解析:易知f (x )=e x -1+4x -4,g (x )=ln x -1x在各自的定义域内是增函数,而f (0)=e -1+0-4=1e -4<0,f (1)=e 0+4×1-4=1>0,g (1)=ln 1-11=-1<0,g (2)=ln 2-12=ln 2e f (x 1)=g (x 2)=0,所以0<x 1<1,1<x 2<2,所以f (x 2)>f (1)>0,g (x 1)<g (1)<0,故g (x 1)<0<f (x 2).答案:D8.函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,那么M +m =( )A .4B .2C .1D .0 解析:f (x )=[(x -1)2-1]sin(x -1)+x -1+2,令t =x -1,g (t)=(t 2-1)sin t +t ,那么y =f (x )=g (t)+2,t ∈[-2,2].显然M =g (t)max +2,m =g (t)min +2.又g (t)为奇函数,那么g (t)max +g (t)min =0,所以M +m =4,应选A.答案:A9.g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,g (x ),x >0,假设f (2-x 2)>f (x ),那么x 的取值X 围是( ) A .(-∞,-2)∪(1,+∞)B .(-∞,1)∪(2,+∞)C .(-2,1)D .(1,2)解析:因为g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),所以当x >0时,-x <0,g (-x )=-ln(1+x ),即当x >0时,g (x )=ln(1+x ),那么函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0,作出函数f (x )的图象,如图:由图象可知f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0在(-∞,+∞)上单调递增. 因为f (2-x 2)>f (x ),所以2-x 2>x ,解得-2<x <1,应选C.答案:C10.(2018·高考全国卷Ⅱ)ƒ(x )是定义域为(-∞,+∞)的奇函数,满足ƒ(1-x )=ƒ(1+x ).假设ƒ(1)=2,那么ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(50)=( )A .-50B .0C .2D .50解析:∵ƒ(x )是奇函数,∴ƒ(-x )=-ƒ(x ),∴ƒ(1-x )=-ƒ(x -1).由ƒ(1-x )=ƒ(1+x ),∴-ƒ(x -1)=ƒ(x +1),∴ƒ(x +2)=-ƒ(x ),∴ƒ(x +4)=-ƒ(x +2)=-[-ƒ(x )]=ƒ(x ),∴函数ƒ(x )是周期为4的周期函数.由ƒ(x )为奇函数得ƒ(0)=0.又∵ƒ(1-x )=ƒ(1+x ),∴ƒ(x )的图象关于直线x =1对称,∴ƒ(2)=ƒ(0)=0,∴ƒ(-2)=0.又ƒ(1)=2,∴ƒ(-1)=-2,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)=ƒ(1)+ƒ(2)+ƒ(-1)+ƒ(0)=2+0-2+0=0,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)+…+ƒ(49)+ƒ(50)=0×12+ƒ(49)+ƒ(50)=ƒ(1)+ƒ(2)=2+0=2.应选C.答案:C11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,假设f (2)=2,那么不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞) 解析:由f (x 1)-f (x 2)x 1-x 2<1, 可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,又是奇函数,且F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2,应选C.答案:C12.(2018·某某三市联考)函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧ e x ,x ≤4,4e 5-x ,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),那么m 的取值X 围是( )A .(1,2+ln 2) B.⎝ ⎛⎭⎪⎫2,72+ln 2 C .(ln 2,2] D.⎝ ⎛⎦⎥⎤1,72+ln 2 解析:作出函数y 1=e |x -2|和y =g (x )的图象,如下图,由图可知当x=1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由ex -2≤4e 5-x ,得e 2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.答案:D二、填空题13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),那么f ⎝ ⎛⎭⎪⎫-52=________.解析:由题意得f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫2-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. 答案:-1214.假设函数f (x )=x (x -1)(x +a )为奇函数,那么a =________.解析:法一:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-x )=-f (x )对x ∈R 恒成立,所以-x ·(-x -1)(-x +a )=-x (x -1)(x +a )对x ∈R 恒成立,所以x (a -1)=0对x ∈R 恒成立,所以a =1.法二:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-1)=-f (1),所以-1×(-1-1)×(-1+a )=-1×(1-1)×(1+a ),解得a =1.答案:115.函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,那么实数a 的取值X 围是________.解析: 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,那么⎩⎪⎨⎪⎧ 1-2a >0,1-2a +3a ≥1,解得0≤a <12. 答案:⎣⎢⎡⎭⎪⎫0,12 16.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P (x ,y )的轨迹方程是y =f (x ),那么对函数y =f (x )有以下判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x 增大,图象是往上的,在区间[4,6]上图象是往下的,所以①②④正确,③错误.答案:①②④。
高三数学二轮专题复习第1讲 直线与圆
∴切线方程为
y=±
3x-2,和直线 y=2
的交点坐标分别为-4
3
3,2,4
3
3,2.
故要使视线不被⊙O
挡住,则实数
的取值范围是-∞,-4
3
3∪4
3
3,+∞.
答案 (1)-53 (2)B
考法2 圆的弦长相关计算 【例3-2】 (2017·全国Ⅲ卷)在直角坐标系xOy中,曲线y=x2+mx-2与x轴交于A,B
归纳总结 思维升华
探究提高 1.求解两条直线平行的问题时,在利用A1B2-A2B1=0建立方程求出参数 的值后,要注意代入检验,排除两条直线重合的可能性. 2.求直线方程时应根据条件选择合适的方程形式利用待定系数法求解,同时要考虑 直线斜率不存在的情况是否符合题意.
【训练1】 (1)(2018·贵阳质检)已知直线l1:mx+y+1=0,l2:(m-3)x+2y-1=0,
但m=-1时,直线l1与l2重合.
当m=-7时,l1的方程为2x-2y=-13,直线l2:2x-2y=8,此时l1∥l2.
∴“m=-7或m=-1”是“l1∥l2”的必要不充分条件. (2)设 l 的方程为ax+by=1(a>0,b>0),则1a+2b=1. ∵a>0,b>0,∴1a+2b≥2 a2b.则 1≥2 a2b, ∴ab≥8(当且仅当1a=2b=12,即 a=2,b=4 时,取“=”). ∴当a=2,b=4时,△OAB的面积最小. 此时 l 的方程为2x+4y=1,即 2x+y-4=0. 答案 (1)B (2)A
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
(2)过点(1,2)的直线l与两坐标轴的正半轴分别交于A、B两点,O为坐标原点,当
2018-2019年最新最新高考总复习数学(文)二轮复习模拟试题及答案解析六
2018届高考数学二模试卷(文科)一、选择题(共8小题,每小题5分,满分40分)1.设集合M={x|(x+3)(x﹣2)<0,x∈R},N={0,1,2},则M∩N=( )A.{0,1,2} B.{0,1} C.{x|0<x<2} D.{x|﹣3<x<2}2.设变量x,y满足约束条件,则目标函数z=x+3y的最小值为( )A.﹣3 B.0 C.3 D.123.已知φ∈R,则“φ=0”是“f(x)=sin(2x+φ)为奇函数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.阅读如图所示的框图,运行相应的程序,则输出S的值为( )A.30 B.45 C.63 D.845.若直线y=x+4与圆(x+a)2+(y﹣a)2=4a(0<a≤4)相交于A,B两点,则弦AB长的最大值为( )A.2B.4C.D.26.若直线2x+y﹣2=0过双曲线=1(a>0,b>0)的一个焦点,且与双曲线的一条渐近线垂直,则双曲线的方程为( )A.B.x2﹣C.D.7.已知函数f(x)=sin(ωx+)+sin(ωx﹣)(ω>0,x∈R)的最小正周期为π,则( )A.f(x)为偶函数B.f(x)在[﹣,]上单调递增C.x=为f(x)的图象的一条对称轴D.(,0)为f(x)的图象的一个对称中心8.定义在R上的函数y=f(x)的图象是连续不断的,且满足f (3﹣x)=f(x),当x≠时总有(x﹣)f′(x)>0(f′(x)是f(x)的导函数),若x1<x2,且x1+x2>3,则( )A.f(x1)>f(x2)B.f(x1)<f(x2)C.f(x1)=f(x2)D.f(x2)与f(x2)的大小无法确定二、填空题(共6小题,每小题5分,满分30分)9.i是虚数单位,若(2+ai)(1﹣i)=4.则实数a=__________.10.某几何体的三视图如图所示,其中正视图和侧视图均为等腰直角三角形,俯视图是圆心角为直角的扇形,则该几何体的体积为__________.11.如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD 交⊙O于点D,DE⊥AC,交AC的延长线于点E.若AE=8,AB=10,则CE的长为__________.12.若x>0,y>0,x+3y=1,则+的最小值为__________.13.已知函数f(x)=|x+a|﹣2x(a<0),若f(x)≤0的解集M⊆{x|x≥2},则实数a的取值范围是__________.14.如图,在△ABC中,点D是BC延长线上的点,=3,O在线段CD上且不与端点重合,若=x+(1﹣x),则x 的取值范围是__________.三、解答题(共6小题,满分80分)15.某网站对中国好歌曲的参赛选手A、B、C三人进行网上投票,结果如下观众年龄支持A 支持B 支持C25岁以下(含25岁)180 240 36025岁以上120 120 180在所有参与该活动的人中,按照观众的年龄和所支持选手不同用分层抽样的方法抽取n人,其中有5人支持A(1)求n的值(2)记抽取n人中,且年龄在25岁以上,支持选手B的为B1(i=1,2…),支持选手C的为C1(i=1,2,…),从B1,C1中随机选择两人进行采访,求两人均支持选手C的概率.16.已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,2cos2﹣cos(B+C)=0(1)求角A的值(2)若a=2,b+c=4,求△ABC的面积.17.如图,△ACB,△ADC都为等腰直角三角形,M为AB的中点,且平面ADC⊥平面ACB,AB=4,AC=2,AD=2 (1)求证:BC⊥平面ACD(2)求直线MD与平面ADC所成的角.18.在等比数列{a n}中,a1=1,a3,a2+a4,a5成等差数列.(1)求数列{a n}的通项公式(2)若数列{b n}满足b1++…+(n∈N+),{b n}的前n项和为S n,求证S n≤n•a n(n∈N+)19.已知函数f(x)=ax2﹣(2a+1)x+2lnx(a∈R)(1)若曲线f(x)在x=1和x=3处的切线互相平行,求函数f (x)的单调区间(2)若函数f(x)既有极大值又有极小值,求a的取值范围.(﹣,20.已知椭圆C经过点P(,),两焦点分别为F0),F 2(,0)(1)求椭圆C的标准方程(2)已知点A(0,﹣1),直线l与椭圆C交于两点M,N,若△AMN是以A为直角顶点的等腰直角三角形,试求直线l方程.高考数学二模试卷(文科)一、选择题(共8小题,每小题5分,满分40分)1.设集合M={x|(x+3)(x﹣2)<0,x∈R},N={0,1,2},则M∩N=( )A.{0,1,2} B.{0,1} C.{x|0<x<2} D.{x|﹣3<x <2}考点:交集及其运算.专题:集合.分析:求出M中不等式的解集确定出M,找出M与N的交集即可.解答:解:由M中不等式解得:﹣3<x<2,即M=(﹣3,2),∵N={0,1,2},∴M∩N={0,1},故选:B.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.设变量x,y满足约束条件,则目标函数z=x+3y的最小值为( )A.﹣3 B.0 C.3 D.12考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,求最小值.解答:解:作出不等式组对应的平面区域如图:(阴影部分).由z=x+3y得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点A时,直线y=﹣的截距最小,此时z最小.由,解得,即A(﹣6,3),代入目标函数得z=﹣6+3×3=﹣6+9=3.即z=x+3y的最小值为3.故选:C.点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.3.已知φ∈R,则“φ=0”是“f(x)=sin(2x+φ)为奇函数”的( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:充要条件.专题:简易逻辑.分析:由f(x)=sin(2x+φ)为奇函数,可得φ=kπ+π,k∈Z,即可判断出.解答:解:f(x)=sin(2x+φ)为奇函数,则φ=kπ+π,k∈Z,∴“φ=0”是“f(x)=sin(2x+φ)为奇函数”的充分不必要条件,故选:A.点评:本题考查了充要条件的判定方法、三角函数的奇偶性,考查了推理能力与计算能力,属于基础题.4.阅读如图所示的框图,运行相应的程序,则输出S的值为( )A.30 B.45 C.63 D.84考点:循环结构.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的i,S的值,当i=6时满足条件i>5,退出循环,输出S的值为63.解答:解:模拟执行程序框图,可得S=0,i=1S=3,不满足条件i>5,i=2,S=9不满足条件i>5,i=3,S=18不满足条件i>5,i=4,S=30不满足条件i>5,i=5,S=45不满足条件i>5,i=6,S=63满足条件i>5,退出循环,输出S的值为63.故选:C.点评:本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的i,S的值是解题的关键,属于基本知识的考查.5.若直线y=x+4与圆(x+a)2+(y﹣a)2=4a(0<a≤4)相交于A,B两点,则弦AB长的最大值为( )A.2B.4C.D.2考点:直线与圆相交的性质.专题:计算题;直线与圆.分析:圆的圆心坐标为(﹣a,a),代入直线y=x+4,可得a=2,求出圆的半径,即可求出AB长的最大值.解答:解:圆的圆心坐标为(﹣a,a),代入直线y=x+4,可得a=2,所以圆的半径为2,所以弦AB长的最大值为4,故选:B.点评:本题考查直线与圆的相交的性质,考查学生的计算能力,比较基础.6.若直线2x+y﹣2=0过双曲线=1(a>0,b>0)的一个焦点,且与双曲线的一条渐近线垂直,则双曲线的方程为( )A.B.x2﹣ C.D.考点:双曲线的简单性质;直线的一般式方程与直线的垂直关系.专题:综合题;圆锥曲线的定义、性质与方程.分析:令y=0可得双曲线=1(a>0,b>0)的一个焦点,利用直线2x+y﹣2=0与双曲线的一条渐近线垂直,可得=,即可求出a,b,从而可得双曲线的方程.解答:解:令y=0可得,x=,∵直线2x+y﹣2=0过双曲线=1(a>0,b>0)的一个焦点,∴c=,∵直线2x+y﹣2=0与双曲线的一条渐近线垂直,∴=,∴a=2,b=1,∴双曲线的方程为,故选:A.点评:本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.7.已知函数f(x)=sin(ωx+)+sin(ωx﹣)(ω>0,x∈R)的最小正周期为π,则( )A.f(x)为偶函数B.f(x)在[﹣,]上单调递增C.x=为f(x)的图象的一条对称轴D.(,0)为f(x)的图象的一个对称中心考点:两角和与差的正弦函数.专题:三角函数的图像与性质.分析:利用两角和差的正弦公式将函数f(x)进行化简,利用函数的周期求出ω即可得到结论.解答:解:f(x)=sin(ωx+)+sin(ωx﹣)=f(x)=sin(ωx+)+sin(ωx+﹣)=sin(ωx+)﹣cosωx+)=2sin(ωx+﹣)=2sinωx.∵f(x)的最小正周期为π,∴T=,解得ω=2,即f(x)=2sin2x.∵f()=2sin(2×)=2sinπ=0,∴(,0)为f(x)的图象的一个对称中心.故选:D点评:本题主要考查三角函数的图象和性质,利用两角和差的正弦公式求出ω是解决本题的关键.8.定义在R上的函数y=f(x)的图象是连续不断的,且满足f (3﹣x)=f(x),当x≠时总有(x﹣)f′(x)>0(f′(x)是f(x)的导函数),若x1<x2,且x1+x2>3,则( )A.f(x1)>f(x2)B.f(x1)<f(x2)C.f(x1)=f(x2) D.f(x2)与f(x2)的大小无法确定考点:利用导数研究函数的单调性.专题:数形结合;导数的综合应用.分析:根据已知条件便可得到f(x)关于x=对称,在区间上单调递减,而在上单调递增,从而可以画出f(x)的大致图象,根据图象上的点关于对称轴的对称点的横坐标之和为3并结合图象即可判断出f(x1)和f(x2)的大小关系.解答:解:根据f(3﹣x)=f(x)知f(x)关于x=对称;当x时,总有;∴时f(x)单调递减,时f(x)单调递增;∴f(x)的大致形状如下图所示:x 1+x2>3,∴(1)若,作点(x1,f(x 1))关于x=的对称点为(x3,f(x3)),则:x1+x3=3;∴x2>x3;∴f(x2)>f(x3)=f(x1);即f(x2)>f(x1);(2)若,x 1<x2;∴f(x1)<f(x2);∴综上得f(x1)<f(x2).故选B.点评:考查由f(a﹣x)=f(x)能得到f(x)关于对称,函数导数符号和函数单调性的关系,以及数形结合解题的方法.二、填空题(共6小题,每小题5分,满分30分)9.i是虚数单位,若(2+ai)(1﹣i)=4.则实数a=2.考点:复数代数形式的混合运算.专题:数系的扩充和复数.分析:利用复数的运算法则、复数相等即可得出.解答:解:∵(2+ai)(1﹣i)=4,∴2+a+(a﹣2)i=4,∴2+a=4,a﹣2=0,解得a=2.故答案为:2.点评:本题考查了复数的运算法则、复数相等,属于基础题.10.某几何体的三视图如图所示,其中正视图和侧视图均为等腰直角三角形,俯视图是圆心角为直角的扇形,则该几何体的体积为.考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是圆锥的一部分,结合三视图中的数据,求出几何体的体积.解答:解:根据几何体的三视图,得;该几何体是圆锥的一部分,且底面是半径为2的圆面,高为2,∴该几何体的体积为:V 几何体=×π•22×2=.故答案为:.点评:本题考查了利用几何体的三视图求体积的应用问题,解题的根据是由三视图得出几何体的结构特征,是基础题目.11.如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD 交⊙O于点D,DE⊥AC,交AC的延长线于点E.若AE=8,AB=10,则CE的长为1.考点:与圆有关的比例线段.专题:直线与圆.分析:连接OD,BC,根据角平分线定义和等腰三角形性质推行∠CAD=∠ODA,推出OD∥AC,根据平行线性质和切线的判定推出即可;解答:解:连接OD,可得∠ODA=∠OAD=∠DAC∴OD∥AE.又AE⊥DE,∴DE⊥OD.而OD为半径,∴DE是⊙O的切线;连接BC,交OD于G,AB是圆的直径,所以AC⊥BC,所以四边形CEDG是矩形,∵OD∥AE,O是AB中点,∴G是BC中点,∴CG=DE=BC=3,∴BG=3,OG=4,∴DG=1,所以CE=1;故答案为:1.点评:本题考查了圆周角定理以及切线的判断、矩形的判断等知识点;比较综合,但难度不大.12.若x>0,y>0,x+3y=1,则+的最小值为4.考点:基本不等式.专题:不等式的解法及应用.分析:利用基本不等式,问题得以解决.解答:解:(方法一)∵x+3y=1,∴+==2+=4.当且仅当x=,y=等号成立.(方法二)+=(+)(x+3y)=2×=4.当且仅当x=,y=等号成立.故答案为:4.点评:本题主要考查基本不等式的应用,属于基础题.13.已知函数f(x)=|x+a|﹣2x(a<0),若f(x)≤0的解集M⊆{x|x≥2},则实数a的取值范围是(﹣∞,﹣6].考点:绝对值不等式的解法;集合的包含关系判断及应用.专题:不等式的解法及应用.分析:分类讨论解绝对值不等式求的M,再根据M⊆{x|x≥2},求得实数a的取值范围.解答:解:不等式f(x)≤0即|x+a|≤2x,等价于①或②,解①求得x≥﹣a,解②求得﹣≤x<﹣a,故原不等式的解集M={x|x≥﹣}.由于M⊆{x|x≥2},则﹣≥2,解得a≤﹣6,故答案为:(﹣∞,﹣6].点评:本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于基础题.14.如图,在△ABC中,点D是BC延长线上的点,=3,O在线段CD上且不与端点重合,若=x+(1﹣x),则x 的取值范围是(,0).考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:结合图形,根据向量加法,,可以想着用来表示,根据已知条件知,其中0<k<1,从而便可得到,从而x=,从而根据k的范围即可求出x的范围.解答:解:;O在线段CD上且不与端点重合;∴存在k,0<k<1,使;又;∴;∴=;又;∴; ∴;∴x 的取值范围是. 故答案为:(,0).点评:考查向量加法、减法的几何意义,共线向量基本定理,向量数乘的运算.三、解答题(共6小题,满分80分)15.某网站对中国好歌曲的参赛选手A 、B 、C 三人进行网上投票,结果如下观众年龄 支持A 支持B支持C 25岁以下(含25岁) 180240 360 25岁以上 120120 180 在所有参与该活动的人中,按照观众的年龄和所支持选手不同用分层抽样的方法抽取n 人,其中有5人支持A(1)求n 的值(2)记抽取n 人中,且年龄在25岁以上,支持选手B 的为B 1(i=1,2…),支持选手C 的为C 1(i=1,2,…),从B 1,C 1中随机选择两人进行采访,求两人均支持选手C 的概率.考点:古典概型及其概率计算公式.专题:概率与统计.分析:(1)根据分层抽样时,各层的抽样比相等,结合已知构造关于n的方程,解方程可得n值.(2)计算出“支持选手B”和“支持选手C且年龄在25岁以上的人数,代入古典概率概率计算公式,可得答案解答:解:(1)∵利用层抽样的方法抽取n个人时,从“支持选手A”的人中抽取了5人,总人数为120+180+240+120+360+180=1200人∴=,解得n=20;(2)从“支持选手B”的人中,用分层抽样的方法抽取人数且龄在25岁以上有20××=2人,记为a,b,从“支持选手C”的人中,用分层抽样的方法抽取人数且龄在25岁以上有20××=3人,记为1,2,3,从则这5人中任意选取2人,共有10种不同情况,分别为:(1,2),(1,3),(1,a),(1,b),(2,3),(2,a),(2,b),(3,a),(3,b),(a,b),两人均支持选手C事件有:(1,2),(1,3),(2,3)共3种.故两人均支持选手C的概率P=.点评:本题考查的知识点是古典概型概率计算公式,其中熟练掌握利用古典概型概率计算公式求概率的步骤,是解答的关键.16.已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,2cos2﹣cos(B+C)=0(1)求角A的值(2)若a=2,b+c=4,求△ABC的面积.考点:余弦定理的应用.专题:计算题;解三角形.分析:(1)由三角函数恒等变换化简已知等式可得cosA=﹣,结合A的范围,即可求得A的值.(2)结合已知由余弦定理可可求得:12=16﹣bc,解得:bc=4,由三角形面积公式即可求解.解答:解:(1)∵2cos2﹣cos(B+C)=0⇒1+cosA+cosA=0⇒cosA=﹣,∵A,B,C为△ABC的三个内角,∴A=.(2)∵a=2,b+c=4,∴由余弦定理可知:a2=12=b2+c2﹣2bccosA=b2+c2+bc=(b+c)2﹣bc=16﹣bc,可解得:bc=4,∴S △ABC=bcsinA==.点评:本题主要考查了余弦定理,三角函数恒等变换,三角形面积公式的应用,综合性较强,属于基本知识的考查.17.如图,△ACB,△ADC都为等腰直角三角形,M为AB的中点,且平面ADC⊥平面ACB,AB=4,AC=2,AD=2 (1)求证:BC⊥平面ACD(2)求直线MD与平面ADC所成的角.考点:直线与平面所成的角;直线与平面垂直的判定.专题:空间位置关系与距离;空间角;空间向量及应用.分析:(1)根据所给边的长度和△ACB,ADC都为等腰直角三角形即可知道∠ADC=90°,BC⊥AC,而根据平面ADC⊥平面ACB即可得到BC⊥平面ACD;(2)取AC中点E,连接ME,DE,便容易说明∠EDM是直线MD与平面ADC所成的角,由已知条件即知ME=DE=,从而得到∠EDM=45°.解答:解:(1)证明:根据已知条件便知∠ADC=90°,∠ACB=90°;∴BC⊥AC;∵平面ADC⊥平面ACB,平面ADC∩平面ACB=AC;∴BC⊥平面ACD;(2)如图,取AC中点E,连接ME,DE,∵M为AB中点,则:ME∥BC,ME=,DE=;由(1)BC⊥平面ACD;∴ME⊥平面ACD;∴∠MDE为直线MD和平面ADC所成角;∴在Rt△MDE中,直角边ME=DE;∴∠MDE=45°;即直线MD与平面ADC所成的角为45°.点评:考查直角三角形边的关系,面面垂直的性质定理,以及中位线的性质,线面角的概念及求法.18.在等比数列{a n}中,a1=1,a3,a2+a4,a5成等差数列.}的通项公式(1)求数列{an(2)若数列{b n}满足b1++…+(n∈N+),{b n}的前n项和为S n,求证S n≤n•a n(n∈N+)考点:数列与不等式的综合.专题:等差数列与等比数列.分析:(1)通过将a2、a3、a4、a5用公比q表示及条件a3、a2+a4、a5成等差数列,可求出q=2,利用等比数列的通项公式计算即可;(2)当n=1时,b1=a1=1,显然有S1=1×a1;当n≥2时,利用=a n﹣a n﹣1可得b n=n•2n﹣2,求出S n、2S n,两者相减,利用错位相减法解得S n,计算即可.解答:(1)解:设数列{a n}的公比为q,∵a1=1,∴a2=q,a3=q2,a4=q3,a5=q4,又∵a3,a2+a4,a5成等差数列,∴2(a2+a4)=a3+a5,即2(q+q3)=q2+q4,解得q=2或0(舍),∴a n=2n﹣1;(2)证明:∵数列{b n}满足b1++…+=a n(n∈N+),∴当n=1时,b1=a1=1,此时S1=1×a1;当n≥2时,=a n﹣a n﹣1=2n﹣1﹣2n﹣2=2n﹣2,=n•2n﹣2,∴bn∴S n=1+2×20+3×21+4×22+…+(n﹣1)×2n﹣3+n×2n﹣2,∴2S n=2×20+2×21+3×22+4×23+…+(n﹣1)×2n﹣2+n×2n﹣1,两式相减,得﹣S n=1+21+22+23+…+2n﹣2﹣n×2n﹣1,∴S n =n ×2n ﹣1﹣1﹣(21+22+23+…+2n ﹣2)=n ×2n ﹣1﹣1﹣=(n ﹣1)×2n ﹣1﹣1=n ×2n ﹣1﹣(1+2n ﹣1)<n ×2n ﹣1=n •a n ,综上所述,S n ≤n •a n (n ∈N +).点评:本题考查考查等差、等比数列的性质,考查分类讨论的思想,考查分析问题的能力与计算能力,利用错位相减法求S n 是解决本题的关键,属于中档题.19.已知函数f (x )=ax 2﹣(2a+1)x+2lnx (a ∈R )(1)若曲线f (x )在x=1和x=3处的切线互相平行,求函数f (x )的单调区间(2)若函数f (x )既有极大值又有极小值,求a 的取值范围.考点:利用导数研究函数的极值;利用导数研究曲线上某点切线方程.专题:计算题;导数的概念及应用;导数的综合应用. 分析:先确定函数f (x )=ax 2﹣(2a+1)x+2lnx 的定义域,(1)求导f′(x)=ax﹣(2a+1)+,从而可得f′(1)=f′(3),从而求得a=;从而得到f′(x)=x﹣+=;从而确定函数的单调性;(2)化简f′(x)=ax﹣(2a+1)+==,从而可得,从而解得.解答:解:函数f(x)=ax2﹣(2a+1)x+2lnx的定义域为(0,+∞),(1)f′(x)=ax﹣(2a+1)+,∵曲线f(x)在x=1和x=3处的切线互相平行,∴f′(1)=f′(3),即a﹣(2a+1)+2=3a﹣(2a+1)+,解得,a=;故f′(x)=x﹣+=;故f(x)在(0,)上是增函数,在(,2)上是减函数,在(2,+∞)上是增函数.(2)∵f′(x)=ax﹣(2a+1)+==,∵函数f(x)既有极大值又有极小值,∴,故a 的取值范围为(0,)∪(,+∞).点评:本题考查了导数的综合应用及导数几何意义的应用,属于中档题.20.已知椭圆C 经过点P (,),两焦点分别为F1(﹣,0),F 2(,0) (1)求椭圆C 的标准方程(2)已知点A (0,﹣1),直线l 与椭圆C 交于两点M ,N ,若△AMN 是以A 为直角顶点的等腰直角三角形,试求直线l 方程.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线的定义、性质与方程.分析:(1)通过焦点坐标可设椭圆C 的标准方程且a 2﹣b 2=3,将点P (,)代入椭圆方程,计算即得结论;(2)通过△AMN 是以A 为直角顶点的等腰直角三角形可得直线l 与x 轴平行,利用k AM •k AN =﹣1计算即可.解答: 解:(1)∵两焦点分别为F 1(﹣,0),F 2(,0),∴可设椭圆C 的标准方程为:(a >b >0),a 2﹣b 2=3,①又∵椭圆C 经过点P (,),∴,②联立①②,解得a2=4,b2=1,∴椭圆C的标准方程为:;(2)由(1)知,点A(0,﹣1)即为椭圆的下顶点,∵△AMN是以A为直角顶点的等腰直角三角形,∴直线l与x轴平行,设直线l方程为y=t(﹣1<t<1),则M(﹣2,t),N(2,t),∵k AM=﹣,k AN=,∴k AM•k AN=﹣•=﹣1,解得:t=或t=﹣1(舍),∴直线l方程为:y=.点评:本题考查椭圆的定义及标准方程,考查直线与椭圆的位置关系,注意解题方法的积累,属于中档题.。
【名师课件】2018-2019年最新全国高考数学(文)总复习专题精品课件【涉及考点全面】【高分必备】
3 所以 A∩B= xx<2 ,A∪B={x|x<2}.故选 A.
解析
答案
(2)(2017届潍坊临朐县月考 )已知集合M={(x ,y)|y=f(x)},若对于任意(x1, y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“理想
1 集合”.给出下列4个集合:①M=x,y y= x
解析
答案
解析 根据原命题与它的逆否命题之间的关系知,
命题p:若及格分低于70分,则A,B,C都没有及格, p的逆否命题是:若A,B,C至少有1人及格,则及格分不低于70分.故选C.
(2)已知α,β均为第一象限角,那么α>β是sin α>sin β的 A.充分不必要条件 B.必要不充分条件
C.充要条件
例1 (1)(2017· 全国Ⅰ)已知集合A={x|x<2},B={x|3-2x>0},则
√
3 A.A∩B= xx<2 3 C.A∪B=xx<2
B.A∩B=∅ D.A∪B=R
解析
3 因为 B={x|3-2x>0}=xx<2 ,A={x|x<2},
1 ①项,y= 是以 x,y 轴为渐近线的双曲线,渐近线的夹角为 90° ,所以当 x 点 A, B 在同一支上时, ∠AOB<90° , 当点 A, B 不在同一支上时, ∠AOB>90° , → → 不存在OA⊥OB,故不正确;
②项,通过对其图象的分析发现,对于任意的点 A 都能找到对应的点 B, → → 使得OA⊥OB成立,故正确;
B.A∪B=A
DA-CB,CA≥CB, (2)用C(A)表示非空集合A中的元素个数,定义A*B= CB-CA,CA<CB,
2018届高考数学(文)二轮专题复习习题:第1部分 专题二 函数、不等式、导数 1-2-3
限时规范训练六 导数的简单应用 限时45分钟,实际用时________ 分值81分,实际得分________一、选择题(本题共6小题,每小题5分,共30分)1.设函数f (x )=x 24-a ln x ,若f ′(2)=3,则实数a 的值为( )A .4B .-4C .2D .-2解析:选B.f ′(x )=x 2-a x ,故f ′(2)=22-a2=3,因此a =-4.2.曲线y =e x在点A 处的切线与直线x -y +3=0平行,则点A 的坐标为( ) A .(-1,e -1) B .(0,1) C .(1,e)D .(0,2)解析:选B.设A (x 0,e x 0),y ′=e x,∴y ′|x =x 0=e x 0.由导数的几何意义可知切线的斜率k =e x 0.由切线与直线x -y +3=0平行可得切线的斜率k =1. ∴e x 0=1,∴x 0=0,∴A (0,1).故选B.3.若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为 ( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B.⎝⎛⎭⎪⎫32,+∞ C.⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞ D.⎝⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫32,+∞ 解析:选D.若函数f (x )=x 3-2cx 2+x 有极值点,则f ′(x )=3x 2-4cx +1=0有两根,故Δ=(-4c )2-12>0,从而c >32或c <-32. 4.已知f (x )=a ln x +12x 2(a >0),若对任意两个不等的正实数x 1,x 2都有f x 1-f x 2x 1-x 2≥2恒成立,则实数a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(0,1)D .(0,1]解析:选A.由条件可知在定义域上函数图象的切线斜率大于等于2,所以函数的导数f ′(x )=a x+x ≥2.可得x =a 时,f ′(x )有最小值2.∴a ≥1.5.若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .f ⎝ ⎛⎭⎪⎫1k<1kB .f ⎝ ⎛⎭⎪⎫1k >1k -1C .f ⎝⎛⎭⎪⎫1k -1<1k -1D .f ⎝⎛⎭⎪⎫1k -1>1k -1解析:选C.构造函数g (x )=f (x )-kx +1,则g ′(x )=f ′(x )-k >0,∴g (x )在R 上为增函数. ∵k >1,∴1k -1>0,则g ⎝ ⎛⎭⎪⎫1k -1>g (0). 而g (0)=f (0)+1=0, ∴g ⎝⎛⎭⎪⎫1k -1=f ⎝ ⎛⎭⎪⎫1k -1-k k -1+1>0,即f ⎝⎛⎭⎪⎫1k -1>k k -1-1=1k -1,所以选项C 错误,故选C.6.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:选C.因为当x ∈(-∞,1)时,(x -1)f ′(x )<0,所以f ′(x )>0,所以函数f (x )在(-∞,1)上是单调递增函数,所以a =f (0)<f ⎝ ⎛⎭⎪⎫12=b ,又f (x )=f (2-x ),所以c =f (3)=f (-1),所以c =f (-1)<f (0)=a ,所以c <a <b ,故选C.二、填空题(本题共3小题,每小题5分,共15分)7.(2017·高考全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为________.解析:∵y ′=2x -1x2,∴y ′|x =1=1,即曲线在点(1,2)处的切线的斜率k =1, ∴切线方程为y -2=x -1, 即x -y +1=0. 答案:x -y +1=08.已知函数f (x )=-12x 2-3x +4ln x 在(t ,t +1)上不单调,则实数t 的取值范围是________.解析:由题意得,f (x )的定义域为(0,+∞),∴t >0, ∴f ′(x )=-x -3+4x=0在(t ,t +1)上有解,∴x 2+3x -4x=0在(t ,t +1)上有解,∴x 2+3x -4=0在(t ,t +1)上有解,由x 2+3x -4=0得x =1或x =-4(舍去),∴1∈(t ,t +1),∴t ∈(0,1),故实数t 的取值范围是(0,1).答案:(0,1)9.已知函数f (x )=1-xax+ln x ,若函数f (x )在[1,+∞)上为增函数,则正实数a 的取值范围为________.解析:∵f (x )=1-x ax +ln x ,∴f ′(x )=ax -1ax2(a >0).∵函数f (x )在[1,+∞)上为增函数,∴f ′(x )=ax -1ax 2≥0在x ∈[1,+∞)上恒成立,∴ax -1≥0在x ∈[1,+∞)上恒成立,即a ≥1x在x ∈[1,+∞)上恒成立,∴a ≥1.答案:[1,+∞)三、解答题(本题共3小题,每小题12分,共36分) 10.(2017·高考全国卷Ⅱ)设函数f (x )=(1-x 2)e x. (1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1,求a 的取值范围. 解:(1)f ′(x )=(1-2x -x 2)e x.令f ′(x )=0得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)单调递减,在(-1-2,-1+2)单调递增.(2)f (x )=(1+x )(1-x )e x.当a ≥1时,设函数h (x )=(1-x )e x,则h ′(x )=-x e x<0(x >0),因此h (x )在[0,+∞)单调递减.而h (0)=1,故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1.当0<a <1时,设函数g (x )=e x-x -1,则g ′(x )=e x-1>0(x >0),所以g (x )在[0,+∞)单调递增.而g (0)=0,故e x≥x +1.当0<x <1时,f (x )>(1-x )(1+x )2,(1-x )(1+x )2-ax -1=x (1-a -x -x 2),取x 0=5-4a -12,则x 0∈(0,1),(1-x 0)(1+x 0)2-ax 0-1=0,故f (x 0)>ax 0+1. 当a ≤0时,取x 0=5-12,则x 0∈(0,1),f (x 0)>(1-x 0)(1+x 0)2=1≥ax 0+1. 综上,a 的取值范围是[1,+∞).11.(2017·河南郑州质量检测)设函数f (x )=12x 2-m ln x ,g (x )=x 2-(m +1)x .(1)求函数f (x )的单调区间;(2)当m ≥0时,讨论函数f (x )与g (x )图象的交点个数.解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=x 2-mx,当m ≤0时,f ′(x )>0,所以函数f (x )的单调递增区间是(0,+∞),无单调递减区间. 当m >0时,f ′(x )=x +mx -mx,当0<x <m 时,f ′(x )<0,函数f (x )单调递减;当x >m 时,f ′(x )>0,函数f (x )单调递增.综上,当m ≤0时,函数f (x )的单调递增区间是(0,+∞),无单调递减区间;当m >0时,函数f (x )的单调递增区间是(m ,+∞),单调递减区间是(0,m ).(2)令F (x )=f (x )-g (x )=-12x 2+(m +1)x -m ln x ,x >0,问题等价于求函数F (x )的零点个数,当m =0时,F (x )=-12x 2+x ,x >0,有唯一零点;当m ≠0时,F ′(x )=-x -x -m x,当m =1时,F ′(x )≤0,函数F (x )为减函数,注意到F (1)=32>0,F (4)=-ln 4<0,所以F (x )有唯一零点.当m >1时,0<x <1或x >m 时,F ′(x )<0;1<x <m 时,F ′(x )>0,所以函数F (x )在(0,1)和(m ,+∞)上单调递减,在(1,m )上单调递增,注意到F (1)=m +12>0,F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.当0<m <1时,0<x <m 或x >1时,F ′(x )<0;m <x <1时,F ′(x )>0,所以函数F (x )在(0,m )和(1,+∞)上单调递减,在(m,1)上单调递增,易得ln m <0, 所以F (m )=m2(m +2-2ln m )>0,而F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即两函数图象有一个交点. 12.(2017·河南洛阳模拟)已知函数f (x )=ln x -a x +x -1,曲线y =f (x )在点⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫12处的切线平行于直线y =10x +1.(1)求函数f (x )的单调区间;(2)设直线l 为函数g (x )=ln x 的图象上任意一点A (x 0,y 0)处的切线,在区间(1,+∞)上是否存在x 0,使得直线l 与曲线h (x )=e x也相切?若存在,满足条件的x 0有几个?解:(1)∵函数f (x )=ln x -a x +x -1,∴f ′(x )=1x+2a x -2,∵曲线y =f (x )在点⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫12处的切线平行于直线y =10x +1, ∴f ′⎝ ⎛⎭⎪⎫12=2+8a =10,∴a =1,∴f ′(x )=x 2+1x x -2.∵x >0且x ≠1,∴f ′(x )>0,∴函数f (x )的单调递增区间为(0,1)和(1,+∞). (2)存在且唯一,证明如下:∵g (x )=ln x ,∴切线l 的方程为y -ln x 0=1x 0(x -x 0),即y =1x 0x +ln x 0-1 ①,设直线l 与曲线h (x )=e x相切于点(x 1,e x 1), ∵h ′(x )=e x,∴e x 1=1x 0,∴x 1=-ln x 0,∴直线l 的方程也可以写成y -1x 0=1x 0(x +ln x 0),即y =1x 0x +ln x 0x 0+1x 0②,由①②得ln x 0-1=ln x 0x 0+1x 0,∴ln x 0=x 0+1x 0-1.证明:在区间(1,+∞)上x 0存在且唯一. 由(1)可知,f (x )=ln x -x +1x -1在区间(1,+∞)上单调递增, 又f (e)=-2e -1<0,f (e 2)=e 2-3e 2-1>0,结合零点存在性定理,说明方程f (x )=0必在区间(e ,e 2)上有唯一的根,这个根就是所求的唯一x 0.。
高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案理
第一讲集合、常用逻辑用语年份卷别考查角度及命题位置命题分析2018Ⅰ卷集合的补集运算·T2本部分作为高考必考内容,多年来命题较稳定,多以选择题形式在第1、2题的位置进行考查,难度较低.命题的热点依然会集中在集合的运算上.对常用逻辑用语考查的频率不高,且命题点分散,多为几个知识点综合考查,难度中等,其中充分必要条件的判断近几年全国卷虽未考查,但为防高考“爆冷”考查,在二轮复习时不可偏颇.该考点多结合函数、向量、三角、不等式、数列等内容命题.Ⅱ卷集合中元素个数问题·T2Ⅲ卷集合交集运算·T12017Ⅰ卷集合的交、并运算与指数不等式解法·T1Ⅱ卷已知集合交集求参数值·T2Ⅲ卷已知点集求交点个数·T12016Ⅰ卷集合的交集运算·T1Ⅱ卷集合的并集运算、一元二次不等式的解法·T2Ⅲ卷集合的交集运算、一元二次不等式的解法·T1集合的概念及运算授课提示:对应学生用书第3页[悟通——方法结论]1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U . (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解. (2)若已知的集合是点集,用数形结合法求解. (3)若已知的集合是抽象集合,用Venn 图求解.(1)(2018·南宁模拟)设集合M ={x |x <4},集合N ={x |x 2-2x <0},则下列关系中正确的是( )A .M ∪N =MB .M ∪∁R N =MC .N ∪∁R M =RD .M ∩N =M解析:∵M ={x |x <4},N ={x |0<x <2},∴M ∪N ={x |x <4}=M ,故选项A 正确;M ∪∁R N =R ≠M ,故选项B 错误;N ∪∁R M ={x |0<x <2}∪{x |x ≥4}≠R ,故选项C 错误;M ∩N ={x |0<x <2}=N ,故选项D 错误.故选A.答案:A(2)(2018·宜昌模拟)已知两个集合A ={x ∈R |y =1-x 2},B ={x |x +11-x≥0},则A ∩B =( )A .{x |-1≤x ≤1}B .{x |-1≤x <1}C .{-1,1}D .∅解析:∵A ={x |-1≤x ≤1},B ={x |-1≤x <1},∴A ∩B ={x |-1≤x <1}. 答案:B破解集合运算需掌握2招第1招,化简各个集合,即明确集合中元素的性质,化简集合;第2招,借形解题,即与不等式有关的无限集之间的运算常借助数轴,有限集之间的运算常用Venn图(或直接计算),与函数的图象有关的点集之间的运算常借助坐标轴等,再根据集合的交集、并集、补集的定义进行基本运算.[练通——即学即用]1.(2018·高考全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9 B.8C.5 D.4解析:将满足x2+y2≤3的整数x,y全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.答案:A2.(2018·德州模拟)设全集U=R,集合A={x∈Z|y=4x-x2},B={y|y=2x,x>1},则A∩(∁U B)=( )A.{2} B.{1,2}C.{-1,0,1,2} D.{0,1,2}解析:由题意知,A={x∈Z|4x-x2≥0}={x∈Z|0≤x≤4}={0,1,2,3,4},B={y|y>2},则∁U B={y|y≤2},则A∩(∁U B)={0,1,2},故选D.答案:D3.(2018·枣庄模拟)已知集合A={|m|,0},B={-2,0,2},若A⊆B,则∁B A=( ) A.{-2,0,2} B.{-2,0}C.{-2} D.{-2,2}解析:由A⊆B得|m|=2,所以A={0,2}.故∁B A={-2}.答案:C命题及真假判断授课提示:对应学生用书第4页[悟通——方法结论]1.全称命题和特称命题的否定归纳∀x∈M,p(x) ∃x0∈M,綈p(x0).简记:改量词,否结论.2.“或”“且”联结词的否定形式“p或q”的否定形式是“非p且非q”,“p且q”的否定形式是“非p或非q”.3.命题的“否定”与“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.[全练——快速解答]1.(2018·西安质检)已知命题p:∃x0∈R,log2(3x0+1)≤0,则( )A.p是假命题;綈p:∀x∈R,log2(3x+1)≤0B.p是假命题;綈p:∀x∈R,log2(3x+1)>0C.p是真命题;綈p:∀x∈R,log2(3x+1)≤0D.p是真命题;綈p:∀x∈R,log2(3x+1)>0解析:∵3x>0,∴3x+1>1,则log2(3x+1)>0,∴p是假命题;綈p:∀x∈R,log2(3x +1)>0.答案:B2.给出下列3个命题:p1:函数y=a x+x(a>0,且a≠1)在R上为增函数;p2:∃a0,b0∈R,a20-a0b0+b20<0;p3:cos α=cos β成立的一个充分不必要条件是α=2kπ+β(k ∈Z).则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∨(綈p 3) C .p 1∨(綈p 3) D .(綈p 2)∧p 3解析:对于p 1,令f (x )=a x +x (a >0,且a ≠1),当a =12时,f (0)=⎝ ⎛⎭⎪⎫120+0=1,f (-1)=⎝ ⎛⎭⎪⎫12-1-1=1,所以p 1为假命题;对于p 2,因为a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3,因为cos α=cos β⇔α=2k π±β(k ∈Z ),所以p 3为真命题,所以(綈p 2)∧p 3为真命题,故选D.答案:D3.命题“若xy =1,则x ,y 互为倒数”的否命题为________;命题的否定为________. 答案:若xy ≠1,则x ,y 不互为倒数 若xy =1,则x ,y 不互为倒数判断含有逻辑联结词命题真假的方法方法一(直接法):(1)确定这个命题的结构及组成这个命题的每个简单命题;(2)判断每个简单命题的真假;(3)根据真值表判断原命题的真假.方法二(间接法):根据原命题与逆否命题的等价性,判断原命题的逆否命题的真假性.此法适用于原命题的真假性不易判断的情况.充分、必要条件的判断授课提示:对应学生用书第4页[悟通——方法结论]充分、必要条件的判断:考查形式多与其他知识交汇命题.常见的交汇知识点有:函数性质、不等式、三角函数、向量、数列、解析几何等,有一定的综合性.(1)“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a=-2时,直线l1:2x+y-3=0,l2:2x+y+4=0,所以直线l1∥l2;若l1∥l2,则-a(a+1)+2=0,解得a=-2或a=1.所以“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的充分不必要条件.答案:A(2)(2018·南昌模拟)已知m,n为两个非零向量,则“m与n共线”是“m·n=|m·n|”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当m与n反向时,m·n<0,而|m·n|>0,故充分性不成立.若m·n=|m·n|,则m·n=|m|·|n|cos〈m,n〉=|m|·|n|·|cos 〈m,n〉|,则cos〈m,n〉=|cos〈m,n〉|,故cos〈m,n〉≥0,即0°≤〈m,n〉≤90°,此时m与n不一定共线,即必要性不成立.故“m与n共线”是“m·n=|m·n|”的既不充分也不必要条件,故选D.答案:D快审题看到充分与必要条件的判断,想到定条件,找推式(即判定命题“条件⇒结论”和“结论⇒条件”的真假),下结论(若“条件⇒结论”为真,且“结论⇒条件”为假,则为充分不必要条件).用妙法根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1”或y≠1的某种条件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.避误区“A的充分不必要条件是B”是指B能推出A,且A不能推出B;而“A是B的充分不必要条件”则是指A能推出B,且B不能推出A.[练通——即学即用]1.(2018·胶州模拟)设x,y是两个实数,命题“x,y中至少有一个数大于1”成立的充分不必要条件是( )A.x+y=2 B.x+y>2C.x2+y2>2 D.xy>1解析:当⎩⎪⎨⎪⎧x≤1y≤1时,有x+y≤2,但反之不成立,例如当x=3,y=-10时,满足x+y≤2,但不满足⎩⎪⎨⎪⎧x≤1y≤1,所以⎩⎪⎨⎪⎧x≤1y≤1是x+y≤2的充分不必要条件.所以“x+y>2”是“x,y中至少有一个数大于1”的充分不必要条件.答案:B2.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A,B为两个同高的几何体,p:A,B的体积不相等,q:A,B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:根据祖暅原理,“A,B在等高处的截面积恒相等”是“A,B的体积相等”的充分不必要条件,即綈q是綈p的充分不必要条件,即命题“若綈q, 则綈p”为真,逆命题为假,故逆否命题“若p,则q”为真,否命题“若q,则p”为假,即p是q的充分不必要条件,选A.答案:A授课提示:对应学生用书第115页一、选择题1.(2018·高考全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2} B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}解析:∵x2-x-2>0,∴(x-2)(x+1)>0,∴x>2或x<-1,即A={x|x>2或x<-1}.在数轴上表示出集合A,如图所示.由图可得∁R A={x|-1≤x≤2}.故选B.答案:B2.(2017·高考山东卷)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.3.设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32 B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32 C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1≤x <32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32<x ≤3解析:A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32. 答案:B4.(2017·高考全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.答案:B5.(2018·合肥模拟)已知命题q :∀x ∈R ,x 2>0,则( ) A .命题綈q :∀x ∈R ,x 2≤0为假命题 B .命题綈q :∀x ∈R ,x 2≤0为真命题 C .命题綈q :∃x 0∈R ,x 20≤0为假命题 D .命题綈q :∃x 0∈R ,x 20≤0为真命题解析:全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x =0时,x 2≤0成立,所以綈q 为真命题.6.(2018·郑州四校联考)命题“若a>b,则a+c>b+c”的否命题是( )A.若a≤b,则a+c≤b+cB.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>bD.若a>b,则a+c≤b+c解析:命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a ≤b,则a+c≤b+c”,故选A.答案:A7.(2018·石家庄模拟)“x>1”是“x2+2x>0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件.答案:A8.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.答案:D9.(2018·石家庄模拟)已知a,b∈R,下列四个条件中,使“a>b”成立的必要不充分条件是( )A.a>b-1 B.a>b+1C.|a|>|b| D.2a>2b解析:由a>b-1不一定能推出a>b,反之由a>b可以推出a>b-1,所以“a>b-1”是“a>b”的必要不充分条件.故选A.答案:A10.已知命题p:“x=0”是“x2=0”的充要条件,命题q:“x=1”是“x2=1”的充要条件,则下列命题为真命题的是( )A.p∧q B.(綈p)∨qC.p∧(綈q) D.(綈p)∧q解析:易知命题p为真命题,q为假命题,根据复合命题的真值表可知p∧(綈q)为真命题.答案:C11.(2018·济宁模拟)已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:若随机变量X~N(1,σ2)(σ>0),且P(0<X<1)=0.4,则P(0<X<2)=0.8,则下列命题是真命题的是( )A.p∨(綈q) B.p∧qC.p∨q D.(綈p)∧(綈q)解析:因为“x<0”是“x+1<0”的必要不充分条件,所以p为假命题,因为P(0<X<1)=P(1<X<2)=0.4,所以P(0<X<2)=0.8,q为真命题,所以p∨q为真命题.答案:C12.下列命题是假命题的是( )A.命题“若x2+x-6=0,则x=2”的逆否命题为“若x≠2,则x2+x-6≠0”B.若命题p:∃x0∈R,x20+x0+1=0,则綈p:∀x∈R,x2+x+1≠0C.若p∨q为真命题,则p、q均为真命题D.“x>2”是“x2-3x+2>0”的充分不必要条件解析:由复合命题的真假性知,p、q中至少有一个为真命题,则p∨q为真,故选项C 错误.答案:C二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :________. 解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎨⎧(x ,y )⎪⎪⎪⎭⎬⎫y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3},所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3},则∁U (M ∪P )={(2,3)}.答案:{(2,3)}15.已知A ={x |x 2-3x +2<0},B ={x |1<x <a },若A ⊆B ,则实数a 的取值范围是________.解析:因为A ={x |x 2-3x +2<0}={x |1<x <2}⊆B ,所以a ≥2.答案:[2,+∞)16.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)。
2018-2019年最新最新高考总复习数学(文)二轮复习模拟试题及答案解析
2018年高考数学二模试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.设集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=()A.{3} B.{2,3} C.{﹣1,3} D.{0,1,2}2.命题“∀x∈R,x2﹣x+1>0”的否定是()A.∀x0∈R,x02﹣x0+1≤0 B.∀x0∈R,x02﹣x0+1≤0 C.∃x0R,x02﹣x0+1≤0 D.∃x0∈R,x02﹣x0+1≤03.在复平面内,复数z与的对应点关于虚轴对称,则z=()A.2﹣i B.﹣2﹣i C.2+i D.﹣2+i4.在等差数列{a n}中,a7=8,前7项和S7=42,则其公差是()A.﹣B.﹣C.D.5.执行如图的程序框图,若输入的a=209,b=76,则输出的a 是()A.3 B.57 C.19 D.766.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A(,0),B(,0),则()A.ω=,φ=﹣ B.ω=1,φ=﹣C.ω=,φ=﹣D.ω=1,φ=﹣7.已知函数f(x)=+a,若f(x)是奇函数,则a=()A.0 B.C.D.8.设实数x,y满足约束条件,则z=的取值范围是()A.[,1] B.[,] C.[,] D.[,]9.某几何体的三视图如图所示,该几何体的体积为()A.B.C.D.310.当x∈[1,2],函数y=x2与y=a x(a>0)的图象有交点,则a的取值范围是()A.[,2] B.[,] C.[,2] D.[,]11.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则()A.﹣=1 B.﹣=2C.﹣=1 D.﹣=212.已知圆C:x2+y2=1,点M(t,2),若C上存在两点A、B满足=,则t的取值范围是()A.[﹣2,2] B.[﹣,] C.[﹣3,3] D.[﹣5,5]二、填空题(共4小题,每小题5分,满分20分)13.曲线y=e x在点(0,1)处的切线方程是.14.已知||=,||=2,若(+)⊥,则与的夹角是.15.设S n是数列{a n}的前n项和,a n=4S n﹣3,则S4= .16.在三棱锥P﹣ABC中,△ABC与△PBC都是等边三角形,侧面PBC⊥底面ABC,AB=2,则该三棱锥的外接球的表面积为.三、简答题,本大题共70分,17-21题为必考题,22-24为选考题17.在△ABC中,角A,B,C所对的边分别为a,b,c,2(a2﹣b2)=2accosB+bc.(Ⅰ)求A;(Ⅱ)D为边BC上一点,BD=3DC,∠DAB=,求tanC.18.四棱锥P﹣ABCD的底面ABCD是平行四边形,PA=AD,M,N分别是棱PC,AB的中点,且MN⊥CD.(Ⅰ)求证:PN=CN;(Ⅱ)直线MN与平面PBD相交于点F,求MF:FN.19.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如表:支持不支持合计中型企业80 40 120小型企业240 200 440合计320 240 560(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出8家,然后从这8家中选出2家,求这2家中恰好中、小型企业各一家的概率K2=P(K2≥k0)0.050 0.025 0.010K0 3.841 5.024 6.63520.已知抛物线E:x2=4y,m,n是经过点A(a,﹣1)且倾斜角互补的两条直线,其中m与E有唯一公共点B,n与E相交于不同的两点C,D(Ⅰ)求m的斜率k的取值范围;(Ⅱ)当n过E的焦点时,求B到n的距离.21.设函数f(x)=x++alnx,其中a∈R.(Ⅰ)设f(x)的极小值点为x=t,请将a用t表示;(Ⅱ)记f(x)的极小值为g(t),证明:(1)g(t)=g();(2)函数y=g(t)恰有两个零点,且互为倒数.22.如图,AB为圆O的直径,PB,PC分别与圆O相切于B,C两点,延长BA,PC相交于点D.(Ⅰ)证明:AC∥OP;(Ⅱ)若CD=2,PB=3,求AB.23.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.24.设f(x)=|x﹣1|﹣2|x+1|的最大值为m.(Ⅰ)求m;(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.设集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=()A.{3} B.{2,3} C.{﹣1,3} D.{0,1,2}考点:交集及其运算.专题:集合.分析:求出B中不等式的解集确定出B,找出A与B的交集即可.解答:解:由B中不等式变形得:x(x﹣2)>0,解得:x<0或x>2,即B={x|x<0或x>2},∵A={﹣1,0,1,2,3},∴A∩B={﹣1,3},故选:C.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.命题“∀x∈R,x2﹣x+1>0”的否定是()A.∀x0∈R,x02﹣x0+1≤0 B.∀x0∈R,x02﹣x0+1≤0 C.∃x0R,x02﹣x0+1≤0 D.∃x0∈R,x02﹣x0+1≤0考点:命题的否定.专题:简易逻辑.分析:直接利用全称命题的否定是特称命题写出结果即可.解答:解:因为全称命题的否定是特称命题,所以,命题“∀x ∈R,x2﹣x+1>0”的否定是:∃x0∈R,x02﹣x0+1≤0.故选:D.点评:本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.3.在复平面内,复数z与的对应点关于虚轴对称,则z=()A.2﹣i B.﹣2﹣i C.2+i D.﹣2+i考点:复数的代数表示法及其几何意义.专题:数系的扩充和复数.分析:化简复数为a+bi的形式,然后利用对称性求解即可.解答:解:==﹣2﹣i.在复平面内,复数z与的对应点关于虚轴对称,则z=2﹣i.故选:A.点评:本题考查复数的基本概念,复数的乘除运算,考查计算能力.4.在等差数列{a n}中,a7=8,前7项和S7=42,则其公差是()A.﹣B.﹣C.D.考点:等差数列的通项公式.专题:等差数列与等比数列.分析:直接由已知结合等差数列的通项公式和前n项和列式求得公差.解答:解:设等差数列{a n}的首项为a1,公差为d,由a7=8,S7=42,得,解得:.故选:D.点评:本题考查了等差数列的通项公式,考查了等差数列的前n项和,是基础题.5.执行如图的程序框图,若输入的a=209,b=76,则输出的a 是()A.3 B.57 C.19 D.76考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的a,b,c 的值,当b=0时满足条件b=0,退出循环,输出a的值为19.解答:解:模拟执行程序框图,可得a=209,b=76c=57a=76,b=57,不满足条件b=0,c=19,a=57,b=19不满足条件b=0,c=0,a=19,b=0满足条件b=0,退出循环,输出a的值为19.故选:C.点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模,本题属于基础知识的考查.6.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A(,0),B(,0),则()A.ω=,φ=﹣ B.ω=1,φ=﹣C.ω=,φ=﹣D.ω=1,φ=﹣考点:正弦函数的图象.专题:三角函数的图像与性质.分析:结合图象,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.解答:解:由函数的图象可得==﹣,∴ω=.再根据五点法作图可得•+φ=0,求得φ=﹣,故选:C.点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值,属于基础题.7.已知函数f(x)=+a,若f(x)是奇函数,则a=()A.0 B.C.D.考点:函数奇偶性的性质.专题:函数的性质及应用.分析:根据奇函数的定义f(x)+f(﹣x)=0,x=1,特殊值求解即可.解答:解:∵函数f(x)=+a,f(x)是奇函数,∴f(1)+f(﹣1)=0,即++a=0,2a=1,a=,故选:B点评:本题考查了奇函数的定义性质,难度很小,属于容易题.8.设实数x,y满足约束条件,则z=的取值范围是()A.[,1] B.[,] C.[,] D.[,]考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义以及斜率公式的计算,即可求z的取值范围.解答:解:作出不等式组对应的平面区域如图:(阴影部分).z=的几何意义是区域内的点(x,y)到定点D(﹣1,0)的斜率,由图象知BD的斜率最大,CD的斜率最小,由,解得,即B(,),即BD的斜率k==,由,解得,即C(,),即CD的斜率k==,即≤z≤,故选:D.点评:本题主要考查线性规划以及直线斜率的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.9.某几何体的三视图如图所示,该几何体的体积为()A.B.C.D.3考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是三棱柱与三棱锥的组合体,结合图中的数据,求出它的体积.解答:解:根据几何体的三视图,得;该几何体是下部为直三棱柱,上部为直三棱锥的组合体;如图所示:∴该几何体的体积是V几何体=V三棱柱+V三棱锥=×2×1×1+××2×1×1=.故选:A.点评:本题考查了利用空间几何体的三视图求体积的应用问题,是基础题目.10.当x∈[1,2],函数y=x2与y=a x(a>0)的图象有交点,则a的取值范围是()A.[,2] B.[,] C.[,2] D.[,]考点:函数的零点与方程根的关系.专题:计算题;作图题;函数的性质及应用.分析:作函数y=x2与y=a x(a>0)在[1,2]上的图象,结合图象写出a的取值范围即可.解答:解:作函数y=x2与y=a x(a>0)在[1,2]上的图象如下,结合图象可得,a的取值范围是[,],故选:B.点评:本题考查了函数的图象的应用,属于基础题.11.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则()A.﹣=1 B.﹣=2C.﹣=1 D.﹣=2考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:以AB所在直线为x轴,其中点为原点,建立坐标系,再通过椭圆及双曲线的基本概念即可得到答案.解答:解:以AB所在直线为x轴,其中点为原点,建立坐标系,则A(﹣1,0),B(1,0),C(1+cosθ,sinθ),所以AC==,对于椭圆而言,2c=2,2a=AC+BC=+1,所以==;对于双曲线而言,2c=2,2a=AC﹣BC=﹣1,所以==;故﹣=﹣=1,故选:A.点评:本题考查椭圆、双曲线的概念,建立坐标系是解决本题的关键,属于中档题.12.已知圆C:x2+y2=1,点M(t,2),若C上存在两点A、B满足=,则t的取值范围是()A.[﹣2,2] B.[﹣,] C.[﹣3,3] D.[﹣5,5]考点:直线与圆的位置关系.专题:计算题;直线与圆.分析:确定A是MB的中点,利用圆x2+y2=1的直径是2,可得MA≤2,即点M到原点距离小于等于3,从而可得结论.解答:解:∵=,∴A是MB的中点,∵圆x2+y2=1的直径是2,∴MA≤2,∴点M到原点距离小于等于3,∴t2+4≤9,∴﹣≤t≤,故选:B.点评:本题考查向量知识的运用,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.二、填空题(共4小题,每小题5分,满分20分)13.曲线y=e x在点(0,1)处的切线方程是x﹣y+1=0 .考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:求出原函数的导函数,得到在x=0处的导数值,再求出f(0),然后直接写出切线方程的斜截式.解答:解:由f(x)=e x,得f′(x)=e x,∴f′(0)=e0=1,即曲线f(x)=e x在x=0处的切线的斜率等于1,曲线经过(0,1),∴曲线f(x)=e x在x=0处的切线方程为y=x+1,即x﹣y+1=0.故答案为:x﹣y+1=0.点评:本题考查利用导数研究曲线上某点的切线方程,曲线上某点处的导数值,就是曲线在该点处的切线的斜率,是中档题.14.已知||=,||=2,若(+)⊥,则与的夹角是150°.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据已知条件即可得到,所以根据进行数量积的运算即可得到3,所以求出cos<>=,从而便求出与的夹角.解答:解:∵;∴=;∴;∴与的夹角为150°.故答案为:150°.点评:考查两非零向量垂直的充要条件,以及数量积的计算公式,向量夹角的范围.是数列{a n}的前n项和,a n=4S n﹣3,则S4= .15.设S考点:数列递推式.专题:等差数列与等比数列.分析:a n=4S n﹣3,当n=1时,a1=4a1﹣3,解得a1.当n≥2时,S n﹣S n﹣1=4S n﹣3,化为,利用等比数列的通项公式即可得出.解答:解:∵a n=4S n﹣3,∴当n=1时,a1=4a1﹣3,解得a1=1.当n≥2时,S n﹣S n﹣1=4S n﹣3,化为,∴数列是等比数列,首项为,公比为﹣,∴=.令n=4,则S 4=+=.故答案为:.点评:本题考查了等比数列的通项公式,考查了变形能力,考查了推理能力与计算能力,属于中档题.16.在三棱锥P﹣ABC中,△ABC与△PBC都是等边三角形,侧面PBC⊥底面ABC,AB=2,则该三棱锥的外接球的表面积为20π.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:由题意,等边三角形的高为3,设球心到底面的距离为x,则r2=22+x2=12+(3﹣x)2,求出x,可得r,即可求出该三棱锥的外接球的表面积.解答:解:由题意,等边三角形的高为3,设球心到底面的距离为x,则r2=22+x2=12+(3﹣x)2,所以x=1,所以该三棱锥的外接球的表面积为4πr2=20π.故答案为:20π.点评:本题考查求三棱锥的外接球的表面积,考查学生的计算能力,确定球的半径是关键.三、简答题,本大题共70分,17-21题为必考题,22-24为选考题17.在△ABC中,角A,B,C所对的边分别为a,b,c,2(a2﹣b2)=2accosB+bc.(Ⅰ)求A;(Ⅱ)D为边BC上一点,BD=3DC,∠DAB=,求tanC.考点:余弦定理;正弦定理.专题:三角函数的求值;解三角形.分析:(Ⅰ)由余弦定理可得2accosB=a2+c2﹣b2,代入已知等式整理得cosA=﹣,即可求得A.(Ⅱ)由已知可求∠DAC=,由正弦定理有=,又BD=3CD,可得3sinB=2sinC,由B=﹣C化简即可得解.解答:解:(Ⅰ)因为2accosB=a2+c2﹣b2,所以2(a2﹣b2)=a2+c2﹣b2+bc.…(2分)整理得a2=b2+c2+bc,所以cosA=﹣,即A=.…(4分)(Ⅱ)因为∠DAB=,所以AD=BD•sinB,∠DAC=.…(6分)在△ACD中,有=,又因为BD=3CD,所以3sinB=2sinC,…(9分)由B=﹣C得cosC﹣sinC=2sinC,…(11分)整理得tanC=.…(12分)点评:本题主要考查了余弦定理,正弦定理,同角三角函数关系式,三角函数恒等变换的应用,综合性较强,属于基本知识的考查.18.四棱锥P﹣ABCD的底面ABCD是平行四边形,PA=AD,M,N分别是棱PC,AB的中点,且MN⊥CD.(Ⅰ)求证:PN=CN;(Ⅱ)直线MN与平面PBD相交于点F,求MF:FN.考点:点、线、面间的距离计算;空间中直线与平面之间的位置关系.专题:综合题;空间位置关系与距离.分析:(Ⅰ)取PD中点E,连AE,EM,证明MN⊥平面PCD,可得MN⊥PC,即可证明PN=CN;(Ⅱ)设M,N,C,A到平面PBD的距离分别为d1,d2,d3,d4,则d3=2d1,d4=2d2,由V A﹣PBD=V C﹣PBD,得d3=d4,则d1=d2,即可得出结论.解答:(Ⅰ)证明:取PD中点E,连AE,EM,则EM∥AN,且EM=AN,四边形ANME是平行四边形,MN∥AE.由PA=AD得AE⊥PD,故MN⊥PD.又因为MN⊥CD,所以MN⊥平面PCD,则MN⊥PC,PN=CN.…(6分)(Ⅱ)解:设M,N,C,A到平面PBD的距离分别为d1,d2,d3,d4,则d3=2d1,d4=2d2,由V A﹣PBD=V C﹣PBD,得d3=d4,则d1=d2,故MF:FN=d1:d2=1:1.…(12分)点评:本题考查线面垂直的证明,考查等体积的运用,考查学生分析解决问题的能力,属于中档题.19.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如表:支持不支持合计中型企业80 40 120小型企业240 200 440合计320 240 560(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出8家,然后从这8家中选出2家,求这2家中恰好中、小型企业各一家的概率K2=P(K2≥k0)0.050 0.025 0.010K0 3.841 5.024 6.635考点:独立性检验.专题:计算题;概率与统计.分析:(Ⅰ)由题意知根据表中所给的数据,利用公式可求K2的值,从临界值表中可以知道K2>5.024,根据临界值表中所给的概率得到与本题所得的数据对应的概率是0.025,得到结论;(Ⅱ)由(Ⅰ)可知“支持”的企业中,中、小企业数之比为1:3,按分层抽样得到的8家中,中、小企业分别为2家和6家,列表确定基本事件,即可求出这2家中恰好中、小型企业各一家的概率.解答:解:(Ⅰ)K2=≈5.657,因为5.657>5.024,所以能在犯错概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关.…(4分)(Ⅱ)由(Ⅰ)可知“支持”的企业中,中、小企业数之比为1:3,按分层抽样得到的8家中,中、小企业分别为2家和6家,分别记为A1,A2,B1,B2,B3,B4,B5,B6,把可能结果列表如下:A1 A2 B1 B2 B3 B4 B5 B6A1﹣+ + + + + +A2﹣+ + + + + +B1 + + ﹣B2 + + ﹣B3 + + ﹣B4 + + ﹣B5 + + ﹣B6 + + ﹣结果总数是56,符合条件的有24种结果.(若用树状图列式是:)从8家中选2家,中、小企业恰各有一家的概率为=.…(12分)点评:本题考查独立性检验的应用,考查概率的计算,考查学生的计算能力,属于中档题.20.已知抛物线E:x2=4y,m,n是经过点A(a,﹣1)且倾斜角互补的两条直线,其中m与E有唯一公共点B,n与E相交于不同的两点C,D(Ⅰ)求m的斜率k的取值范围;(Ⅱ)当n过E的焦点时,求B到n的距离.考点:直线与圆锥曲线的关系.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设直线m:y+1=k(x﹣a),n:y+1=﹣k(x﹣a),代入抛物线方程,运用判别式等于0和大于0,解不等式即可得到k的范围;(Ⅱ)k AF==﹣k,所以ak=2,确定B的坐标,再求出B到n的距离.解答:解:(Ⅰ)m:y+1=k(x﹣a),n:y+1=﹣k(x﹣a),分别代入x2=4y,得x2﹣4kx+4ka+4=0①,x2+4kx﹣4ka+4=0②,…(2分)由△1=0得k2﹣ka﹣1=0,由△2>0得k2+ka﹣1>0,…(4分)故有2k2﹣2>0,得k2>1,即k<﹣1或k>1.…(6分)(Ⅱ)F(0,1),k AF==﹣k,所以ak=2.…(8分)由△1=0得k2=ka+1=3,B(2k,k2),所以B到n的距离d===4 …(12分)点评:本题考查抛物线的方程和性质,主要考查直线和抛物线方程联立,运用判别式,考查运算化简的能力,属于中档题.21.设函数f(x)=x++alnx,其中a∈R.(Ⅰ)设f(x)的极小值点为x=t,请将a用t表示;(Ⅱ)记f(x)的极小值为g(t),证明:(1)g(t)=g();(2)函数y=g(t)恰有两个零点,且互为倒数.考点:利用导数研究函数的极值;函数的零点.专题:导数的综合应用.分析:(Ⅰ)求出导函数,利用f(x)的极小值点为x=t.推出t=>0,然后求解单调区间,a=﹣表示出a与t的关系.(Ⅱ)(ⅰ)由(Ⅰ)知f(x)的极小值,就是证明g()=g (t).(ⅱ)求出函数的g′(t)=﹣(1+)lnt,利用单调性以及极值,判断分别存在唯一的c∈(1,1)和d∈(1,e2),推出g(c)=g(d)=0,化简即可.解答:解:(Ⅰ)f′(x)=1﹣+=.t=>0,…(2分)当x∈(0,t)时,f′(x)<0,f(x)单调递减;当x∈(t,+∞)时,f′(x)>0,f(x)单调递增.…(4分)由f′(t)=0得a=﹣t.…(6分)(Ⅱ)(ⅰ)由(Ⅰ)知f(x)的极小值为g(t)=t++(﹣t)lnt,则g()=+t+(t﹣)ln=t++(﹣t)lnt=g(t).…(8分)(ⅱ)g′(t)=﹣(1+)lnt,…(9分)当t∈(0,1)时,g′(t)>0,f(t)单调递增;当t∈(1,+∞)时,g′(t)<0,g(t)单调递减.…(10分)又g()=g(e2)=﹣e2<0,g(1)=2>0,分别存在唯一的c∈(1,1)和d∈(1,e2),使得g(c)=g(d)=0,且cd=1,所以y=g(t)有两个零点且互为倒数.…(12分)点评:本题考查函数的导数的综合应用,函数的单调性以及函数的极值的求法,函数的零点的应用,考查计算能力.22.如图,AB为圆O的直径,PB,PC分别与圆O相切于B,C两点,延长BA,PC相交于点D.(Ⅰ)证明:AC∥OP;(Ⅱ)若CD=2,PB=3,求AB.考点:与圆有关的比例线段;空间中直线与直线之间的位置关系.专题:选作题;立体几何.分析:(Ⅰ)利用切割线定理,可得PB=PC,且PO平分∠BPC,可得PO⊥BC,又AC⊥BC,可得AC∥OP;(Ⅱ)由切割线定理得DC2=DA•DB,即可求出AB.解答:(Ⅰ)证明:因PB,PC分别与圆O相切于B,C两点,所以PB=PC,且PO平分∠BPC,所以PO⊥BC,又AC⊥BC,即AC∥OP.…(4分)(Ⅱ)解:由PB=PC得PD=PB+CD=5,在Rt△PBD中,可得BD=4.则由切割线定理得DC2=DA•DB,得DA=1,因此AB=3.…(10分)点评:本题考查切割线定理,考查学生分析解决问题的能力,正确运用切割线定理是关键.23.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(I)把圆与直线的极坐标方程分别化为直角坐标方程,利用直线与圆相切的性质即可得出a;(II)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=2cos(θ+),利用三角函数的单调性即可得出.解答:解:(Ⅰ)曲线C:ρ=2acosθ(a>0),变形ρ2=2ρacos θ,化为x2+y2=2ax,即(x﹣a)2+y2=a2.∴曲线C是以(a,0)为圆心,以a为半径的圆;由l:ρcos(θ﹣)=,展开为,∴l的直角坐标方程为x+y﹣3=0.由直线l与圆C相切可得=a,解得a=1.(Ⅱ)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=3cosθ﹣sinθ=2cos(θ+),当θ=﹣时,|OA|+|OB|取得最大值2.点评:本题考查了把圆与直线的极坐标方程分别化为直角坐标方程、直线与圆相切的性质、极坐标方程的应用、三角函数的单调性,考查了推理能力与计算能力,属于中档题.24.设f(x)=|x﹣1|﹣2|x+1|的最大值为m.(Ⅰ)求m;(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.考点:绝对值不等式的解法;基本不等式.专题:计算题;分类讨论;不等式的解法及应用.分析:(Ⅰ)运用零点分区间,讨论x的范围,去绝对值,由一次函数的单调性可得最大值;(Ⅱ)由a2+2b2+c2=(a2+b2)+(b2+c2),运用重要不等式,可得最大值.解答:解:(Ⅰ)当x≤﹣1时,f(x)=3+x≤2;当﹣1<x<1时,f(x)=﹣1﹣3x<2;当x≥1时,f(x)=﹣x﹣3≤﹣4.故当x=﹣1时,f(x)取得最大值m=2.(Ⅱ)a2+2b2+c2=(a2+b2)+(b2+c2)≥2ab+2bc=2(ab+bc),当且仅当a=b=c=时,等号成立.此时,ab+bc取得最大值=1.点评:本题考查绝对值不等式的解法和运用,主要考查分类讨论的思想方法和重要不等式的解法,属于中档题.。
2018-2019届高考数学(文)一二轮专题复习课件:第2部分 专题二 读题、审题突破-学术小金刚系列
C的 三 角 函 数 值 ; 二 是 利 用 余 弦 定 理 将 角 的 余 C
弦 值 化 为 边 的 关 系 , 将 已 知 等 式 进 行 整 理 , 可 得 角 的 余 弦 值
第7页
返回导航
2018大二轮 ·数学(文) 化学
) 2 ( 知 啥 ? 求 啥 ? 边c, 角 C,△ABC的 面 积 求 周 长 ! 已 知 边 边a,b之 积 , 边 定 理 将 其 转 化 为 咋 求 ? 代 入 , 整 理 变 形 即 可 得 转 化 为 三 角 形 的 外 接 圆 直 径 , 然 后 利 用 角 函 数 值 表 示 边 进 而 求 出
第4页
返回导航
2018大二轮 ·数学(文) 化学
审 题 要 弄 清 以 下 三 个 方 面 的 问 题 是 什 么 : 题 中 的 关 键 字 、 词 、 句 以 及 相 应 的 数 字 、 单 条 件 位 等 归 哪 类 : 条 件 要 归 类 , 这 是 准 确 建 模 的 基 础 求 什 么 : 明 确 所 求 解 的 问 题 以 及 类 别 问 题 啥 关 系 : 找 出 已 知 和 所 求 的 关 系 , 这 是 准 确 建 模 的 依 据 模 型 建 啥 模 : 根 据 已 知 和 所 求 , 归 类 建 模 用 啥 法 : 熟 练 掌 握 模 型 的 求 解 方 法
第11页
返回导航
2018大二轮 ·数学(文) 化学
审 题 指 导 : 知 啥 ? 求 啥 ? ) 1 ( n项 的 等 式 an
前n项 和 与 第 证 明 是 等 比 数 列 , 并 求
n=1 Sn=1+λan ――→ 求 出 a1 咋 求 ? Sn+1-Sn=an+1 ― ― ― ― ― ― ― → an+1与an的 递 推 关 系 定 义 ―――→ 等 比 数 列 断 定
2023年高考数学二轮复习(新高考版) 第1部分 专题突破 专题1 微重点1 函数的新定义问题
对于新运算“★”的性质③,令c=0,
则(a★b)★0=0★(ab)+(a★0)+(0★b)=ab+a+b,
即a★b=ab+a+b.
∴f(x)=x★1x=1+x+1x, 当 x>0 时,f(x)=1+x+1x≥1+2
x·1x=3,
当且仅当 x=1x,即 x=1 时取等号,
∴函数f(x)在(0,+∞)上的最小值为3,故A正确;
考向3 黎曼函数
例3 (2022·新乡模拟)黎曼函数是一个特殊的函数,由德国数学家波恩哈
德·黎曼发现并提出,在高等数学中有着广泛的应用.黎曼函数定义在[0,1]
上,其解析式如下:R(x)=1p,x=pqp,q都是正整数,pq是既约真分数, 0,x=0,1或[0,1]上的无理数.
若函数f(x)是定义在R上的奇函数,且对任意x都有f(2+x)+f(2-x)=0,
e2x-e-2x 所以 f(-x)=- 4 =-f(x), 故f(x)为奇函数,所以A错误,B正确; 因为y=e2x在(0,+∞)上单调递增,y=e-2x在(0,+∞)上单调递减,
e2x-e-2x 所以 f(x)= 4 在(0,+∞)上单调递增, 所以C正确,D错误.
考点二
“新定义”函数的性质、运算法则等
f
-2
0522=-f
2
0522=-f
4×101+25
=-f 25=-R25=-15,
∴f(2
022)+f
-2
0522=-15.
考向4 欧拉函数
例4 (多选)(2022·重庆八中调研)若正整数m,n只有1为公约数,则称m,
n互质.对于正整数n,φ(n)是小于或等于n的正整数中与n互质的数的个数,
数g(x)在[a,b]上为凹函数,若用导数的在给定区间内恒为正,即g″(x)>0.下列函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
→ 从而BC=(-4,-2)-(3,2)=(-7,-4).故选A.]
→ 2.(2014· 全国卷Ⅰ)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则 EB + → FC=( → A.BC → C.AD ) 1→ B.2AD 1→ D.2BC
→ → → → → → C [如图,EB+FC=EC+CB+FB+BC
提炼3 平面向量解题中应熟知的常用结论 → → → (1)A,B,C三点共线的充要条件是存在实数λ,μ,有 OA =λ OB +μ OC ,且λ+μ =1. → 1 → → (2)C是线段AB中点的充要条件是OC=2(OA+OB). → → → (3)G是△ABC的重心的充要条件为GA+GB+GC=0,若△ABC的三个顶点坐标 分别为A(x1,y1),B(x2,y2),C(x3,y3),则△ABC的重心坐标为
[高考真题回访] 回访1 平面向量的线性运算
→ → 1.(2015· 全国卷Ⅰ)已知点A(0,1),B(3,2),向量 AC =(-4,-3),则向量 BC = ( ) B.(7,4) D.(1,4)
A.(-7,-4) C.(-1,4)
→ A [设C(x,y),则AC=(x,y-1)=(-4,-3),
4.(2017· 全国卷Ⅰ)已知向量a=(-1,2),b=(m,1).若向量a+b与a垂直,则m= ________.
7 [∵a=(-1,2),b=(m,1), ∴a+b=(-1+m,2+1)=(m-1,3). 又a+b与a垂直,∴(a+b)· a=0, 即(m-1)×(-1)+3×2=0, 解得m=7.]
(2)已知△ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连 → → 接DE并延长到点F,使得DE=2EF,则AF· BC的值为( ) 【导学号:04024046】 5 A.-8 1 C.4 1 B.8 11 D. 8
→ 1 → → (1)A (2)B [(1)由题意得AD=2(AB+AC)=2(m-n), → 所以|AD|=2 m-n2 =2 m2+n2-2m· n =2 3 3+4-2×2× 3× 2 =2,故选A.
5.(2013· 全国卷Ⅰ)已知两个单位向量a,b的夹角为60° ,c=ta+(1-t)b,若b· c= 0,则t=________.
2 [|a|=|b|=1,〈a,b〉=60° . 1 t ∵c=ta+(1-t)b,∴b· c=ta· b+(1-t)b =t×1×1× 2 +(1-t)×1= 2 +1-t=1
2
t -2. t ∵b· c=0,∴1-2=0,∴t=2.]
回访3 数量积的综合应用 6.(2012· 全国卷)已知向量a,b夹角为45° ,且|a|=1,|2a-b|= ________.
3 2 [∵a,b的夹角为45° ,|a|=1, 2 ∴a· b=|a|· |b|cos 45° = 2 |b|, 2 |2a-b| =4-4× 2 |b|+|b|2=10,
2
10
,则|b|=
∴|b|=3 2.]
热点题一,考查方式主要体现在以下两个方面: 一是以平面图形为载体考查向量的线性运算;二是以向量的共线与垂直为切入 点,考查向量的夹角、模等.
π 【例1】(1)(2017· 衡水模拟)已知平面向量m,n的夹角为 6 ,且|m|= 3 ,|n|=2,在 → → → △ABC中,AB=2m+2n,AC=2m-6n,D为BC的中点,则|AD|=( A.2 C.6 B.4 D.8 )
→ → → (2)如图所示,AF=AD+DF.
又D,E分别为AB,BC的中点, → 1→ → 1→ 1→ 3→ 且DE=2EF,所以AD=2AB,DF=2AC+4AC=4AC, → 1→ 3 → 所以AF=2AB+4AC. → → → 又BC=AC-AB,
1→ 3→ → → → → 则AF· BC=2AB+4AC· (AC-AB)
提炼2 数量积常见的三种应用 已知两个非零向量a=(x1,y1),b=(x2,y2),则 (1)证明向量垂直:a⊥b⇔a· b=0⇔x1x2+y1y2=0.
2 (2)求向量的长度:|a|= a· a= x1 +y2 1.
x1x2+y1y2 a· b (3)求向量的夹角:cos〈a,b〉=|a||b|= 2 2 2 2. x1+y1· x2+y2
突破点3 平面向量
栏目 导航
核心知识 · 聚焦
热点题型 · 探究 专题限时集训
提炼核心知识 体验高考方向
透析高考题型 提升解题技能
[核心知识提炼]
提炼1 平面向量共线、垂直的两个充要条件 若a=(x1,y1),b=(x2,y2),则: (1)a∥b⇔a=λb(b≠0)⇔x1y2-x2y1=0. (2)a⊥b⇔a· b=0⇔x1x2+y1y2=0.
→ → 1 → → =EC+FB=2(AC+AB) 1 → → =2· 2AD=AD.]
回访2 平面向量的数量积 3.(2015· 全国卷Ⅱ)向量a=(1,-1),b=(-1,2),则(2a+b)· a=( A.-1 C.1 B.0 D.2 )
C [法一:∵a=(1,-1),b=(-1,2),∴a2=2,a· b=-3, 从而(2a+b)· a=2a2+a· b=4-3=1. 法二:∵a=(1,-1),b=(-1,2), ∴2a+b=(2,-2)+(-1,2)=(1,0), 从而(2a+b)· a=(1,0)· (1,-1)=1,故选C.]
x1+x2+x3 y1+y2+y3 , . 3 3
→ → → → → → (4)PA· PB=PB· PC=PA· PC⇔P为△ABC的垂心. (5)非零向量a,b垂直的充要条件:a⊥b⇔a· b=0⇔|a+b|=|a-b|⇔x1x2+y1y2= 0. a· b (6)向量b在a的方向上的投影为|b|cos θ= , |a| a· b 向量a在b的方向上的投影为|a|cos θ= |b| .