高中数学 第1章 常用逻辑用语章末综合检测 苏教版选修11
高中数学章末综合检测(一)--集合与常用逻辑用语
)
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析:选 A
∵“x>0, y>0
”⇒“x1y>0”,
“x1y>0”⇒“yx>>00,
或x<0, y<0,
”
∴“x>0, y>0
”是“x1y>0”的充分不必要条件.故选 A.
8.已知集合 A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件 A⊆C⊆B
4.已知集合 A={0,1,2,4},集合 B={x∈R|0<x≤4},集合 C=A∩B,则集合 C 可表示
为( )
A.{0,1,2,4} C.{1,2,4}
B.{1,2,3,4} D.{x∈R|0<x≤4}
解析:选 C 因为集合 A 中的元素为 0,1,2,4,而集合 B 中的整数元素为 1,2,3,4,所以
16.(12 分)设集合 A={x|x2-3x+2=0},B={x|ax=1}.“x∈B”是“x∈A”的充分 不必要条件,试求满足条件的实数 a 组成的集合.
解:∵A={x|x2-3x+2=0}={1,2},由于“x∈B”是“x∈A”的充分不必要条件, ∴B A. 当 B=∅时,得 a=0;
当 B≠∅时,则当 B={1}时,得 a=1;
12.某校高一某班共有 40 人,摸底测验数学成绩 23 人得优,语文成绩 20 人得优,两 门都不得优者有 6 人,则两门都得优者有________人.
解析:设两门都得优的人数是 x,则依题意得(23-x)+(20-x)+x+6=40,整理,得 -x+49=40,
解得 x=9,即两门都得优的人数是 9 人. 答案:9 13.设全集 U={x||x|<4,且 x∈Z},S={-2,1,3},若 P⊆U,(∁UP)⊆S,则这样的集合 P 共有________个. 解析:U={-3,-2,-1,0,1,2,3},∵∁U(∁UP)=P,∴存在一个∁UP,即有一个相应的 P(如当∁UP={-2,1,3}时,P={-3,-1,0,2};当∁UP={-2,1}时,P={-3,-1,0,2,3}等).由 于 S 的子集共有 8 个,∴P 也有 8 个.
【高中】2020版高中数学第一章常用逻辑用语章末复习课学案苏教版选修11
【关键字】高中第一章常用逻辑用语学习目标 1.理解命题及四种命题的概念,掌握四种命题间的相互关系.2.理解充分条件、必要条件的概念,掌握充分条件、必要条件的判定方法.3.理解逻辑联结词的含义,会判断含有逻辑联结词的命题的真假.4.理解全称量词、存在量词的含义,会判断全称命题、存在性命题的真假,会求含有一个量词的命题的否定.知识点一四种命题的关系原命题与________________为等价命题,____________与否命题为等价命题.知识点二充分条件、必要条件的判断方法1.直接利用定义判断:即若p⇒q成立,则p是q的充分条件,q是p的必要条件.(条件与结论是相对的)2.利用等价命题的关系判断:p⇒q的等价命题是綈q⇒綈p,即若綈q⇒綈p成立,则p是q 的充分条件,q是p的必要条件.3.从集合的角度判断充分条件、必要条件和充要条件:(1)前提:设A={x|x满足条件p},B={x|x满足条件q}.(2)结论:①若________,则p是q的充分条件,若________,则p是q的充分不必要条件;②若________,则p是q的必要条件,若________,则p是q的必要不充分条件;③若________,则p,q互为充要条件;④若________且________,则p是q的既不充分又不必要条件.知识点三简单的逻辑联结词1.命题中的“________”“________”“________”叫做逻辑联结词.2.简单复合命题的真假判断①p与綈p真假性相反;②p∨q一真就真,两假才假;③p∧q一假就假,两真才真.知识点四全称命题与存在性命题1.全称命题与存在性命题真假的判断方法(1)判断全称命题为真命题,需严格的逻辑推理证明,判断全称命题为假命题,只需举出反例.(2)判断存在性命题为真命题,需要举出正例,而判断存在性命题为假命题时,要有严格的逻辑证明.2.含有一个量词的命题否定的关注点全称命题的否定是存在性命题,存在性命题的否定是全称命题.否定时既要改写量词,又要否定结论.类型一四种命题及其关系例1 写出命题“若+(y+1)2=0,则x=2且y=-的逆命题、否命题、逆否命题,并判断它们的真假.反思与感悟(1)四种命题的改写步骤①确定原命题的条件和结论.②逆命题:把原命题的条件和结论交换.否命题:把原命题中的条件和结论分别否定.逆否命题:把原命题中否定了的结论作条件,否定了的条件作结论.(2)命题真假的判断方法追踪训练1 下列四个结论:①已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥的否命题是“若a+b+c≠3,则a2+b2+c2<;②命题“若x-sin x=0,则x=的逆命题为“若x≠0,则x-sin x≠;③命题p的否命题和命题p的逆命题同真同假;④若|C|>0,则C>0. 其中正确结论的个数是________.类型二充分条件与必要条件命题角度1 充分条件与必要条件的判断例2 (1)“a=-1”是“函数f(x)=ax2+2x-1只有一个零点”的____________条件.(填“充要”“充分不必要”“必要不充分”“既不充分又不必要”)(2)设p:2x>1,q:1<x<2,则p是q成立的__________条件.(填“充要”“充分不必要”“必要不充分”“既不充分又不必要”)反思与感悟条件的充要关系的常用判断方法(1)定义法:直接判断若p则q,若q则p的真假.(2)等价法:利用p⇒q与綈q⇒綈p,q⇒p与綈p⇒綈q,p⇔q与綈q⇔綈p的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)利用集合间的包含关系判断:若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件.追踪训练2 a<0,b<0的一个必要条件为________.①a+b<0;②a-b>0;③>1;④<-1.命题角度2 充分条件与必要条件的应用例3 设命题p:x2-5x+6≤0;命题q:(x-m)(x-m-2)≤0,若綈p是綈q的必要不充分条件,求实数m的取值范围.反思与感悟利用条件的充要性求参数的范围(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式求解.(2)注意利用转化的方法理解充分必要条件:若綈p是綈q的充分不必要(必要不充分、充要)条件,则p 是q 的必要不充分(充分不必要、充要)条件.追踪训练3 已知p :2x2-9x +a<0,q :2<x<3且綈q 是綈p 的必要条件,求实数a 的取值范围.类型三 逻辑联结词与量词的综合应用例4 已知p :∃x ∈R ,mx 2+2≤0,q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是________.反思与感悟 解决此类问题首先理解逻辑联结词的含义,掌握简单命题与含有逻辑联结词的命题的真假关系.其次要善于利用等价关系,如:p 真与綈p 假等价,p 假与綈p 真等价,将问题转化,从而谋得最佳解决途径.跟踪训练4 已知命题p :方程2x 2+ax -a 2=0在[-1,1]上有解;命题q :只有一个实数x 满足不等式x 2+2ax +2a ≤0.若命题“p 或q ”是假命题,求a 的取值范围.1.命题“若x 2>y 2,则x >y ”的逆否命题是____________.2.已知命题p :∃n ∈N,2n>1 000,则綈p 为________________.3.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(綈q );④(綈p )∨q 中,真命题是________.4.对任意x ∈[-1,2],x 2-a ≥0恒成立,则实数a 的取值范围是________.5.已知p :12≤x ≤1,q :(x -a )(x -a -1)>0,若p 是綈q 的充分不必要条件,则实数a 的取值范围是________.1.否命题和命题的否定是两个不同的概念(1)否命题是将原命题条件的否定作为条件,将原命题结论的否定作为结论构造一个新的命题.(2)命题的否定只是否定命题的结论,常用于反证法.若命题为“若p 则q ”,则该命题的否命题是“若綈p 则綈q ”;命题的否定为“若p 则綈q ”.2.四种命题的三种关系,互否关系,互逆关系,互为逆否关系,只有互为逆否关系的命题是等价命题.3.判断p 与q 之间的关系时,要注意p 与q 之间关系的方向性,充分条件与必要条件方向正好相反,不要混淆.4.注意常见逻辑联结词的否定一些常见逻辑联结词的否定要记住,如:“都是”的否定为“不都是”,“全是”的否定为“不全是”,“至少有一个”的否定为“一个也没有”,“至多有一个”的否定为“至少有两个”.提醒:完成作业 第1章 章末复习课答案精析知识梳理知识点一若p 则q 若q 则p 若綈p 则綈q若綈q 则綈p 逆否命题 逆命题知识点二3.(2)①A ⊆B AB ②B ⊆A B A ③A =B ④A ⊈B B ⊈A知识点三1.且 或 非题型探究例1 解 逆命题:若x =2且y =-1, 则x -2+(y +1)2=0,真命题. 否命题:若x -2+(y +1)2≠0,则x ≠2或y ≠-1,真命题. 逆否命题:若x ≠2或y ≠-1, 则x -2+(y +1)2≠0,真命题.跟踪训练1 2例2 (1)充分不必要 (2)必要不充分跟踪训练2 ①例3 解 方法一 命题p :x 2-5x +6≤0,解得2≤x ≤3,∴p :2≤x ≤3;命题q :(x -m )(x -m -2)≤0,解得m ≤x ≤m +2,∴q :m ≤x ≤m +2.∵綈p 是綈q 的必要不充分条件,∴p 是q 的充分不必要条件.∴⎩⎪⎨⎪⎧ m ≤2,m +2>3或⎩⎪⎨⎪⎧ m <2,m +2≥3,解得1≤m ≤2.∴实数m 的取值范围是[1,2].方法二 ∵命题p :2≤x ≤3,命题q :m ≤x ≤m +2,綈p :x <2或x >3,綈q :x <m 或x >m +2.∵綈p 是綈q 的必要不充分条件,∴{x |x <m 或x >m +2}{x |x <2或x >3},故⎩⎪⎨⎪⎧ m ≤2,m +2≥3,解得1≤m ≤2.∴实数m 的取值范围是[1,2].跟踪训练3 解 ∵綈q 是綈p 的必要条件,∴q 是p 的充分条件.令f (x )=2x 2-9x +a ,则⎩⎪⎨⎪⎧ f 2≤0,f 3≤0,解得a ≤9,∴实数a 的取值范围是(-∞,9].例4 [1,+∞)跟踪训练4 解 由方程2x 2+ax -a 2=0,得(2x -a )(x +a )=0, ∴x =a 2或x =-a . ∴当命题p 为真命题时, ⎪⎪⎪⎪⎪⎪a 2≤1或|-a |≤1, ∴|a |≤2.又“只有一个实数x 满足x 2+2ax +2a ≤0”,即函数y =x 2+2ax +2a 与x 轴只有一个交点,∴Δ=4a 2-8a =0,∴a =0或a =2.∴当命题q 为真命题时,a =0或a =2.∴当命题“p 或q ”为真命题时,|a |≤2.∵命题“p 或q ”为假命题,∴a >2或a <-2.即a 的取值范围为{a |a >2或a <-2}.当堂训练1.“若x ≤y ,则x 2≤y 2”2.∀n ∈N,2n ≤1 000 3.②③4.(-∞,0] 5.[0,12]此文档是由网络收集并进行重新排版整理.word可编辑版本!。
(压轴题)高中数学选修1-1第一章《常用逻辑用语》检测题(含答案解析)
一、选择题1.已知命题1:,04xp x R ⎛⎫∀∈> ⎪⎝⎭,命题p 的否定是( ) A .1,04xx R ⎛⎫∃∈> ⎪⎝⎭ B .1,04xx R ⎛⎫∃∈≤ ⎪⎝⎭C .1,04x x R ⎛⎫∀∈≤ ⎪⎝⎭D .1,04xx R ⎛⎫∀∉≤ ⎪⎝⎭2.已知命题:0p a ∃≥,20a a +<,则命题p ⌝为( )A .0a ∀≥,20a a +≤B .0a ∀≥,20a a +<C .0a ∀≥,20a a +≥D .0a ∃<,20a a +<3.已知命题3:0,0,p x x x ∀>+>则命题p 的否定为( ) A .30,0x x x ∀≤+≤ B .30000,0x x x ≤+≤∃C .30,0x x x ∀>+≤D .30000,0x x x >+≤∃4.已知命题:(0,)p x ∀∈+∞,lg x x >,则p 的否定是( ) A .000(0,),lg x x x ∃∈+∞≤ B .(0,),lg x x x ∀∈+∞≤ C .000(0,),lg x x x ∃∈+∞>D .(0,),lg x x x ∀∈+∞<5.“21a =”是“直线0x y +=和直线0x ay -=互相垂直”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件6.设a ,b 都是不等于1的正数,则“222a b >>”是“log 2log 2a b <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.已知命题:p “x R ∀∈,10x ->”,则p ⌝为( ) A .x R ∃∈,10x -≤ B .x R ∀∈,10x -< C .x R ∃∈,10x -<D .x R ∀∈,10x -≤8.设a ∈R ,则“1a >-”是“2log (23)1a ->”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.下列说法中,正确的是( )A .若命题“非p ”与命题“p 或q ”都是真命题,那么命题q 一定是真命题B .命题“存在x ∈R ,使得210x x ++<”的否定是:“任意x ∈R ,都有210x x ++>”C .命题“若a b >,则221a b >-”的否命题为“若a b >,则221a b ≤-”D .“a b >”是“22ac bc >”的充分不必要条件10.若“x a ≥”是“12x ≥”的充分条件,则下列不可能是a 的一个取值的是( ) A .sin3πB .13C .2D .π11.命题“0,4x π⎡⎤∀∈⎢⎥⎣⎦,cos sin x x ≥”的否定是( ) A .0,4x π⎡⎤∃∉⎢⎥⎣⎦,cos sin x x <B .0,4x π⎡⎤∃∈⎢⎥⎣⎦,cos sin x x < C .0,4x π⎡⎤∀∉⎢⎥⎣⎦,cos sin x x < D .0,4x π⎡⎤∃∈⎢⎥⎣⎦,cos sin x x ≤ 12.“函数2()(33)m f x m m x =-+是幂函数”是“函数22()2g x mx m x m =-+值域为[)0,+∞”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件二、填空题13.若命题:P x R ∀∈,210ax a ++-≥是真命题,则实数a 的取值范围是______. 14.命题“如果22x a b <+,那么2x ab <”,请写出它的逆否命题____________. 15.下列说法中,正确的序号为___________.①命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”;②已知,x y R ∈,则“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件; ③命题“若22am bm <,则a b <”的逆命题为真;④若p q ∨为真命题,则p ⌝与q 至少有一个为真命题;16.若“x ∃∈R ,220x x a ++<”是假命题,则实数a 的取值范围是________. 17.命题“若1x >,则0x >”的否命题是______命题(填“真”或“假”)18.已知集合A ={x |﹣1<x <2},B ={x |﹣1<x <m +1},若x ∈A 是x ∈B 成立的一个充分不必要条件,则实数m 的取值范围是_____.. 19.对下列命题: (1)4sin (0)sin y x x xπ=+<<的最小值为4; (2)若{}n a 是各项均为正数的等比数列,则{}ln n a 是等差数列;(3)已知ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c 且最大边长为c ,若222a b c +>,则ABC 一定是锐角三角形;(4)若向量(4,2)a =,(,1)b λ=,且,a b 是锐角,则实数的取值范围为1,2⎛⎫-+∞ ⎪⎝⎭; 其中所有正确命题的序号为_________(填出所有正确命题的序号).20.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下:甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”,经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是________.三、解答题21.已知p :[]1,2x ∀∈-,2210x x m -+->,q :x ∃∈R ,()212102x m x +-+=.若______为真命题,求实数m 的取值范围. 请在①p q ⌝∧,②p q ∧⌝,③p q ⌝∨⌝这三个条件中选一个填在横线上,并解答问题.注:如果选择多个条件分别解答,按第一个解答计分.22.设命题21:01x p x -<-,命题2:2110q x a x a a ,若p 是q 的充分不必要条件,求实数a 的取值范围?23.设函数()22)lg(3f x x x =+-的定义域为集合A ,函数1()||g x a x x =+-在[-3,-1]上存在零点时的a 的取值集合B . (1)求AB ;(2)若集合2{}0|C x x p =+≥,若x C ∈是x A ∈充分条件,求实数p 的取值范围.24.已知0a >,命题1:2p a m -<人,命题:q 椭圆2221xy a+=的离心率e 满足3e ⎫∈⎪⎪⎝⎭. (1)若q 是真命题,求实数a 取值范围;(2)若p 是q 的充分条件,且p 不是q 的必要条件,求实数m 的值.25.已知命题2:230p x x --≥;命题2:40q x x -<.若p 是真命题,q 是假命题,求实数x 的范围.26.已知函数()af x x =和()24g x x ax a =++.(1)命题p :()f x 是[)0,+∞上的增函数,命题q :关于的方程()0g x =有实根,若p q ∧为真,求实数a 的取值范围;(2)若“[]1,2x ∈”是“()0g x ≤”的充分条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】根据命题的否定的定义,写出命题的否定,然后判断. 【详解】命题1:,04xp x R ⎛⎫∀∈> ⎪⎝⎭的否定是:1,04xx R ⎛⎫∃∈≤ ⎪⎝⎭. 故选:B . 2.C解析:C 【分析】根据特称命题的否定可得出结论. 【详解】命题p 为特称命题,该命题的否定为:0p a ⌝∀≥,20a a +≥. 故选:C.3.D解析:D 【分析】利用全程命题的否定直接写出答案. 【详解】由于“∀”的否定为“∃”,则排除A 与C 选项;命题的否定是对该命题的真值取否定. 故选:D 【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.4.A解析:A 【分析】直接根据全称命题的否定写出结论. 【详解】命题:(0,)p x ∀∈+∞,lg x x >为全称命题,故p 的否定是:000(0,),lg x x x ∃∈+∞≤. 故选:A 【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.5.B解析:B 【分析】先求出两条直线垂直的充要条件,再根据所得条件和已知条件的关系可得两者的条件关系. 【详解】直线0x y +=和直线0x ay -=的充要条件为()1110a ⨯+⨯-=即1a =, 1a =可以推出21a =,但21a =推不出1a =,故“21a =”是“直线0x y +=和直线0x ay -=互相垂直”的必要而不充分条件, 故选:B.6.A解析:A 【分析】根据充分和必要条件的定义即可求解. 【详解】由222a b >>可得1222a b >>,即1a b >>,可推出log 2log 2a b <, 当01a <<,1b >时,不等式log 2log 2a b <成立,但推不出222a b >>, 根据充分和必要条件的定义可得“222a b >>”是“log 2log 2a b <”的充分不必要条件, 故选:A.7.A解析:A 【分析】对全称量词的否定用特称量词,直接写出p ⌝ 【详解】∵:p “x R ∀∈,10x ->”, ∴p ⌝:x R ∃∈,10x -≤ 故选:A 【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.8.B解析:B 【分析】先解不等式2log (23)1a ->,再用集合法判断. 【详解】由2log (23)1a ->解得:52a >记()51,,,2A B ⎛⎫=-+∞=+∞ ⎪⎝⎭∵B A ⊆,∴“1a >-”是“2log (23)1a ->”的必要不充分条件.【点睛】结论点睛:有关充要条件类问题的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,q 对应集合与p 对应集合互不包含.9.A解析:A 【分析】对四个选项,一个一个选项验证:对于A:由复合命题的真假,结合真值表,即可判断;对于B: 全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题;对于C:由否命题直接写出结论; 对于D:利用充要条件判断. 【详解】对于A:由“非p ”为真,知p 假,“p 或q ”为真,所以q 为真,故A 正确; 对于B: 命题“存在x ∈R ,使得210x x ++<”的否定是:“任意x ∈R ,都有210x x ++≥”,故B 错误;对于C: 命题“若a b >,则221a b >-”的否命题为“若a b ≤,则221a b ≤-”,故C 错误; 对于D:若c=0,由 “a b >”不能推出 “22ac bc >”,故D 错误 故选:A. 【点睛】判断命题真假的题目,四个选项内容各不相干,需要对四个选项一一验证.10.B解析:B 【分析】根据已知条件得出实数a 的取值范围,由此可得出合适的选项. 【详解】因为“x a ≥”是“12x ≥”的充分条件,则12a ≥,而sin 32π=.故满足条件的选项为B. 故选:B.11.B解析:B 【分析】由全称命题的否定是特称命题可得选项.由全称命题的否定是特称命题得:“0,4x π⎡⎤∀∈⎢⎥⎣⎦,cos sin x x ≥”的否定是“0,4x π⎡⎤∃∈⎢⎥⎣⎦,cos sin x x <”,故选:B.12.B解析:B 【分析】先已知条件计算参数m 的取值,再根据包含关系判断充分条件和必要条件即可. 【详解】“函数2()(33)m f x m m x =-+是幂函数”等价于:2331m m -+=,即2320m m -+=,故1m =或2m =,即取值集合为{}1,2A =;“函数22()2g x mx m x m =-+值域为[)0,+∞”等价于:()2223()2g x mx m x m m x m m m =-+=-+-中,0m >且30m m -=,即()()110m m m +-=,故1m =,即取值集合为{}1B =.故B 是A 的真子集,“1m =或2m =”是“1m =”的必要不充分条件,即“函数2()(33)m f x m m x =-+是幂函数”是“函数22()2g x mx m x m =-+值域为[)0,+∞”的必要不充分条件. 故选:B. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)p 是q 的必要不充分条件,等价于q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件,等价于p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,等价于p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件,等价于q 对应集合与p 对应集合互不包含.二、填空题13.【分析】将问题转化为成立分和利用判别式法求解【详解】因为成立当时不恒成立当时解得综上:实数a 的取值范围是故答案为: 解析:[2,)+∞【分析】将问题转化为x R ∀∈,210ax a ++-≥成立,分0a =和 0a ≠,利用判别式法求解. 【详解】因为x R ∀∈,210ax a ++-≥成立,当0a =时,10-≥,不恒成立,当0a ≠时,()08410a a a >⎧⎨∆=--≤⎩,解得2a ≥,综上:实数a 的取值范围是[2,)+∞, 故答案为:[2,)+∞14.如果那么【分析】根据逆否命题的概念即可写出它的逆否命题【详解】原命题的逆否命题为:如果那么解析:如果2x ab ≥,那么22x a b ≥+. 【分析】根据逆否命题的概念,即可写出它的逆否命题 【详解】原命题的逆否命题为:如果2x ab ≥,那么22x a b ≥+.15.①②【分析】对于①把特称命题否定为全称命题即可;对于②由充分条件和必要条件的定义判断即可;对于③取验证即可;对于④由为真命题得命题与命题至少有一个为真命题由此可判断【详解】解:对于①命题的否定是所以解析:①② 【分析】对于①,把特称命题否定为全称命题即可;对于②,由充分条件和必要条件的定义判断即可;对于③,取0m =验证即可;对于④,由p q ∨为真命题,得命题p 与命题q 至少有一个为真命题,由此可判断 【详解】解:对于①,命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”,所以①正确;对于②,因为10x y +≠,所以5x =与5y =不可能同时成立,即10x y +≠可得5x ≠或5y ≠,但5x ≠或5y ≠不能得到10x y +≠,比如4,6x y ==,可得10x y +=,所以“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件,所以②正确;对于③,题“若22am bm <,则a b <”的逆命题为“若a b <,则22am bm <”,当0m =时,结论不成立,所以③错误;对于④,若p q ∨为真命题,则命题p 与命题q 至少有一个为真命题,而当命题p 为真命题,命题q 为假命题时,p ⌝与q 均为假命题,所以④错误, 故答案为:①②16.【分析】根据题意可知命题是真命题可得出由此可求得实数的取值范围【详解】由于命题是假命题则该命题的否定是真命题解得因此实数的取值范围是故答案为:解析:[)1,+∞【分析】根据题意可知,命题“x R ∀∈,220x x a ++≥”是真命题,可得出0∆≤,由此可求得实数a 的取值范围, 【详解】由于命题“x ∃∈R ,220x x a ++<”是假命题,则该命题的否定“x R ∀∈,220x x a ++≥”是真命题,440a ∴∆=-≤,解得1a ≥. 因此,实数a 的取值范围是[)1,+∞. 故答案为:[)1,+∞.17.假【分析】根据否命题的定义写出并判断命题的真假【详解】解:命题若则的否命题是若则可判断为假命题故答案为假【点睛】本题考查四种命题的关系以及判断命题的真假否命题为将条件和结论分别否定是解决本题的关键解析:假 【分析】根据否命题的定义,写出并判断命题的真假. 【详解】解:命题“若1x >,则0x >”的否命题是“若1x ≤,则0x ≤”,可判断为假命题. 故答案为假. 【点睛】本题考查四种命题的关系以及判断命题的真假,否命题为将条件和结论分别否定是解决本题的关键.18.(1+∞)【分析】由充分必要条件与集合的关系得:A B 列不等式组运算得解【详解】由x ∈A 是x ∈B 成立的一个充分不必要条件得:A B 即即m >1故答案为:(1+∞)【点睛】本题考查了充分必要条件与集合间解析:(1,+∞). 【分析】由充分必要条件与集合的关系得:A B ,列不等式组运算得解 【详解】由x ∈A 是x ∈B 成立的一个充分不必要条件, 得:A B ,即1112m m +>-⎧⎨+>⎩,即m >1,故答案为:(1,+∞). 【点睛】本题考查了充分必要条件与集合间的包含关系,属简单题.19.(2)(3)【分析】(1)根据基本不等式等号成立的条件可判断;(2)由等比数列的通项公式代入得进而可证明等差;(3)由大边对大角结合余弦定理可判断;(4)由数量积小于0结合两向量不共线可得解【详解】解析:(2)(3) 【分析】(1)根据基本不等式等号成立的条件可判断;(2)由等比数列的通项公式11n n a a q -=,代入得1ln (1)ln ln n a n q a =+-,进而可证明等差;(3)由大边对大角结合余弦定理可判断; (4)由数量积小于0结合两向量不共线可得解. 【详解】(1)根据基本不等式知当sin 0x >时,4sin 4sin x x +≥=,当且仅当sin 2x =时取得最小值4,但是sin (0,1)x ∈,所以4取不到,故不正确;(2)若{}n a 是各项均为正数的等比数列,设首项为1a ,公比为q ,则11n n a a q -=,所以1ln (1)ln ln n a n q a =+-,所以111ln (ln ln )[ln (1)ln ]ln ln n n a a n q a n q q a +-=+-+-=, 所以{}ln n a 是等差数列,故正确;(3)ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c 且最大边长为c ,则角C 最大,且222cos 02a b c C ab+-=>,所以角C 为锐角,则ABC 一定是锐角三角形,故正确;(4)若向量(4,2)a =,(,1)b λ=,且,a b 是锐角, 则420a b λ⋅=+>,且24λ≠,解得12λ>-且2λ≠,故不正确. 故答案为:(2)(3). 【点睛】本题是一道综合试题,涉及基本不等式及等差等比数列的通项公式,余弦定理和向量的所成角求参,属于中档题.20.乙【解析】四人供词中乙丁意见一致或同真或同假若同真即丙偷的而四人有两人说的是真话甲丙说的是假话甲说乙丙丁偷的是假话即乙丙丁没偷相互矛盾;若同假即不是丙偷的则甲丙说的是真话甲说乙丙丁三人之中丙说甲乙两解析:乙 【解析】四人供词中,乙、丁意见一致,或同真或同假,若同真,即丙偷的,而四人有两人说的是真话,甲、丙说的是假话,甲说“乙、丙、丁偷的”是假话,即乙、丙、丁没偷,相互矛盾;若同假,即不是丙偷的,则甲、丙说的是真话,甲说“乙、丙、丁三人之中”,丙说“甲、乙两人中有一人是小偷”是真话, 可知犯罪的是乙.【点评】本体是逻辑分析题,应结合题意,根据丁说“乙说的是事实”发现,乙、丁意见一致,从而找到解题的突破口,四人中有两人说的是真话,因此针对乙、丁的供词同真和同假分两种情况分别讨论分析得出结论.三、解答题21.选①:1m ≤-;选②:23m <<;选③:3m <.【分析】首先求出p 为真命题以及q 为真命题时,实数m 的取值范围,然后再利用复合命题的真假表确定实数m 的取值范围.【详解】若p 为真命题,[]1,2x ∀∈-,2210x x m -+->,只需()2max 21m x x >-++, 设()()()2222121122f x x x x x x =-++=--+=--+≤, 所以2m >,所以p 为假命题时,2m ≤若q 为真命题,x ∃∈R ,()212102x m x +-+=, 只需()2114202m ∆=--⨯⨯≥,解得3m ≥或1m ≤-, 若q 为假命题,则13m <<若选①,p q ⌝∧为真命题,则p ⌝真且q 真,,若p ⌝为真命题,即p 为假命题时,所以2m ≤, q 为真命题,所以p q ⌝∧为真命题,实数m 的取值范围为1m ≤-;若选②,p q ∧⌝为真命题,则p 真且q ⌝真,只需p 真且q 假,22313m m m >⎧⇒<<⎨<<⎩, 若选③,p q ⌝∨⌝为真命题,不妨假设p q ⌝∨⌝为假命题,则p ⌝假且q ⌝假,即p 真且q 真,此时3m ≥,所以p q ⌝∨⌝为真命题时,3m <22.10,2⎡⎤⎢⎥⎣⎦. 【分析】首先求出命题p 与q ,再根据p 是q 的充分不必要条件建立不等式组,求解即可.【详解】由题意得,21:01x p x -<-,解得112x <<,所以1:12p x <<, 由2:2110q x a x a a ,解得1a x a ≤≤+,即1q a x a ≤≤+:,要使得p 是q 的充分不必要条件,则1112a a +≥⎧⎪⎨≤⎪⎩,解得102a ≤≤,所以实数a 的取值范围是10,2⎡⎤⎢⎥⎣⎦. 【点睛】本题考查由充分不必要条件求参数的范围的问题,将命题之间的充分不必要条件转化为集合之间的关系是解决此类问题的关键,属于中档题.23.(1)10,33⎡⎫--⎪⎢⎣⎭;(2)1,2⎛⎫-∞- ⎪⎝⎭. 【分析】(1)先分别求出集合A ,B ,由此能求出A B ;(2)求出集合{|}0{|}22C x x p x x p =+≥=≥-,由x C ∈是x A ∈充分条件,得到C A ⊆,由此能求出实数p 的取值范围.【详解】(1)∵函数()22)lg(3f x x x =+-的定义域为集合A , ∴2230|3{}{|A x x x x x =+->=<-或1}x >,∵函数1()||g x a x x =+-在[31]--,上存在零点时的a 的取值集合B , ∴()0g x =在[]3,1x ∈--有解1110,2||3a x x x x ⎡⎤⇒=-=+∈--⎢⎥⎣⎦, 即10,23B ⎡⎤=--⎢⎥⎣⎦, ∴10,33A B ⎡⎫⋂=--⎪⎢⎣⎭. (2)∵集合{|}0{|}22C x x p x x p =+≥=≥-,x C ∈是x A ∈充分条件, ∴C A ⊆,∴21p ->,解得12p <-, ∴实数p 的取值范围是1,2⎛⎫-∞-⎪⎝⎭. 【点睛】本题主要考查交集、实数的取值范围的求法,考查函数性质、交集定义、充分条件等基础知识,考查运算求解能力,属于基础题.24.(1)()11,2,332a ⎛⎫∈⋃ ⎪⎝⎭;(2)52m =. 【分析】 (1)当1a >时,根据离心率e满足3e ∈,即可求解实数a 取值范围;(2)由p 是q 的充分条件,且p 不是q 的必要条件,得出不等式组,即可求解实数m 的值.【详解】(1)当1a >时,∵2221381,49e e a =-<<,∴211194a <<,∴1132a <<, 综上所述()11,2,332a ⎛⎫∈⋃ ⎪⎝⎭ (2)∵12a m -<,∴1122m a m -<<+,则题意可知 1123{1122m m -≥+≤或122{132m m -≥+≤,解得m φ∈或52m =,经检验,52m =满足题意, 综上52m =. 25.(][),14,-∞-+∞【分析】 求解一元二次不等式得到命题p 为真命题,命题q 为假命题的x 的取值集合,取交集得答案.【详解】由2230x x --≥,得1x ≤-或3x ≥,p ∴是真命题的x 的取值范围为(][),13,-∞-+∞;由240x x -<,得04x <<,q ∴是假命题的x 的取值范围为(][),04,-∞+∞.∴满足p 是真命题,q 是假命题的实数x 的取值范围是(][),14,-∞-+∞.【点睛】本题考查命题的真假判断与应用,考查一元二次不等式的解法,是基础题.26.(1)14a ≥;(2)4,9⎛⎤-∞- ⎥⎝⎦ 【分析】(1)首先计算p 真,p 真时a 的范围,再根据p q ∧为真得到不等式组,即可得到答案. (2)首先根据题意得到()()11502490g a g a ⎧=+≤⎪⎨=+≤⎪⎩,再解不等式组即可. 【详解】(1)因为()af x x =是[)0,+∞上的增函数,所以0a >,即p 真:0a >, 方程()0g x =有实根,则21640a a -≥,14a ≥或0a ≤.即q 真:14a ≥或0a ≤. 因为p q ∧为真,所以0104a a a >⎧⎪⎨≥≤⎪⎩或,解得14a ≥. (2)因为“[]1,2x ∈”是“()0g x ≤”的充分条件, 所以()()11502490g a g a ⎧=+≤⎪⎨=+≤⎪⎩,解得49a . 所以实数a 的取值范围:4,9⎛⎤-∞- ⎥⎝⎦. 【点睛】本题主要考查了根据复合命题的真假求参数,同时考查了充分条件,属于中档题.。
苏教版高中数学选修1-1第1章常用逻辑用语章末检测题(含解析)
苏教版高中数学选修1-1第1章常用逻辑用语章末检测题(含解析)一、填空题.给出命题:若函数y=f是幂函数,则函数y=f的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是________.解析:易知原命题是真命题,则其逆否命题也是真命题,而逆命题、否命题是假命题.故它的逆命题、否命题、逆否命题三个命题中,真命题有一个.答案:1.下列命题中,真命题是________.①∃x0∈R,ex0≤0;②∀x∈R,2x>x2;③a+b=0的充要条件是ab=-1;④a>1,b>1是ab>1的充分条件.解析:因为∀x∈R,ex>0,故排除①;取x=2,则22=22,故排除②;a+b=0,取a=b=0,则不能推出ab=-1,故排除③;应填④.答案:④.命题“若x2≥1,则x≥1或x≤-1”的逆否命题是________.解析:命题的条件为“x2≥1”,结论为“x≥1或x≤-1”,否定结论作条件,否定条件作结论,即为其逆否命题.答案:若-10;④函数y=sinx+sin|x|的值域是[-2,2].其中正确命题的序号是________.解析:当G=ab时,有G2=ab,所以a,G,b成等比数列,但当a,G,b成等比数列时,还可以有G=-ab,所以G=ab是a,G,b成等比数列的充分不必要条件,故①正确;当cosαcosβ=1时,有cosα=cosβ=-1或cosα=cosβ=1,即α=21π+π,β=22π+π或α=23π,β=24π,这时α+β=2π+2π或α+β=2π,必有sin =0,故②正确;由于|x-4|的最小值等于0,所以当a≤0时,不等式|x -4|0,故③正确;函数y=sinx+sin|x|=2sinx,x≥00,xx2;④∀x∈R,有x2+4>0.其中的真命题是________.解析:方程x2=2的解只有无理数x=±2,所以不存在有理数x使得方程x2=2成立,故②为假命题;比如存在x =0,使得03=02,故③为假命题,①④显然正确.答案:①④.若非空集合A,B,c满足A∪B=c,且B不是A的子集,则“x∈c”是“x∈A”的________条件.解析:x∈A⇒x∈c,但是x∈c不能推出x∈A.答案:必要不充分.“a=18”是“对任意的正数x,2x+ax≥1”的________条件.解析:a=18⇒2x+ax=2x+18x≥22x×18x=1,另一方面对任意正数x,2x+ax≥1只要2x+ax≥22x×ax=22a ≥1⇒a≥18.答案:充分不必要.已知命题p:关于x的不等式x2+2ax+4>0对∀x∈R 恒成立;命题q:函数y=-x是R上的减函数.若“p∨q”为真命题,“p∧q”为假命题,则实数a的取值范围是________.解析:由x2+2ax+4>0对∀x∈R恒成立,得Δ=2-4×41,解得a1,则α必定是锐角.其中真命题的序号是________.解析:①“若xy=1,则x,y互为倒数”的逆命题为“若x,y互为倒数,则xy=1”,是真命题;②“相似三角形的周长相等”的否命题为“两个三角形不相似,则周长不相等”,显然是假命题;③∵b≤-1,∴Δ=4b2-4=-4b≥4>0,∴“若b≤-1,则x2-2bx+b2+b=0有实数根”为真命题,∴其逆否命题也是真命题;④∵当α=7π3时,sinα+cosα>1成立,∴此命题是假命题.答案:①③3.已知命题p:x2-x≥6,q:x∈Z,则使得x∈时,“p且q”与“綈q”同时为假命题的x组成的集合=________.解析:x∈时,“p且q”与“綈q”同时为假命题,即x∈时,p假且q真.故令x2-x0,∴原不等式化为x2-ax +20.∵∀x∈R时,2x2+x+1>0恒成立,∴Δ=2-8,s:x2+x+1>0.如果对∀x∈R,r与s有且仅有一个是真命题.求实数的取值范围.解:∵sinx+cosx=2sinx+π4≥-2,∴当r是真命题时,0恒成立,有Δ=2-40,即x>0,y>0或x0,y>0时,|x+y|=x +y=|x|+|y|,当x2},P={x|x<3},则“x∈或x∈P”是“x∈”的什么条件?求使不等式4x2-2x-1<0恒成立的充要条件.解:x∈或x∈P⇒x∈R,x∈⇔x∈,因为x∈或x∈Px∈,但x∈⇒x∈或x∈P.故“x∈或x∈P”是“x∈”的必要不充分条件.当≠0时,不等式4x2-2x-1<0恒成立⇒4<0,Δ=42+16<0,⇔-4<<0.又当=0时,不等式4x2-2x-1<0,对x ∈R恒成立.故使不等式4x2-2x-1<0恒成立的充要条件是-4<≤0.。
苏教版高中数学高二选修1-1练习第一章《常用逻辑用语》章末检测
章末检测一、填空题1.下列语句中,是命题的是________(填序号).①|x +2|;②-5∈Z ;③π∉R ;④{0}∈N .2.命题“若a >b ,则2a >2b -1”的否命题为_________________________________.3.已知命题p :∀x ∈R ,x 2+2x -a >0.若p 为真命题,则实数a 的取值范围是__________.4.等比数列{a n }的公比为q ,则“a 1>0且q >1”是“∀n ∈N +,都有a n +1>a n ”的____________条件.5.与命题“若x ∈A ,则y ∉A ”等价的命题是________(填序号).①若x ∉A ,则y ∉A ;②若y ∉A ,则x ∈A ;③若x ∉A ,则y ∈A ;④若y ∈A ,则x ∉A .6.已知p :x =3或x =2,q :x -3=3-x ,则p 是q ______________条件.7.已知α、β、γ为互不重合的三个平面,命题p :若α⊥β,β⊥γ,则α∥γ;命题q :若α上不共线的三点到β的距离相等,则α∥β.对以上两个命题,下列结论中正确的是________(填序号).①命题“p 且q ”为真;②命题“p 或綈q ”为真;③命题“p 或q ”为假;④命题“綈p 且綈q ”为假.8.下列命题,其中说法正确的序号为____________.①命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0” ②“x 2-3x -4=0”是“x =4”的必要不充分条件③若p ∧q 是假命题,则p ,q 都是假命题④命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,都有x 2+x +1≥09.设n ∈N +,一元二次方程x 2-4x +n =0有整数..根的充要条件是n =________. 10.一元二次方程ax 2+4x +3=0 (a ≠0)有一个正根和一个负根的充要条件是________.11.在下列四个命题中,真命题的个数是________.①∀x ∈R ,x 2+x +3>0;②∀x ∈Q ,13x 2+12x +1是有理数; ③∃α,β∈R ,使sin(α+β)=sin α+sin β;④∃x 0,y 0∈Z ,使3x 0-2y 0=10.12.在下列四个结论中,正确的有________(填序号).①若A 是B 的必要不充分条件,则非B 也是非A 的必要不充分条件;②已知a 、b ∈R ,则“|a +b |=|a |+|b |”的充要条件为ab >0;③“⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac ≤0”是“一元二次不等式ax 2+bx +c ≥0的解集是R ”的充要条件;④“x ≠1”是“x 2≠1”的充分不必要条件;⑤“x ≠0”是“x +|x |>0”的必要不充分条件.二、解答题13.写出命题“若x -2+(y +1)2=0,则x =2且y =-1”的逆命题、否命题、逆否命题,并判断它们的真假.14.写出下列命题的“綈p ”命题,并判断它们的真假.(1)p :∀x ,x 2+4x +4≥0.(2)p :∃x ,x 2-4=0.15.求证:“a +2b =0”是“直线ax +2y +3=0和直线x +by +2=0互相垂直”的充要条件.16.设p :关于x 的不等式a x >1 (a >0且a ≠1)的解集为{x |x <0},q :函数y =lg(ax 2-x+a )的定义域为R .如果p 和q 有且仅有一个正确,求a 的取值范围.17.(1)设集合M ={x |x >2},P ={x |x <3},则“x ∈M 或x ∈P ”是“x ∈(M ∩P )”的什么条件?(2)求使不等式4mx 2-2mx -1<0恒成立的充要条件.18.命题:在等比数列{a n }中,前n 项和为S n ,若S m ,S m +2,S m +1成等差数列,则a m ,a m +2,a m +1成等差数列.(1)写出该命题的逆命题;(2)判断逆命题是否为真,并给出证明.答案1.②③④ 2.若a ≤b ,则2a ≤2b -13.a <-14.充分不必要5.④6.必要不充分7.②③8.①②④9.3或410.a <011.412.①③⑤13.解 逆命题:若x =2且y =-1, 则x -2+(y +1)2=0,真命题. 否命题:若x -2+(y +1)2≠0, 则x ≠2或y ≠-1,真命题.逆否命题:若x ≠2或y ≠-1, 则x -2+(y +1)2≠0,真命题.14.解 (1)綈p :∃x ,x 2+4x +4<0是假命题.(2)綈p :∀x ,x 2-4≠0是假命题.15.证明 充分性:当b =0时,如果a +2b =0,那么a =0,此时直线ax +2y +3=0平行于x 轴,直线x +by +2=0平行于y 轴,它们互相垂直;当b ≠0时,直线ax +2y +3=0的斜率k 1=-a 2,直线x +by +2=0的斜率k 2=-1b,如果a +2b =0,那么k 1k 2=⎝⎛⎭⎫-a 2×⎝⎛⎭⎫-1b =-1,两直线互相垂直. 必要性:如果两条直线互相垂直且斜率都存在,那么k 1k 2=⎝⎛⎭⎫-a 2×⎝⎛⎭⎫-1b =-1,所以a +2b =0; 若两直线中有直线的斜率不存在,且互相垂直,则b =0,且a =0.所以,a +2b =0.综上,“a +2b =0”是“直线ax +2y +3=0和直线x +by +2=0互相垂直”的充要条件.”16.解 当p 真时,0<a <1,当q 真时,⎩⎪⎨⎪⎧a >0,1-4a 2<0,即a >12, ∴p 假时,a >1,q 假时,a ≤12. 又p 和q 有且仅有一个正确.当p 真q 假时,0<a ≤12, 当p 假q 真时,a >1.综上得,a ∈⎝⎛⎦⎤0,12∪(1,+∞). 17.解 (1)“x ∈M 或x ∈P ”⇒x ∈R ,x ∈(M ∩P )⇔x ∈(2,3).因为“x ∈M 或x ∈P ”D ⇒/x ∈(M ∩P ),但x ∈(M ∩P )⇒x ∈M 或x ∈P .故“x ∈M 或x ∈P ”是“x ∈(M ∩P )”的必要不充分条件.(2)当m ≠0时,不等式4mx 2-2mx -1<0恒成立 ⇔⎩⎨⎧4m <0Δ=4m 2+16m <0⇔-4<m <0. 又m =0时,不等式4mx 2-2mx -1<0对x ∈R 恒成立.故使不等式4mx 2-2mx -1<0恒成立的充要条件是-4<m ≤0.18.解 (1)逆命题:在等比数列{a n }中,前n 项和为S n ,若a m ,a m +2,a m +1成等差数列,则S m ,S m +2,S m +1成等差数列.(2)命题当q =1时为假,当q =-12时为真.证明如下:设数列{a n }的首项为a ,公比为q , 由已知,得2a m +2=a m +a m +1, ∴2a 1q m +1=a 1q m -1+a 1q m .∵a 1≠0,q ≠0,∴2q 2-q -1=0,∴q =1或q =-12. ①当q =1时,∵S m =ma 1,S m +2=(m +2)a 1, S m +1=(m +1)a 1,∴S m +S m +1≠2S m +2,∴S m ,S m +2,S m +1不成等差数列.②当q =-12时, ∵S m +S m +1=a 1⎣⎡⎦⎤1-⎝⎛⎭⎫-12m 1+12+a 1⎣⎡⎦⎤1-⎝⎛⎭⎫-12m +11+12=43a 1⎣⎡⎦⎤1-⎝⎛⎭⎫-12m +2, 而2S m +2=2a 1⎣⎡⎦⎤1-⎝⎛⎭⎫-12m +21+12=43a 1⎣⎡⎦⎤1-⎝⎛⎭⎫-12m +2, ∴S m +S m +1=2S m +2,∴S m ,S m +2,S m +1成等差数列. 综上可得:当公比q =1时,逆命题为假命题,当公比q =-12时,逆命题为真命题.。
高中数学(北师大版,选修11):第一章 常用逻辑用语+课件+同步测试+本章整合+综合素质检测(12份
第一章 §2 第1课时一、选择题1.“x >1”是“|x |>1”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件[答案] A[解析] 本题主要考查了充要条件.判定不是充分(或必要)条件,可用“特例法”.当x >1时,一定有|x |>1成立,而|x |>1时,不一定有x >1,如x =-5.所以“x >1”⇒“|x |>1”而“|x |>1” ⇒/ x >1.2.“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[答案] C[解析] 本题考查两条直线垂直的充要条件.当a =1时,直线x -ay =0化为直线x -y =0,∴直线x +y =0与直线x -y =0垂直; 当直线x +y =0和直线x -ay =0互相垂直时,有1-a =0,∴a =1,故选C.3.设x ∈R ,则“x >12”是“2x 2+x -1>0”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 [答案] A[解析] 本题考查充要条件,解一元二次不等式.由2x 2+x -1>0得(x +1)(2x -1)>0,即x <-1或x >12,所以x >12⇒2x 2+x -1>0,而2x 2+x -1>0⇒/ x >12,选A. 4.(2014·郑州市质检)设向量a =(x,1),b =(4,x ),则“a ∥b ”是“x =2”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件[答案] B[解析]a∥b⇔x2-4=0⇔x=±2,故a∥b是x=2的必要不充分条件.5.(2014·甘肃省三诊)设a,b∈R,则(a-b)·a2<0是a<b的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件[答案] A[解析](a-b)a2<0⇒a-b<0⇒a<b,而a<b,a=0时(a-b)·a2=0,∴a<b⇒/(a-b)a2<0∴选A.6.(2014·豫东、豫北十所名校联考)已知数列{a n}为等比数列,则p:a1<a2<a3是q:a4<a5的() A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件[答案] A[解析]由a1<a2<a3可知等比数列{a n}为递增的,所以a4<a5,充分性成立,但a4<a5时,不能确定{a n}为递增数列,也可能是正负交替数列,例如a n=2·(-1)n-1,所以必要性不成立.二、填空题7.命题p:x1、x2是方程x2+5x-6=0的两根,命题q:x1+x2=-5,那么命题p是命题q的________条件.[答案]充分不必要[解析]∵x1,x2是方程x2+5x-6=0的两根,∴x1+x2=-5.当x1=-1,x2=-4时,x1+x2=-5,而-1,-4不是方程x2+5x-6=0的两根.8.已知数列{a n},那么“对任意的n∈N+,点P n(n,a n),都在直线y=2x+1上”是“{a n}为等差数列”的______条件.[答案]充分不必要[解析]点P n(n,a n)都在直线y=2x+1上,即a n=2n+1,∴{a n}为等差数列,但是{a n}是等差数列时却不一定有a n=2n+1.9.命题p:sinα=sinβ,命题q:α=β,则p是q的________条件.[答案]必要不充分[解析] sin α=sin β⇒/ α=β,α=β⇒sin α=sin β,故填必要不充分.三、解答题10.是否存在实数p ,使“4x +p <0”是“x 2-x -2>0”的充分条件?如果存在,求出p 的取值范围.[答案] p ≥4[解析] x 2-x -2>0的解是x >2或x <-1,由4x +p <0得x <-p 4. 要想使x <-p 4时,x >2或x <-1成立,必须有-p 4≤-1,即p ≥4,所以当p ≥4时,x <-p 4⇒x <-1⇒x 2-x -2>0.所以p ≥4时,“4x +p <0”是“x 2-x -2>0”的充分条件.一、选择题11.“m =12”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件[答案] B[解析] 由于直线方程中含有字母m ,需对m 进行讨论.(m +2)x +3my +1=0与(m -2)x +(m +2)y -3=0互相垂直的充要条件是(m +2)(m -2)+3m (m +2)=0,即(m +2)(4m -2)=0,所以m =-2或m =12. 显然m =12只是m 取值的一种情况.故为充分不必要条件. 12.“x =2k π+π4(k ∈Z )”是“tan x =1”成立的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] “tan x =1”的充要条件为“x =k π+π4(k ∈Z )”,而“x =2kx +π4(k ∈Z )”是“x =kx +π4(k ∈Z )”的充分不必要条件,所以“x =2k π+π4(k ∈Z )”是“tan x =1”成立的充分不必要条件,故选A.13.(2013·浙江文,3)设α∈R ,则“α=0”是“sin α<cos α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] 由α=0可以得出sin α=0,cos α=1,sin α<cos α,但当sin α<cos α时,α不一定为0,所以α=0是sin α<cos α的充分不必要条件,选A.14.(2014·江西临川十中期中)已知平面向量a 、b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则“m =1”是“(a -m b )⊥a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] C[解析] ∵|a |=1,|b |=2,〈a ,b 〉=60°,∴a ·b =1×2×cos60°=1,(a -m b )⊥a ⇔(a -m b )·a =0⇔|a |2-m a ·b =0⇔m =1,故选C.二、填空题15.“a =12”是“y =cos 2ax -sin 2ax 的最小正周期为2π”的________条件. [答案] 充分不必要[解析] 由a =12,得y =cos 212x -sin 212x =cos x ,T =2π;反之,y =cos 2ax -sin 2ax =cos2ax ,由T =2π|2a |=2π,得a =±12.故是充分不必要条件. 16.下列说法正确的是________.①x 2≠1是x ≠1的必要条件;②x >5是x >4的充分不必要条件;③xy =0是x =0且y =0的充要条件;④x 2<4是x <2的充分不必要条件.[答案] ②④[解析] “若x 2≠1,则x ≠1”的逆否命题为“若x =1,则x 2=1”,易知x =1是x 2=1的充分不必要条件,故①不正确.③中,由xy =0不能推出x =0且y =0,则③不正确.②④正确.三、解答题17.对于实数x 、y ,判断“x +y ≠8”是“x ≠2或y ≠6”的什么条件.[答案] 充分不必要条件[解析] 可从集合角度判断,考虑集合A ={(x ,y )|x +y ≠8}与B ={(x ,y )|x ≠2或y ≠6}的包含关系,A 是平面直角坐标系内除去直线y =-x +8上所有点的集合;B ={(x ,y )|x ≠2}∪{(x ,y )|y ≠6}是直角坐标平面内除去直线x =2上的所有点或除去直线y =6上的所有点的集合,即除点(2,6)的所有点的集合,知A B ,所以“x +y ≠8”是“x ≠2或y ≠6”的充分不必要条件.18.求关于x 的方程ax 2+2x +1=0至少有一个负的实根的充要条件.[答案] a ≤1[解析] ①a =0时适合.②当a ≠0时,显然方程没有零根,若方程有两异号的实根,则a <0;若方程有两个负的实根,则必须满足⎩⎨⎧1a >0,-2a <0,Δ=4-4a ≥0.解得0<a ≤1. 综上可知,若方程至少有一个负的实根,则a ≤1;反之,若a ≤1,则方程至少有一个负的实根,因此,关于x 的方程ax 2+2x +1=0至少有一个负的实根的充要条件是a ≤1.。
高中数学 第1章 常用逻辑用语综合检测 苏教版选修11
第1章常用逻辑用语(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填在题中横线上)1.命题“不等式x2+x-6>0的解是x<-3或x>2”的逆否命题是________________________.【解析】“若p,则q”的逆否命题是“若綈q,则綈p”.【答案】若x≥-3且x≤2,则不等式x2+x-6≤02.(2013·无锡高二检测)“lg a=lg b”是“a=b”的________条件.(填“充分不必要、必要不充分或充要”)【解析】“lg a=lg b”时有“a=b>0”,但“a=b”时,可能a、b都小于0,lg a、lg b无意义.【答案】充分不必要3.“x∈R,x2+1<0”的否定是________(要求用数学符号表示).【解析】存在性命题的否定是全称命题.【答案】x∈R,x2+1≥04.若命题“p∧q”为假,且“綈p”为假,则p________,q________(填真、假).【解析】∵p∧q为假,∴p、q至少一假,∵綈p为假,∴p真q假.【答案】真假5.(2012·福建高考改编)已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是________.【解析】∵a=(x-1,2),b=(2,1),∴a·b=2(x-1)+2×1=2x.又a⊥b a·b =0,∴2x=0,∴x=0.【答案】x=06.(2013·连云港高二检测)已知命题p:“所有的平行四边形都不是矩形”,则綈p:________.【解析】命题的否命题为“有的平行四边形是矩形”.【答案】有的平行四边形是矩形7.(2012·辽宁高考改编)已知命题p:x1,x2∈R,(f(x2)-f(x1))(x2-x1)≥0,则綈p是________.【解析】綈p:x1,x2∈R,(f(x2)-f(x1))(x2-x1)<0.【答案】x1,x2∈R,(f(x2)-f(x1))(x2-x1)<08.(2012·安徽高考改编)设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的________条件.【解析】当α⊥β时,由于α∩β=m,bβ,b⊥m,由面面垂直的性质定理知,b⊥α.又∵aα,∴b⊥a.∴“α⊥β”是“a⊥b”的充分条件.而当aα且a∥m时,∵b⊥m,∴b⊥a.而此时平面α与平面β不一定垂直,∴“α⊥β”不是“a⊥b”的必要条件。
(典型题)高中数学选修1-1第一章《常用逻辑用语》测试卷(含答案解析)(1)
一、选择题1.已知命题p :x R ∀∈,0x x +≥,则( ) A .p ⌝:x R ∀∈,0x x +≤ B .p ⌝:x R ∃∈,0x x +≤ C .p ⌝:x R ∃∈,0x x +<D .p ⌝:x R ∀∈,0x x +<2.命题“存在一个无理数,它的平方是有理数”的否定是( )A .任意一个无理数,它的平方不是有理数B .任意一个无理数,它的平方是有理数C .存在一个无理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数 3.若,a b ∈R ,则“a b <”是“ln ln a b <”的( )A .充要条件B .既不充分也不必要条件C .充分不必要条件D .必要不充分条件 4.命题“a ∀∈R ,20a >或20a =”的否定形式是( ) A .a ∀∈R ,20a <B .a ∀∈R ,20aC .0a R ∃∈,200aD .0a R ∃∈,200a <5.下列结论错误的是( )A .若“p 且q ”与“p ⌝或q ”均为假命题,则p 真q 假.B .命题“存在R x ∈,20x x ->”的否定是“对任意的R x ∈,20x x -≤”.C .“若22am bm <,则a b <”的逆命题为真.D .“1x =”是“2320x x -+=”的充分不必要条件.6.设α,β为两个不同的平面,l ,m 为两条不同的直线,且m α⊥,l β//,则“//l m ”是“αβ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.2020年2月11日,世界卫生组织将新型冠状病毒感染的肺炎命名为COVID -19(新冠肺炎)新冠肺炎,患者症状是发热、干咳、浑身乏力等外部表征.“新冠肺炎患者”是“患者表现为发热、干咳、浑身乏力”的( ) 已知该患者不是无症状感染者............. A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.下列说法正确的个数为( )①命题“若3,x <则2x <”的逆命题为真命题;②命题“若2x ≠且5y ≠,则10xy ≠”的否命题为真命题; ③存在0x R ∈,使得00x <; ④若正数a 、b 满足1a b +=,则41493a b +≥恒成立.A .1B .2C .3D .49.下列说法中,正确的是( )A .若命题“非p ”与命题“p 或q ”都是真命题,那么命题q 一定是真命题B .命题“存在x ∈R ,使得210x x ++<”的否定是:“任意x ∈R ,都有210x x ++>”C .命题“若a b >,则221a b >-”的否命题为“若a b >,则221a b ≤-”D .“a b >”是“22ac bc >”的充分不必要条件10.已知实数x 、y ,则“1x y +≤”是“11x y ⎧≤⎪⎨≤⎪⎩.”的( )条件 A .充要 B .充分不必要 C .必要不充分D .既不充分也不必要 11.已知命题p :对任意1x >,都有21x >,则p ⌝为( )A .对任意1x >,都有21x ≤B .不存在1x <,使得21x ≤C .存在1x ≤,使得21x >D .存在1x >,使得21x ≤ 12.命题“0x ∀≥,20x x -≥”的否定是( ) A .0x ∃<,20x x -< B .0x ∀>,20x x -< C .0x ∃≥,20x x -≥D .0x ∃≥,20x x -<二、填空题13.命题“若实数a ,b 满足25a b +>,则2a >且1b >”是_______命题(填“真”或“假”). 14.已知a ∈R ,命题“存在x ∈R ,使20x ax a -+≤”为假命题,则a 的取值范围为__. 15.已知命题“x R ∀∈,240x x a -+>”的否定是______.16.能够说明“设x ,y ,z 是任意实数.若x y z >>,则x y z >+”是假命题的一组整数x ,y ,z 的值依次为______.17.写出命题“若22am bm <,则a b <”的否命题______.18.已知ABC △中,AC ==BC ABC △的面积为2,若线段BA 的延长线上存在点D ,使4BDC π∠=,则CD =__________.19.命题“x R ∀∈,222x x -+≥”的否定是__________. 20.命题:“x R ∀∈,2210x x ++>”的否定为____________;三、解答题21.设命题p :实数x 满足()224300x mx m m -+<>;命题q :实数x 满足214x>-.若p ⌝是q ⌝的充分不必要条件,求实数m 的取值范围.22.已知命题p :x R ∀∈,2210x ax -+>,命题q :函数(21)y a x =-单调递增, (1)若命题p 为真命题,求实数a 的取值范围; (2)若命题q 为真命题,求实数a 的取值范围;(3)若命题p q ∧是假命题,命题p q ∨是真命题,求实数a 的取值范围;23.已知实数0c >,设命题p :函数(21)x y c =-在R 上单调递减;命题q :不等式21x x c +->的解集为R ,如果p q ∨为真,p q ∧为假,求c 的取值范围.24.已知命题2:,(24)10p x x a x ∀∈+-+R ;命题0:q x ∃∈R ,00sin x x a =.若“p 且q ”为假命题,“p 或q ”为真命题,求实数a 的取值范围.25.设命题:p 关于x 的不等式1x a >(0a >且1)a ≠的解集为(,0)-∞;命题:q 函数()2()ln 2f x ax x =-+的定义域是R .如果命题“p q ∨”为真命题,“p q ∧”为假命题,求a的取值范围.26.已知命题()():230p x x -+≤;命题():110q a x a a -≤≤+>. (1)若6a =,“p 或q ”为真命题,“p 且q ”为假命题,求实数x 的取值范围. (2)若q ⌝是p ⌝的充分条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据全称命题的否定是特称命题进行否定即可得答案. 【详解】解:因为全称命题的否定为特称命题,所以命题p :x R ∀∈,0x x +≥的否定为:p ⌝:x R ∃∈,0x x +<. 故选:C.2.A解析:A 【分析】特称命题否定为全称命题,改量词否结论 【详解】解:命题“存在一个无理数,它的平方是有理数”的否定为“任意一个无理数,它的平方不是有理数”, 故选:A3.D解析:D 【分析】根据充分条件和必要条件的定义,结合对数的性质即可判断. 【详解】若0a b <≤,则ln a 和ln b 无意义,得不出ln ln a b <, 若ln ln a b <,则0a b <<,可以得出a b <, 所以“a b <”是“ln ln a b <”的必要不充分条件, 故选:D.4.D解析:D 【分析】利用全称命题的否定是特称命题可得出结论. 【详解】命题“a ∀∈R ,20a >或20a =”为全称命题,该命题的否定为“0a R ∃∈,200a <”.故选:D.5.C解析:C 【分析】对于A ,由或命题为假可得p ⌝和q 均为假命题,从而可判断,对于B ,根据特称命题的否定为全称命题可得解;对于C ,利用特值判断即可;对于D 直接根据条件和结论的关系判断即可. 【详解】对于A ,若“p 且q ”与“p ⌝或q ”均为假命题,则p ⌝和q 均为假命题,所以p 真q 假,A 正确;对于B ,命题“R x ∈存在20x x ->”的否定是“对任意的R x ∈,20x x -≤”.B 正确; 对于C ,“若22am bm <,则a b <”的逆命题为:“若a b <,则22am bm <”,当0m =时不成立,C 不正确;对于D ,“1x =”时,“2320x x -+=”成立,充分性成立, “2320x x -+=”成立时,“1x =或2x =”,必要性不成立, 所以“1x =”是“2320x x -+=”的充分不必要条件,D 正确. 故选:C.6.A解析:A 【分析】根据充分条件的定义,结合线面关系的性质、定理判断推出关系,即可知“//l m ”与“αβ⊥”的充分、必要关系. 【详解】由m α⊥,//l m ,则l α⊥,而l β//,所以αβ⊥; 由l β//,αβ⊥,m α⊥,不能确定//l m .∴“//l m ”是“αβ⊥”的充分不必要条件. 故选:A7.A解析:A 【分析】根据充分必要条件的定义判断. 【详解】新冠肺炎患者症状是发热、干咳、浑身乏力等外部表征,充分的同,但有发热、干咳、浑身乏力等外部表征的不一定是新冠肺炎患者,不必要,即为充分不必要条件. 故选:A .8.B解析:B 【分析】直接写出原命题的逆命题判断①;利用否命题的真假判断②;绝对值的几何意义判断③;基本不等式求解最值判断④. 【详解】①命题“若3x <,则2x <”的逆命题为“若2x <,则3x <”显然逆命题是真命题; 所以①正确②命题“若2x ≠且5y ≠,则10x y ⋅≠”的否命题为 “若2x =或5y =,则10x y ⋅=”是假命题;所以②不正确;③存在0x R ∈,使得00x <;不满足绝对值的几何意义,所以③不正确; ④若正数a 、b 满足1a b +=,()4144131342519999939b a a b a b a b ⎛⎫++=+++≥+=+= ⎪⎝⎭, 当且仅当35=b ,25a =时成立,则41254993a b +≥>恒成立.所以④正确. 故选:B .9.A解析:A 【分析】对四个选项,一个一个选项验证:对于A:由复合命题的真假,结合真值表,即可判断;对于B: 全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题;对于C:由否命题直接写出结论; 对于D:利用充要条件判断. 【详解】对于A:由“非p ”为真,知p 假,“p 或q ”为真,所以q 为真,故A 正确;对于B: 命题“存在x ∈R ,使得210x x ++<”的否定是:“任意x ∈R ,都有210x x ++≥”,故B 错误;对于C: 命题“若a b >,则221a b >-”的否命题为“若a b ≤,则221a b ≤-”,故C 错误; 对于D:若c=0,由 “a b >”不能推出 “22ac bc >”,故D 错误 故选:A. 【点睛】判断命题真假的题目,四个选项内容各不相干,需要对四个选项一一验证.10.B解析:B 【分析】根据充分必要条件的定义判断. 【详解】若1x y +≤,则1x ≤且1y ≤,否则1x y +≤不成立,是充分的,若1x ≤且1y ≤,1x y +≤不一定成立,如1x y ==,满足已知,但1x y +>,因此不必要.∴就是充分不必要条件, 故选:B .11.D解析:D 【分析】根据全称量词命题的否定是存在量词命题,写出结果即可. 【详解】因为全称量词命题的否定时存在量词命题,所以命题“对任意1x >,都有21x >”的否定是:“存在1x >,使21x ≤”, 故选:D.12.D解析:D 【分析】直接利用全称命题的否定是特称命题,将任意改成存在,并将结论否定即可. 【详解】根据全称命题的否定的定义可知,命题“0x ∀≥,20x x -≥”的否定是0x ∃≥,20x x -<.故选:D.二、填空题13.假【分析】列举特殊值判断真假命题【详解】当时所以命题若实数ab 满足则且是假命题故答案为:假解析:假 【分析】列举特殊值,判断真假命题. 【详解】当0,6a b ==时,25a b +>,所以,命题“若实数a ,b 满足25a b +>,则2a >且1b >”是假命题. 故答案为:假14.【分析】由题意可知命题对使恒成立为真命题可得出进而可解得实数的取值范围【详解】命题存在使为假命题命题对使恒成立为真命题所以故所以的取值范围为故答案为: 解析:()0,4【分析】由题意可知,命题“对x ∀∈R ,使20x ax a -+>恒成立”为真命题,可得出∆<0,进而可解得实数a 的取值范围. 【详解】命题“存在x ∈R ,使20x ax a -+≤”为假命题, 命题“对x ∀∈R ,使20x ax a -+>恒成立”为真命题,所以240a a ∆=-<,故04a <<,所以a 的取值范围为()0,4. 故答案为:()0,4.15.【分析】由全称命题的否定即可得解【详解】因为命题为全称命题所以该命题的否定为故答案为:解析:x R ∃∈,240x x a -+≤ 【分析】由全称命题的否定即可得解. 【详解】因为命题“x R ∀∈,240x x a -+>”为全称命题, 所以该命题的否定为“x R ∃∈,240x x a -+≤”. 故答案为:x R ∃∈,240x x a -+≤.16.321(答案不唯一)【分析】由题意举出反例即可得解【详解】由题意整数满足但不满足所以的值依次可以为321故答案为:321(答案不唯一)解析:3,2,1(答案不唯一) 【分析】由题意举出反例即可得解. 【详解】由题意,整数x ,y ,z 满足x y z >>,但不满足x y z >+, 所以x ,y ,z 的值依次可以为3,2,1.故答案为:3,2,1(答案不唯一).17.若则【分析】根据否命题的定义即可求出【详解】命题若则的否命题为若则故答案为若则【点睛】本题考查了四种命题之间的关系属于基础题解析:若22am bm ≥,则a b ≥ 【分析】根据否命题的定义即可求出. 【详解】命题“若22am bm <,则a b <”的否命题为若22am bm ≥,则a b ≥, 故答案为若22am bm ≥,则a b ≥ 【点睛】本题考查了四种命题之间的关系,属于基础题.18.【解析】的面积为或若可得与三角形内角和定理矛盾在中由余弦定理可得:在中由正弦定理可得:故答案为【方法点睛】以三角形为载体三角恒等变换为手段正弦定理余弦定理为工具对三角函数及解三角形进行考查是近几年高解析:3【解析】2,6,AC BC ABC ==∆的面积为311··sin 26sin 222AC BC ACB ACB =∠=∠,1sin ,26ACB ACB π∴∠=∴∠=或56π,若5,64ACB BDC BAC ππ∠=∠=<∠,可得546BAC ACB πππ∠+∠>+>,与三角形内角和定理矛盾,6ACB π∴∠=,∴在ABC ∆中,由余弦定理可得:2232?·cos 2622622AB AC BC AC BC ACB =+-∠=+-⨯⨯⨯=6B π∴∠=,∴在BCD ∆中,由正弦定理可得:16·sin 23sin 2BC BCD BDC===∠,故答【方法点睛】以三角形为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.19.【分析】根据全称命题的否定为特称命题即可得结果【详解】命题是全称命题所以命题的否定是特称命题故答案为:【点睛】本题主要考查全称命题的否定属于简单题全称命题与特称命题的否定与命题的否定有一定的区别否定 解析:,222x x x R -∃∈+<【分析】根据全称命题“(),x M p x ∀∈”的否定为特称命题“()00,x M p x ∃∈⌝”即可得结果. 【详解】命题“x R ∀∈,222x x -+”是全称命题,所以,命题“x R ∀∈,222x x -+”的否定是特称命题x R ∃∈,222x x -+<. 故答案为:x R ∃∈,222x x -+<. 【点睛】本题主要考查全称命题的否定,属于简单题.全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可.20.【分析】根据全称命题的否定是特称命题进行求解即可【详解】解:命题是全称命题则命题的否定是特称命题命题的否定为故答案为:【点睛】本题主要考查含有量词的命题的否定根据全称命题的否定是特称命题是解决本题的解析:0x R ∃∈,200210x x ++≤【分析】根据全称命题的否定是特称命题进行求解即可. 【详解】解:命题是全称命题,则命题的否定是特称命题,∴命题“x R ∀∈,2210x x ++>”的否定为0x R ∃∈,200210x x ++≤. 故答案为:0x R ∃∈,200210x x ++≤.【点睛】本题主要考查含有量词的命题的否定,根据全称命题的否定是特称命题是解决本题的关键,属于基础题.三、解答题21.4,23m ⎡⎤∈⎢⎥⎣⎦.【分析】解一元二次不等式以及分式不等式可得命题p :3m x m <<;命题q :24x <<,再由命题的等价性可得q 是p 的充分不必要条件,从而可得234m m ≤⎧⎨>⎩或234m m <⎧⎨≥⎩,解不等式组即可求解. 【详解】由22430x mx m -+<,得()()30x m x m --<, 又0m >,所以3m x m << ,由214x >-,可得()()2210024044x x x x x -->⇒<⇒--<--,即24x << 因为p ⌝是q ⌝的充分不必要条件,所以q 是p 的充分不必要条件. 设(),3A m m =,()2,4B =, 则B 是A 的真子集,故234m m ≤⎧⎨>⎩或234m m <⎧⎨≥⎩即4,23m ⎡⎤∈⎢⎥⎣⎦. 22.(1)()1,1-;(2)1,2⎛⎫+∞ ⎪⎝⎭;(3)[)11,1,2a ⎛⎤∈-⋃+∞ ⎥⎝⎦.【分析】(1)由x R ∀∈,2210x ax -+>恒成立,利用判别式法求解. (2)根据函数(21)y a x =-单调递增,由210a ->求解.(3)根据命题p q ∧是假命题,命题p q ∨是真命题,则由p 、q 一真一假求解. 【详解】(1)因为命题p 为真命题,即x R ∀∈,2210x ax -+>恒成立, 所以2440a ∆=-<, 解得11a -<<,所以实数a 的取值范围是()1,1-.(2)若命题q 为真命题,即函数(21)y a x =-单调递增, 则210a ->, 解得12a >, 所以实数a 的取值范围是1,2⎛⎫+∞⎪⎝⎭. (3)因为命题p q ∧是假命题,命题p q ∨是真命题,所以p 、q 一真一假,①若p 真、q 假,则1112a a -<<⎧⎪⎨≤⎪⎩,解得112a -<≤; ②若p 假、q 真,则1112a a a ≤-≥⎧⎪⎨>⎪⎩或,解得1a ≥; 综上:[)11,1,2a ⎛⎤∈-⋃+∞ ⎥⎝⎦23.1c ≥.【解析】试题分析:命题p :函数()x y 2c 1=-在R 上单调递减,可得:1c 12<<. 命题q :不等式x x 2c 1+->的解集为R ,可得1c 2>,如果p q ∨为真,p q ∧为假,可得p,q 只能一真一假,解出即可.试题由函数()x y 2c 1=-在R 上单调递减可得,02c 11<-<,解得1c 12<<. 设函数()22,2f x x x 2c {2,x cx c x c c -≥=+-=<,可知()f x 的最小值为2c , 要使不等式x x 2c 1+->的解集为R ,只需12c 1,c 2>>, 因为p 或q 为真,p 且q 为假,所以p,q 只能一真一假, 当p 真q 假时,有112{12c c <<≤,无解; 当p 假q 真时,有10,12{12c c c ≤≤≥>,可得c 1≥, 综上,c 的取值范围为c 1≥.24.[2,1)(2,3]-.【分析】首先求出各个命题为真命题时对应a 的范围,根据“p 且q ”为假命题,“p 或q ”为真命题,得到命题p 和命题q 一真一假,分类讨论求得结果.【详解】当命题p 为真命题时,2(24)40a ∆=--≤,解得13a ≤≤,当命题q 为真命题时,02sin()3a x π=-,则22a -≤≤,由命题“p 且q ”为假命题,“p 或q ”为真命题,则,则命题p 和命题q 一真一假,当p 真q 假时,1322a a a ≤≤⎧⎨-⎩或,解得23a <≤, 当当p 假q 真时,1322a a a ⎧⎨-≤≤⎩或,解得21a -≤<, 所以实数a 的取值范围是[2,1)(2,3]-. 【点睛】该题考查的是有关简易逻辑的问题,涉及到的知识点有根据复合命题的真假确定参数的取值范围,复合命题真值表,属于中档题目.25.()10,1,8⎛⎤+∞ ⎥⎝⎦【分析】先分别假设p ,q 为真命题,求出对应的a 的范围,再根据题意,得到p 和q 有且只有一个是真命题,由此可求出结果.【详解】由题意,若p 为真命题,则01a <<;若q 为真命题,则220ax x -+>对任意x ∈R 恒成立,所以0180a a >⎧⎨∆=-<⎩,解得18a >; 因为命题“p q ∨”为真命题,“p q ∧”为假命题,所以p 和q 有且只有一个是真命题.若p 真q 假,则0118a a <<⎧⎪⎨≤⎪⎩,解得108a <≤; 若p 假q 真,则118a a >⎧⎪⎨>⎪⎩,综上所述:()10,1,8a ⎛⎤∈+∞ ⎥⎝⎦. 【点睛】本题主要考查由复合命题的真假求参数的问题,涉及一元二次不等式恒成立问题,属于基础题型.26.(1)[)(]5,32,7--⋃;(2)4a ≥.【分析】(1)分别求出p 是真命题和q 是真命题时x 的取值范围,在根据p 、q 一真一假讨论即可;(2)题目中给的条件等价于p 是q 的充分条件,设命题,p q 的解集分别为集合,A B ,根据A B ⊆即可求得a 的取值范围.【详解】由()()230x x -+≤得 :32p x -≤≤,():110q a x a a -≤≤+>,设[3,2],[1,1]A B a a =-=-+(1)6a =时:57q x -≤≤,由已知可知p 与q 一真一假若p 为真命题,q 为假命题,则3275x x x -≤≤⎧⎨><-⎩或,所以x φ∈ 若p 假命题,q 为真命题,则5723x x x -≤≤⎧⎨><-⎩或, 则[)(]5,32,7x ∈--⋃,综上:[)(]5,32,7x ∈--⋃ (2)根据题意知:q ⌝是p ⌝的充分条件,p 是q 的充分条件,即A B ⊆ 1312a a -≤-⎧⎨+≥⎩,解得4a ≥, 所以实数a 的取值范围4a ≥.【点睛】本题主要考查了由符合命题的真假性求参数的取值范围,属于基础题.。
(典型题)高中数学选修1-1第一章《常用逻辑用语》测试(答案解析)
一、选择题1.命题x R ∀∈,1x e x ≥+的否定是( )A .x R ∀∈,1x e x <+B .x R ∃∈,1x e x <+C .x R ∃∉,1x e x <+D .x R ∀∉,1x e x <+2.命题 0:[1,4]p x ∃∈-,()00f x <, 则p ⌝是( ) A .[1,4]x ∀∈-,()0f x < B .0[1,4]x ∃∈-,()00f x ≥ C .0[1,4]x ∃∈-,()00f x ≤D .[1,4]x ∀∈-,()0f x ≥3.命题“x R ∀∈,210x x +-<”的否定是( ) A .x R ∃∈,210x x +-> B .x R ∃∈,210x x +-≥ C .x R ∀∈,210x x +-≥D .x R ∀∈,210x x +->4.命题“对任意的[3,)x ∈+∞,都有29x ”的否定是( ) A .对任意的[3,)x ∈+∞,都有29x < B .对任意的(,3)x ∈-∞,都有29x C .存在[3,)x ∈+∞,使得29x <D .存在[3,)x ∈+∞,使得29x5.已知命题3:0,0,p x x x ∀>+>则命题p 的否定为( ) A .30,0x x x ∀≤+≤ B .30000,0x x x ≤+≤∃ C .30,0x x x ∀>+≤D .30000,0x x x >+≤∃6.已知命题:(0,)p x ∀∈+∞,lg x x >,则p 的否定是( ) A .000(0,),lg x x x ∃∈+∞≤ B .(0,),lg x x x ∀∈+∞≤ C .000(0,),lg x x x ∃∈+∞>D .(0,),lg x x x ∀∈+∞<7.“22320x x --<”的一个必要不充分条件可以是( ) A .1x >- B .01x << C .1122x -<< D .1x <8.已知条件p :12x +>,条件q :x a >,且p ⌝是q ⌝的充分不必要条件,则a 的取值范围是( ) A .](,1-∞B .](,3-∞-C .[)1,-+∞D .[)1,+∞9.“a b >”是“||||a a b b >”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分又不必要条件D .充要条件10.已知命题()0:1,p x ∃∈+∞,使得0012x x +=;命题:q x R ∀∈,22350x x -+>.那么下列命题为真命题的是( )A .p q ∧B .()p q ⌝∨C .()p q ∨⌝D .()()p q ⌝∧⌝11.已知命题p :对任意1x >,都有21x >,则p ⌝为( ) A .对任意1x >,都有21x ≤ B .不存在1x <,使得21x ≤ C .存在1x ≤,使得21x >D .存在1x >,使得21x ≤12.命题“21,0x x x ∀>->”的否定为( ) A .21,0x x x ∀>-≤ B .21,0x x x ∃>-≤ C .21,0x x x ∀≤-≤D .21,0x x x ∃≤-≤二、填空题13.命题“存在实数0x ,使得02x 大于03x ”用符号语言可表示为_________.14.若命题:P x R ∀∈,210ax a ++-≥是真命题,则实数a 的取值范围是______.15.记集合A =[a ,b ],当θ∈,64ππ⎡⎤-⎢⎥⎣⎦时,函数f (θ)=2cos 2cos θθ+θ的值域为B ,若“x ∈A ”是“x ∈B ”的必要条件,则b ﹣a 的最小值是__. 16.已知命题2:(2,),4p x x ∀∈+∞>,则p ⌝为_______. 17.已知命题“x R ∀∈,240x x a -+>”的否定是______. 18.给出以下几个结论: ①若0a b >>,0c <,则c c a b<; ②如果b d ≠且,b d 都不为0,则111221n n nn n n nd b d db db dbb d b++----+++⋅⋅⋅++=-,*n N ∈;③若1e ,2e 是夹角为60的两个单位向量,则122ae e ,1232be e 的夹角为60;④在ABC 中,三内角,,A B C 所对的边分别为,,a b c ,则()22cos cos c a B b A a b -=-;其中正确结论的序号为______.19.命题p :[1,1]x ∃∈-,使得2x a <成立;命题:(0,)q x ∀∈+∞,不等式21ax x <+恒成立.若命题p q ∧为假,p q ∨为真,则实数a 的取值范围为_______. 20.命题“x R ∀∈,222x x -+≥”的否定是__________.三、解答题21.设集合2{|230}A x x x =--<,集合{}22B x a x a =-<<+. (1)若2a =,求A B 和A B ;(2)设命题:p x A ∈,命题:q x B ∈,若p 是q 成立的必要不充分条件,求实数a 的取值范围.22.已知集合{}5log (1)1(0)A xax a =+<>∣,{}22320B x x x =--<∣. (1)求集合A ,B ;(2)已知:p x A ∈,:q x B ∈,若p 是q 的_________条件,求实数a 的取值范围. 请在①必要不充分、②充分不必要、③充要,这三个条件中选择一个填在横线上(若多选,按第一个给分),补全第(2)题,并根据所选条件解答该题.23.写出命题“若2x ≥,3y ≥,则5x y +≥”的逆命题、否命题和逆否命题,并判断这四种命题的真假.24.已知集合()222220{|}A x x a x a a =--+-≤,2540{|}B x x x =-+≤(1)若2a =,求A B ,(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.25.已知命题p :实数m 满足2<<a m a (0a >);命题q :实数m 满足方程22126x y m m +=--表示双曲线. (1)若命题q 为真命题,求实数m 的取值范围;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.26.p :关于x 的方程()2240x a x +-+=无解,q :22m a m -<<+(0m >)(1)若5m =时,“p q ∨”为真命题,“p q ∧”为假命题,求实数a 的取值范围. (2)当命题“若p ,则q ”为真命题,“若q ,则p ”为假命题时,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据命题的否定的定义判断. 【详解】命题x R ∀∈,1x e x ≥+的否定是x R ∃∈,1x e x <+. 故选:B .2.D解析:D 【分析】根据特称命题的否定为全称命题,即可得到答案. 【详解】因为命题 0:[1,4]p x ∃∈-,()00f x <,所以[1,4]:x p ∀∈-⌝,()0f x ≥. 故选:D3.B解析:B 【分析】根据全称命题的否定是特称命题即可得正确答案. 【详解】命题“x R ∀∈,210x x +-<”的否定是x R ∃∈,210x x +-≥ 故选:B4.C解析:C 【分析】根据全称命题“(),x M p x ∀∈”的否定为特称命题“()00,x M p x ∃∈⌝”即可得结果. 【详解】因为全称命题的否定是特称命题,否定全称命题时, 一是要将全称量词改写为存在量词,二是否定结论,所以“对任意的[3,)x ∈+∞,都有29x ”的否定是“存在[3,)x ∈+∞,使得29x <”, 故选:C.5.D解析:D 【分析】利用全程命题的否定直接写出答案. 【详解】由于“∀”的否定为“∃”,则排除A 与C 选项;命题的否定是对该命题的真值取否定. 故选:D 【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.6.A解析:A 【分析】直接根据全称命题的否定写出结论. 【详解】命题:(0,)p x ∀∈+∞,lg x x >为全称命题,故p 的否定是:000(0,),lg x x x ∃∈+∞≤. 故选:A 【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.7.A解析:A 【分析】先通过解二次不等式化简条件22320x x --<,再利用充分条件与必要条件的定义逐一判断即可. 【详解】22320x x --<等价于122x -<<,对于A ,122x -<<能推出1x >-,1x >-不能推出122x -<<,1x >-是22320x x --<的必要不充分条件;对于B ,122x -<<不能推出01x <<,01x <<能推出122x -<<,01x <<是22320x x --<的充分不必要条件;对于C ,122x -<<不能推出1122x -<<,1122x -<<能推出122x -<<,1122x -<<是22320x x --<的充分不必要条件; 对于D ,122x -<<不能推出1x <,1x <也不能推出122x -<<,1x <是22320x x --<的既不充分又不必要条件故选:A . 【点睛】方法点睛:判断一个条件是另一个条件的什么条件,一般先化简各个条件,再确定出哪一个是条件哪一个是结论;判断前者是否推出后者,后者是否推出前者,然后利用利用充分条件与必要条件的定义加以判断.8.D解析:D 【分析】根据充分不必要条件的定义及集合包含的关系求解. 【详解】123x x +>⇔<-或1x >,p ⌝是q ⌝的充分不必要条件,则q 是p 的充分不必要条件,所以1a ≥, 故选:D .【点睛】命题p 对应集合A ,命题q 对应的集合B ,则(1)p 是q 的充分条件⇔A B ⊆; (2)p 是q 的必要条件⇔A B ⊇;(3)p 是q 的充分必要条件⇔A B =;(4)p 是q 的既不充分又不必要条件⇔集合,A B 之间没有包含关系.9.D解析:D 【分析】构造函数()||f x x x =,知函数在R 上单调递增,利用增函数的定义可知||||a a a b b b ⇔>>,再利用充分必要的定义可得答案.【详解】令()||f x x x =,则22,0(),0x x f x x x ⎧≥=⎨-<⎩,作出函数()f x 的图像,由图可知,()f x 在R 上为单调递增函数,利用单调增函数定义可知,()()a b f a f b >⇔>即||||a a a b b b ⇔>>,故“a b >”是“||||a a b b >”的充要条件. 故选:D. 【点睛】关键点点睛:本题考查充分必要性的定义,解题的关键是构造函数()||f x x x =,并研究函数的单调性,利用单调性定义解题,考查学生的转化能力与数形结合思想,属于中档题.10.B解析:B 【分析】利用基本不等式可知命题p 为假命题,再由二次函数的判别式为负可知命题q 为真命题,最后根据复合命题的真值表可得()p q ⌝∨为真命题. 【详解】当()01,x ∈+∞,由基本不等式可知0012x x +≥(因为01x >,故等号不可取), 故命题p 为假命题,不等式22350x x -+>中,()234250∆=--⨯⨯< 故22350x x -+>恒成立,故命题q 为真命题,故p q ∧为假命题,()p q ⌝∨为真命题,所以()p q ∨⌝为假命题,()()p q ⌝∧⌝为假命题 故选: B11.D解析:D 【分析】根据全称量词命题的否定是存在量词命题,写出结果即可. 【详解】因为全称量词命题的否定时存在量词命题,所以命题“对任意1x >,都有21x >”的否定是:“存在1x >,使21x ≤”, 故选:D.12.B解析:B 【分析】由含量词命题否定的定义,写出命题的否定即可. 【详解】命题“1x ∀>,20x x ->”的否定是:1x ∃>,20x x -≤, 故选:B. 【点睛】关键点点睛:该题考查的是有关含有一个量词的命题的否定问题,正确解题的关键是要明确全称命题的否定是特称命题,注意表达形式即可.二、填空题13.【分析】直接利用存在量词命题的定义求解【详解】命题存在实数使得大于用符号语言可表示为:故答案为: 解析:00,23x x x R ∃∈>【分析】直接利用存在量词命题的定义求解. 【详解】命题“存在实数0x ,使得02x 大于03x ”用符号语言可表示为:000,23x xx R ∃∈>, 故答案为:000,23x xx R ∃∈>14.【分析】将问题转化为成立分和利用判别式法求解【详解】因为成立当时不恒成立当时解得综上:实数a 的取值范围是故答案为: 解析:[2,)+∞【分析】将问题转化为x R ∀∈,210ax a ++-≥成立,分0a =和 0a ≠,利用判别式法求解. 【详解】因为x R ∀∈,210ax a ++-≥成立,当0a =时,10-≥,不恒成立,当0a ≠时,()08410a a a >⎧⎨∆=--≤⎩,解得2a ≥,综上:实数a 的取值范围是[2,)+∞, 故答案为:[2,)+∞15.3【分析】根据三角函数知识求出再根据必要条件的概念列式可解得结果【详解】函数f (θ)=2θ当θ∈时所以所以即若x ∈A 是x ∈B 的必要条件则B ⊆A 所以所以∴b ﹣a 的最小值是3故答案为:3【点睛】关键点点解析:3 【分析】根据三角函数知识求出B ,再根据必要条件的概念列式可解得结果. 【详解】函数f (θ)=2cos 2cos θθ+θ=2cos 21θθ++2sin(2)16πθ=++.当θ∈,64ππ⎡⎤-⎢⎥⎣⎦时,22[,]663πππθ+∈-,所以1sin(2)[,1]62πθ+∈-,所以2sin(2)1[0,3]6πθ++∈,即[0,3]B =,若“x ∈A ”是“x ∈B ”的必要条件,则B ⊆A . 所以03a b ≤⎧⎨≥⎩,所以3b a -≥,∴b ﹣a 的最小值是3. 故答案为:3. 【点睛】关键点点睛:将“x ∈A ”是“x ∈B ”的必要条件转化为B ⊆A ,是解题关键. 16.【分析】根据全称命题的否定可直接得出结果【详解】命题的否定为:故答案为:解析:2(2,),4x x ∃∈+∞≤【分析】根据全称命题的否定,可直接得出结果. 【详解】命题2:(2,),4p x x ∀∈+∞>的否定为p ⌝:2(2,),4x x ∃∈+∞≤. 故答案为:2(2,),4x x ∃∈+∞≤17.【分析】由全称命题的否定即可得解【详解】因为命题为全称命题所以该命题的否定为故答案为:解析:x R ∃∈,240x x a -+≤ 【分析】由全称命题的否定即可得解. 【详解】因为命题“x R ∀∈,240x x a -+>”为全称命题, 所以该命题的否定为“x R ∃∈,240x x a -+≤”. 故答案为:x R ∃∈,240x x a -+≤.18.②④【分析】根据不等式性质知①错误;根据等比数列求和公式知②正确;根据平面向量数量积和夹角的运算知③错误;利用余弦定理化简知④正确【详解】对于①由知:又①错误;对于②数列是以为公比的等比数列②正确;解析:②④ 【分析】根据不等式性质知①错误;根据等比数列求和公式知②正确;根据平面向量数量积和夹角的运算知③错误;利用余弦定理化简知④正确. 【详解】对于①,由0a b >>知:11a b <,又0c <,c c a b∴>,①错误; 对于②,数列1221,,,,,n n n n nd d b d b db b ---⋅⋅⋅是以1b b d d ⎛⎫≠ ⎪⎝⎭为公比的等比数列, 111112211n n nnn n n n n n n b d b d b d b d d d d b d b db b b d b d b d d++++-----⋅-+++⋅⋅⋅++===-∴--,②正确;对于③,121cos602e e ⋅==, ()()221212112217232626222a b e e e e e e e e ∴⋅=+⋅-+=-+⋅+=-++=-,()22212112224442a e e e e e e =+=+⋅+=+=(22111223912496b e e e e e =-=-⋅+=-=1cos ,2a ba b a b⋅∴<>==-⋅,,120a b ∴<>=,③错误;对于④,由余弦定理得:22222222222222222a c b b c a a c b b c a c a b a b ac bc ⎛⎫+-+-+---+⋅-⋅==- ⎪⎝⎭,④正确. 故答案为:②④. 【点睛】本题考查命题真假性的判断,涉及到不等式的性质、等比数列求和、平面向量夹角的计算、余弦定理化简等知识,考查学生对于上述四个部分知识的掌握的熟练程度,属于综合型考题.19.【分析】首先求出命题为真时的取值范围再根据复合命题的真假求集合的运算得结论【详解】命题:使得成立时则命题不等式恒成立则当时当且仅当时等号成立∴若命题为假为真则一真一假真假时∴假真时综上或故答案为:【解析:[)1,2,2⎛⎤-∞+∞⎥⎝⎦【分析】首先求出命题,p q 为真时a 的取值范围,再根据复合命题的真假求集合的运算得结论. 【详解】命题p :[1,1]x ∃∈-,使得2x a <成立,[1,1]x ∈-时,1,222x⎡⎤∈⎢⎥⎣⎦,则12a >,命题:(0,)q x ∀∈+∞,不等式21ax x <+恒成立,则211x a x x x+<=+,当0x >时,12x x+≥,当且仅当1x =时等号成立,∴2a <. 若命题p q ∧为假,p q ∨为真,则,p q 一真一假, p 真q 假时,122a a ⎧>⎪⎨⎪≥⎩,∴2a ≥, p 假q 真时,122a a ⎧≤⎪⎨⎪<⎩,12a ≤,综上,2a ≥或12a ≤. 故答案为:[)1,2,2⎛⎤-∞+∞ ⎥⎝⎦.【点睛】本题考查复合命题的真假,由复合命题的真假求参数取值范围,本题还考查了不等式恒成立与能成立问题.属于中档题.20.【分析】根据全称命题的否定为特称命题即可得结果【详解】命题是全称命题所以命题的否定是特称命题故答案为:【点睛】本题主要考查全称命题的否定属于简单题全称命题与特称命题的否定与命题的否定有一定的区别否定 解析:,222x x x R -∃∈+<【分析】根据全称命题“(),x M p x ∀∈”的否定为特称命题“()00,x M p x ∃∈⌝”即可得结果.【详解】命题“x R ∀∈,222x x -+”是全称命题,所以,命题“x R ∀∈,222x x -+”的否定是特称命题x R ∃∈,222x x -+<.故答案为:x R ∃∈,222x x -+<.【点睛】本题主要考查全称命题的否定,属于简单题.全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可.三、解答题21.(1){}14A B x x ⋃=-<<,{}03A B x x ⋂=<<;(2)(],1-∞.【分析】(1)解一元二次不等式,得集合{}13A x x =-<<,然后代入2a =,得集合B ,利用交集与并集的定义求解;(2)由题意判断出B A ,分类讨论B =∅与B ≠∅两种情况. 【详解】(1){}{}223013A x x x x x =--<=-<<.因为2a =,所以{}04B x x =<<, 所以{}14A B x x ⋃=-<<,{}03A B x x ⋂=<<;(2)因为p 是q 成立的必要不充分条件,所以B A , 当B =∅时,22a a -≥+,得0a ≤当B ≠∅时,1223a a -≤-<+≤,得01a <≤,所以实数a 的取值范围(],1-∞.22.(1)14A x x a a ⎧⎫=-<<⎨⎬⎩⎭,122B x x ⎧⎫=-<<⎨⎬⎩⎭;(2)详见解析. 【分析】(1)根据对数不等式求解集合A ,一元二次不等式求集合B ;(1)若选择条件①转化为B A ,列不等式求解;若选择条件②,转化为A B ,列不等式求解;若选择条件③,则A B =,求解实数a .【详解】(1)()5log 11015ax ax +<⇔<+<,()0a >, 解得:14x a a -<<,即14A x x a a ⎧⎫=-<<⎨⎬⎩⎭, ()()223202210x x x x --<⇔-+<, 解得:122x -<<,即122B x x ⎧⎫=-<<⎨⎬⎩⎭; (2)若选择①,则p 是q 的必要不充分条件,则B A ,即112420a a a ⎧-≤-⎪⎪⎪≥⎨⎪>⎪⎪⎩,且等号不能同时成立,解得:02a <<; 若选择②,若p 是q 的充分不必要条件,则A B ,即112420a aa ⎧-≥-⎪⎪⎪≤⎨⎪>⎪⎪⎩且等号不能同时成立,解得:2a >; 若选择③,若p 是q 的充要条件,则A B =,即112420a a a ⎧-=-⎪⎪⎪=⎨⎪>⎪⎪⎩,解得:2a = 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.23.答案见解析.【分析】根据原命题与其逆命题、否命题、逆否命题的关系直接写结果,再举例说明假命题.【详解】原命题“若2x ≥,3y ≥,则5x y +≥,真;①逆命题:若5x y +≥,则2x ≥,3y ≥,当1x =时,4y =时,命题不成立,故为假命题.②否命题:若2x <或3y <,则5x y +<,当1x =,5y =时命题不成立,故为假命题,③逆否命题:若5x y +<,则2x <或3y <,为真命题.24.(1)[]1,2;(2)[3,4].【分析】(1)解不等式确定集合,A B ,再交集定义计算;(2)由A 是B 的真子集可得.【详解】(1)2a =,220x x -≤,此时[]0,2A =,[]1,4B =,[]1,2AB = (2)集合()222220|2{}{|}A x x a x a a x a x a =--+-≤=-≤≤,[]1,4B =,因为“x A ∈”是“x B ∈”的充分不必要条件,所以A 真包含于B ,所以214a a -≥⎧⎨≤⎩,解得34a ≤≤,所以实数a 的取值范围是[3,4]25.(1)26m <<;(2)23a ≤≤.【分析】(1)由题意可得()()260m m --<,即可求解.(2)若p 是q 的充分不必要条件,则{}|2a a m a <<是{}|26m m <<的真子集,根据集合的包含关系求出实数a 的取值范围即可.【详解】(1)若实数m 满足方程22126x y m m +=--表示双曲线, 则()()260m m --<,解得:26m <<,(2)若p 是q 的充分不必要条件,则{}|2a a m a <<是{}|26m m <<的真子集,所以2260a a a ≥⎧⎪≤⎨⎪>⎩,解得23a ≤≤,所以若p 是q 的充分不必要条件,求实数a 的取值范围是23a ≤≤【点睛】易错点睛:若若p 是q 的充分不必要条件则{}|2a a m a <<是{}|26m m <<的真子集, 一般情况下需要考虑{}|2a a m a <<=∅的情况,此情况容易被忽略,但题目中已经给出0a >,很明显{}|2a a m a <<≠∅.26.(1)32a -<≤-或67a ≤<;(2)4m >.【分析】(1)直接利用函数的性质和真值表的应用求出参数的取值范围.(2)直接利用四个条件的应用和集合间的关系的应用求出结果.【详解】(1)命题p :关于x 的方程()2240x a x +-+=无解, 则:()22160a ∆=--<,解得:26a -<<.命题:q :22m a m -<<+(0m >)由于5m =,故:37a -<<.由于“p q ∨”为真命题,“p q ∧”为假命题,故:①p 真q 假②p 假q 真,故:①2673a a a -<<⎧⎨≥≤-⎩或,无解. ②6237a a a ≥≤-⎧⎨-<<⎩或 解得:32a -<≤-或67a ≤<,故:a 的取值范围是:32a -<≤-或67a ≤<.(2)命题“若p ,则q ”为真命题,“若q ,则p ”为假命题时,故命题p 为命题q 的充分不必要条件.故:命题p 表示的集合{}26A a a =-<<是命题q 表示的集合(){}220B a m a m m =-<<+>的真子集.故:2262m m-≥-⎧⎨≤+⎩, 解得:4m ≥,当4m =时:A B =,故:4m >.【点睛】本题考查的知识要点:真值表的应用,四个条件的应用,集合间的关系的应用,主要考查学生的运算能力和转化能力,属于中等题型.。
高中数学 第一章《常用逻辑用语》章末复习跟踪训练 苏教版选修11
高中数学第一章《常用逻辑用语》章末复习跟踪训练苏教版选修11一、选择题1.下列命题中,是真命题的是()A.{x∈R|x2+1=0}不是空集B.{x∈N||x-1|<3}是无限集C.空集是任何集合的真子集D.x2-5x=0的根是自然数[答案] D[解析]对选项A,集合是空集,对选项B中的集合为{-1,0,1,2,3},是有限集,对于C,空集不是它本身的真子集,对于D,x2-5x=0的根为0和5,它们都是自然数,故选D.2.b=c=0是二次函数y=ax2+bx+c的图象经过原点的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] A[解析]若b=c=0,则二次函数y=ax2+bx+c=ax2经过原点,若二次函数y=ax2+bx+c过原点,则c=0,故选A.3.下列命题正确的是()A.∀x∈R,x2+2x+1=0B.∃x∈R,-x+1≥0C.∀x∈N*,log2x>0D.∃x∈R,cos x<2x-x2-3[答案] B[解析]∵x=2时,x2+2x+1=9≠0;x=-1时,-x+1=0;x=1时,log2x=0;对任意x∈R,2x-x2-3=-(x-1)2-2≤-2,而cos x≥-1.因此无论x取何值都有cos x>2x-x2-3,因此只有B正确.二、解答题4.判断下列命题的真假:(1)x∈A∩B当且仅当x∈A且x∈B;(2)x∈Z或x∈Q是x∈R的充分不必要条件;(3)若α、β为锐角,则α+β=90°是sinα=cosβ的充要条件;(4)a、b、c成等比数列的充要条件是b=ac;(5)函数f(x)=|x-a|在区间[1,+∞)上为增函数的必要不充分条件是a=1;(6)直线a⊥平面α,当且仅当a垂直于平面α内的两条相交直线.[解析]其中真命题有:(1)(2)(3)(6)(2)x∈Z或x∈Q,即x∈Q,Q R.(3)∵α、β为锐角,α+β=90°,∴sinα=sin(90°-β)=cosβ,∵sinα=cosβ=sin(90°-β),又0°<β<90°,∴0°<90°-β<90°,∵0°<α<90°,∴α=90°-β,∴α+β=90°.(4)a、b、c成等比数列⇒b2=ac⇒b=±ab,b=0,a=0,c=1时满足b=ac,但a、b、c不成等比数列.(5)f(x)=|x-a|在[a,+∞)上为增函数,a≤1时,在[1,+∞)上为增函数,a>1时,在[1,+∞)上不是增函数,故a=1是f(x)=|x-a|在[1,+∞)上为增函数的充分不必要条件.(1)(6)显然正确.5.对命题p:“1是集合{x|x2<a}中的元素”,q:“2是集合{x|x2<a}中的元素”,则a 为何值时,“p或q”是真命题?a为何值时,“p且q”是真命题?[分析]分别把命题p,q转化为对应的a的范围,然后由真值表,结合集合的运算求出a的范围.[解析]由1是集合{x|x2<a}中的元素,可得a>1,由2是集合{x |x 2<a }中的元素,可得a >4,即使得p ,q 为真命题的a 的取值集合分别为P ={a |a >1},T ={a |a >4}.当p ,q 至少一个为真命题时,“p 或q ”为真命题,则使“p 或q ”为真命题的a 的取值范围是P ∪T ={a |a >1};当p ,q 都为真命题时,“p 且q ”才是真命题,则使“p 且q ”为真命题的a 的取值范围是P ∩T ={a |a >4}.6.已知方程x 2+(2k -1)x +k 2=0,求使方程有两个大于1的根的充要条件.[解析] 设方程的两根为x 1、x 2,使x 1、x 2都大于1的充要条件是⎩⎪⎨⎪⎧ (2k -1)2-4k 2≥0,(x 1-1)+(x 2-1)>0,(x 1-1)(x 2-1)>0,即⎩⎪⎨⎪⎧ k ≤14,(x 1+x 2)-2>0,x 1x 2-(x 1+x 2)+1>0,由韦达定理,得⎩⎪⎨⎪⎧ k ≤14,-(2k -1)-2>0,k 2+(2k -1)+1>0,解得k <-2.所以所求的充要条件为k <-2.。
高中数学苏教版选修11第1章常用逻辑用语111
3.四种命题之间的关系
1.判断正误: (1)语句“x2+2x<0”是命题.( ) (2)两个互逆命题的真假性相同.( ) (3)对于一个命题的四种命题,可以一个真命题也没有.( )
【解析】 (1)×.因为语句“x2+2x<0”不能判断真假,故不是命题. (2)×.一个命题与它的逆命题的真假性没有关系. (3)√.四种命题可能都是假命题. 【答案】 (1)× (2)× (3)√
1.判断一个语句是否为命题的思路
2.判断命题真假的策略 (1)要判断一个命题是真命题,一般要有严格的证明或有事实依据,比如根据 已学过的定义、公理、定理证明或根据已知的正确结论推证. (2)要判断一个命题是假命题,只要举一个反例即可.
[再练一题] 1.下列语句中,哪些是命题,是命题的判断其真假. (1)lg 1000=3; (2)垂直于同一个平面的两直线平行; (3)设 a,b,c,d∈R,如果 a>b,c>d,那么 ac>bd; (4)三角函数都是周期函数; (5)明年 12 月 8 号本地下雨; (6)请你离开! (7)2x+3=0.
高中数学苏教版选修11第1章常用逻辑用语111
1.了解命题的概念,会判断命题的真假. 2.了解命题的四种形式,能正确分析它们之间的相互关系.(重点) 3.能利用四种命题的相互关系判断命题的真假.(易混点)
[基础·初探]
教材整理 命题与四种命题 阅读教材 P5,完成下列问题. 1.命题 能够 判断真假 的语句叫做命题.
【提示】 直接判断命题“若 x∉A∩B,则 x∉A∪B”的真假是不容易进行的, 它的逆否命题为“若 x∈A∪B,则 x∈A∩B”,很明显这是个假命题.
探究 3 由探究 1 和探究 2 我们可以得到哪些启示? 【提示】 有些带有否定性词语的命题不易直接判断其真假,可利用命题与 其逆否命题的等价性来判断其逆否命题的真假,从而可判断其真假.
高中数学 第一章 常用逻辑用语复习课件 苏教选修11
• [例6] (09·四川理)已知a,b,c,d为实数, 且c>d,则“a>b”是“a-c>b-d”的 ()
• A.充分而不必要条件 • B.必要而不充分条件 • C.充要条件 • D.既不充分也不必要条件. • [答案] B • [解析] 由a-c>b-d变形为a-b>c-d,
• (2)复合命题的真假判断是个难点,当直接 判断不易着手时,可转为判断它的等价命 题——逆否命题,这是一种重要的处理技 巧.
• [例2] 判断命题:“若a+b≠7,则a≠3, 且b≠4”的真假.
• [解析] 其逆否命题为:“若a=3或a=4, 则a+b=7”.显然这是一个假命题,
• ∴原命题为假.
• ⑦好人一生平安!
• ⑧解方程3x+1=0;
• ⑨方程3x+1=0只有一个解;
• ⑩3x+1=0.
• [解析] ①②③④⑥⑨都是命题,其中① ④⑥⑨为真命题.
• [点评] ⑤是疑问句,⑦是感叹句,⑧是 祈使句都不是命题,⑩中由于x的值未给, 故无法判断此句的真假,因而不是命题.
• [误区警示] 含有未知数的等式、不等式, 当式子成立与否与未知数的值有关时,它 不是命题.
• 第一章《常用逻辑用语》 • 章末归纳总结
• 1.学习命题,首先根据能否判断语句的 真假看是否是命题,掌握四种命题的组成 及互为逆否命题的等价性.
• 2.由于原命题和它的逆否命题是等价的, 所以当一个命题的真假不易判断时,往往 可以转而判断它的逆否命题的真假;有的 命题不易直接证明时,就可以改证它的逆 否命题成立,所以反证法的实质就是证明 “原命题的逆否命题成立”,所以教材在 阐述了四种命题后安排了用反证法的例题, 可以加深对命题等价性理解.
数学苏教版选修11课件:第1章1.1.2 充分条件和必要条件
(2)有两个角相等不一定是正三角形,反之一定成立,∴p q, q⇒ p,故 p 是 q 的必要不充分条件. (3)若 a2+b2=0,则 a=b=0,即 p⇒ q,若 a=b=0,则 a2 +b2=0,即 q⇒ p,所以 p 是 q 的充要条件.
(4)∵∠A=30°⇒ sin A=12,但是 sin A=12 ∠A=30°, ∴△ABC 中“∠A=30°”是“sin A=12”的充分不必要条 件,即 p 是 q 的充分不必要条件.
利用充分条件、必要条件、充要条件求参数的值
已知p:-6≤x-4≤6,q:x2-2x+1-m2≤0(m>0), 若非p是非q的充分不必要条件,求实数m的取值范围. [解] p:-6≤x-4≤6⇔-2≤x≤10. q:x2-2x+1-m2≤0⇔[x-(1-m)][x-(1+m)]≤0(m>0)⇔1 -m≤x≤1+m(m>0). 因为非 p 是非 q 的充分不必要条件, 所以 q 是 p 的充分不必要条件, 即{x|1-m≤x≤1+m} {x|-2≤x≤10},
在△ABC 中,sin A≠ 23⇒ A≠60°, 所以 p x2+x-m=0 的 Δ=1+4m>0, 即方程有实根; 方程 x2+x-m=0 有实根,即 Δ=1+4m≥0 m>0. 所以 p 是 q 的充分不必要条件.
判断充分条件、必要条件和充要条件的基本思路: (1)首先分清条件是什么,结论是什么; (2)然后尝试用条件推结论,再用结论推条件; (3)最后指出条件是结论的什么条件.
第1章 常用逻辑用语
1.1.2 充分条件和必要条件
第1章 常用逻辑用语
学习导航
学习 目标
1.结合具体实例,理解充分条件、必要条件的意 义.(重点) 2.会判断某些条件之间的关系.(难点)
高中数学(北师大版,选修11):第一章 常用逻辑用语+课件+同步测试+本章整合+综合素质检测(12份
第一章§4一、选择题1.已知命题p:所有有理数都是实数;命题q:正数的对数都是负数,则下列命题中为真命题的是()A.(¬p)或q B.p且qC.(¬p)或(¬q) D.(¬p)且(¬q)[答案] C[解析]命题p:所有有理数都是实数为真命题.命题q:正数的对数都是负数是假命题.¬p为假命题,¬q是真命题,(¬p)或(¬q)是真命题,故选C.2.已知命题p:a2+b2<0(a,b∈R),命题q:a2+b2≥0(a,b∈R),下列结论正确的是() A.“p或q”为真B.“p且q”为真C.“¬p”为假D.“¬q”为真[答案] A[解析]∵p为假,q为真,∴“p且q”为假,“p或q”为真,“¬p”为真,“¬q”为假,故选A.3.命题“p或q为真”是命题“q且p为真”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] B[解析]若p或q为真,则p、q一真一假或p、q均为真,若q且p为真,则q、p均为真,故选B.4.设命题p:x>2是x2>4的充要条件;命题q:若ac2>bc2,则a>b,则()A.p或q为真B.p且q为真C.p真q假D.p、q均为假[答案] A[解析]x>2⇒x2>4,x2>4⇒/ x>2,故p为假命题;由ac2>bc2⇒a>b,故q为真命题,∴p或q为真,p且q为假,故选A.5.下列命题:①5>4或4>5;②9≥3;③“若a>b,则a+c>b+c”;④“正方形的两条对角线相等且互相垂直”,其中假命题的个数为()A.0 B.1C.2 D.3[答案] A[解析]①②为“p或q”形式的命题,都是真命题,③为真命题,④为“p且q”形式的命题,为真命题,故选A.6.命题:关于x的方程x2+ax+2=0无实根,命题q:函数f(x)=log a x在(0,+∞)上单调递增,若“p且q”为假命题,“p或q”真命题,则实数a的取值范围是()A.(-22,1]∪[22,+∞)B.(-22,22)C.(-22,+∞)D.(-∞,22)[答案] A[分析](1)根据方程x2+ax+2=0无实根,判别式Δ<0,求出a的取值范围,得命题p成立的条件.(2)根据函数f(x)=log a x在(0,+∞)上单调递增,求出a的取值范围,得命题q成立的条件.(3)由“p且q”为假命题,“p或q”为真命题知p与q一真一假,因此分类讨论,求出a的取值范围.[解析]∵方程x2+ax+2=0无实根,∴△=a2-8<0,∴-22<a<22,∴p:-22<a<2 2.∵函数f(x)=log a x在(0,+∞)上单调递增,∴a>1.∴q:a>1.∵p且q为假,p或q为真,∴p与q一真一假.当p真q假时,-22<a≤1,当p假q真时,a≥2 2.综上可知,实数a的取值范围为(-22,1]∪[22,+∞).二、填空题7.“3≥3”是________形式的命题.[答案] p 或q[解析] 3≥3等价于3>3或3=3,故“3≥3”是“p 或q ”形式的命题.8.p :ax +b >0的解集为x >-b a; q :(x -a )(x -b )<0的解为a <x <b .则p 且q 是________命题(填“真”或“假”).[答案] 假[解析] p 中a 的符号未知,q 中a 与b 的大小关系未知,因此命题p 与q 都是假命题.9.若命题p :x ∈(A ∩B ),则命题“¬p ”是________.[答案] x ∉A 或x ∉B[解析] 命题p :x ∈(A ∩B ),即为x ∈A 且x ∈B ,故“¬p ”是x ∉A 或x ∉B .三、解答题10.已知命题p :函数f (x )=x 2+2mx +1在(-2,+∞)上单调递增;命题q :函数g (x )=2x 2+22(m -2)x +1的图像恒在x 轴上方,若p 或q 为真,p 且q 为假,求m 的取值范围.[答案] m ≥3或1<m <2[解析] 函数f (x )=x 2+2mx +1在(-2,+∞)上单调递增,则-m ≤-2,∴m ≥2,即p :m ≥2,函数g (x )=2x 2+22(m -2)x +1的图像恒在x 轴上方;则不等式g (x )>0恒成立,故Δ=8(m -2)2-8<0.解得1<m <3,即q :1<m <3.若p 或q 为真,p 且q 为假,则p 、q 一真一假.当p 真q 假时,由⎩⎨⎧ m ≥2m ≥3或m ≤1,得m ≥3, 当p 假q 真时,由⎩⎨⎧m <21<m <3,得1<m <2. 综上,m 的取值范围是{x |m ≥3或1<m <2}.一、选择题11.下列命题:①“矩形既是平行四边形又是圆的内接四边形”;②“菱形是圆的内接四边形或是圆的外切四边形”;③方程x 2-3x -4=0的判别式大于或等于0;④周长相等的两个三角形全等或面积相等的两个三角形全等;⑤集合A ∩B 是集合A 的子集,且是A ∪B 的子集.其中真命题的个数是( )A .1B .2C .3D.4[答案] C[解析] “或”命题为真,只需至少一个为真;“且”命题为真,需全为真.①、③、⑤为真命题.12.由命题p :“函数y =1x是减函数”与q :“数列a ,a 2,a 3,…是等比数列”构成的命题,下列判断正确的是( )A .p 或q 为真,p 且q 为假B .p 或q 为假,p 且q 为假C .p 或q 为真,p 且q 为假D .p 或q 为假,p 且q 为真[答案] B[解析] ∵p 为假,q 为假,∴p 或q 为假,p 且q 为假.13.已知命题p :m <0,命题q :x 2+mx +1>0对一切实数x 恒成立,若p 且q 为真命题,则实数m 的取值范围是( )A .m <-2B .m >2C .m <-2或m >2D .-2<m <0 [答案] D[解析] q :x 2+mx +1>0对一切实数恒成立,∴Δ=m 2-4<0,∴-2<m <2.p :m <0,∵p 且q 为真命题,∴p 、q 均为真命题,∴⎩⎨⎧-2<m <2m <0,∴-2<m <0. 14.(2014·辽宁师大附中期中)下列命题错误的是( )A .命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x ≠1,则x 2-3x +2≠0”B .若p 且q 为假命题,则p 、q 均为假命题C .命题p :存在x 0∈R ,使得x 20+x 0+1<0,则¬p :任意x ∈R ,都有x 2+x +1≥0 D .“x >2”是“x 2-3x +2>0”的充分不必要条件[答案] B[解析] 由逆否命题“条件的否定作结论,结论的否定为条件”知A 为真命题;p 且q 为假命题时,p 假或q 假,故B 错误;由“非”命题的定义知C 正确;∵x >2时,x 2-3x +2>0成立,x 2-3x +2>0时,x <1或x >2,∴D 正确.二、填空题15.(2014·福州市八县联考)已知命题p :m ∈R ,且m +1≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立,若p 且q 为假命题且p 或q 为真命题,则m 的取值范围是________.[答案] m ≤-2或-1<m <2[解析] p :m ≤-1,q :-2<m <2,∵p 且q 为假命题且p 或q 为真命题,∴p 与q 一真一假,当p 假q 真时,-1<m <2,当p 真q 假时,m ≤-2,∴m 的取值范围是m ≤-2或-1<m <2.16.由命题p :正数的平方大于0,q :负数的平方大于0组成的“p 或q ”形式的命题为________.[答案] 正数的平方大于0或负数的平方大于0三、解答题17.(1)分别写出由下列命题构成的“p 或q ”、“p 且q ”形式的复合命题,p :平行四边形的对角线相等;q :平行四边形的对角线互相平分.(2)已知命题p :王茹是共青团员,q :王茹是三好学习,用自然语言表述命题p 且q ,p 或q .[解析] (1) p 且q :平行四边形的对角线相等且互相平分;p 或q :平行四边形的对角线相等或互相平分.(2)p 且q :王茹既是共青团员,又是三好学习;p 或q :王茹是共青团员或是三好学生.18.给定两个命题,p :对任意实数x 都有ax 2+ax +1>0恒成立;q :a 2+8a -20<0,如果p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.[答案] (-10,0)∪[2,4)[解析] ax +ax +1>0恒成立,当a =0时,不等式恒成立,满足题意.当a ≠0时,由题意得⎩⎨⎧a >0Δ=a 2-4a <0,解得0<a <4.故0≤a <4. q :a 2+8a -20<0,∴-10<a <2.∵p 或q 为真命题,p 且q 为假命题,∴p 、q 一真一假. 当p 真q 假时,⎩⎨⎧ 0≤a <4a ≤10或a ≥2,∴2≤a <4. 当p 假q 真时,⎩⎪⎨⎪⎧a <0或a ≥4-10<a <2,∴-10<a <0. 综上可知,实数a 的取值范围是(-10,0)∪[2,4).。
苏教版高中数学选修11高二第一章常用逻辑用语测试题1
高中数学学习资料金戈铁骑整理制作高二数学选修1-1 第一章常用逻辑用语测试题 1班别:姓名:一、选择题(每道题只有一个答案,每道题 5 分,共 60 分)1234567891011121、一个命题与他们的抗命题、否命题、逆否命题这 4 个命题中()A 、真命题与假命题的个数同样B 真命题的个数必定是奇数C 真命题的个数必定是偶数D 真命题的个数可能是奇数,也可能是偶数2、以下命题中正确的选项是()①“若 x2+ y2≠0,则 x, y 不全为零”的否命题②“正多边形都相像”的抗命题③“若 m>0,则 x2+x-m=0 有实根”的逆否命题1④“若 x-32是有理数,则 x 是无理数”的逆否命题A 、①②③④B、①③④C、②③④D、①④113、“用反证法证明命题“假如x<y ,那么x5 < y5”时,假定的内容应当是()111111111111A 、x5=y5B、x5 < y5C、x5=y5且x5 < y5D、x5=y5或x5 > y54、“ a≠ 1 或 b≠2”是“ a+ b≠ 3”的()A 、充足不用要条件B、必需不充足条件C、充要条件D、既不充足也不用要5、设甲是乙的充足不用要条件,乙是丙的充要条件,丁是丙的必需非充足条件,则甲是丁的()A 、充足不用要条件B、必需不充足条件C、充要条件D、既不充足也不用要6、函数 f( x)= x|x+a|+b 是奇函数的充要条件是()A 、ab=0B、a+b=0C、a=b D、a2+b2=07、“若 x≠a 且 x≠b,则 x2-( a+b)x+ab≠ 0”的否命题()A、若 x= a 且 x=b,则 x2-( a+b)x+ab=0B、 B、若 x= a 或 x=b,则 x2-( a+b)x+ab≠0C、若 x= a 且 x=b,则 x2-( a+b)x+ab≠0D、 D、若 x= a 或 x=b,则 x2-( a+b)x+ab=08、“1与直线(m+2)x+(m-2)y-3=0互相垂直”的()m”是“直线 (m+2)x+3my+1=0 2A 、充足不用要条件B 、必需不充足条件C 、充要条件D 、既不充足也不用要9、命题 p :存在实数 m ,使方程 x 2+mx + 1= 0 有实数根,则“非 p ”形式的命题是( )A 、 存在实数 m ,使得方程 x 2+mx +1=0 无实根B 、不存在实数 m ,使得方程 x 2+ mx +1=0 有实根 2210. 若 " a b c d " 和 " a b e f " 都是真命题 , 其抗命题都是假命题,则 " c d " 是" ef " 的( ) A. 必需非充足条件 B. 充足非必需条件 C.充足必需条件 D. 既非充足也非必需条件11. 在以下结论中,正确的选项是( )① " p q" 为真是 " p q" 为真的充足不用要条件② " p q" 为假是 " p q" 为真的充足不用要条件③ " p q" 为真是 " p" 为假的必需不充足条件④ " p" 为真是 " pq" 为假的必需不充足条件A. ①② 12. 设会合uB. ①③ x, y xR, yC. ②④R , AD. ③④x, y 2xy m0 , Bx, y x y n 0 ,那么点 P (2,3)AC u B 的充要条件是( )A .m>-1,n<5B .m<-1,n<5C .m>-1,n>5D .m<-1,n>5二、填空题(每道题4 分,共 16 分)、判断以下命题的真假性 :①、若 m>0 ,则方程x 2- x + m =0 有实根13②、若 x>1,y>1,则 x+y>2 的抗命题 ③、对随意的 x ∈{x|-2<x<4},|x-2|<3 的否认形式④、△ >0 是一元二次方程 ax 2+bx +c = 0 有一正根和一负根的充要条件 14、“末位数字是 0 或 5 的整数能被 5 整除”的 否认形式是 否命题是15、若把命题“ A B ”当作一个复合命题,那么这个复合命题的形式是 __________,此中组成它的两个简单命题分 别 是。
高中数学 第一章 常用逻辑用语单元检测(A)苏教版选修11
第1章 常用逻辑用语(A)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.命题“若A ⊆B ,则A =B ”与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是________.2.设a ∈R ,则a >1是1a<1的________条件. 3.与命题“若x ∈A ,则y ∉A ”等价的命题是________.(填序号)①若x ∉A ,则y ∉A ;②若y ∉A ,则x ∈A ;③若x ∉A ,则y ∈A ;④若y ∈A ,则x ∉A .4.对于命题“我们班学生都是团员”,给出下列三种否定:①我们班学生不都是团员;②我们班有学生不是团员;③我们班学生都不是团员. 正确答案的序号是________.5.已知命题p :∃x ∈R ,使sin x =52;命题q :∀x ∈R ,都有x 2+x +1>0.给出下列结论:①命题“p ∧q ”是真命题;②命题“p ∧綈q ”是假命题;③命题“綈p ∨q ”是真命题;④命题“綈p ∨綈q ”是假命题.其中正确的是________.(填序号)6.下列命题是真命题的为________.(填序号) ①若1x =1y,则x =y ; ②若x 2=1,则x =1;③若x =y ,则x =y ;④若x <y ,则x 2<y 2.7.命题“若x 2<1,则-1<x <1”的逆否命题是______.(填序号)①若x 2≥1,则x ≥1或x ≤-1;②若-1<x <1,则x 2<1;③若x >1或x <-1,则x 2>1;④若x ≥1或x ≤-1,则x 2≥1.8.下列有关命题的说法正确的是________.(填序号)①命题“若x 2=1,则x =1”的否命题为:“若x 2=1,则x ≠1”;②“x =-1”是“x 2-5x -6=0”的必要不充分条件;③命题“∃x ∈R ,使得x 2+x +1<0”的否定是:“∀x ∈R ,均有x 2+x +1<0”;④命题“若x =y ,则sin x =sin y ”的逆否命题为真命题.9.设x ,y ∈R ,命题p :|x -y |<1,命题q :|x -y |≤1,则p 是q 的______________条件.10.下列四个命题中①“k =1”是“函数y =cos 2kx -sin 2kx 的最小正周期为π”的充要条件;②“a =3”是“直线ax +2y +3a =0与直线3x +(a -1)y =a -7相互垂直”的充要条件;③函数y =x 2+4x 2+3的最小值为2. 其中是假命题的为________(将你认为是假命题的序号都填上)11.已知命题p :∃x ∈R ,使tan x =1,命题q :x 2-3x +2<0的解集是{x |1<x <2},下列结论:①命题“p ∧q ”是真命题;②命题“p ∧綈q ”是假命题;③命题“綈p ∨q ”是真命题;④命题“綈p ∨綈q ”是假命题其中正确的是________.(填序号)12.设A 、B 为两个集合,下列四个命题:①A⊆B⇔对任意x∈A,有x∉B;②A⊆B⇔A∩B=∅;③A⊆B⇔A⊉B;④A⊆B⇔存在x ∈A,使得x∉B.其中真命题的序号是________(把符合要求的命题的序号都填上).13.已知α、β是不同的两个平面,直线a⊂α,直线b⊂β,命题p:a与b无公共点;命题q:α∥β,则p是q的__________条件.14.命题“ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是__________.二、解答题(本大题共6小题,共90分)15.(14分)(1)当c<0时,若ac>bc,则a<b.请写出该命题的逆命题、否命题、逆否命题,并分别判断真假;(2)p:对角线互相垂直的四边形是菱形,q:对角线互相平分的四边形是菱形,请写出“p或q”,“p且q”,“非p”形式的命题.16.(14分)判断命题“已知a、x为实数,如果关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则a≥1”的逆否命题的真假.17.(14分)设α、β是方程x2-ax+b=0的两个实根,试分析“a>2且b>1”是“两根都大于1”的什么条件?18.(16分)已知方程x2+(2k-1)x+k2=0,求使方程有两个大于1的实数根的充要条件.19.(16分)已知c>0,c≠1,设命题p:函数y=c x在R上单调递减,命题q:不等式x2-2x+c>0的解集为R.如果命题“p∨q”为真命题,“p∧q”为假命题,求实数c的取值范围.20.(16分)已知下列三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0至少有一个方程有实数根,求实数a 的取值范围.单元检测卷答案解析第1章 常用逻辑用语(A )1.2解析 原命题为假,故其逆否命题为假;其逆命题为真,故其否命题为真; 故共有2个真命题.2.充分不必要解析 ∵a>1⇒1a <1;1a<1⇒a>1或a<0 a>1, ∴是充分不必要条件.3.④解析 原命题与它的逆否命题为等价命题.故④正确.4.①②5.②③解析 因p 为假命题,q 为真命题,故綈p 真,綈q 假;所以p∧q 假,p∧綈q 假,綈p∨q 真,綈p∨綈q 真.6.①解析 由1x =1y得x =y ,①正确,②、③、④错误. 7.④解析 因“-1<x<1”的否定为“x≥1,或x≤-1”;“x 2<1”的否定为“x 2≥1”.又因“若p ,则q”的逆否命题为“若綈q ,则綈p”,故④正确.8.④9.充分不必要解析 由命题p 可以推出命题q ,而由命题q 不能推出命题p.10.①②③解析 ①“k=1”可以推出“函数y =cos 2kx -sin 2kx 的最小正周期为π”,但是函数y =cos 2kx -sin 2kx 的最小正周期为π,即y =cos 2kx ,T =2π|2k|=π,k =±1. ②“a=3”不能推出“直线ax +2y +3a =0与直线3x +(a -1)y =a -7相互垂直”,反之垂直推出a =25; ③函数y =x 2+4x 2+3=x 2+3+1x 2+3=x 2+3+1x 2+3,令x 2+3=t ,t≥3,y min =3+13=433. 11.①②③④解析 易知命题p 为真,命题q 也为真命题,所以p ∧q 为真,故①正确;由于p 真綈q 假,故p ∧綈q 为假,所以②正确;由于綈p 假q 真,故綈p ∨q 为真,所以③为正确;由于綈p ,綈q 都是假命题.故綈p ∨綈q 也为假命题,所以④正确.12.④解析 ∵A ⊆B ,∴有两种可能: (1)A∩B≠∅;(2)A∩B=∅.∴①②③都不对,只有④对.13.必要不充分解析 q ⇒p ,p ⇒q.14.[-3,0]解析 ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a≠0时,由⎩⎪⎨⎪⎧a<0Δ=4a 2+12a≤0得-3≤a<0; ∴-3≤a≤0.15.解 (1)逆命题:当c<0时,若a<b ,则ac>bc(真命题)否命题:当c<0时,若ac≤bc,则a≥b(真命题)逆否命题:当c<0时,若a≥b,则ac≤bc(真命题).(2)p 或q :对角线互相垂直的四边形或对角线互相平分的四边形是菱形.p 且q :对角线互相垂直的四边形且对角线互相平分的四边形是菱形.非p :对角线互相垂直的四边形不是菱形.16.解 方法一 (直接法)逆否命题:已知a 、x 为实数,如果a<1,则关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集为空集.判断如下:二次函数y =x 2+(2a +1)x +a 2+2图象的开口向上,判别式Δ=(2a +1)2-4(a 2+2)=4a -7.∵a<1,∴4a -7<0.即二次函数y =x 2+(2a +1)x +a 2+2与x 轴无交点,∴关于x 的不等式x 2+(2a +1)x+a 2+2≤0的解集为空集,故逆否命题为真.方法二 (先判断原命题的真假)∵a 、x 为实数,且关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集非空,∴Δ=(2a +1)2-4(a 2+2)≥0,即4a -7≥0,解得a≥74,∵a≥74>1, ∴原命题为真.又∵原命题与其逆否命题等价,∴逆否命题为真.方法三 (利用集合的包含关系求解)命题p :关于x 的不等式x 2+(2a +1)x +a 2+2≤0有非空解集.命题q :a≥1.∴p :A ={a|关于x 的不等式x 2+(2a +1)x +a 2+2≤0有实数解}={a|(2a +1)2-4(a2+2)≥0}=⎩⎨⎧⎭⎬⎫a|a≥74, q :B ={a|a≥1}.∵A ⊆B ,∴“若p ,则q”为真,∴“若p ,则q”的逆否命题“若綈q ,则綈p”为真.即原命题的逆否命题为真.17.解 由根与系数的关系得⎩⎪⎨⎪⎧ α+β=a αβ=b ,判定的条件是p :⎩⎪⎨⎪⎧a>2b>1,结论是q :⎩⎪⎨⎪⎧ α>1β>1(Δ≥0).①由α>1且β>1⇒a =α+β>2,b =αβ>1⇒a>2且b>1,故q ⇒p.②取α=4,β=12,则满足a =α+β=4+12>2,b =αβ=4×12=2>1,但pD ⇒/q. 综上所述,“a>2且b>1”是α>1且β>1的必要不充分条件.18.解 令f(x)=x 2+(2k -1)x +k 2,方程有两个大于1的实数根⇔⎩⎪⎨⎪⎧ Δ=-2-4k 2≥0-2k -12>1,即k<-2.所以其充要条件为k<-2.19.解 ∵y =c x 在R 上单调递减,∴0<c <1,命题p :0<c <1.∵不等式x 2-2x +c >0的解集为R ,∴Δ=(-2)2-4c <0,c >12, ∴命题q :c >12. ∵“p ∨q ”为真命题,“p ∧q ”为假命题,∴命题p 与命题q 恰好一真一假,∴p 为真q 为假,或p 为假q 为真,即⎩⎪⎨⎪⎧ 0<c <1c ≤12或⎩⎪⎨⎪⎧ c ≤0或c ≥1c >12,解得0<c ≤12或c ≥1. 综上可知,实数c 的取值范围是(1,12]∪[1,+∞). 20.解 假设三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0都没有实数根,则⎩⎪⎨⎪⎧ Δ1=a 2--4a +Δ2=a -2-4a 2<0Δ3=a 2--2a ,即⎩⎪⎨⎪⎧ -32<a <12a >13,或a <-1,-2<a <0得-32<a <-1.∴所求实数a 的范围是a ≤-32或a ≥-1.。
(好题)高中数学选修1-1第一章《常用逻辑用语》检测题(包含答案解析)(1)
一、选择题1.命题“存在一个无理数,它的平方是有理数”的否定是( )A .任意一个无理数,它的平方不是有理数B .任意一个无理数,它的平方是有理数C .存在一个无理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数 2.下列选项中,p 是q 的必要不充分条件的是( ) A .p :a c b d +>+,q :a b >且c d >B .p :1a >, 1b >,q :()x f x a b =-(0a >且1a ≠)的图像不过第二象限C .p :1x =,q :2x x =D .p :1a >,q :()log a f x x =(0a >且1a ≠)在()0,∞+上为增函数 3.已知平面α,直线,l m 且//m α,则“l m ⊥”是“l α⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .不充分也不必要条件4.已知命题3:0,0,p x x x ∀>+>则命题p 的否定为( ) A .30,0x x x ∀≤+≤ B .30000,0x x x ≤+≤∃ C .30,0x x x ∀>+≤D .30000,0x x x >+≤∃5.已知条件p :12x +>,条件q :x a >,且p ⌝是q ⌝的充分不必要条件,则a 的取值范围是( ) A .](,1-∞B .](,3-∞-C .[)1,-+∞D .[)1,+∞6.命题“210x x x ∀>->,”的否定是( ) A .21,0x x x ∃≤-> B .21,0x x x ∀>-≤ C .21,0x x x ∃>-≤D .21,0x x x ∀≤->7.2020年2月11日,世界卫生组织将新型冠状病毒感染的肺炎命名为COVID -19(新冠肺炎)新冠肺炎,患者症状是发热、干咳、浑身乏力等外部表征.“新冠肺炎患者”是“患者表现为发热、干咳、浑身乏力”的( ) 已知该患者不是无症状感染者.............A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.设a ,b 都是不等于1的正数,则“222a b >>”是“log 2log 2a b <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件9.若命题:“x R ∃∈,220ax ax -->”为假命题,则实数a 的取值范围是( )A .(][),80,-∞-+∞B .()8,0-C .(],0-∞D .[]8,0-10.已知直线l ,m 和平面α,直线l α⊄,直线m α⊂,则“//l m ”是“//l α”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件11.若条件:|1|1p x -,条件:q x a ,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .2aB .2aC .2a -D .2a -12.已知α,R β∈,则“αβ=”是“sin sin αβ=”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题13.命题“20000,20200x x x ∃>+->”的否定是___________. 14.已知命题p :“[1,2]x ∀∈,20x a -≥”,命题q :“∃x ∈R ,2220x ax a ++-=”,若命题“p q ⌝∧”是真命题,则实数a 的取值范围是_______.15.命题:p x R ∃∈,2210x x -+-,写出命题p 的否定________. 16.已知函数()f x 的定义域为R .若存在常数0c >,对x ∀∈R ,有()()f x c f x c +>-,则称函数()f x 具有性质P .给定下列三个函数:①()cos f x x =;②()x f x e =;③3()f x x x =-. 其中,具有性质P 的函数的序号是__________.17.若命题“x R ∃∈,使得2kx x k >+成立”是假命题,则实数k 的取值范围是________. 18.给出以下几个结论: ①若0a b >>,0c <,则c c a b<; ②如果b d ≠且,b d 都不为0,则111221n n nn n n nd b d db db dbb d b++----+++⋅⋅⋅++=-,*n N ∈;③若1e ,2e 是夹角为60的两个单位向量,则122ae e ,1232be e 的夹角为60;④在ABC 中,三内角,,A B C 所对的边分别为,,a b c ,则()22cos cos c a B b A a b -=-;其中正确结论的序号为______.19.命题p :[1,1]x ∃∈-,使得2x a <成立;命题:(0,)q x ∀∈+∞,不等式21ax x <+恒成立.若命题p q ∧为假,p q ∨为真,则实数a 的取值范围为_______.20.已知,,αβγ是三个不同的平面,,m n 是两条不同的直线,给出下列命题: ①若//,m n αα⊂,则//m n ; ②若,//αβ⋂=m m n ,且,n n αβ⊄⊄,则//,//αβn n ;③若,,//αβαβ⊥⊂n m ,则m n ⊥; ④ ,,,αγβγαβγ⊥⊥⋂=⊂m n ,则m n ⊥. 其中真命题是__________.三、解答题21.已知命题p :“关于x 的方程2x 2x m 0-+=有实数根”,命题q :“23m -<<”,命题r :“1t m t <<+”.(1)若p q ∧是真命题,求m 的取值范围; (2)若r 是q 的充分不必要条件,求t 的取值范围.22.己知集合{}2|230A x x x =--<,{|()(1)0}B x x m x m =---≥. (1)当1m =时,求AB ;(2)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围.23.已知集合{}5log (1)1(0)A xax a =+<>∣,{}22320B x x x =--<∣. (1)求集合A ,B ;(2)已知:p x A ∈,:q x B ∈,若p 是q 的_________条件,求实数a 的取值范围. 请在①必要不充分、②充分不必要、③充要,这三个条件中选择一个填在横线上(若多选,按第一个给分),补全第(2)题,并根据所选条件解答该题.24.已知实数0c >,设命题p :函数(21)x y c =-在R 上单调递减;命题q :不等式21x x c +->的解集为R ,如果p q ∨为真,p q ∧为假,求c 的取值范围.25.已知条件22:114x y p m m -=--表示双曲线,条件22:124x y q m m+=--表示椭圆.(1)若条件p 与条件q 同时正确,求m 的取值范围.(2)若条件p 和条件q 中有且只有一个正确,求实数m 的取值范围.26.已知命题:p 实数x 满足2650x x -+≤,命题:q 实数x 满足11m x m -≤≤+ (1)当5m =时,若“p 且q ”为真,求实数x 的取值范围; (2)若q 是p 的充分条件,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】特称命题否定为全称命题,改量词否结论 【详解】解:命题“存在一个无理数,它的平方是有理数”的否定为“任意一个无理数,它的平方不是故选:A2.A解析:A 【分析】一一分析每个选项中,p q 的充分必要性即可. 【详解】A 选项中,由不等式的性质可知,q p p q ⇒⇒,故p 是q 的必要不充分条件;B 选项中,若:()(0x q f x a b a =->且1)a ≠的图象不过第二象限,则1,1a b >≥,故p 是q 的充分不必要条件;C 选项中,若q :2x x =,则1x =或0,故p 是q 的充分不必要条件;D 选项中,若:()log (0a q f x x a =>,且1)a ≠在(0,)+∞上为增函数,则1a >,故p 是q 的充要条件; 故选:A.3.B解析:B 【分析】利用充分条件、必要条件的定义,结合线面垂直的判定定理即可得出选项. 【详解】直线,l m 且//m α,若“l m ⊥”,不一定推出l α⊥,因为线面垂直的判定定理,需满足线垂直于面内的两条相交线,充分性不满足; 反之,l α⊥,则直线l 垂直于面内的任意一条直线,由//m α,可得l m ⊥, 必要性满足,所以“l m ⊥”是“l α⊥”的必要不充分条件. 故选:B4.D解析:D 【分析】利用全程命题的否定直接写出答案. 【详解】由于“∀”的否定为“∃”,则排除A 与C 选项;命题的否定是对该命题的真值取否定. 故选:D 【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.5.D解析:D 【分析】根据充分不必要条件的定义及集合包含的关系求解.123x x +>⇔<-或1x >,p ⌝是q ⌝的充分不必要条件,则q 是p 的充分不必要条件,所以1a ≥, 故选:D .【点睛】命题p 对应集合A ,命题q 对应的集合B ,则 (1)p 是q 的充分条件⇔A B ⊆; (2)p 是q 的必要条件⇔A B ⊇;(3)p 是q 的充分必要条件⇔A B =;(4)p 是q 的既不充分又不必要条件⇔集合,A B 之间没有包含关系.6.C解析:C 【分析】根据全称命题否定的定义得解. 【详解】由全称命题的定义可知,命题“210x x x ∀>->,”的否定是: 21,0x x x ∃>-≤故选:C7.A解析:A 【分析】根据充分必要条件的定义判断. 【详解】新冠肺炎患者症状是发热、干咳、浑身乏力等外部表征,充分的同,但有发热、干咳、浑身乏力等外部表征的不一定是新冠肺炎患者,不必要,即为充分不必要条件. 故选:A .8.A解析:A 【分析】根据充分和必要条件的定义即可求解. 【详解】由222a b >>可得1222a b >>,即1a b >>,可推出log 2log 2a b <, 当01a <<,1b >时,不等式log 2log 2a b <成立,但推不出222a b >>, 根据充分和必要条件的定义可得“222a b >>”是“log 2log 2a b <”的充分不必要条件, 故选:A.9.D【分析】原命题若为假命题,则其否定必为真,即220ax ax --恒成立,由二次函数的图象和性质,解不等式可得答案. 【详解】 解:命题2,20x R ax ax ∃∈-->”为假命题,命题“x R ∀∈,220ax ax --”为真命题, 当0a =时,20-成立,当0a ≠时,0a <,故方程220ax ax --=的△280a a =+解得:80a -<, 故a 的取值范围是:[]8,0- 故选:D .10.A解析:A 【分析】根据两者之间的推出关系可得两者之间的条件关系. 【详解】由线面平行的判定定理可得:若//l m ,结合直线l α⊄,直线m α⊂可得//l α, 故“//l m ”能推出“//l α”.但//l α推不出//l m (如图所示),故“//l m ”是“//l α”的充分不必要条件, 故选:A.11.A解析:A 【分析】转化成两个集合之间的包含关系求解即可. 【详解】:|1|1p x -解之得02x ≤≤设{}|02A x x =≤≤,{}|B x x a =,p 是q 的充分不必要条件,则A 是B 的真子集 则2a12.A解析:A 【分析】由条件推结论可判断充分性,由结论推条件可判断必要性. 【详解】若“αβ=”,则“sin sin αβ=”必成立;但是“sin sin αβ=”,未必有“αβ=”,例如0,αβπ==. 所以“αβ=”是“sin sin αβ=”成立的充分不必要条件. 故选:A.二、填空题13.【分析】利用含有一个量词的否定的定义求解即可【详解】命题的否定是故答案为:解析:20000,20200x x x ∀>+-≤【分析】利用含有一个量词的否定的定义求解即可. 【详解】命题“20000,20200x x x ∃>+->”的否定是“20000,20200x x x ∀>+-≤” 故答案为:20000,20200x x x ∀>+-≤14.【分析】分别求出为真命题时的范围然后可得答案【详解】若命题为真则即若命题为真则解得或所以若命题是真命题则有所以故答案为:解析:1+,【分析】分别求出,p q 为真命题时的范围,然后可得答案. 【详解】若命题p 为真,则10a -≥,即1a ≤若命题q 为真,则24840a a ∆=-+≥,解得1a ≥或2a ≤- 所以若命题“p q ⌝∧”是真命题,则有112a a a >⎧⎨≥≤-⎩或,所以1a >故答案为:1+,15.【分析】否定命题的结论把存在量词改为全称量词【详解】解:命题的否定是故答案为:解析:2,210x R x x ∀∈-+-<. 【分析】否定命题的结论,把存在量词改为全称量词. 【详解】解:命题:p x R ∃∈,2210x x -+-的否定是:p ⌝2,210x R x x ∀∈-+-<.故答案为:2,210x R x x ∀∈-+-<.16.②③【分析】由新定义结合三角恒等变换指数函数的单调性及一元二次不等式的知识代入计算即可得解【详解】对于①若则所以即因为为常数所以不恒成立所以不恒成立故①错误;对于②因为函数单调递增所以所以恒成立故②解析:②③ 【分析】由新定义,结合三角恒等变换、指数函数的单调性及一元二次不等式的知识,代入计算即可得解. 【详解】对于①,若()()f x c f x c +>-,则()()cos cos x c x c +>-, 所以cos cos sin sin cos cos sin sin x c x c x c x c ->+,即sin sin 0x c <,因为sin c 为常数,所以sin sin 0x c <不恒成立,所以()()f x c f x c +>-不恒成立, 故①错误;对于②,因为0c >,函数()xf x e =单调递增,所以x c x c +>-,所以()()f x c f x c +>-恒成立,故②正确;对于③,若()()f x c f x c +>-,则33()()()()x c x c x c x c +-+>---,化简可得2330cx c c +->,当30c c ->即1c >时,2330cx c c +->恒成立,即()()f x c f x c +>-恒成立, 故③正确. 故答案为:②③. 【点睛】本题以全称命题为依托,综合考查了三角恒等变换、指数函数的单调性及一元二次不等式的知识,属于中档题.17.【分析】由题意可知命题是真命题可得出由此可解得实数的取值范围【详解】由于命题使得成立是假命题则命题是真命题所以解得因此实数的取值范围是故答案为:【点睛】本题考查利用特称命题的真假求参数同时也考查了一 解析:[]0,4【分析】由题意可知,命题“x R ∀∈,20x kx k -+≥”是真命题,可得出0∆≤,由此可解得实数k 的取值范围. 【详解】由于命题“x R ∃∈,使得2kx x k >+成立”是假命题,则命题“x R ∀∈,20x kx k -+≥”是真命题.所以,240k k ∆=-≤,解得04k ≤≤. 因此,实数k 的取值范围是[]0,4. 故答案为:[]0,4. 【点睛】本题考查利用特称命题的真假求参数,同时也考查了一元二次不等式恒成立问题的求解,考查计算能力,属于基础题.18.②④【分析】根据不等式性质知①错误;根据等比数列求和公式知②正确;根据平面向量数量积和夹角的运算知③错误;利用余弦定理化简知④正确【详解】对于①由知:又①错误;对于②数列是以为公比的等比数列②正确;解析:②④ 【分析】根据不等式性质知①错误;根据等比数列求和公式知②正确;根据平面向量数量积和夹角的运算知③错误;利用余弦定理化简知④正确. 【详解】对于①,由0a b >>知:11a b <,又0c <,c c a b∴>,①错误; 对于②,数列1221,,,,,n n n n nd d b d b db b ---⋅⋅⋅是以1b b d d ⎛⎫≠ ⎪⎝⎭为公比的等比数列, 111112211n n nnn n n n n n n b d b d b d b d d d d b d b db b b d b d b d d++++-----⋅-+++⋅⋅⋅++===-∴--,②正确;对于③,121cos602e e ⋅==, ()()221212112217232626222a b e e e e e e e e ∴⋅=+⋅-+=-+⋅+=-++=-,()22212112224442a e e e e e e =+=+⋅+=+=(22111223912496b e e e e e =-=-⋅+=-=1cos ,2a ba b a b⋅∴<>==-⋅,,120a b ∴<>=,③错误;对于④,由余弦定理得:22222222222222222a c b b c a a c b b c a c a b a b ac bc ⎛⎫+-+-+---+⋅-⋅==- ⎪⎝⎭,④正确.故答案为:②④. 【点睛】本题考查命题真假性的判断,涉及到不等式的性质、等比数列求和、平面向量夹角的计算、余弦定理化简等知识,考查学生对于上述四个部分知识的掌握的熟练程度,属于综合型考题.19.【分析】首先求出命题为真时的取值范围再根据复合命题的真假求集合的运算得结论【详解】命题:使得成立时则命题不等式恒成立则当时当且仅当时等号成立∴若命题为假为真则一真一假真假时∴假真时综上或故答案为:【解析:[)1,2,2⎛⎤-∞+∞ ⎥⎝⎦【分析】首先求出命题,p q 为真时a 的取值范围,再根据复合命题的真假求集合的运算得结论. 【详解】命题p :[1,1]x ∃∈-,使得2x a <成立,[1,1]x ∈-时,1,222x ⎡⎤∈⎢⎥⎣⎦,则12a >, 命题:(0,)q x ∀∈+∞,不等式21ax x <+恒成立,则211x a x x x+<=+,当0x >时,12x x+≥,当且仅当1x =时等号成立,∴2a <. 若命题p q ∧为假,p q ∨为真,则,p q 一真一假, p 真q 假时,122a a ⎧>⎪⎨⎪≥⎩,∴2a ≥, p 假q 真时,122a a ⎧≤⎪⎨⎪<⎩,12a ≤,综上,2a ≥或12a ≤. 故答案为:[)1,2,2⎛⎤-∞+∞ ⎥⎝⎦.【点睛】本题考查复合命题的真假,由复合命题的真假求参数取值范围,本题还考查了不等式恒成立与能成立问题.属于中档题.20.②③④【分析】利用线面关系逐一分析即可【详解】对于①若则或异面故错误;对于②由线面平行的判定定理知:若且则故正确;对于③由面面平行的性质定理以及线面垂直的性质定理可知:若则故正确;对于④设在面内任取解析:②③④【分析】利用线面关系逐一分析即可.【详解】对于①,若//,m n αα⊂,则//m n 或,m n 异面,故错误;对于②,由线面平行的判定定理知:若,//αβ⋂=m m n ,且,n n αβ⊄⊄,则//,//αβn n ,故正确;对于③,由面面平行的性质定理以及线面垂直的性质定理可知:若,,//αβαβ⊥⊂n m ,则m n ⊥,故正确;对于④,设,a b αγβγ==,在面γ内任取点O ,作,OA a OB b ⊥⊥,由,αγβγ⊥⊥,得OA α⊥,OB β⊥,故OA m ⊥,OB m ⊥,则m γ⊥,又γ⊂n ,则m n ⊥,故正确;故答案为:②③④【点睛】本题考查了命题的真假判断、线面之间的位置关系、面面平行的性质定理、线面垂直的性质定理,考查了考生的空间想象能力,属于基础题.三、解答题21.(1)21m -<≤;(2)22t -≤≤.【分析】(1)由p 为真可得1m ,从而123m m ≤⎧⎨-<<⎩,进而可得答案; (2)由r 是q 的充分不必要条件,可得213t t ≥-⎧⎨+≤⎩(等号不同时成立),进而可得答案. 【详解】(1)若p 为真:440m ∆=-≥,解得1m若“p q ∧”是真命题,则p ,q 均为真命题即123m m ≤⎧⎨-<<⎩,解得21m -<≤. m ∴的取值范围21m -<≤(2)由r 是q 的充分不必要条件,可得(,1)t t +是(2,3)-的真子集,即213t t ≥-⎧⎨+≤⎩(等号不同时成立),解得22t -≤≤. t ∴的取值范围22t -≤≤22.(1)AB R =;(2)(,2][3,)-∞-⋃+∞.【分析】 (1)当1m =时,分别求出集合A 与集合B ,再进行交集运算即可求解.(2)先求出集合A 与集合B ,由题意可得A 是B 的真子集,结合数轴即可求解.【详解】(1)∵{}()(){}{}2|230|310|13A x x x x x x x x =--<=-+<=-<<, 当1m =时,{}{|(1)(2)0|1B x x x x x =--≥=≤或}2x ≥,所以AB R =.(2){}|13A x x =-<<,{|B x x m =≤或}1x m ≥+.又x A ∈是x B ∈的充分不必要条件,所以A 是B 的真子集.所以11m +≤-或3m ≥,解得3m ≥或2m ≤-;即实数m 的取值范围为(,2][3,)-∞-⋃+∞.【点睛】 结论点睛:集合的观点分析充分与必要条件(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.23.(1)14A x x a a ⎧⎫=-<<⎨⎬⎩⎭,122B x x ⎧⎫=-<<⎨⎬⎩⎭;(2)详见解析. 【分析】(1)根据对数不等式求解集合A ,一元二次不等式求集合B ;(1)若选择条件①转化为B A ,列不等式求解;若选择条件②,转化为A B ,列不等式求解;若选择条件③,则A B =,求解实数a .【详解】(1)()5log 11015ax ax +<⇔<+<,()0a >, 解得:14x a a -<<,即14A x x a a ⎧⎫=-<<⎨⎬⎩⎭, ()()223202210x x x x --<⇔-+<, 解得:122x -<<,即122B x x ⎧⎫=-<<⎨⎬⎩⎭; (2)若选择①,则p 是q 的必要不充分条件,则B A ,即112420a a a ⎧-≤-⎪⎪⎪≥⎨⎪>⎪⎪⎩,且等号不能同时成立,解得:02a <<; 若选择②,若p 是q 的充分不必要条件,则A B ,即112420a a a ⎧-≥-⎪⎪⎪≤⎨⎪>⎪⎪⎩且等号不能同时成立,解得:2a >; 若选择③,若p 是q 的充要条件,则A B =,即112420a aa ⎧-=-⎪⎪⎪=⎨⎪>⎪⎪⎩,解得:2a =【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 24.1c ≥.【解析】试题分析:命题p :函数()x y 2c 1=-在R 上单调递减,可得:1c 12<<. 命题q :不等式x x 2c 1+->的解集为R ,可得1c 2>,如果p q ∨为真,p q ∧为假,可得p,q 只能一真一假,解出即可.试题由函数()x y 2c 1=-在R 上单调递减可得,02c 11<-<,解得1c 12<<. 设函数()22,2f x x x 2c {2,x cx c x c c -≥=+-=<,可知()f x 的最小值为2c ,要使不等式x x 2c 1+->的解集为R ,只需12c 1,c 2>>, 因为p 或q 为真,p 且q 为假,所以p,q 只能一真一假, 当p 真q 假时,有112{12c c <<≤,无解; 当p 假q 真时,有10,12{12c c c ≤≤≥>,可得c 1≥, 综上,c 的取值范围为c 1≥.25.(1)24m <<;(2)12m <≤【分析】(1)根据双曲线与椭圆的标准方程可得()()()()140240m m m m ⎧-->⎪⎨-->⎪⎩,解不等式组即可. (2)分情况讨论:当条件p 正确、条件q 错误或条件p 错误、条件q 正确,分别取交集,再取并集即可.【详解】(1)22:114x y p m m-=--表示双曲线,则()()140m m -->,解得14m <<, 22:124x y q m m+=--表示椭圆,则()()240m m -->,解得24m <<, 所以条件p 与条件q 同时正确,求m 的取值范围为24m <<.(2)当条件p 正确、条件q 错误:1442m m m <<⎧⎨≥≤⎩或,解得12m <≤, 当条件p 错误、条件q 正确:4124m m m ≥≤⎧⎨<<⎩或,此时无解. 综上所述,12m <≤【点睛】本题考查了根据条件的真假求参数的取值范围,同时考查了椭圆与双曲线的标准方程,属于基础题.26.(1) 45x ≤≤;(2) 24m ≤≤【分析】(1)先由题意得到:p 15x ≤≤,:q 46x ≤≤,再由“p 且q ”为真,即可得出结果;(2)根据q 是p 的充分条件,得到{}|11x m x m -≤≤+是{}x |15x ≤≤的子集,列出不等式求解,即可得出结果.【详解】解:()1由题意:p 15x ≤≤,:q 46x ≤≤,“p 且q ”为真,p ∴, q 都为真命题,得45x ≤≤()2又q 是p 的充分条件,则{}|11x m x m -≤≤+是{}x |15x ≤≤的子集, 1115m m -≥⎧∴⎨+≤⎩24m ∴≤≤【点睛】本题主要考查由命题的真假求参数的问题,熟记复合命题真假的判断即可,属于常考题型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
章末综合测评(一) 常用逻辑用语(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“有些负数满足不等式(1+x )(1-9x ) >0”用“∃”或“∀”可表述为________.【解析】 “有些负数”表示存在量词用“∃”来描述. 【答案】 ∃x <0,使不等式(1+x )(1-9x ) >02.(2016·赣州高二检测)命题p 的否定是“对所有正数x ,x >x +1”,则命题p 可写为________.【解析】 因为p 是綈p 的否定,所以只需将全称命题变为特称命题,再对结论否定即可.【答案】 ∃x 0∈(0,+∞),x 0≤x 0+13.在命题“若m >-n ,则m 2>n 2”的逆命题、否命题、逆否命题中,假命题的个数是________.【解析】 原命题为假命题,则逆否命题也为假命题,逆命题也是假命题,则否命题也是假命题.故假命题的个数为3.【答案】 34.“m <14”是“一元二次方程x 2+x +m =0有实数解”的________条件.【解析】 x 2+x +m =0有实数解等价于Δ=1-4m ≥0,即m ≤14,因为m <14⇒m ≤14,反之不成立.故“m <14”是“一元二次方程x 2+x +m =0有实数解”的充分不必要条件.【答案】 充分不必要5.(2016·合肥高二检测)下列命题: ①∃x ∈R ,sin x =52 ;②∃x ∈R ,log 2x =1;③∀x ∈R ,⎝ ⎛⎭⎪⎫12x >0;④∀x ∈R ,x 2≥0. 其中假命题是________.【解析】 因为∀x ∈R ,sin x ≤1<52,所以①是假命题;对于②,∃x =2,log 2x =1;所以②是真命题对于③,根据指数函数图象可知,∀x ∈R ,⎝ ⎛⎭⎪⎫12x>0;所以③是真命题对于④,根据二次函数图象可知,∀x ∈R ,x 2≥0,所以④是真命题.【答案】 ①6.设n ∈N *,一元二次方程x 2-4x +n =0有整数根的充要条件是n =________.【导学号:24830020】【解析】 由Δ=16-4n ≥0得n ≤4,又∵n ∈N *,故n =1,2,3,4,验证可知n =3,4,符合题意;反之,当n =3,4时,可以推出一元二次方程有整数根.【答案】 3或47.若“x ∈2,5]或x ∈(-∞,1)∪(4,+∞)”是假命题,则x 的取值范围是________.【解析】 根据题意得⎩⎪⎨⎪⎧x <2或x >5,1≤x ≤4,解得1≤x <2,故x ∈1,2).【答案】 1,2) 8.给出以下判断:①命题“负数的平方是正数”不是全称命题;②命题“∀x ∈N ,x 3>x 2”的否定是“∃x 0∈N ,使x 30>x 20”; ③“b =0”是“函数f (x )=ax 2+bx +c 为偶函数”的充要条件; ④“正四棱锥的底面是正方形”的逆命题为真命题. 其中真命题的序号是________.【解析】 ①②④是假命题,③是真命题. 【答案】 ③9.(2016·浙江高考改编)命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是________.【导学号:24830021】【解析】 由于特称命题的否定形式是全称命题,全称命题的否定形式是特称命题,所以“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式为“∃x ∈R ,∀n ∈N *,使得n <x 2”.【答案】 ∃x ∈R ,∀n ∈N *,使得n <x 210.(2016·昆明高二检测)若命题“∀x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是________.【解析】 当a =0时,不等式显然成立;当a ≠0时,由题意知⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0,得-8≤a <0.综上,-8≤a ≤0. 【答案】 -8,0] 11.有下列几个命题:①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题; ③“若x 2<4,则-2<x <2”的逆否命题.其中真命题的序号是________.【解析】 ①原命题的否命题为“若a ≤b ,则a 2≤b 2”假命题. ②原命题的逆命题为:“x ,y 互为相反数,则x +y =0”真命题. ③原命题的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”真命题. 【答案】 ②③12.若x <m -1或x >m +1是x 2-2x -3>0的必要不充分条件,则实数m 的取值范围是________.【解析】 由已知,易得{x |x 2-2x -3>0}{x |x <m -1或x >m +1}, 又{x |x 2-2x -3>0}={x |x <-1或x >3},∴⎩⎪⎨⎪⎧-1≤m -1m +1<3或⎩⎪⎨⎪⎧-1<m -1,m +1≤3,∴0≤m ≤2.【答案】 0,2]13.(2016·南京高二检测)已知命题p :∃x 0∈R ,x 0-2>lg x 0;命题q :∀x ∈R ,x 2+x +1>0.给出下列结论:①命题“p ∧q ”是真命题;②命题“p ∧(綈q )”是假命题;③命题“(綈 p )∨q ”是真命题;④命题“p ∨(綈q )”是假命题.其中所有正确结论的序号为________.【解析】 对于命题p ,取x 0=10,则有10-2>lg 10,即8>1,故命题p 为真命题;对于命题q ,方程x 2+x +1=0,Δ=1-4×1<0,故方程无解,即∀x ∈R ,x 2+x +1>0,所以命题q 为真命题.综上“p ∧q ”是真命题,“p ∧(綈q )”是假命题,“(綈p )∨q ”是真命题,“p ∨(綈q )”是真命题,即正确的结论为①②③.【答案】 ①②③ 14.下列结论:①若命题p :∃x 0∈R ,tan x 0=2;命题q :∀x ∈R ,x 2-x +12>0.则命题“p ∧(綈q )”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab=-3; ③“设a ,b ∈R ,若ab ≥2,则a 2+b 2>4”的否命题为:“设a ,b ∈R ,若ab <2,则a 2+b 2≤4”.其中正确结论的序号为________.(把你认为正确结论的序号都填上)【解析】 在①中,命题p 是真命题,命题q 也是真命题,故“p ∧(綈q )”是假命题是正确的.在②中l 1⊥l 2⇔a +3b =0,所以②不正确.在③中“设a ,b ∈R ,若ab ≥2,则a 2+b 2>4”的否命题为:“设a ,b ∈R ,若ab <2,则a 2+b 2≤4”正确.【答案】 ①③二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤.)15.(本小题满分14分)写出命题“若a ≥0,则方程x 2+x -a =0有实根”的逆命题,否命题和逆否命题,并判断它们的真假.【解】 逆命题:“若方程x 2+x -a =0有实根,则a ≥0”. 否命题:“若a <0,则方程x 2+x -a =0无实根.” 逆否命题:“若方程x 2+x -a =0无实根,则a <0”. 其中,原命题的逆命题和否命题是假命题,逆否命题是真命题.16.(本小题满分14分)判断下列语句是全称命题还是存在性命题,并判断真假. (1)有一个实数α,tan α无意义;(2)所有圆的圆心到其切线的距离都等于半径; (3)圆内接四边形,其对角互补; (4)指数函数都是单调函数.【解】 (1)存在性命题.α=π2,tan α不存在,所以存在性命题“有一个实数α,tan α无意义”是真命题.(2)含有全称量词,所以该命题是全称命题.又任何一个圆的圆心到切线的距离都等于半径,所以,全称命题“所有圆的圆心到其切线的距离都等于半径”是真命题.(3)“圆内接四边形,其对角互补”的实质是“所有的圆内接四边形,其对角都互补”,所以该命题是全称命题且为真命题.(4)虽然不含全称量词,其实“指数函数都是单调函数”中省略了“所有的”,所以该命题是全称命题且为真命题.17.(本小题满分14分)已知函数f (x )=x 2+|x +a |+b (x ∈R ),求证:函数f (x )是偶函数的充要条件为a =0.【证明】 充分性:定义域关于原点对称.∵a =0,∴f (x )=x 2+|x |+b ,∴f (-x )=(-x )2+|-x |+b =x 2+|x |+b , 所以f (-x )=f (x ),所以f (x )为偶函数.必要性:因为f (x )是偶函数,则对任意x 有f (-x )=f (x ),得(-x )2+|-x +a |+b =x 2+|x +a |+b ,即|x -a |=|x +a |,所以a =0. 综上所述,原命题得证.18.(本小题满分16分)(2016·淄博高二检测)已知两个命题r (x ):sin x +cos x >m ,s (x ):x 2+mx +1>0.如果对∀x ∈R ,r (x )与s (x )有且仅有一个是真命题.求实数m 的取值范围.【解】 因为sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4≥-2,所以当r (x )是真命题时,m <- 2.又因为对∀x ∈R ,当s (x )为真命题时,即x 2+mx +1>0恒成立有Δ=m 2-4<0,所以-2<m <2.所以当r (x )为真,s (x )为假时,m <-2, 同时m ≤-2或m ≥2,即m ≤-2.当r (x )为假,s (x )为真时,m ≥-2且-2<m <2, 即-2≤m <2.综上,实数m 的取值范围是m ≤-2或-2≤m <2.19.(本小题满分16分)已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在3,+∞)上是增函数.若p 或q 是真命题,p 且q 是假命题,求实数a 的取值范围.【解】 命题p 等价于Δ=a 2-16≥0,即a ≤-4或a ≥4;命题q 等价于-a4≤3,即a ≥-12.由p 或q 是真命题,p 且q 是假命题知,命题p 和q 一真一假. 若p 真q 假,则a <-12;若p 假q 真,则-4<a <4. 故a 的取值范围是(-∞,-12)∪(-4,4).20.(本小题满分16分)(2016·兰州高二检测)设p :实数x 满足x 2-4ax +3a 2<0,其中a >0.q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围. (2)綈p 是綈q 的充分不必要条件,求实数a 的取值范围.【解】 由x 2-4ax +3a 2<0,a >0得a <x <3a ,即p 为真命题时,a <x <3a ,由⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0,得⎩⎪⎨⎪⎧-2≤x ≤3,x >2或x <-4,即2<x ≤3,即q 为真命题时2<x ≤3.(1)a =1时,p :1<x <3.由p ∧q 为真知p 、q 均为真命题,则⎩⎪⎨⎪⎧1<x <3,2<x ≤3,得2<x <3,所以实数x 的取值范围为(2,3).(2)设A ={x |a <x <3a },B ={x |2<x ≤3},由题意知p 是q 的必要不充分条件,所以B A ,有⎩⎪⎨⎪⎧0<a ≤2,3a >3,∴1<a ≤2,所以实数a 的取值范围为(1,2].。