九年级上数学竞赛试题(优秀)

合集下载

九年级数学(上)竞赛试题及答案

九年级数学(上)竞赛试题及答案

九年级数学(上)竞赛试题一. 选择题(每小题3分,共36分)1.一元二次方程的解是A .B .1203x x ==,C .1210,3x x == D . 2.顺次连结任意四边形各边中点所得到的四边形一定是 A .平行四边形 B .菱形 C .矩形D .正方形3. 若一个几何体的主视图、左视图、俯视图分别是三角形、三角形、圆,则这个几何体可能是A .球B .圆柱C .圆锥D .棱锥4. 在同一时刻,身高1.6m 的小强,在太阳光线下影长是1.2m ,旗杆的影长是15m ,则旗杆高为 A 、22m B 、20m C 、18m D 、16m5. 下列说法不正确的是A .对角线互相垂直的矩形是正方形B .对角线相等的菱形是正方形C .有一个角是直角的平行四边形是正方形D .一组邻边相等的矩形是正方形 6. 直角三角形的两条直角边分别是6和8,则这三角形斜边上的高是 A .4.8 B .5 C .3 D .107. 若点(3,4)是反比例函数221m m y x+-=图像上一点 ,则此函数图像必经过点A .(3,-4)B .(2,-6)C .(4,-3)D .(2,6)8. 二次三项式243x x -+配方的结果是( )A .2(2)7x -+B .2(2)1x -- C .2(2)7x ++ D .2(2)1x +- 9.如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )第9题图A .3√102B .3√105 C .√105 D .3√5510. 函数xky =的图象经过(1,-1),则函数2-=kx y 的图象是11.如图,矩形ABCD ,R 是CD 的中点,点M 在BC 边上运动,E 、F 分别是AM 、MR 的中点,则EF 的长随着M 点的运动 A .变短 B .变长 C .不变 D .无法确定12.如图,点A 在双曲线6y x=上,且OA =4,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为A .47B .5C .27D .22二:填空题.(每小题3分,共12分)13.如图,△ABC 中,∠C=090,AD 平分∠BAC ,BC=10,BD=6,则点D 到AB 的距离是 。

九年级上册数学竞赛试题及答案

九年级上册数学竞赛试题及答案

九年级上册数学竞赛试题及答案(考试时间:120分钟满分120分)姓名班级得分一、选择题(每小题4分;共32分)1.下列车标图案中;是中心对称图形的是()A.B.C.D.2.对于二次函数y=(x﹣1)2+2的图象;下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1;2)D.与x轴有两个交点3.某商品经过两次连续降价;每件售价由原来的100元降到了64元.设平均每次降价的百分率为x;则下列方程中正确的是()A.100(1+x)2=64 B.64(1+x)2=100C.64(1﹣x)2=100 D.100(1﹣x)2=644.将抛物线y=x2沿y轴向上平移一个单位后得到的新抛物线的解析式为()A.y=(x+1)2B.y=(x﹣1)2C.y=x2+1 D.y=x2﹣15.已知抛物线y=x2﹣x﹣2与x轴的一个交点为(m;0);则代数式m2﹣m+2016的值为()A.2015 B.2016 C.2017 D.20186.半径为R的圆内接正六边形的面积是()A.R2B.R2C.R2 D.R27.75°的圆心角所对的弧长是2.5πcm;则此弧所在圆的半径是()A.6cm B.7cm C.8cm D.9cm8.如图;在△ABC中;∠C=90°;∠BAC=70°;将△ABC绕点A顺时针旋转70°;B、C旋转后的对应点分别是B′和C′;连接BB′;则∠BB′C′的度数是()A.35°B.40°C.45°D.50°二、填空题(每小题4分;共20分)9.二次函数y=(x﹣1)2﹣2的顶点与x轴的交点所围成图形的的面积是_____ _.10.如图;⊙O的直径CD=10;AB是⊙O的弦;AB⊥CD于M;且CM=2;则AB的长为______.11.已知二次函数y=x2+bx+c的图象如图所示;则关于x的方程x2+bx+c=0的解为x1=______;x2= .12.如图;两圆圆心相同;大圆的弦AB与小圆相切;AB=8;则图中阴影部分的面积是______.(结果保留π)13.如图;边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EF CG;EF交AD于点H;那么DH的长是______.三、解答题(共6小题;共68分)14.(10分)如图;将四边形ABCD绕原点O旋转180°得四边形A′B′C′D′.(1)画出旋转后的四边形A′B′C′D′;(2)写出A′、B′、C′、D′的坐标;(3)若每个小正方形的边长是1;请直接写出四边形ABCD的面积.15.(10分)如图是二次函数y=a(x+1)2+2的图象的一部分;根据图象回答下列问题.(1)抛物线与x轴的一个交点的坐标是______;则抛物线与x轴的另一个交点B 的坐标是______;(2)确定a的值;(3)设抛物线的顶点是P;试求△PAB的面积.16.(10分)如图所示;在梯形ABCD中;AB∥CD;⊙O为内切圆;E、F为切点.(1)试猜DO与AO的位置关系;并说明理由.(2)若AO=4cm;DO=3cm;求⊙O的面积.17.(12分)兴隆镇某养鸡专业户准备建造如图所示的矩形养鸡场;要求长与宽的比为2:1;在养鸡场内;沿前侧内墙保留3m宽的走道;其他三侧内墙各保留1m宽的走道;当矩形养鸡场长和宽各为多少时;鸡笼区域面积是288m2?18.(12分)如图;点B、C、D都在半径为6的⊙O上;过点C作AC∥BD交OB的延长线于点A;连接CD;已知∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长;(3)求图中阴影部分的面积.19.(14分)如图;△ABC是等腰直角三角形;∠BAC=90°;AB=AC;B(3;5);抛物线y=﹣x2+bx+c交x轴于点C;D两点;且经过点B.(1)求抛物线的表达式;(2)在抛物线上是否存在点F;使得△ACF的面积等于5;若存在;求出点F的坐标;若不存在;说明理由;(3)点M(4;k)在抛物线上;连接CM;求出在坐标轴的点P;使得△PCM是以∠PCM为顶角以CM为腰的等腰三角形;请直接写出P点的坐标.者相中学九年级(上)数学竞赛试题试卷参考答案与试题解析一、选择题1.下列车标图案中;是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解即可.【解答】解:A、不是中心对称图形;本选项错误;B、不是中心对称图形;本选项错误;C、是中心对称图形;本选项正确;D、不是中心对称图形;本选项错误.故选C.2.对于二次函数y=(x﹣1)2+2的图象;下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1;2)D.与x轴有两个交点【考点】二次函数的性质.【分析】根据抛物线的性质由a=1得到图象开口向上;根据顶点式得到顶点坐标为(1;2);对称轴为直线x=1;从而可判断抛物线与x轴没有公共点.【解答】解:二次函数y=(x﹣1)2+2的图象开口向上;顶点坐标为(1;2);对称轴为直线x=1;抛物线与x轴没有公共点.故选:C.3.某商品经过两次连续降价;每件售价由原来的100元降到了64元.设平均每次降价的百分率为x;则下列方程中正确的是()A.100(1+x)2=64 B.64(1+x)2=100 C.64(1﹣x)2=100D.100(1﹣x)2=64【考点】由实际问题抽象出一元二次方程.【分析】设平均每次降价的百分率为x;则等量关系为:原价×(1﹣x)2=现价;据此列方程.【解答】解:设平均每次降价的百分率为x;由题意得;100×(1﹣x)2=64故选D.4.将抛物线y=x2沿y轴向上平移一个单位后得到的新抛物线的解析式为()A.y=(x+1)2B.y=(x﹣1)2C.y=x2+1 D.y=x2﹣1【考点】二次函数图象与几何变换.【分析】直接根据平移规律作答即可.【解答】解:将抛物线y=x2沿y轴向上平移一个单位后得到的新抛物线的解析式为y=x2+1;故选C.5.已知抛物线y=x2﹣x﹣2与x轴的一个交点为(m;0);则代数式m2﹣m+2016的值为()A.2015 B.2016 C.2017 D.2018【考点】抛物线与x轴的交点.【分析】直接利用抛物线上点的坐标性质进而得出m2﹣m=2;即可得出答案.【解答】解:∵抛物线y=x2﹣x﹣2与x轴的一个交点为(m;0);∴m2﹣m﹣2=0;∴m2﹣m=2;∴m2﹣m+2016=2+2016=2018.故选:D.6.半径为R的圆内接正六边形的面积是()A.R2B.R2C.R2 D.R2【考点】正多边形和圆.【分析】利用正六边形的特点;它被半径分成六个全等的等边三角形.【解答】解:连接正六边形的中心与各个顶点;得到六个等边三角形;等边三角形的边长是R;因而面积是=;因而正六边形的面积是6×=R2.故选:C.7.75°的圆心角所对的弧长是2.5πcm;则此弧所在圆的半径是()A.6cm B.7cm C.8cm D.9cm【考点】弧长的计算.【分析】根据弧长公式L=;将n=75;L=2.5π;代入即可求得半径长.【解答】解:∵75°的圆心角所对的弧长是2.5πcm;由L=;∴2.5π=;解得:r=6;故选:A.8.如图;在△ABC中;∠C=90°;∠BAC=70°;将△ABC绕点A顺时针旋转70°;B、C旋转后的对应点分别是B′和C′;连接BB′;则∠BB′C′的度数是()A.35°B.40°C.45°D.50°【考点】旋转的性质.【分析】首先在△ABB'中根据等边对等角;以及三角形内角和定理求得∠ABB'的度数;然后在直角△BB'C中利用三角形内角和定理求解.【解答】解:∵AB=AB';∴∠ABB'=∠AB'B===55°;在直角△BB'C中;∠BB'C=90°﹣55°=35°.故选A.二、填空题9.二次函数y=(x﹣1)2﹣2的顶点与x轴的交点所围成图形的面积是坐4 .10.如图;⊙O的直径CD=10;AB是⊙O的弦;AB⊥CD于M;且CM=2;则AB的长为8 .【考点】垂径定理;勾股定理.【分析】连接OA;求得OA和OM的长;在直角△OAM中利用勾股定理求得AM的长;然后根据AB=2AM即可求解.【解答】解:连接OA.则OA=OC=CD=5.则OM=OC﹣CM=5﹣3=3.在直角△OAM中;AM===4.∵AB⊥CD于M;∴AB=2AM=8.故答案是:8.11.已知二次函数y=x2+bx+c的图象如图所示;则关于x的方程x2+bx+c=0的解为x1= ﹣1 ;x2= 3 .【考点】抛物线与x轴的交点.【分析】抛物线与x轴的交点的横坐标就是x的值.【解答】解:关于x的方程x2+bx+c=0的解为x1=﹣1;x2=3.故答案是:﹣1.12.如图;两圆圆心相同;大圆的弦AB与小圆相切;AB=8;则图中阴影部分的面积是16π.(结果保留π)【考点】切线的性质;勾股定理;垂径定理.【分析】设AB与小圆切于点C;连结OC;OB;利用垂径定理即可求得BC的长;根据圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2);以及勾股定理即可求解.【解答】解:设AB与小圆切于点C;连结OC;OB.∵AB与小圆切于点C;∴OC⊥AB;∴BC=AC=AB=×8=4.∵圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2)又∵直角△OBC中;OB2=OC2+BC2∴圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2)=π•BC2=16π.故答案为:16π.13.如图;边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EF CG;EF交AD于点H;那么DH的长是.【考点】正方形的性质;旋转的性质;解直角三角形.【分析】连接CH;可知△CFH≌△CDH(HL);故可求∠DCH的度数;根据三角函数定义求解.【解答】解:连接CH.∵四边形ABCD;四边形EFCG都是正方形;且正方形ABCD绕点C旋转后得到正方形EFCG;∴∠F=∠D=90°;∴△CFH与△CDH都是直角三角形;在Rt△CFH与Rt△CDH中;∵;∴△CFH≌△CDH(HL).∴∠DCH=∠DCF=(90°﹣30°)=30°.在Rt△CDH中;CD=3;∴DH=tan∠DCH×CD=.故答案为:.三、解答题14.如图;将四边形ABCD绕原点O旋转180°得四边形A′B′C′D′.(1)画出旋转后的四边形A′B′C′D′;(2)写出A′、B′、C′、D′的坐标;(3)若每个小正方形的边长是1;请直接写出四边形ABCD的面积.【考点】作图-旋转变换.【分析】(1)根据网格结构找出点A、B、C、D关于原点对称的点A′、B′、C′、D′的位置;然后顺次连接即可;(2)根据平面直角坐标系写出各点的坐标即可;(3)利用四边形所在的矩形的面积减去四周四个小直角三角形和一个小正方形的面积;列式计算即可得解.【解答】解:(1)四边形A′B′C′D′如图所示;(2)A′(2;1)、B′(﹣2;2)、C′(﹣1;﹣2)、D′(1;﹣1);(3)S四边形ABCD=4×4﹣×1×4﹣×1×4﹣×1×2﹣×1×2﹣1×1;=16﹣2﹣2﹣1﹣1﹣1;=16﹣7;=9.15.如图是二次函数y=a(x+1)2+2的图象的一部分;根据图象回答下列问题.(1)抛物线与x轴的一个交点的坐标是(﹣3;0);则抛物线与x轴的另一个交点B的坐标是(1;0);(2)确定a的值;(3)设抛物线的顶点是P;试求△PAB的面积.【考点】抛物线与x轴的交点.【分析】(1)由图象可求得A点的坐标;由解析式可求得抛物线的对称轴方程;利用图象的对称性可求得B点坐标;(2)把B点坐标代入抛物线解析式可求得a的值;(3)由抛物线解析式可求得P点坐标;再结合A、B坐标可求得AB的值;则可求得△PAB的面积.【解答】解:(1)由图象可知A点坐标为(﹣3;0);∵y=a(x+1)2+2;∴抛物线对称轴方程为x=﹣1;∵A、B两点关于对称轴对称;∴B的坐标为(1;0);故答案为:(﹣3;0);(1;0);(2)将(1;0)代入y=a(x+1)2+2;可得0=4a+2;解得a=﹣;(3)∵y=a(x+1)2+2;∴抛物线的顶点坐标是(﹣1;2);∵A(﹣3;0);B(1;0);∴AB=X B﹣X A=1﹣(﹣3)=4;∴S△PAB=×4×2=4.16.如图所示;在梯形ABCD中;AB∥CD;⊙O为内切圆;E、F为切点.(1)试猜DO与AO的位置关系;并说明理由.(2)若AO=4cm;DO=3cm;求⊙O的面积.【考点】切线的性质;梯形.【分析】(1)由⊙O是梯形ABCD的内切圆;易得DE和DF是⊙O的两条切线;即可得∠ADO+∠DAO=(∠ADC+∠DAB);又由AB∥CD;可得∠ADO+∠DAO=90°;继而证得结论;(2)由AO=4cm;DO=3cm;可求得AD的长;继而求得EO的长;则可求得答案.【解答】解:(1)AO⊥DO.理由:∵⊙O是梯形ABCD的内切圆;∴DE和DF是⊙O的两条切线;∴∠ADO=∠CDO=∠ADC.同理可得:∠DAO=∠DAB.∴∠ADO+∠DAO=(∠ADC+∠DAB);∵AB∥CD;∴∠ADC+∠DAB=180°;∴∠ADO+∠DAO=×180°=90°;∵∠AOD=180°﹣(∠ADO+∠DAO)=90°;∴AO⊥DO;(2)∵DO=3cm AO=4cm;∠AOD=90°∴AD==5 cm;在Rt△AOD中;EO⊥AD;∴AD•EO=DO•AO;即5 EO=3×4;解得EO=cm;∴S⊙O=πEO2=π ()2=π.17.兴隆镇某养鸡专业户准备建造如图所示的矩形养鸡场;要求长与宽的比为2:1;在养鸡场内;沿前侧内墙保留3m宽的走道;其他三侧内墙各保留1m宽的走道;当矩形养鸡场长和宽各为多少时;鸡笼区域面积是288m2?【考点】一元二次方程的应用.【分析】等量关系为:(鸡场的长﹣4)(鸡场的宽﹣2)=288;把相关数值代入求得合适的解即可.【解答】解:设鸡场的宽为xm;则长为2xm.(2x﹣4)(x﹣2)=288;(x﹣14)(x+10)=0;解得x=14;或x=﹣10(不合题意;舍去).∴2x=28.答:鸡场的长为28m;宽为14m.18.如图;点B、C、D都在半径为6的⊙O上;过点C作AC∥BD交OB的延长线于点A;连接CD;已知∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长;(3)求图中阴影部分的面积.【考点】切线的判定;垂径定理的应用;扇形面积的计算.【分析】(1)连接OC;OC交BD于E;由∠CDB=∠OBD可知;CD∥AB;又AC∥BD;四边形ABDC为平行四边形;则∠A=∠D=30°;由圆周角定理可知∠COB=2∠D=60°;由内角和定理可求∠OCA=90°;证明切线;(2)利用(1)中的切线的性质和垂径定理以及解直角三角形来求BD的长度;(3)证明△OEB≌△CED;将阴影部分面积问题转化为求扇形OBC的面积.【解答】(1)证明:连接OC;OC交BD于E;∵∠CDB=30°;∴∠COB=2∠CDB=60°;∵∠CDB=∠OBD;∴CD∥AB;又∵AC∥BD;∴四边形ABDC为平行四边形;∴∠A=∠D=30°;∴∠OCA=180°﹣∠A﹣∠COB=90°;即OC⊥AC又∵OC是⊙O的半径;∴AC是⊙O的切线;(2)解:由(1)知;OC⊥AC.∵AC∥BD;∴OC⊥BD;∴BE=DE;∵在直角△BEO中;∠OBD=30°;OB=6;∴BE=OBcos30°=3;∴BD=2BE=6;(3)解:易证△OEB≌△CED;∴S阴影=S扇形BOC∴S阴影==6π.答:阴影部分的面积是6π.19.如图;△ABC是等腰直角三角形;∠BAC=90°;AB=AC;B(3;5);抛物线y=﹣x2+bx+c交x轴于点C;D两点;且经过点B.(1)求抛物线的表达式;(2)在抛物线上是否存在点F;使得△ACF的面积等于5;若存在;求出点F的坐标;若不存在;说明理由;(3)点M(4;k)在抛物线上;连接CM;求出在坐标轴的点P;使得△PCM是以∠PCM为顶角以CM为腰的等腰三角形;请直接写出P点的坐标.【考点】二次函数综合题.【分析】(1)利用待定系数法求出抛物线解析式;(2)利用△ACF的面积等于5直接建立方程求出F点的纵坐标;代入抛物线解析式解方程即可;(3)先求出CM=3;再分点P在x轴和y轴上;用CM=CP求出点P的坐标.【解答】(1)∵B(3;5);∴OA=3;AB=5;∵AB=AC;∴OC=AC﹣OA=5﹣3=2;即点C的坐标是(﹣2;0);∵点C(﹣2;0)和点B(3;5)在抛物线y=﹣x2+bx+c上∴将其代入得;∴;∴抛物线的表达式是y=﹣x2+x+5;(2)假设抛物线上存在点F使得S△ACF=5;则设点F的坐标是(a;b)∵AC|b|=5;∴×5|b|=5;解得b=±2;将F(a;2)和F(a;﹣2)分别代入y=﹣x2+x+5中得﹣a2+a+5=2;﹣a2+a+5=﹣2解得a1=a2=a3=a4=所以符合条件的点F有四个;它们分别是F1(;2);F2(;2);F3(;﹣2)F4(;﹣2);(3)点M(4;k)在抛物线y=﹣x2+x+5的图象上;∴k=3;∴M(4;3);∵C(﹣2;0);∴CM=3①当点P在x轴上时;设P(p;0);∴CP=|p+2|;∵△PCM是以∠PCM为顶角以CM为腰的等腰三角形.∴CM=CP;∴|p+2|=3;∴p=﹣2±3;∴P1(﹣3﹣2;0)P2(3﹣2;0);②当点P在y轴上时;设P(0;h);∴PC==3;∴h=±;∴P3(0;)P4(0;﹣).(﹣3﹣2;0)P2符合条件的P点有四个;它们分别是P(0;)P4(0;﹣).(3﹣2;0);P2016年9月19日。

九年级数学竞赛试题附答案

九年级数学竞赛试题附答案

九年级数学竞赛试题(满分120分,时间120分钟)一、选择题(,每小题3分,满分24分) 1.给出四个数, 最大的数是( )A .1-B .0C . 3D . -4 2.下面四个几何体中,左视图是四边形的几何体共有( )A .1个B .2个C .3个D .4个 3.下列计算正确的是( ).A .a 3+a 2=a 5B .(a -b )2=a 2-b 2C .a 6b ÷a 2=a 3bD .(-ab 3)2=a 2b 64.在某校“我的梦想”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ).A.众数B. 中位数C.平均数D. 方差 5.如图,菱形ABCD 的两条对角线相交于O ,若AC=8,BD=6, 则菱形ABCD 的周长是( )A .48B .24C .D .206.如果关于x 的一元二次方程x 2+px +q =0的两根分别为1,221-==x x ,那么p ,q 的值分别是 ()7.如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合. 已知AC=5cm ,△ADC 的周长为17cm ,则BC 的长为( ) A .12cm B .10cm C .7cm D .22cm 8.如图,直线y=kx+b 交坐标轴于A (-2,0),B (0,3)两点,则不等式kx+b >0的解集是( )A .x >3 B.-2<x <3C.x <-2D.x >-2二.填空题(本大题共6小题,每小题3分,满分18分) 9.x 的取值范围是_____ 10.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学计数法表示为第6题图第8题图第2题图11.________ 12.分解因式: __________3322=-n m .13.如图,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,A 、B 、P 是⊙O 上的点,则_______tan =∠APB .14.如图,Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A →B 的方向运动,设E 点的运动时间为t 秒,连接DE ,当△BDE 是直角三角形时,t 的值为三.解答题(本大题共8小题,满分78分,解答应写出文字说明,证明过程或演算步骤) 15.( 7,然后从21≤≤-x 中选择一个合适的数代入求值。

人教版九年级上册数学竞赛专题:平行线分线段成比例(含答案)

人教版九年级上册数学竞赛专题:平行线分线段成比例(含答案)

人教版九年级上册数学专题:平行线分线段成比例竞赛试题【例1】如图,□ABCD 中,P 为对角线BD 上一点,过点P 作一直线分别交BA ,BC 的延长线于Q ,R ,交CD ,AD 于S ,T .求证:PQ •PT =P R •PS .【例2】梯形ABCD 中,AD //BC ,AB =DC .(1)如图1,如果P ,E ,F 分别是BC ,AC ,BD 的中点,求证:AB =PE +PF ;(2)如图2,如果P 是BC 上的任意一点(中点除外),PE ∥AB ,PF ∥DC ,那么AB =PE +PF 这个结论还成立吗?如果成立,请证明;如果不成立,说明理由.【例3】如图,在梯形ABCD 中,AD ∥BC ,AD =a ,BC =b ,E ,F 分别是AD ,BC 的中点,且AF 交BE 于P ,CE 交DF 于Q ,则PQ 的长为____.QA BCDEFPA BCD EF P图2A BCD EF P图1QARBCD SP【例4】如图,在△ABC中,D,E是BC的三等分点,M是AC的中点,BM交AD,AE于G,H,则BG︰GH:HM等于()A.3︰2︰1 B.4︰2︰1 C.5︰4︰3 D.5︰3︰2【例5】如图,已知AB∥CD,AD∥CE,F,G分别是AC和FD的中点,过G的直线依次交AB,AD,CD,CE于点M,N,P,Q.求证:MN+PQ=2PN.【例6】已知:△ABC是任意三角形.(1)如图1,点M,P,N分别是边AB,BC,CA的中点,求证:∠MPN=∠A;(2)如图2,点M,N分别在边AB,AC上,且AMAB=13,ANAC=13,点P1,P2是边BC的三等分点,你认为∠MP1N+∠MP2N=∠A是否正确?请说明你的理由;能力训练AB CM NP图1AB CM N1P2P图2AM NB C1P2P2009P图3QA BC DEFGMNPAB CD EG HMA 卷1.如图,工地上竖立着两根电线杆AB ,CD ,它们相距15cm ,分别自两杆上高出地面4m ,6m 的A ,C 处,向两侧地面上的E ,D 和B ,F 点处,用钢丝绳拉紧,以固定电线杆,那么钢丝绳AD 与BC 的交点P 离地面的高度为____m .2.如图,□ABCD 的对角线交于O 点,过O 任作一直线与CD ,BC 的延长线分别交于F ,E 点.设BC =a ,CD =b ,CF =c ,则CE =____.3.如图,D ,F 分别是△ABC 边AB ,AC 上的点,且AD ︰DB =CF ︰FA =2︰3,连结DF 交BC 边的延长线于点E ,那么EF ︰FD =____.4.如图,设AF =10,FB =12,BD =14,DC =6,CE =9,EA =7,且KL ∥DF ,LM ∥FE ,MN ∥ED ,则EF ︰FD =____.5.如图,AB ∥EF ∥CD ,已知AB =20,CD =80,那么EF 的值是( ) A .10B .12C .16D .186.如图,CE ,CF 分别平分∠ACB ,∠ACD ,AE ∥CF ,AF ∥CE ,直线EF 分别交AB ,AC 于点M ,N .若BC =a ,AC =b ,AB =c ,且c >a >b ,则EM 的长为( )A .2c a- B .2a b- C .2c b- D .2a b c+- 7.如图,在□ABCD 的边AD 延长线上取一点F ,BF 分别交AC 与CD 于E ,G .若EF =32,GF =24,则BE 等于( )A .4B .8C .10D .12E .168.如图,在梯形ABCD 中,AB ∥CD ,AB =3CD ,E 是对角线AC 的中点,直线BE 交AD 于点F ,则AF ︰FD 的值是( )A .2B .53C .32D .1ABCD EFG第7题 ABCDEF第8题 ABCD E F M NP第9题A BCDE F第5题 ABC D E F L K MN第4题ABDEFM 第6题 ABCDEF O第2题ABCD EF 第3题QABCD EF 第1题9.如图,P是梯形ABCD的中位线MN所在直线上的任意一点,直线AP,BP分别交直线CD于E,F.求证:MNNP=1()2AE BFEP FP+.10.如图,在四边形ABCD中,AC与BD相交于O,直线l平行于BD且与AB,DC,BC,AD及AC的延长线分别交于点M,N,R,S和P.求证:PM·PN=P R·PS.11.如图,AB⊥BC,CD⊥BC,B,D是垂足,AD和BC交于E,EF⊥BD于F.我们可以证明:11 AB CD+=1EF成立(不要求证出).以下请回答:若将图中垂直改为AB∥CD∥EF,那么,(1)11AB CD+=1EF还成立吗?如果成立,请给出证明;如果不成立,请说明理由.(2)请找出S△ABD,S△BED和S△BDC的关系式,并给出证明.12.在Rt△ABC中,∠BAC=90°,AD平分∠BAC,过D点的直线PQ交边AC于点P,交边AB的延长线于点Q.(1)如图1,当PQ⊥AC时,求证:11AQ AP+;(2)如图2,当PQ不与AD垂直时,(1)的结论还成立吗?证明你的结论;(3)如图3,若∠BAC=60°,其它条件不变,且11AQ AP+=nAD,则n=____(直接写出结果)AQ B CDP图1AQB CDP图2AQB CDP图3ABCDEF第11题SARBCDM NOPl第10题B 卷1.设K =a b c c +-=a b c b -+=a b ca-++,则K =____. 2.如图,AD ∥EF ∥BC ,AD =15,BC =21,2AE =EB ,则EF =____.3.如图,在△ABC 中,AM 与BN 相交于D ,BM =3MC ,AD =DM ,则BD ︰DN =____.4.如图,ABCD 是正方形,E ,F 是AB ,BC 的中点,连结EC 交DB ,交DF 于G ,H ,则EG ︰GH ︰HC =____.5.如图,在正△ABC 的边BC ,CA 上分别有点E ,F ,且满足BE =CF =a ,EC =FA =b (a >b ),当BF 平分AE 时,则ab 的值为( ) ABCD6.如图,△ABC 中,AD 是BC 边上的中线,F 是AD 上的一点,且AF ︰FD =1︰5,连结CF 并延长交AB 于E ,则AE ︰EB 等于( )A .1︰10B .1︰9C .1︰8D .1︰77.如图,PQ ∥AB ,PQ =6,BP =4,AB =8,则PC 等于( ) A .4B .8C .12D .168.如图,EF ∥BC ,FD ∥AB ,BD =35BC ,则BE ︰EA 等于( )A .3︰5B .2︰5C .2︰3D .3︰29.(1)阅读下列材料,补全证明过程.已知,如图,矩形ABCD 中,AC ,BD 相交于点O ,OE ⊥BC 于E ,连结DE 交OC 于点F ,作FG ⊥BC 于G .求证:点G 是线段BC 的一个三等分点.(2)请你依照上面的画法,在原图上画出BC 的一个四等分点.(要求:保留画图痕迹,不写画法及证明过程)ABCDE F第6题QABCP第7题AB CDEF 第8题A BCD E F 第2题ABD M N第3题ABCDEFGH第4题A BCEFG第5题10.如图,已知在□ABCD 中,E 为AB 边的中点,AF =12FD ,FE 与AC 相交于G . 求证:AG =15AC .11.如图,梯形ABCD 中,AD ∥BC ,EF 经过梯形对角线的交点O ,且EF ∥AD . (1)求证:OE =OF ; (2)求OE AD +OEBC的值; (3)求证:1AD +1BC =2EF.12.如图,四边形ABCD 是梯形,点E 是上底边AD 上的一点,CE 的延长线与BC 的延长线交于点F ,过点E 作BA 的平行线交CD 的延长线于点M ,MB 与AD 交于点N .求证:∠AFN =∠DME .QABCDEF M NP ABCDE FGO第9题ABCDEG第10题ABCD EFO第11题参考答案例1 提示:PQ PB PRPS PD PT==例2 (1)略 (2)结论仍然成立 提示:,PF BP PE CPCD BC AB BC==. 例3aba b+ 提示:由AP DQ a PF QF b ==,推得PQ ∥AD 。

九年级数学竞赛题

九年级数学竞赛题

九年级数学竞赛题一、代数部分1. 一元二次方程竞赛题题目:已知关于公式的一元二次方程公式有两个实数根公式和公式。

(1)求实数公式的取值范围;(2)当公式时,求公式的值。

解析:(1)对于一元二次方程公式,判别式公式。

在方程公式中,公式,公式,公式,因为方程有两个实数根,所以公式。

展开公式得公式,即公式,解得公式。

(2)由公式可得公式。

根据韦达定理,在一元二次方程公式中,公式,公式。

对于方程公式,公式,公式。

当公式时,即公式,解得公式,但公式不满足公式(由(1)得),舍去。

当公式时,即公式,那么公式,由(1)中公式,解得公式。

2. 二次函数竞赛题题目:二次函数公式的图象经过点公式,且与公式轴交点的横坐标分别为公式、公式,其中公式,公式,求公式的取值范围。

解析:因为二次函数公式的图象经过点公式,所以公式,则公式。

二次函数与公式轴交点的横坐标是方程公式的根,由韦达定理公式,公式。

设公式,因为公式,公式,当公式时,公式;当公式时,公式;当公式时,公式。

将公式代入公式,公式中:由公式得公式,化简得公式,即公式。

由公式得公式,化简得公式,即公式,公式。

所以公式,则公式,解得公式。

二、几何部分1. 圆的竞赛题题目:在公式中,弦公式与弦公式相交于点公式,公式、公式分别是弦公式、公式的中点,连接公式、公式,若公式,公式的半径为公式。

(1)求证:公式是等边三角形;(2)求公式的长(用公式表示)。

解析:(1)连接公式、公式。

因为公式、公式分别是弦公式、公式的中点,根据垂径定理,公式,公式。

在四边形公式中,公式,公式,根据四边形内角和为公式,可得公式。

又因为公式(半径),公式、公式分别是弦公式、公式的中点,所以公式,公式。

在公式中,公式,公式(同圆中,弦心距相等则弦相等的一半也相等),所以公式是等边三角形。

(2)设公式与公式交于点公式,公式与公式交于点公式。

在公式中,公式,公式,公式,则公式。

同理,在公式中,公式。

因为公式是等边三角形,公式,在公式中,公式,公式,则公式,所以公式。

九上数学竞赛试题及答案

九上数学竞赛试题及答案

九上数学竞赛试题及答案九年级上学期数学竞赛试题一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. 3.1415926B. √2C. 0.33333D. π2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是?A. 5B. 6C. 7D. 83. 一个数的立方根等于它本身,这个数可能是?A. 0B. 1C. -1D. 以上都是4. 一个二次方程ax² + bx + c = 0(a ≠ 0)的判别式是?A. b² - 4acB. b² + 4acC. a² + b² + c²D. a² - b² - c²5. 以下哪个代数式不是同类项?A. x³ + 2xB. 5x² - 3xC. 2x² - 3xD. x² + 5x二、填空题(每题3分,共15分)6. 如果一个数的平方等于81,那么这个数是________。

7. 一个数的相反数是-5,那么这个数是________。

8. 一个数的绝对值是5,那么这个数可能是________或________。

9. 一个多项式P(x) = x³ - 6x² + 11x - 6,P(1)的值是________。

10. 如果一个圆的半径是r,那么它的面积是________。

三、解答题(每题10分,共20分)11. 已知一个长方体的长、宽、高分别是a、b、c,求它的体积。

解:长方体的体积公式是V = abc,所以体积为abc。

12. 证明勾股定理:在一个直角三角形中,直角边的平方和等于斜边的平方。

证明:设直角三角形的直角边分别为a和b,斜边为c。

根据勾股定理,a² + b² = c²。

可以通过构造一个边长为a+b的正方形,将其分割成两个直角三角形和一个边长为c的正方形,从而证明a² +b² = c²。

九年级初中竞赛数学试卷

九年级初中竞赛数学试卷

一、选择题(每题5分,共50分)1. 下列各数中,绝对值最小的是()A. -2B. 0C. 2D. -1/22. 若m和n是方程x^2 - 3x + 2 = 0的两个根,则m+n的值是()A. 3B. 2C. 1D. 03. 在直角坐标系中,点A(2,3)关于y轴的对称点是()A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)4. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = x^2C. y = 1/xD. y = 3x - 55. 若a、b、c是等差数列的连续三项,且a+b+c=21,则b的值为()A. 7B. 14C. 21D. 286. 在等腰三角形ABC中,AB=AC,且∠BAC=60°,则∠B的度数是()A. 30°B. 45°C. 60°D. 90°7. 若a^2 + b^2 = 1,且a+b=0,则ab的值为()A. 0B. 1C. -1D. 28. 下列方程中,有唯一解的是()A. x^2 - 4x + 4 = 0B. x^2 - 4x + 5 = 0C. x^2 - 4x + 6 = 0D. x^2 - 4x + 8 = 09. 若函数y = ax^2 + bx + c的图像开口向上,且顶点坐标为(1,-2),则a的值是()A. 1B. -1C. 2D. -210. 在梯形ABCD中,AD∥BC,AB=CD,AD=8cm,BC=12cm,则梯形的高是()A. 6cmB. 8cmC. 10cmD. 12cm二、填空题(每题5分,共50分)11. 已知等差数列{an}的第一项为2,公差为3,则第10项an=__________。

12. 若函数y = kx + b的图像过点(2,-1),则k+b=__________。

13. 在直角坐标系中,点P(-3,4)到原点O的距离是__________。

九年级(上)数学竞赛试题 含答案

九年级(上)数学竞赛试题 含答案

九年级数学一、选择题(每小题5分,共30分)1.已知21+=m ,21-=n ,则代数式mn n m 322-+的值为( )A .9B .±3C .3D . 52.某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为( )A .13B .19C .12D .23 3.如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y=x 的图象被⊙P 的弦AB的长为a 的值是( ) A.B.2+C.D.24.已知函数()()()()22113513x x y x x ⎧--⎪=⎨--⎪⎩≤>,则使y=k 成立的x 值恰好有三个,则k 的值为( )A .0B .1C .2D .35.方程1)1(32=-++x x x 的所有整数解的个数是( )个 (A )2 (B )3 (C )4 (D )56.如图,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1).y 轴上一点P (0,2)绕点A 旋转180°得点P 1,点P 1绕点B 旋转180°得点P 2,点P 2绕点C 旋转180°得点P 3,点P 3绕点D 旋转180°得点P 4,……,重复操作依次得到点P 1,P 2,…, 则点P 2010的坐标是( ). (A )(2010,2) (B )(2010,2-) (C )(2012,2-) (D )(0,2)二、填空题(每小题5分,共30分) 7.当x 分别等于20051,20041,20031,20021,20011,20001,2000,2001,2002,2003,2004,2005时,计算代数式221x x +的值,将所得的结果相加,其和等于 .8.已知a =5-1,则2a 3+7a 2-2a -12 的值等于 .9.△ABC 的三边长a 、b 、c 满足8=+c b ,52122+-=a a bc ,则△ABC 的周长等于 .10.如图,点A B ,为直线y x =上的两点,过A B ,两点分别作y 轴的平行线交双曲线1y x=(x >0)于C D ,两点. 若2BD AC =,则224OC OD - 的值为 .11.如图,直径AB 为6阴影部分的面积是 .12.如图,一次函数的图象过点P (2,3),交x 轴的正半轴与A ,交y 轴的正半轴与B ,则△AOB 面积的最小值是 . 三、解答题(每小题15分,共60分)13、在实数范围内,只存在一个正数是关于x 的方程k x x kx x +=-++3132的解,求实数k 的取值范围.(第10题)(第11题)DB14.阅读下面的情境对话,然后解答问题(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(2)在Rt ∆ABC 中, ∠ACB =90°,AB =c ,AC =b ,BC =a ,且b >a ,若Rt ∆AB C 是奇异三角形,求a :b :c ;(3)如图,AB 是⊙O 的直径,C 是上一点(不与点A 、B 重合),D 是半圆 ⌒ABD 的中点,CD 在直径AB 的两侧,若在⊙O 内存在点E 使得AE =AD ,CB =CE .○1求证:∆ACE 是奇异三角形; ○2当∆ACE 是直角三角形时,求∠AOC 的度数.15.如图,对称轴为直线72x =的抛物线经过点A (6,0)和B (0,4). (1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形?②是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.16.设k 为正整数,证明:(1)、如果k 是两个连续正整数的乘积,那么256k +也是两个连续正整数的乘积; (2)、如果256k +是两个连续正整数的乘积,那么k 也是两个连续正整数的乘积.参考答案一、选择题1.C 2.A 3.B 4.D 5. C 6. B6.解:由已知可以得到,点1P ,2P 的坐标分别为(2,0),(2,2-). 记222 )P a b (,,其中222,2a b ==-. 根据对称关系,依次可以求得:322(42)P a b --,--,422(2)P a b ++,4,522(2)P a b ---,,622(4)P a b +,. 令662(,)P a b ,同样可以求得,点10P 的坐标为(624,a b +),即10P (2242,a b ⨯+), 由于2010=4⨯502+2,所以点2010P 的坐标为(2010,2-). 二、填空题7.6 8.0 9.12 10.6. 11.6π 12.1212.解:设一次函数解析式为y kx b =+,则32k b =+,得32b k =-,令0y =得bx k=-,则OA =b k-. 令0x =得y b =,则OA =b .2221()21(32)2141292124]212.AOB b S b kk kk k k∆=⨯-⨯-=⨯--+=⨯-=⨯+≥ 所以,三角形AOB 面积的最小值为12.三、解答题13、原方程可化为0)3(322=+--k x x ,①(1)当△=0时,833-=k ,4321==x x 满足条件; (2)若1=x 是方程①的根,得0)3(13122=+-⨯-⨯k ,4-=k .此时方程①的另一个根为21,故原方程也只有一根21=x ;(3)当方程①有异号实根时,02321<+-=k x x ,得3->k ,此时原方程也只有一个正实数根;(4)当方程①有一个根为0时,3-=k ,另一个根为23=x ,此时原方程也只有一个正实根。

九年级数学竞赛训练题以及答案

九年级数学竞赛训练题以及答案

九年级数学竞赛训练题(一)一、选择题(共5小题,每小题7分,共35分. 每道小题有且只有一个选项是正确的. 请将正确选项代号填入题后的括号里,不填、多填或错填都得0分)1.若20 10a b b c ==,,则a b b c ++的值为 ( ) (A )1121 (B )21011 (C )11021 (D )21112.若实数a ,b 满足21202a ab b -++=,则a 的取值范围是 ( )(A )a ≤2- (B )a ≥4 (C )2-≤a ≤4 (D )a ≤2-或 a ≥43.如图,在四边形ABCD 中,∠B =135°,∠C =120°,AB =BC =4-CD =则AD 边的长为 ( )(A )(B )64 (C )622+(D )64+4.在一列数123x x x ,,,……中,已知11=x ,且当k ≥2时,1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭,(取整符号[]a 表示不超过实数a 的最大整数,例如[]2.62=,[]0.20=),则2010x 等于 ( ) (A) 1 (B) 2 (C) 3 (D) 45.如图,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1).y 轴上一点P (0,2)绕点A 旋转180°得点P 1,点P 1绕点B 旋转180°得点P 2,点P 2绕点C 旋转180°得点P 3,点P 3绕点D 旋转180°得点P 4,……,重复操作依次得到点P 1,P 2,…, 则点P 2010的坐标是 ( ) (A )(2010,2) (B )(2012,2-)(C )(2010,2-) (D )(0,2) 二、填空题(共5小题,每小题7分,共35分)6.已知a =5-1,则2a 3+7a 2-2a -11 的值等于 .7.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶.在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间.过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车;再过t 分钟,货车追上了客车,则t = .8.如图,在平面直角坐标系xOy 中,多边形OABCDE 的顶点坐标分别是O (0,0),A (0,6),B (4,6),C (4,4),D (6,4),E (6,0).若直线l 经过点M (2,3),且将多边形OABCDE 分割成面积相等的两部分,则直线l 的函数表达式是 .9.如图,射线AM ,BN 都垂直于线段AB ,点E 为AM 上一点,过点A 作BE 的垂线AC 分别交BE ,BN 于点F ,C ,过点C 作AM 的垂线CD ,垂足为D .若CD =CF ,则AEAD= . 10.对于i =2,3,…,k ,正整数n 除以i 所得的余数为i -1.若n 的最小值0n 满足020003000n <<,则正整数k 的最小值为 . 三、解答题(共4题,每题20分,共80分)11.设实数a ,b 满足:2231085100a ab b a b -++-=,求u =29722a b ++的最小值.12.如图,AB 为⊙O 的直径,C 为圆上一点,AD 平分∠BAC 交⊙O 于点D ,DE ⊥AC 交AC 的延长线于点E ,FB 是⊙O 的切线交AD 的延长线于点F . (1)求证:DE 是⊙O 的切线. (2)若DE = 3,⊙O 的半径为5,求BF 的长.13.设1x ,2x ,…,008 2x 是整数,且满足下列条件: (1)21≤≤-n x (n =1,2,…,2 008); (2)++21x x …+008 2x =200;(3)++2221x x …+2008 2x =2 008. 求++3231x x …+3008 2x 的最小值和最大值.14.如图,已知直线b x y l +=31:经过点)41 0(,M ,一组抛物线的顶点11(1, y )B ,22(2, y )B ,33(3, y )B ,…,n (, y )n B n (n 为正整数)依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:11(, 0)A x ,22(, 0)A x ,33(, 0)A x ,…,11(,0)n n A x ++(n 为正整数),设d x =1(0<d <1). (1)求经过点1A 、1B 、2A 的抛物线的解析式(用含d 的代数式表示);(2)定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为“美丽抛物线”. 探究:当d (0<d <1)的大小变化时,这组抛物线中是否存在“美丽抛物线”?若存在,请求出相应的d 的值.九年级数学竞赛训练题(二)一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题2分,满分16分) 1.一元二次方程042=-x 的解是( )A .2=xB .2-=xC .21=x ,22-=xD .21=x ,22-=x 2.在△ABC 中,∠C =90O ,BC :CA =3:4,那么SinA 等于( )A .43 B.34 C.53 D.543.小明从上面观察下图所示的两个物体,看到的是( )A B C D4.二次函数y =ax 2+bx +c 的图像如图所示: 根据图像可得a ,b ,c 与0的大小关系是( )A.a>0,b<0,c<0B.a>0,b>0,c>0C.a<0,b<0,c<0D.a<0,b>0,c<05函数xky =的图象经过(1,-1),则函数2-=kx y 的图象是( )6.在Rt △ABC 中,∠C=90°,a =4,b =3,则sinA 的值是( )A .54 B .35 C .43 D .457.已知二次函数y =x 2+(2a+1)x+a 2-1的最小值为O ,则a 的值是( )A .43 B.43- C.45 D.45-8.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A .154 B .31 C .51 D .152二、填空题(本大题共7个小题,每小题3分,满分21分)9.∠A 和∠B 是一直角三角形的两锐角,则tan 2BA +=_________。

人教版九年级数学上学期竞赛试卷及答案

人教版九年级数学上学期竞赛试卷及答案

人教版九年级数学上学期竞赛试卷及答案一、 选择题 (本题共计 12 小题 ,每题 3 分 ,共计36分 , ) 1. 在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份小礼品,则参加聚会的同学有( ) A.9人 B.10人 C.11人 D.12人 2. 三角形两边的长分别是12和16,第三边的长是一元二次方程x 2−32x +240=0的一个实数根,则该三角形的面积是( ) A.96 B.96或32√5 C.48 D.32√5 3. 方程(m −2)x 2−√3−mx +14=0有两个实数根,则m 的取值范围( ) A.m >52 B.m ≤52且m ≠2 ;C.m ≥3 D.m ≤3且m ≠2 4. a ,b ,c 为常数,且a ,c 互为相反数,则关于x 的方程ax 2+bx +c =0(a ≠0)根的情况( ) A.无实数根 B.有两个相等的实数根 C.有两个不相等的实数根 D.有一根为5 5. 把抛物线y =−2x 2+4的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( ) A.y =−2(x −2)2+7 B.y =−2(x −2)2+1 C.y =−2(x +2)2+1 D.y =−2(x +2)2+7 6. 如图,已知二次函数y =ax 2+bx +c (a ≠0)图像过点(−1,0),顶点为 (1,2),则结论:①abc <0;②x =1时,函数的最大值是2;③a +2b +4c >0;④2a =−b ;⑤2c >3b .其中正确的结论有( ) A.5个 B.4个 C.3个 D.2个7. 抛物线y =−3x 2−1是由抛物线y =−3(x +1)2+1怎样平移得到的( )A.左移1个单位上移2个单位B.右移1个单位上移2个单位学校: 班级: 姓名: 准考证号:C.左移1个单位下移2个单位D.右移1个单位下移2个单位8. 如图,在Rt△ABC中,∠ABC=90∘,AB=2√3,BC=2,以AB的中点O为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )A.5√34−π2B.5√34+π2C.2√3−πD.4√3−π29. 如图,分别以等边三角形ABC的三个顶点为圆心,以其边长为半径画弧,得到的封闭图形是莱洛三角形,如果AB=2,那么此莱洛三角形(即阴影部分)的面积( )A.π+√3B.π−√3C.2π−2√3D.2π−√310. 如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70∘,则∠BOD的度数是( )A.35∘B.70∘C.110∘D.140∘11. 从−2,3,4,5中随机选取一个数作为二次函数y=ax2中a的值,则抛物线开口向下的概率是( )A.1B.12C.14D.3412. 平移小菱形可以得到美丽的“中国结”图案,下面四个图案是小菱形平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是( )A.800B.900C.1000D.1100二、填空题(本题共计4 小题,每题3 分,共计12分,)13. 国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为________.14. 已知m是一元二次方程x2−x−2=0的一个根,则2020−m2+m的值为________.15. 明明和亮亮分别解同一道一元二次方程,明明把一次项系数看错了,解得方程的两个根分别为−3和5,亮亮把常数项看错了,解得两根为2和2,则原方程是________.16. 若实数p,q(p≠q)满足p2−5p+6=0,q2−5q+6=0,则1p2+1q2的值为________.三、解答题(本题共计7 小题,共计72分,)17.(10分) 解方程:(1)x2+4x−4=0;(2)3x(2x+1)=4x+2.18.(10分) 已知a,b是关于x的一元二次方程x2−2(m+1)x+m2+5=0的两实数根.(1)若(a−1)(b−1)=39,求m的值;(2)已知等腰△AOB的一边长为7,若a,b恰好是△AOB另外两边的边长,求这个三角形的周长.19.(11分) 某网店专售一品牌牙膏,其成本为22元/支,销售中发现,该商品每天的销售量y(支)与销售单价x(元/支)之间存在如图所示的关系.(1)请求出y与x之间的函数关系式;(2)该品牌牙膏销售单价定为多少元时,每天销售利润最大?最大利润是多少元?(3)在武汉爆发“新型冠状病毒”疫情期间,该网店店主决定从每天获得的利润中抽出100元捐赠给武汉,为了保证捐款后每天剩余的利润不低于350元,市场监督管理局加大了对线上、线下商品销售的执法力度,对商品售价超过成本价的20%的商家进行处罚,请你给该网店店主提供一个合理化的销售单价范围.20.(10分) 嘉嘉同学用配方法推导二次函数y=ax2+bx+c(a≠0)的顶点坐标,她是这样做的:由于a≠0,解析式y=ax2+bx+c变形为y=a(x2+bax)+c,···························································第一步y=a[x2+ba x+(b2a)2−(b2a)2]+c,·······················第二步y=a(x+b2a )2−b24a+c,················································第三步y=a(x+b2a )2+b2−4ac4a.···········································第四步(1)嘉嘉的解法从第________步开始出现错误;事实上,抛物线y=ax2+ bx+c(a≠0)的顶点坐标是________.(2)用配方法求抛物线y=2x2−4x−3的顶点坐标和对称轴.21.(10分) 为了解我校落实新课改精神的情况,现以我校某班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为________人,参加球类活动的人数的百分比为________;(2)请把图2(条形统计图)补充完整;(3)我校学生某年级共800人,则参加棋类活动的人数约为________;(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),现准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.22.(10分) 如图,在△ABC中,∠C=90∘,以BC为直径的⊙O交AB于点D,E是AC中点.(1)求证:DE是⊙O的切线;(2)若AB=10,BC=6,连接CD,OE,交点为F,求OF的长.x2+c,且在函数值y=−4时,只有一个自23.(11分) 已知二次函数y=14变量x的值与其对应.(1)求c的值;(2)点M, N在该二次函数的图象上,记该二次函数图象的顶点为C,且∠MCN=90∘,求证:MN必过原点O;(3)将该二次函数图象落在直线l:x=t左侧部分沿着x轴翻折,其余部分图象保持不变,得到函数f的图象.问:是否存在实数t,使得函数f的图象位于直线l:x=t两侧的部分在y轴上的正投影没有重合部分?若存在,求t的取值范围;若不存在,说明理由.参考答案与试题解析一、选择题(本题共计12 小题,每题 3 分,共计36分)1.【答案】C【考点】由实际问题抽象出一元二次方程一元二次方程的应用——其他问题【解析】设参加聚会的有x名学生,根据“每人都向其他人赠送了一份小礼品,共互送110份小礼品”,列出关于x的一元二次方程,解之即可.【解答】解:设参加聚会的同学有x人,根据题意得:x(x−1)=110,解得x1=11,x2=−10(舍),∴参加聚会的同学有11人.故选C.2.【答案】B【考点】解一元二次方程-因式分解法勾股定理等腰三角形的性质三角形的面积【解析】先求出一元二次方程x2−32x+240=0的实数根,再由三角形的三边关系判断出另一边的长度,由勾股定理的逆定理判断出三角形的性状,进而可得出结论.【解答】解:∵一元二次方程x2−32x+240=0,可化为(x−20)(x−12)=0,∴x1=20,x2=12,当x=12时,该三角形为以12为腰,16为底的等腰三角形,高∠=√122−82=4√5,则S=12×16×4√5=32√5;当x=20时,∵122+162=202,∴该三角形为以12和16为直角边,20为斜边的直角三角形.∴S=12×16×12=96.故选B.3.【答案】B【考点】一元二次方程的定义根的判别式二次根式有意义的条件【解析】根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到{m−2≠0 3−m≥0△=(−√3−m)2−4(m−2)×14≥0,然后解不等式组即可.【解答】解:根据题意,得{m−2≠0,3−m≥0,Δ=(−√3−m)2−4(m−2)×14≥0,解得m≤52且m≠2.故选B.4.【答案】C【考点】根的判别式【解析】直接利用判别式判断正负即可.【解答】解:由题意得:a=−c,则Δ=b2−4ac=b2+4a2.由于a≠0,所以Δ=b2−4ac=b2+4a2>0,所以方程必有两个不相等的实数根.故选C.5.【答案】D【考点】二次函数图象的平移规律【解析】根据抛物线图象平移规律:”左加右减“进行求解即可.【解答】解:根据抛物线图象平移规律:”左加右减,上加下减“可得,y=−2x2+4的图象向左平移2个单位,再向上平移3个单位,得到平移后抛物线的解析式为y=−2(x+2)2+4+3=−2(x+2)2+7.故选D.6.【答案】B【考点】二次函数图象与系数的关系二次函数的最值【解析】由抛物线的开口方向判断a与0的关系.由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①对称轴在y轴的右侧,则a,b异号,∴ab<0.由抛物线与y 轴的交点位于y 轴的正半轴,则c >0,∴ abc <0,故①正确;②∵抛物线的开口方向向下,顶点为(1,2),∴x =1时,函数的最大值是2,故②正确;③当x =12时,y >0,即14a +12b +c >0, ∴a +2b +4c >0,故③正确;④∵抛物线的对称轴为直线x =−b 2a =1,∴2a =−b ,故④正确;⑤∵抛物线过点(−1,0),∴a −b +c =0.∵ a =−12b , ∴−12b −b +c =0, ∴2c =3b ,故⑤错误.综上所述,正确的结论有4个故选B .7.【答案】D【考点】二次函数图象的平移规律【解析】此题暂无解析【解答】解:将抛物线y =−3(x +1)2+1向右移1个单位得到y =−3x 2+1,再向下移2个单位得到y =−3x 2−1.故选D .8.【答案】A【考点】扇形面积的计算解直角三角形求阴影部分的面积【解析】根据题意,作出合适的辅助线,即可求得DE 的长、∠DOB 的度数,然后根据图形可知阴影部分的面积是△ABC的面积减去△AOD的面积和扇形BOD的面积,从而可以解答本题.【解答】解:如图,连接OD,过点D作DE⊥AB于点E.∵在Rt△ABC中,∠ABC=90∘,AB=2√3,BC=2,则AC=4,AC=2BC,∴∠BAC=30∘,∴∠DOB=60∘.∵OD=12AB=√3,∴DE=32,∴阴影部分的面积是:2√3×22−√3×322−60×π×(√3)2360=5√34−π2.故选A.9.【答案】C【考点】扇形面积的计算等边三角形的性质三角形的面积【解析】图中三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【解答】解:过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60∘,∵AD⊥BC,∴BD=CD=1,AD=√3BD=√3,∴△ABC的面积为12×BC×AD=12×2×√3=√3,S扇形BAC =60π×22360=23π,∴莱洛三角形的面积S=3×23π−2×√3=2π−2√3.故选C.10.【答案】D【考点】圆内接四边形的性质圆周角定理【解析】由圆内接四边形的外角等于它的内对角知,∠A=∠DCE=70∘,由圆周角定理知,∠BOD =2∠A=140∘.【解答】解:∵四边形ABCD内接于⊙O,∴∠A+∠BCD=180∘,又∠BCD+∠DCE=180∘,∴∠A=∠DCE=70∘,∴∠BOD=2∠A=140∘.故选D.11.【答案】C【考点】二次函数图象与系数的关系概率公式【解析】根据抛物线的开口与系数的关系可知,当a<0时抛物线开口向下,在这一组数中只有−2为负数,所以当a=−2时抛物线开口向下,再根据概率公式解答即可.【解答】解:从−2,3,4,5四个数中,任意取一个数,有四种情况,满足抛物线开口向下的a值可以为−2,.∴该二次函数图象开口向下的概率是14故选C.12.【答案】A【考点】规律型:图形的变化类【解析】仔细观察图形发现第一个图形有2×12=2个小菱形;第二个图形有2×22=8个小菱形;第三个图形有2×32=18个小菱形;由此规律得到通项公式,然后代入n=20即可求得答案.【解答】解:∵第一个图形有2×12=2个小菱形;第二个图形有2×22=8个小菱形;第三个图形有2×32=18个小菱形;⋯以此类推,第n个图形有2n2个小菱形,∴第20个图形有2×202=800个小菱形.故选A.二、填空题(本题共计4 小题,每题 3 分,共计12分)13.【答案】5000(1+x)2=7500【考点】由实际问题抽象出一元二次方程【解析】根据题意可得等量关系:2017年的快递业务量×(1+增长率)2=2019年的快递业务量,根据等量关系列出方程即可.【解答】解:根据题意,可列方程为5000(1+x)2=7500.故答案为:5000(1+x)2=7500.14.【答案】2018【考点】一元二次方程的解列代数式求值【解析】由方程根的定义把m的值代入可求得m2−m的值,代入可求得值.【解答】解:∵m是一元二次方程x2−x−2=0的一个根,∴m2−m−2=0,∴m2−m=2,∴2020−∠2+∠=2020−(∠2−∠)=2018.故答案为:2018.15.【答案】∠2−4∠−15=0【考点】根与系数的关系【解析】此题暂无解析【解答】解:设方程解析式为:∠2+∠∠+∠=0,由题意及根与系数的关系可得:−3×5=∠,−∠=2+2,故∠=−15,∠=−4,故答案为:∠2−4∠−15=0.16.【答案】1336【考点】解一元二次方程-因式分解法列代数式求值【解析】由题意得到实数∠, ∠是方程∠2−5∠+6=0的两个根,∠+∠=5,∠∠=6,代入1∠2+1∠2=∠2+∠2(∠∠)2=(∠+∠)2−2∠∠(∠∠)2即可. 【解答】解:∵ 实数∠, ∠(∠≠∠)满足∠2−5∠+6=0,∠2−5∠+6=0,∴ 解得∠=2或∠=3,∠=2或∠=3.∵实数∠, ∠不相等,∴ 1∠2+1∠2=122+132=1336. 故答案为:1336. 三、 解答题 (本题共计 7 小题 ,共计72分 )17.【答案】解:(1)用公式法解:∠=1,∠=4,∠=−4,∴ ∠2−4∠∠=42−4×1×(−4)=32>0,∴ ∠=−∠±√∠2−4∠∠2∠=−4±√322×1=−2±2√2.(2)3∠(2∠+1)=2(2∠+1),3∠(2∠+1)−2(2∠+1)=0,(3∠−2)(2∠+1)=0,3∠−2=0或2∠+1=0,∴ ∠1=23,∠2=−12. 【考点】解一元二次方程-公式法解一元二次方程-因式分解法【解析】此题暂无解析【解答】解:(1)用公式法解:∠=1,∠=4,∠=−4,∴ ∠2−4∠∠=42−4×1×(−4)=32>0,∴ ∠=−∠±√∠2−4∠∠2∠=−4±√322×1=−2±2√2.(2)3∠(2∠+1)=2(2∠+1),3∠(2∠+1)−2(2∠+1)=0,(3∠−2)(2∠+1)=0,3∠−2=0或2∠+1=0,∴ ∠1=23,∠2=−12.18.【答案】解:(1)∵ ∠,∠是关于∠的一元二次方程∠2−2(∠+1)∠+∠2+5=0的两实数根, ∴ ∠+∠=2(∠+1),∠∠=∠2+5,∴ (∠−1)(∠−1)=∠∠−(∠+∠)+1=∠2+5−2(∠+1)+1=39,解得∠=−5或∠=7,当∠=−5时,原方程无解,故舍去,∴ ∠=7.(2)①当7为底边时,此时方程∠2−2(∠+1)∠+∠2+5=0有两个相等的实数根, ∴ ∠=4(∠+1)2−4(∠2+5)=0,解得∠=2,∴ 方程变为∠2−6∠+9=0,解得∠=∠=3,∵ 3+3<7,∴ 不能构成三角形.②当7为腰时,设∠=7,代入方程得:49−14(∠+1)+∠2+5=0,解得:∠=10或4,当∠=10时,方程变为∠2−22∠+105=0,解得∠=7或15,∴∠=15,∵7+7<15,∴不能组成三角形;当∠=4时,方程变为∠2−10∠+21=0,解得∠=3或7,∴∠=3,∴此时三角形的周长为7+7+3=17.综上所述,三角形的周长为17.【考点】根与系数的关系根的判别式三角形三边关系等腰三角形的判定与性质【解析】无无【解答】解:(1)∵∠,∠是关于∠的一元二次方程∠2−2(∠+1)∠+∠2+5=0的两实数根,∴∠+∠=2(∠+1),∠∠=∠2+5,∴(∠−1)(∠−1)=∠∠−(∠+∠)+1=∠2+5−2(∠+1)+1=39,解得∠=−5或∠=7,当∠=−5时,原方程无解,故舍去,∴∠=7.(2)①当7为底边时,此时方程∠2−2(∠+1)∠+∠2+5=0有两个相等的实数根,∴∠=4(∠+1)2−4(∠2+5)=0,解得∠=2,∴方程变为∠2−6∠+9=0,解得∠=∠=3,∵3+3<7,∴不能构成三角形.②当7为腰时,设∠=7,代入方程得:49−14(∠+1)+∠2+5=0,解得:∠=10或4,当∠=10时,方程变为∠2−22∠+105=0,解得∠=7或15,∴∠=15,∵7+7<15,∴不能组成三角形;当∠=4时,方程变为∠2−10∠+21=0,解得∠=3或7,∴∠=3,∴此时三角形的周长为7+7+3=17.综上所述,三角形的周长为17.19.【答案】解:(1)根据题意设∠=∠∠+∠(∠≠0),将(30, 100),(35, 50)代入得{30∠+∠=100, 35∠+∠=50,解得{∠=−10,∠=400,∴∠与∠之间的关系式为∠=−10∠+400.(2)设每天的利润为∠元,则∠=(∠−22)∠=(∠−22)(−10∠+400)=−10∠2+620∠−8800=−10(∠−31)2+810,∴销售单价定为31元时,每天最大利润为810元.(3)−10∠2+620∠−8800−100=350,解得∠=25或∠=37,结合图象和二次函数的特点得出25≤∠≤37,又∠≤22×(1+20%),综上可得25≤∠≤26.4,∴按要求网店店主的销售单价范围为大于或等于25元且小于或等于26.4元.【考点】待定系数法求一次函数解析式二次函数的应用一元二次方程的应用一元一次不等式的实际应用【解析】(1)利用待定系数法求解可得;(2)设每天的利润为∠元,根据“总利润=每支利润×每天销售量”得出函数解析式,配方成顶点式后利用二次函数的性质求解可得;(3)根据题意列出方程−10∠2+620∠−8800−100=350,解之求出∠的值,再根据二次函数的性质得出25≤∠≤37,结合∠≤22×(1+20%)可得答案.【解答】解:(1)根据题意设∠=∠∠+∠(∠≠0),将(30, 100),(35, 50)代入得{30∠+∠=100,35∠+∠=50, 解得{∠=−10,∠=400,∴ ∠与∠之间的关系式为∠=−10∠+400.(2)设每天的利润为∠元,则∠=(∠−22)∠=(∠−22)(−10∠+400)=−10∠2+620∠−8800=−10(∠−31)2+810,∴ 销售单价定为31元时,每天最大利润为810元.(3)−10∠2+620∠−8800−100=350,解得∠=25或∠=37,结合图象和二次函数的特点得出25≤∠≤37,又∠≤22×(1+20%),综上可得25≤∠≤26.4,∴ 按要求网店店主的销售单价范围为大于或等于25元且小于或等于26.4元. 20.【答案】四,(−∠2∠,4∠∠−∠24∠)(2)∵ ∠=2∠2−4∠−3=2(∠−1)2−5,∴ 抛物线的顶点坐标是(1,−5),对称轴是直线∠=1.【考点】二次函数的三种形式解一元二次方程-配方法二次函数y=ax^2 、y=a (x-h )^2+k (a≠0)的图象和性质【解析】(1)运用正确的方法把二次函数的解析式化成顶点式即可解答.(2)运用配方法,把函数的解析式化成顶点式,进一步可得抛物线的顶点坐标和对称轴.【解答】解:(1)∠=∠∠2+∠∠+∠变形为∠=∠(∠2+∠∠∠)+∠,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯第一步∠=∠[∠2+∠∠∠+(∠2∠)2−(∠2∠)2]+∠,⋯⋯第二步∠=∠(∠+∠2∠)2−∠24∠+∠,⋯⋯⋯⋯⋯⋯⋯⋯⋯第三步∠=∠(∠+∠2∠)2+4∠∠−∠24∠.⋯⋯⋯⋯⋯⋯⋯⋯第四步∴ 嘉嘉的解法从第四步开始出现错误;事实上抛物线∠=∠∠2+∠∠+∠(∠≠0)的顶点坐标是(−∠2∠,4∠∠−∠24∠).故答案为:四;(−∠2∠,4∠∠−∠24∠). (2)∵ ∠=2∠2−4∠−3=2(∠−1)2−5,∴ 抛物线的顶点坐标是(1,−5),对称轴是直线∠=1. 21.【答案】7,30%(2)补全条形图如下:140(4)画树状图如下:共有12种情况,选中一男一女的有6种,则∠(选中一男一女)=612=12. 【考点】扇形统计图条形统计图用样本估计总体列表法与树状图法【解析】(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;(2)根据(1)中所求数据即可补全条形图;(3)总人数乘以棋类活动的百分比可得;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.【解答】解:(1)本次调查的总人数为10÷25%=40(人),∴参加音乐类活动的学生人数为40×17.5%=7(人),参加球类活动的人数的百分比为1240×100%=30%,故答案为:7;30%.(2)补全条形图如下:(3)我校学生某年级共800人,则参加棋类活动的人数约为800×740=140. 故答案为:140.(4)画树状图如下:共有12种情况,选中一男一女的有6种,则∠(选中一男一女)=612=12.22.【答案】(1)证明:连接∠∠,∠∠,如图,∵∠∠∠∠=90∘,∠∠为⊙∠直径,∴∠∠∠∠=∠∠∠∠=90∘.∠为∠∠中点,∴∠∠=∠∠=∠∠,∴∠∠∠∠=∠∠∠∠.又∵∠∠∠∠=∠∠∠∠,∴∠∠∠∠+∠∠∠∠=∠∠∠∠+∠∠∠∠=∠∠∠∠=90∘,即∠∠∠∠=90∘,∴∠∠是⊙∠的切线.(2)解:连接∠∠,交∠∠于点∠,如图,∵∠∠∠∠=90∘,∴∠∠为⊙∠的切线.∵∠∠是⊙∠的切线,∴∠∠平分∠∠∠∠,∴∠∠⊥∠∠,∠为∠∠的中点.∵点∠,∠别为∠∠,∠∠的中点,∴∠∠=12∠∠=12×10=5 .在∠∠△∠∠∠中,∠∠∠∠=90∘,∠∠=10,∠∠=6,由勾股定理得:∠∠=8.∵在∠∠△∠∠∠中,∠为∠∠的中点,∴∠∠=12∠∠=12×8=4.在∠∠△∠∠∠中,∠∠=12∠∠=12×6=3,在∠∠△∠∠∠中,∠∠=4,由勾股定理得:∠∠=5.由三角形的面积公式得:∠△∠∠∠=12×∠∠×∠∠=12×∠∠×∠∠,即4×3=5×∠∠,解得:∠∠=2.4 ,在∠∠△∠∠∠中,由勾股定理得:∠∠=√∠∠2−∠∠2=√32−2.42=1.8.【考点】切线的判定勾股定理切线的性质切线长定理【解析】(1)证明:连接∠∠,∠∠,∵∠∠∠∠=90∘,∠∠为⊙∠直径,∴∠∠∠∠=∠∠∠∠=90∘;∠为∠∠中点∴∠∠=∠∠=∠∠,∴∠∠∠∠=∠∠∠∠;又∵∠∠∠∠=∠∠∠∠∴∠∠∠∠+∠∠∠∠=∠∠∠∠+∠∠∠∠=∠∠∠∠=90∘∴∠∠是⊙∠的切线(2)解:连接∠∠,∵∠∠∠∠=90∘∴∠∠为⊙∠的切线,∵∠∠是⊙∠的切线,∴∠∠平分∠∠∠∠,∴∠∠⊥∠∠,∠为∠∠的中点,∵点∠、∠别为∠∠、∠∠的中点,∴∠∠=12∠∠=12×10=5 ,在∠∠△∠∠∠中,∠∠∠∠=90∘,∠∠=10.∠∠=6,由勾股定理得:∠∠=8,∵在∠∠△∠∠∠中,∠为∠∠的中点,∴∠∠=12∠∠=12×8=4,在∠∠△∠∠∠中,∠∠=12∠∠=12×6=3,∠∠−4,由勾股定理得:∠∠=5,由三角形的面积公式得:∠△∠∠∠=12×∠∠×∠∠=12×∠∠×∠∠,即4×3=5×∠∠,解得:∠∠=2.4 ,在∠∠△∠∠∠中,由勾股定理得:∠∠=√∠∠2−∠∠2=√32−2.42=1.8.【解答】(1)证明:连接∠∠,∠∠,如图,∵∠∠∠∠=90∘,∠∠为⊙∠直径,∴∠∠∠∠=∠∠∠∠=90∘.∠为∠∠中点,∴∠∠=∠∠=∠∠,∴∠∠∠∠=∠∠∠∠.又∵∠∠∠∠=∠∠∠∠,∴∠∠∠∠+∠∠∠∠=∠∠∠∠+∠∠∠∠=∠∠∠∠=90∘,即∠∠∠∠=90∘,∴∠∠是⊙∠的切线.(2)解:连接∠∠,交∠∠于点∠,如图,∵∠∠∠∠=90∘,∴∠∠为⊙∠的切线.∵∠∠是⊙∠的切线,∴∠∠平分∠∠∠∠,∴∠∠⊥∠∠,∠为∠∠的中点.∵点∠,∠别为∠∠,∠∠的中点,∴∠∠=12∠∠=12×10=5 .在∠∠△∠∠∠中,∠∠∠∠=90∘,∠∠=10,∠∠=6,由勾股定理得:∠∠=8.∵在∠∠△∠∠∠中,∠为∠∠的中点,∴∠∠=12∠∠=12×8=4.在∠∠△∠∠∠中,∠∠=12∠∠=12×6=3,在∠∠△∠∠∠中,∠∠=4,由勾股定理得:∠∠=5.由三角形的面积公式得:∠△∠∠∠=12×∠∠×∠∠=12×∠∠×∠∠,即4×3=5×∠∠,解得:∠∠=2.4 ,在∠∠△∠∠∠中,由勾股定理得:∠∠=√∠∠2−∠∠2=√32−2.42=1.8.23.【答案】(1)解:把∠=−4代入∠=14∠2+∠中,得∠2+4∠+16=0,∵此时只有一个自变量∠的值与其对应,∴∠=−4×(4∠+16)=0,解得∠=−4.(2)证明:设∠(∠1, ∠1),∠(∠2, ∠2),∠(0, −4),∵∠∠∠∠=90∘,即∠∠⊥∠∠,∴∠∠∠⋅∠∠∠=−1,∴∠1+4∠1⋅∠2+4∠2=−1,消去∠得,∠1∠2=−16,设直线∠∠的方程为∠=∠1−∠2∠1−∠2∠+∠,代入(∠1, ∠1),∠=14∠2−4,则有14∠12−4=14(∠12−∠22)∠1−∠2∠1+∠,1 4∠12=14∠12+14∠1∠2+∠+4,化简得0=−4+4+∠,即∠=0,∴∠∠的方程∠=∠1−∠2∠1−∠2∠过原点.(3)解:令∠=4,则4=14∠2−4,解得∠=±4√2,当∠>4√2时,画出图象如图:观察图象可知,无重合;当∠<−4√2时,画出图象如图:观察图象可知,无重合.∴∠的取值范围为∠<−4√2或∠>4√2. 【考点】二次函数的图象一次函数的应用函数的概念根的判别式【解析】此题暂无解析【解答】解:(1)把∠=−4代入∠=14∠2+∠中,得∠2+4∠+16=0,∵此时只有一个自变量∠的值与其对应,∴∠=−4×(4∠+16)=0,解得∠=−4.(2)证明:设∠(∠1, ∠1),∠(∠2, ∠2),∠(0, −4),∵∠∠∠∠=90∘,即∠∠⊥∠∠,∴∠∠∠⋅∠∠∠=−1,∴∠1+4∠1⋅∠2+4∠2=−1,消去∠得,∠1∠2=−16,设直线∠∠的方程为∠=∠1−∠2∠1−∠2∠+∠,代入(∠1, ∠1),∠=14∠2−4,则有14∠12−4=14(∠12−∠22)∠1−∠2∠1+∠,1 4∠12=14∠12+14∠1∠2+∠+4,化简得0=−4+4+∠,即∠=0,∴∠∠的方程∠=∠1−∠2∠1−∠2∠过原点.(3)解:令∠=4,则4=14∠2−4,解得∠=±4√2,当∠>4√2时,画出图象如图:观察图象可知,无重合;当∠<−4√2时,画出图象如图:观察图象可知,无重合.∴∠的取值范围为∠<−4√2或∠>4√2.。

九年级数学竞赛试题

九年级数学竞赛试题

九年级数学竞赛试题一、选择题1. 若一个等差数列的首项为3,公差为4,那么它的第10项是多少?A. 37B. 41C. 43D. 472. 已知一个圆的半径为5cm,求这个圆的面积(π取3.14)。

A. 78.5平方厘米B. 154平方厘米C. 78.5平方分米D. 154平方分米3. 下列哪个分数是最简分数?A. 六分之四B. 三分之二C. 九分之三D. 八分之一4. 如果一个三角形的三个内角分别是60度、60度和60度,那么这个三角形的类型是什么?A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等边三角形5. 一个长方体的长、宽、高分别是5cm、3cm和2cm,求它的体积。

A. 30立方厘米B. 15立方厘米C. 10立方厘米D. 6立方厘米二、填空题6. 一个等比数列的前三项分别是2,6,_______,那么它的公比是_______。

7. 一个圆的直径是14cm,求这个圆的周长(π取3.14)。

8. 已知一个三角形的三边长分别是5cm,12cm,13cm,那么这个三角形是_______三角形。

9. 一个正方体的表面积是96平方厘米,求它的体积。

10. 一个分数的分子和分母的和是45,分子比分母多5,求这个分数。

三、解答题11. 一个等差数列的前5项和为35,公差为3,求这个数列的首项。

12. 一个圆的半径是8cm,求这个圆的面积和周长(π取3.14)。

13. 一个直角三角形的两条直角边分别是6cm和8cm,求这个三角形的斜边长。

14. 一个长方体的长、宽、高分别是7cm,2cm和6cm,求它的全面积和体积。

15. 一个分数化简后是三分之一,它的分子比分母多12,求这个分数的分子和分母。

四、证明题16. 证明:在直角三角形中,斜边上的中线等于斜边的一半。

17. 证明:等腰三角形的两腰上的中线相等。

18. 证明:如果一个三角形的两边和其中一边的对角线能够构成一个直角三角形,那么这个三角形是直角三角形。

九年级数学竞赛试题(含答案)

九年级数学竞赛试题(含答案)

初三数学竞赛试题(本卷满分:120分,时间:120分钟)一、选择题(每小题5分、共40分)1、如果多项式200842222++++=b a b a p ,则p 的最小值是( )(A) 2005 (B) 2006 (C) 2007 (D) 20082、菱形的两条对角线之和为L,面积为S,则它的边长为( ). (A)2124L S - (B)2124L S + (C)21S L 42- (D)21S L 42+3、方程1)1(32=-++x x x 的所有整数解的个数是( )(A )5个 (B )4个 (C )3个 (D )2个 4、已知梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于O ,△AOD 的面积为4, △BOC 的面积为9,则梯形ABCD 的面积为( )(A )21 (B )22 (C )25 (D )26 5、方程|xy |+|x+y|=1的整数解的组数为( )。

(A )8 (B) 6 (C) 4 (D) 2 6、已知一组正数12345,,,,x x x x x 的方差为:222222123451(20)5S x x x x x =++++-,则关于数据123452,2,2,2,2x x x x x + + + + +的说法:①方差为S 2;②平均数为2;③平均数为4;④方差为4S 2。

其中正确的说法是( )(A) ①② (B) ①③ (C) ②④ (D )③④7、一名模型赛车手遥控一辆赛车,先前进1m ,然后,原地逆时针方向旋转角a(0°<α<180°)。

被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为 ( )(A) 7 2° (B )108°或14 4° (C )144° (D ) 7 2°或144°8、如图,已知圆心为A 、B 、C 的三个圆彼此相切,且均与直线l 相切.若⊙A、⊙B、⊙C 的半径分别为a 、b 、c(0<c<a<b),则a 、b 、c 一定满足的关系式为 ( ) (A )2b=a+c (B )=b c a +(C )b ac 111+= (D)ba c 111+=二、填空题(每小题5分,共30分)9、已知a ﹑b 为正整数,a=b-2005,若关于x 方程x 2-ax+b=0有正整数解,则a 的最小值是________. 10、如图,在△ABC 中,AB=AC, AD ⊥BC, CG ∥AB, BG 分别交AD,AC 于E,F.若b a BE EF =,那么BEGE等于 .A BCG F E D11、已知二次函数c bx ax y ++=2的图象与x 轴交于点(-2,0),(x1,0),且1<x1<2,与y 轴正半轴的交点在(0,2)的下方,下列结论:①a<b<0;②2a+c>0;③4a+c<0;④2a-b+1.其中正确的结论是_____________.(填写序号)12、如图,⊙O 的直径AB 与弦EF 相交于点P ,交角为45°, 若22PF PE +=8,则AB 等于 .13、某商铺专营A ,B 两种商品,试销一段时间,总结得到经营利润y 与投人资金x(万元)的经验公式分别是yA=x 71,yB=x 73。

九年级上学期数学竞赛试题(含答案)

九年级上学期数学竞赛试题(含答案)

九年级上学期数学竞赛试题(含答案)题号 一 二三 四 五 总分21 22 23 24 25 26 27 得分一、选择题:(每小题3分,共36分)将唯一正确答案的代号字母填在下面的表格内 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.下列图形中既是中心对称图形,又是轴对称图形的是 A. 等边三角形 B.等腰三角形 C.平行四边形 D.线段2.如图,A 、B 是数轴上的两点,在线段AB 上任取一点C,则点C 到表示-1的点的距离小于或等于.....2的概率是A .21B .32C .43D .543. 如图,△ABC 中,点D 在线段BC 上,且△ABC ∽△DBA ,则下列结论一定正确的是A .AB 2=BC ·BD B .AB 2=AC ·BD C .AB ·AD =BD ·BCD .AB ·AD =AD ·CD4. 如图⊙O 中,半径OD⊥弦AB 于点C,连结AO 并延长交⊙O 于点E,连结EC,若AB=8,CD=2,则EC 的长度为 A .52 B . 8 C . 102 D . 1325.对于代数式246x x -+的值的情况,小明作了如下探究的结DCBA第3题图第7题图第9题图论,其中错误的是A. 只有当2x =时,246x x -+的值为2B.x 取大于2的实数时,246x x -+的值随x 的增大而增大, 没有最大值C. 246x x -+的值随x 的变化而变化,但是有最小值D. 可以找到一个实数x ,使246x x -+的值为06.方程22(6)x m x m -++=0有两个相等的实数根,且满足12x x +=12x x ,则m 的值是A .-2或3B .3C .-2D .-3或27.如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB=30°, 过点C 作⊙O 的切线交AB 的延长线于E,则∠E 为 A .25° B .30° C .35° D .45°8.在函数21a y x +=(a 为常数)的图象上有三点1(4,)y -,2(1,)y -,3(3,)y ,则函数值的大小关系是A .231y y y << B. 321y y y << C. 123y y y << D. 213y y y << 9. 冬至时是一年中太阳相对于地球位置最低的时刻,只要此时能 采到阳光,一年四季就均能受到阳光照射.此时竖一根a 米长 的竹杆,其影长为b 米,某单位计划想建m 米高的南北两幢 宿舍楼(如图所示).当两幢楼相距多少米时,后楼的采光一年 四季不受影响? A.a bm 米 B.bam米 C.m ab 米 D. abm 米10. 如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm,弧长是6πcm,那么围成的圆锥的高度是 A .3㎝B .4㎝C .5 ㎝D .6㎝11.如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后, 顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB,MC =6, NC =则四边形MABN 的面积是 A .B .. D .12.已知二次函数)0(2≠++=a c bx ax y 的图象开口向上,与 x 轴的交点坐标是(1,0),对称轴x=-1.下列结论中,错误的是A .abc <0B .b=2aC .a+b+c=0D .20=+b a 二、填空题:(每小题3分,共24分)将正确答案直接填在题中横线上.13.已知三角形的两边长是方程x 2-5x +6=0的两个根,则该三角形的周长l的取值范围是 .14.已知二次函数y =(k -3)x 2+2x+1的图象与x 轴有交点,则k 的取值范围是 . 15.已知A 是反比例函数xky =的图象上的一点,AB ⊥x 轴于点B,且△ABO 的面积是3,则k 的值是 .16.如果圆锥的底面周长是20πcm,侧面展开后所得的扇形的圆心角为120°,则圆锥的母线长是 .17. 小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色(第11题图)NMD ACB交通信号灯,他在路口遇到红灯的概率为31,遇到黄灯的概率为91,那么他遇到绿灯的概率为 .18.已知正六边形的边心距为3,则它的周长是 . 19. 如图,PA 、PB 切⊙O 于A 、B,50P ∠=,点C 是⊙O 上异于A 、B 的任意一点,则ACB ∠= . 20.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是 .三、开动脑筋,你一定能做对!(本大题共3小题,共22分)21.(本小题满分7分)近年来随着全国楼市的降温,商品房的价格开始呈现下降趋势,2012年某楼盘平均售价为5000元/平方米,2014年该楼盘平均售价为4050元/平方米.(1)如果该楼盘2013年和2014年楼价平均下降率相同,求该楼价的平均下降率;(2)按照(1)中楼价的下降速度,请你预测该楼盘2015年楼价平均是多少元/平方米?第20题图第9题图FEDC BA22.(本小题满分8分)如图,在平行四边形ABCD 中,E 是AB 延长线上的一点,DE 交BC 于点F.已知23BE AB =,3BEFS=,求△CDF 的面积.23. (本小题满分7分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为-7、-1、3,乙袋中的三张卡片上所标的数值分别为-2、1、6.先从甲袋中随机取出一张卡片,用x 表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用y 表示取出的卡片上标的数值,把x 、y 分别作为点A 的横坐标、纵坐标.(1)用适当的方法写出点(,)A x y 的所有情况; (2)求点A 落在第三象限的概率.四、认真思考,你一定能成功!(本大题共2小题,共18分)24. (本小题满分10分)如图,AB 是⊙O 直径,D 为⊙O 上一点,AT 平分∠BAD 交⊙O 于点T,过T 作AD 的垂线交AD 的延长线于点C . (1)求证:CT 为⊙O 的切线;(2)若⊙O 半径为2,3CT =,求AD 的长.25. (本小题满分8分)已知:如图,反比例函数xky =的图象与一次函数y =x +b 的图象交于点A(1,4)、点B(-4,n). (1)求△OAB 的面积;(2)根据图象,直接写出不等式kx b x<+的解集.第24题图五、相信自己,加油呀!(本大题共2小题,共20分)26. (本小题满分10分)某商店经营一种成本为每千克40美元的水产品,根据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,销售单价定为多少元时,获得的利润最大?最大利润是多少?27.(本小题满分10分)如图,抛物线2y x bx c =+-与x 轴交(1,0)A -、(3,0)B两点,直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求抛物线及直线AC的函数表达式;(2)若P点是线段AC上的一个动点,过P点作y轴的平行线交抛物线于F 点,求线段PF长度的最大值.第27题图九年级数学试题参考答案及评分建议一、选择题:(每小题3分,共36分)13.6<l<10; 14.k ≤4且k ≠3;15.k=±6;16.30cm ; 17. 95; 18.12;19. 65°或115°; 20.(3,2)或(-3,-2). 三、解答题:(共60分)21. (本小题满分7分)解:(1)设楼价下降率为x ,………………………1分根据题意25000(1)4050x -=.…………………………………………………3分解得1 1.9x =(舍去),20.1x =,故楼价下降率为10%.………………………5分(2)预测2015年楼价平均是4050(110%)3645⨯-=(元/平方米).……7分22. (本小题满分8分)解:∵四边形ABCD 为平行四边形,∴CD =AB,且CD ∥AB,∴△CDF ∽△BEF.………………………………………3分 又∵23BE AB =,∴23BE DC =,∴2()BEF F S BE S CD =△△CD ,即232()3F S =△CD .………6分 解得274CDFS =.…………………………………………………………………8分23. (本题共7分)解:(1)如图A 的坐标:(-7,-2);(-7,1);(-7,6);(-1,-2);(-1,1);(-1,6);(3,-2);(3,1);(3,6);……………………………………………………………………4分(2)由树状图可知,所有可能的情况共有9种,点A 落在第三象限的情况有2种,所以P (点A 落在第三象限)=29.………………………7分 24. (本小题满分10分)解:(1)证明:连接OT, ∵OA=OT ,∴∠OAT=∠OTA .又∵AT 平分∠BAD , ∴∠DAT=∠OAT ,∴∠DAT=∠OTA .∴OT∥AC .……………………………………………………2分 又∵CT⊥AC ,∴CT⊥OT ,∴CT 为⊙O 的切线;……………4分 (2)解:过O 作OE⊥AD 于E,则E 为AD 中点,又∵CT⊥AC ,∴OE∥CT ,∴四边形OTCE 为矩形.…………7分 ∵CT=,∴OE=, 又∵OA=2,∴在Rt△OAE中,∴AD=2AE=2. (10)分25. (本小题满分8分)解:(1)把A 点(1,4)分别代入反比例函数xky =,一次函数y =x +b,得k =1×4,1+b =4,解得k =4,b =3,∴反比例函数的解析式是xy 4=.………………2分 一次函数解析式是y =x +3.……………………………………………………………4分如图当x =-4时,y =-1,B(-4,-1),当y =0时,x +3=0,x =-3,C(-3,0)S △AOB =S △AOC +S △BOC =21513214321=⨯⨯+⨯⨯.………………………………………6分 (2)∵B(-4,-1),A(1,4),∴根据图象可知:当x >1或-4<x <0时,反比例函数值小于一次函数值.……………………………………………………………………8分26. 解:(本题满分10分)设定价上涨x 元时获得的利润最大,最大利润是y .……1分根据题意得y=(500-10x )(50+x)-(500-10x)×40. …………………………………6分化简得y=-10(x-20)2+9000. ……………………………………………………………8分 x=20时,y 有最大值9000. ……………………………………………………………9分 答:定价定为70元时获得的利润最大,最大利润是9000元.……………………10分27. (本小题满分10分)(1)将A 、B 两点坐标代入抛物线的解析式,得 10,930b c b c --=⎧⎨+-=⎩,解得2,3b c =-⎧⎨=⎩∴抛物线解析式为223y x x =--.………………2分将点C 的横坐标代入抛物线解析式,得3y =-,即(2,3)C -,设直线AC 为y kx m =+,将点A 和点C 坐标代入,得0,23k mk m-+=⎧⎨+=-⎩,解得1,1km=-⎧⎨=-⎩,即直线AC解析式为1y x=--.……………………4分(2)如图,不妨设点2(,23)P x x x--,因为点F在直线AC上,因此则点(,1)F x x--.………………………………6分所以有21(23)PF x x x=-----22x x=-++.…8分∴当122bxa=-=时,PF最大值=244ac ba-=94.………………………………10分(备注:在解答题中,考生若用其它解法,应参照本评分标准给分)。

初三数学竞赛试题及答案

初三数学竞赛试题及答案

初三数学竞赛试题及答案一、选择题1. 已知平面内一直线L的倾斜角为α,斜率为k,若点A(-1,2)在L 上,则直线L的方程为:A. y-2 = k(x+1)B. y+2 = k(x-1)C. y-2 = k(x-1)D. y+2 = k(x+1)答案:A2. 若函数f(x) = ax^2 + bx + c 是一个减函数,那么a, b, c的关系是:A. a > 0, b > 0, c > 0B. a > 0, b < 0, c < 0C. a < 0, b < 0, c < 0D. a < 0, b > 0, c > 0答案:D3. 已知等差数列{an}的公差为d,首项为a1,末项为an,且an =3a1,若a4 = 7,则d的值是:A. 1B. 2C. 3D. 4答案:B4. 在ΔABC中,∠A=60°,AC=2AB,则∠B的度数为:A. 40°B. 50°C. 60°D. 70°答案:D5. 若直角三角形的两直角边分别为3和4,求斜边的长度是:A. 5B. 6C. 7D. 8答案:A二、填空题1. 已知ABC是一个等边三角形,AB的边长为5,则三角形ABC 的面积为______。

答案:(25√3)/42. 若一组数据中50%的数据小于等于10,25%的数据大于15,中位数为12,则这组数据的总个数为______。

答案:83. 若甲数是乙数的8倍,且甲数减去乙数等于30,则甲数的绝对值为______。

答案:404. 已知某数的60%等于120,这个数是______。

答案:2005. 若甲数是乙数的1/5,乙数是丙数的1/3,则甲数与丙数之和的三倍为______。

答案:28三、解答题1. 一条细长导线的电阻率R为ρ,长度为l,截面积为A。

如果将导线的长度翻倍,截面积减半,则新的导线的电阻率是多少?答:R2. 已知函数f(x)满足f(x+1) = 2f(x) - 1,且f(2) = 3,求f(5)的值。

初三上数学竞赛试题

初三上数学竞赛试题

中和中学九年级数学竞赛试题一、填空题:(每小题3分,共36分)1、方程:03262=+-x x 的二次项系数是 一次项系数是 常数项是2、设x 1、x 2是方程0222=--x x 的两个实数根,则x 1+x 2= ;x 1·x 2= .3、方程:08142=-x 的解是:4、方程:0342=--x x 配方后可变形为5、在横线上填写适当的式子:+-mx x 22 =(X+ )26、我国股市交易中每买、每卖一次各需千分之七点五的各种费用,某投资者以每股10元的价格买入深圳股票2000股,当股票涨到11元时,全部卖出,则在本次买卖中,该投资者实际盈利 元.7、分解因式:2322a b b ab +-=___________.8、计算:( 3 +1)0+∣-3∣-( 2 )2 =_____________9、两个连续奇数,它们的积等于323,则这三个连续奇数是:100112()22sin 605-+-+°=__________________ 11、梯形的面积为15㎝2,中位线长为5cm ,则此梯形的高为_________㎝.12、R t △ABC 中,∠C=90°,sinA=0.6,BC=5, 则AC=___________二、选择题:(每小题3分,共30分)13、下列方程中无实数根的是:( )A 、0142=+-x x B、0332=-+x xC 、084212=++x x D 、032=+-x x 14、已知多项式1222-+x x 的值等于3,则X的值是( )A、-5或3 B、5或-3 C、5或3 D、-5或-315、()0112=+--kx x k 是一元二次方程的条件是:( ) A、1>k B、1=k C、1<k D、1≠k16、某种品牌的空调原价每台3600元,经过两次降价后每台2800元,如果每次降价的百分率都是x ,根据题意可列出方程:( )A 、3600)1(28002=+x B 、2800)1(36002=-xC、2800)21(36002=-x D、3600)1(36002=-x17、直角三角形三边之长为连续偶数,并且面积等于24,则该三角形的三边长分为( )A 、3,4,5B 、6,8,10C 、 5,12,13D 、4,6,818、关于X 的一元二次方程0142=++x mx 有两个不相等的实数根,则m 的取值范围是( )A 、4<mB 、04≠≤m m 且C 、04≠≥m m 且D 、04≠<m m 且19、方程值则的一个根是m ,mx x 2042=-+和方程的另一个根分别是( )A 、0,—2B 、 —1,3C 、1,—4D 、2, 420、已知方程25100x kx +-=的一个根是-5,则它的另一个根及k 的值分别为 ( )A .-52,23 B .-52,-23 C .52,-23 D .52,2321、、已知A 、B 两地相距4千米,上午8∶00,甲从A 地出发步行到B 地,8∶20,乙从B 地出发骑自行车到A 地,甲、乙两人离A 地的距离(千米)与甲所用的时间(分)之间的关系如图所示,由图中的信息可知,乙到达A 地的时间为( ) A .8∶30 B .8∶35C .8∶40D .8∶4522、顺次连结下列各四边形的中点,所得到的四边形是菱形的有:( )①平行四边形;②等腰梯形;③矩形;④正方形;⑤菱形A 、①③⑤B 、①②③C 、②③④D 、②④⑤三、解答题:(每题8分, 共32分)23、解下列一元二次方程:(每小题4分)(1)、0252=-x (2)、0342=++x x(第21题)24、如图,已知:梯形ABCD 中,AD ∥BC ,E 为AC 的中点,连接DE 并延长交BC 于点F ,连接AF .求证:AD =CF ;25、证明:等腰梯形上底的中点与下底两个端点的距离相等。

人教版九年级数学上册竞赛试题及答案

人教版九年级数学上册竞赛试题及答案

人教版九年级数学上册竞赛试题及答案题 号 一 二 三 四 五 总分 得 分(考试时间:90分钟,满分:120分)一、选择题。

(每小题4分,共32分)1. 某项工程估算总投资523亿元,用科学记数法表示正确的是( )。

A. 5.23×1010元B. 5.23×1011元C. 52.3×109元D. 0.523×1011元 2. 下面的图形可以折成一个正方体的盒子,折好后,与1相对的数是( )。

A. 5B. 6C. 4D. 33.不等式组⎪⎩⎪⎨⎧-≤-->-x x x x 32314315 的所有整数解的和是( )。

A. 1 B. 0 C. -1 D. -2 4. 弹簧的长度与所挂的物体的质量的关系为一次函数,如图 所示,由图可知不挂物体时弹簧的长度是( )。

A. 6厘米B. 4厘米C. 5厘米D. 3厘米5.甲是乙现在年龄时,乙10岁,乙是甲现在年龄时,甲25岁,那么( )A .甲比乙大5岁B .甲比乙大10岁C .乙比甲大10岁D .乙比甲大5岁6.若142=++y xy x ,282=++x xy y ,则y x +的值为( )A .-7B .6C .-7或6D .-6或7 7.已知长方形的长为8,宽为4,将长方形沿一条对角线折起压平, 如图所示,则重叠部分(阴影三角形)的面积是( ) A .10 B .12 C .14 D .16 8.已知0≠abc ,并且p bac a c b c b a =+=+=+,那么直线p px y +=一定通过( ) A .第一、二象限 B .第二、三象限 C .第三、四象限 D .第一、四象限 二、填空题。

(每小题4分,共28分)9. 一个袋中装有12个红球,10个黑球,8个白球,每个球除颜色外都相同,从袋中摸出一个球,那么 摸到黑球的概率为_______________。

10.化简:____________4821319125=+-.11.分解因式:______________________4123=-+x x x . 12.计算:______________)3(333)3(2032=---÷++--.13. 若关于x 、y 的二元一次方程组⎩⎨⎧-=+=-1872223a y x ay x 的解x ,y 的值互为相反数,则a 的值为_________.14. 已知m 、n 都是方程020*******=++x x 的根,则代数式=______________.15. 如图,四边形ABCD 和BEFG 均为正方形,则________=DFAG. 三、解答题(每小题8分,共32分) 16.解方程:22412--=-x x17. 已知:点E ,F 分别是正方形ABCD 的边BC 上的一点,且∠EAF =45°,自E ,F 分别作AC 的垂线,垂足为P ,Q 。

九年级数学竞赛试题(满分100)

九年级数学竞赛试题(满分100)

九年级数学竞赛试题(满分100)姓名: 班级: 成绩:一、选择题(''4832⨯=,每道题目只有一个正确选项)1.若||0a a +=+ )A.1B.-1C.21a -D.12a -2.若方程2310x x --=的两根也是方程420x ax bx c +++=的根,则2a b c +-的值为( )A.-13B.-9C.6D.03.若三角形三边的长均能使代数式2918x x -+的值为0,则此三角形的周长是( )A.9或18B.12或15C.9或15或18D.9或12或15或184.已知2210m n mn m n +++-+=,则11m n+的值等于( ) A.-1 B.0 C.1 D.25.若实数,a b 满足21202a ab b -++=,则a 的取值范围是( ) A.2a ≤- B.4a ≥ C.2a ≤-或4a ≥ D.24a -≤≤6.如果方程210(0)x px p ++=>有实数根且它的两根之差是1,那么p 的值为( )A.2B.47.设12a -=,则5432322a a a a a a a+---+=-( ) A.-1 B.1 C.-2 D.28.如图,在ABC 中,90ACB ∠=︒,20A ∠=︒,将ACB 绕点C 按逆时针方向旋转角α到'''A B C 的位置,'CA 交AB 于D ,则其中'A ,'B 分别是,A B 的对应点,B 在''A B 上,BDC ∠的度数为( )A.40︒B.45︒C.50︒D.60︒二、填空题(''4416⨯=,填写你认为最完美的答案)9.已知非零实数,a b 满足|24||2|42a b a -++=,则a b +等于 .10.已知222246140x y z x y z ++-+-+=,则x y z ++= .11.已知关于x 的方程2210x px ++=的两个实数根,一个小于1,另一个大于1,则实数p 的取值范围是 .12.已知方程210090x x a -+=有两个质数根,则常数a = .三、解答题(3大题,共'48,解答题需要详细的解题过程)13. 1)(62)(6分)已知方程2220132014201210x x -⨯-=的较大根是r ,方程22013201410x x -+=的较小根为s ,求r s -的值.14.已知关于x 的方程220x kx k n -++=有两个不相等的实数根12,x x ,且21212(2)8(2)150x x x x +-++=,请问:(1)(4分)求证:0n <;(2)(6分)试用k 的代数式表示1x ;(3)(6分)当3n =-时,求k 的值.15.已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF BD ⊥交BC 于F ,连结DF ,G 为DF 中点,连接,EG CG .(1)(6分)求证:EG CG =;(2)(10分)将BEF 绕点B 逆时针旋转45︒,如图二所示,取DF 中点G ,连接,EG CG ,问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)(4分)将图一中BEF 绕B 点旋转任意角度,如图三所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察,你还能得出什么结论?(只写结论,不需要证明)图一图二图三。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年秋期九年级数学竞赛试题
满分:100分 时间:120分钟
一、 选择题。

1、设a 、b 、c 是三个连续的整数,且176892=a ,182252=c 则2b 是( )
A 、17954
B 、17955
C 、17956
D 、17957
2、若a = a -,则( )
A 、a >0
B 、a <0
C 、a=0
D 、a ≥0
3、化简(a -5)
a
-51
=( ) A 、5-a B 、a -5 C 、-a -5 D 、-5-a
4、若a 2-3a=2,b 2-3b=2,且a ≠b ,则ab 为( ) A、3 B 、-3 C 、2 D 、-2
学校: 姓名 班级 考号
密 封
5、方程010324=-+x x 的解是( )
A 、5±
B 、2±
C 、3±
D 、5±或2±
6、如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD = 2,将腰CD 以D 为中心逆时针旋转90°,至DE ,连接AE 、CE ,△ADE 的面积为3,则BC 的长为( )
A 、3
B 、4
C 、5
D 、6
7.关于x 的一元二次方程kx 2-6x+1=0有两个不相等的实数根,则k 的取值范围是( ) A. k ≥9 B. k<9; C. k ≤9且k ≠0 D. k<9且k ≠0
8、如图、一只小虫子欲从A 点不重复的经过图中的每一个点或每一条线段而最终到达目的地E ,试问这只小虫子沿E P A →→行走的概率是( )
A 、31
B 、61
C 、91
D 、121
D
二、 填空题。

9、化简223-= 。

10、比较大小:10+13+
11、函数y=1
-x -11
,则x 的取值范围是
12、已知关于x 的一元二次方程065422=-+-a a ax x 有两个实数根,并且这两个根差的绝对值为6,则a=
13、如图,在长32米,宽20米的矩形草坪上建有两条等宽的弯曲小路,•若草坪实际面积为540平方米,则图中路的平均宽度为 。

14、在平面直角坐标系xOy中,直线y=-x+4与两坐标轴围成一个AOB
△.现将背面完全相同,正面
分别标有数1、3、4、1
2

4
1
、的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片o’上的数作为点
P的横坐标,将该数的倒数作为点P的纵坐标,则点P落在AOB
△内的概率为.
15、如图,已知等边△ABC边长为12,O是△ABC内任意一点,OD、OE、OF分别
垂直AB、BC、AC,垂足分别为D、E、F,则OD+OE+OF的长为
16.在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是.
三、解答题。

()C
B E
17、(6分)计算: 2
11++
3
21++
4
31++…+
99
981++
100
991+
18、(6分)若a 、b 、c 是△ABC 的三边之长,化简:2
22)()()(b a c a c b c b a --+--+--
19(6分)下表显示了去年夏天钓鱼比赛的部分结果,这个表记录了钓到n 条鱼的选手有多少名,n
取不同的值。

(1)冠军钓了15条鱼;
(2)钓到3条或更多条鱼的那些选手每人平均钓到6条鱼; (3)钓到12条或更少条鱼的那些选手每人平均钓到5条鱼。

问:在整个比赛中共钓到了多少条鱼?
20、(10分)已知,如图在直角坐标系中,矩形OABC 的对角线AC 所在直线解析式为
13
3+-=x y 。

①在x 轴上存在这样的点M ,使△MAB 为等腰三角形,求出所有符合要求的点M 的坐标。

(4分)
②动点P 从点C 开始在线段CO 上以每秒3个单位长度的速度向点O 移动,同时动点Q 从点O 开始在线段OA 上以每秒1个单位长度的速度向点A 移动,设P ,Q 移动的时间为t 秒,设△BPQ 面积为S :求S 与t 的函数关系式及t 的取值范围。

y
x
C
0B
A。

相关文档
最新文档