传感与控制-无线传感器网络中数据收集器移动的路由协议
无线传感器网络中的路由协议
无线传感器网络中的路由协议随着科技的不断发展,无线传感器网络(Wireless Sensor Network,WSN)已经逐渐成为了一种被广泛研究和应用的技术。
无线传感器网络拥有广泛的应用领域,如军事、环境监测、智能家居、健康管理等。
在这些应用中,无线传感器网络的安全、可靠性和生命稳定性是至关重要的。
为了保证上述三个要素,需要一个高效、稳定且可扩展的路由协议来管理无线传感器网络中的数据传输和路由决策。
无线传感器网络与传统的局域网和广域网不同,它不具有结构上的中心,而是由大量分散的节点构成,这些节点协同工作来达到目标。
由于节点之间的距离很近,数据包在此类网络中往往是通过多跳传输。
一个好的路由协议应当考虑网络中所有节点的负载以及能源消耗,尽可能地减少数据包的延迟和数据包的丢失。
这是无线传感器网络中的路由协议需要考虑的主要问题。
在无线传感器网络中,有三种主要的路由协议:平面机制、分层机制和混合机制。
1. 平面机制平面机制是指所有节点都属于同一层次,没有层次结构。
节点之间通过广播协议(如Flooding protocol)相互传递数据。
节点只需知道自己的邻居节点,数据包的传输是由遍布整个网络的节点负责的。
这种方法简单且易于实现,但会导致网络不稳定,易出现死循环和数据洪泛问题。
因此,在实际应用中很少使用。
2. 分层机制分层机制是指将节点按照其功能和自己所处的位置划分为不同的层次。
分层机制将一个大的无线传感器网络划分为多个小的子网络,每个子网络都有一个负责节点。
子网络之间通过中继节点进行通信,可以减少数据的传播距离和提高传输速率。
分层机制通常由三层组成:传感器层、联络层和命令层。
传感器层负责数据的采集与传输,联络层负责中继和路由,命令层负责网络控制和管理。
分层机制的优点是可以有效降低网络负载和节点的能源消耗,提高网络的生存率和稳定性。
常见的分层机制路由协议有链路状态广告协议(LSP protocol)、电子飞秋协议(EFQ protocol)等。
无线传感器网络题
《无线传感器网络》一、填空题(每题4分,共计40分)1.传感器网络的三个基本要素:传感器、感知对象、用户(观察者)传感器网络的基本功能:协作式的感知、数据采集、数据处理、发布感知信息无线传感器节点的基本功能:采集数据、数据处理、控制、通信2.常见的同步机制:RBS(Reference Broadcast Synchronization),Ting/Mini-Sync和TPSN(Timing—sync Protocol for Sensor Networks)3.无线通信物理层的主要技术包括:介质选择、频段选取、调制技术、扩频技术4.定向扩散路由机制可以分为三个阶段:兴趣扩散阶段、梯度建立阶段、数据传播阶段、路径加强阶段5.无线传感器网络特点:大规模网络、自组织网络、可靠的网络、以数据为中心的网络、应用相关的网络无线传感器网络的关键技术主要包括:网络拓扑控制、网络协议、时间同步、定位技术、数据融合及管理、网络安全、应用层技术6.IEEE 802。
15.4标准主要包括:物理层、介质访问控制层7.简述无线传感器网络后台管理软件结构与组成:后台管理软件通常由数据库、数据处理引擎、图形用户界面和后台组件四个部分组成8.数据融合的内容主要包括:多传感器的目标探测、数据关联、跟踪与识别、情况评估和预测9.无线传感器网络可以选择的频段有:868MHz 、915MHz、2。
4GHz、5GHz10.传感器网络的电源节能方法:休眠(技术)机制、数据融合11.传感器网络的安全问题:(1)机密性问题 (2) 点到点的消息认证问题 (3) 完整性鉴别问题12.基于竞争的MAC协议S-MAC协议 T—MAC协议 Sift协议13.传感器节点由传感器模块、处理器模块、无线通信模块和能量供应模块四部分组成14.故障修复的方法基于连接的修复基于覆盖的修复15.基于查询的路由定向扩散路由谣传路由二、问答题(每题10分,共计60分)1.简述无线传感器网络系统工作过程,传感器节点的组成和功能.无线传感器网络(WSN)是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,目的是协作地采集、处理和传输网络覆盖地域内感知对象的监测信息,并报告给用户。
无线传感器网络中的数据交换机制研究
无线传感器网络中的数据交换机制研究随着物联网技术的不断发展,无线传感器网络应运而生。
无线传感器网络是指由大量无线传感器节点组成的网络,它们分布在整个网络范围内,能够采集感知数据并将其传输到网络中心节点进行处理。
该技术广泛应用于环境监测、智能交通、智能家居等领域。
而无线传感器网络中的数据交换机制对于整个网络的稳定性和可靠性至关重要。
一、传统的数据交换机制在传统的无线传感器网络中,多个传感器节点通过一定的路由协议将采集的数据传送到中心节点,中心节点再将数据处理后发送到外部网关。
然而,传统的数据交换机制在网络拓扑变化频繁、信号受干扰等情况下容易出现数据丢失和传输延迟等问题。
二、基于协作的数据交换机制为了解决传统数据交换机制存在的问题,研究人员提出了基于协作的数据交换机制。
该机制是通过多个传感器节点之间协作传输数据,将数据分为多个包,每个包由多个节点进行传输,直到最终到达目标节点。
该机制可以实现多径传输,降低传输延迟和提高数据可靠性。
三、基于重传的数据交换机制在数据传输过程中,由于信号受干扰等原因,容易出现数据传输失败的情况。
因此,研究人员提出了基于重传的数据交换机制。
该机制是通过多次尝试传送数据,直到成功为止。
这种机制可以有效避免数据丢失的问题,但会造成额外的网络负担和延迟。
四、基于自适应的数据交换机制由于无线传感器网络具有高度动态的特点,传统的数据交换机制难以满足网络的需求。
因此,研究人员提出了基于自适应的数据交换机制。
该机制是通过不断地监测网络状态和环境变化,动态调整路由路径和传输方式,以适应网络环境的变化,并提高网络的稳定性和可靠性。
综上所述,无线传感器网络中的数据交换机制是网络稳定性和可靠性的关键。
随着物联网技术的不断发展,研究人员将继续提出新的数据交换机制,以满足网络的需求。
相信在不久的将来,无线传感器网络将会更加可靠和稳定,为人们的生活提供更好的便利和服务。
无线传感器网络路由协议分析
南京邮电大学硕士研究生学位论文术语表术语表Adaptive Threshold sensitive Energy APTEEN 自适应敏感阀值节能型传感网络协议CDMA码分多址Code Division Multiple AccessCSMA 载波侦听多路访问Carrier Sense Multiple AccessDD 定向扩散Directed DiffusionGEAR 地理和能量感知路由Geographic and Energy Routing LEACH 低功耗自适应分簇协议介质访问控制Media Access ControlMCU 微控制单元Micro-Controller UnitPEGASIS Po-Efficient Gathering in SensorInformation System服务质量Quality of Service信息协商传感协议Sensor Protocol for Information viaNegotiationTCP 传输控制协议Transfer Control ProtocolTDMA 时分多址Time Division Multiple AccessTEEN 敏感阀值节能型传感网络协议Threshold sensitive Energy Efficient sensorNetwork protocol用户数据包协议User Datagram ProtocolWSN 无线传感器网络Wireless Sensor Network南京邮电大学学位论文原创性声明本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。
尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得南京邮电大学或其它教育机构的学位或证书而使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
无线传感器网络的路由协议
路由协议概述
无线传感器网络的路由协议主要任务是确保数据由 源节点准确高效地传输到目的节点,即寻找数据的 最优路径以及沿最优路径发送数据。
能耗:WSN中,路由协议的制定受能耗的限制。 ◆邻居发现过程:邻居节点间交换信息会消耗能量,交换数据越 大,能耗越大。 ◆处理过程:数据传输过程的计算和通信会消耗能量,通信的能 耗大于计算。
能量感知路由
能量多径路由
主要过程
路径建立 建立从源节点 到目的节点的多 条路径 计算出各条路 径的选择概率
数据传输
对于接收到的 每组数据,节点 根据概率从所有 下一跳节点中选 择一个节点
路由维护
周期性从目的 节点到源节点进 行洪泛查询以维 护路径的有效性 和活跃性
能量感知路由
能量多径路由
路径建立具体过程
缺点
➢节点硬件需要支持射频功率自适应调整; ➢无法保证簇头节点能遍及整个网络; ➢分簇与簇头选举 要公平
分层路由协议
PEGASIS协议
◆PEGASIS协议是对于LEACH的一种改进,节点间不再组成簇,而 是组成链 ◆PEGASIS协议基本原理:
1.假定传感器节点是同构和相对静止的 2.节点通过发送能量递减的测试信号,确定相邻节点的位置 3.进而了解网络的全局信息 4.节点选择其最近的邻居作为链上的下一跳 5.节点只需维护自己上一跳和下一跳的邻居信息
分层路由协议
LEACH协议
网络按照周期工作,每个周期分为两个阶段:
◆簇头建立阶段: 节点运行算法,确定本次自己是否成为簇头(选簇); 簇头节点广播自己成为簇头的事实; 其他非簇头节点按照信号强弱选择应该加入的簇头,并通知该
簇头节点; 簇头节点按照TDMA的调度,给依附于他的节点分配时隙;
无线传感器网络安全技术
无线传感器网络安全技术无线传感器网络(WSN)是由许多相互连接的无线传感器节点组成的网络。
WSN被广泛应用于各种领域,如环境监测、智能交通系统和军事监视。
由于WSN中的节点通常被部署在无人区域或敌对环境中,因此其安全性成为重要的考虑因素。
以下是一些常见的无线传感器网络安全技术:1. 身份验证和密钥管理:在WSN中,每个节点都应该有一个唯一的身份标识,并且身份验证机制应该被用于确保只有授权的节点能够加入网络。
另外,有效的密钥管理是保证网络通信安全的关键。
密钥应定期更新,并使用安全的协议进行分发和存储。
2. 加密和数据完整性:为了保护传输数据的机密性和完整性,数据应该使用加密算法进行加密,并添加一些错误检测和纠正码来确保数据在传输过程中没有被篡改。
3. 路由安全:在WSN中,节点之间的通信通常通过多跳路由传输。
路由安全机制应用于确保传输的数据不会被非授权节点截获或篡改。
一些常见的路由安全技术包括数据包签名、信任管理和安全路由协议。
4. 防止恶意攻击:由于WSN中的节点通常被部署在易受攻击的环境中,防止恶意攻击变得至关重要。
一些常见的恶意攻击包括拒绝服务攻击、节点伪装和数据篡改。
为了防止这些攻击,可以使用入侵检测系统和认证机制。
5. 能源管理:WSN中的节点通常由有限的能源供应。
为了延长网络的寿命,需要实施能源管理机制,以尽量减少节点的能源消耗。
一些常见的能源管理技术包括分簇和睡眠调度。
综上所述,无线传感器网络安全技术涵盖了身份认证、密钥管理、加密、数据完整性、路由安全、防止恶意攻击和能源管理等方面。
通过采用综合的安全措施,可以有效地保护无线传感器网络免受潜在的威胁。
无线传感器网络中的多路径路由协议研究
无线传感器网络中的多路径路由协议研究引言随着无线传感器网络技术的不断发展,人们对其性能的要求也越来越高。
多路径路由协议作为无线传感器网络中的重要组成部分之一,可以提供更加可靠和高效的数据传输服务。
本文将围绕无线传感器网络中的多路径路由协议展开研究。
第一章无线传感器网络基础无线传感器网络是一种可以自组织和自适应的分布式网络系统,由大量小型节点组成,可以实现自动感知、数据采集、信息处理和通信传输等功能。
其结构相对简单,但具有强大的数据处理、通信和传输能力。
无线传感器网络具有以下特点:1. 节点数量众多:无线传感器网络由上百个、上千个甚至上万个节点组成,节点之间需要相互通信协同工作,因此节点数量对网络性能的影响非常大。
2. 低功耗设计:由于节点的能源来源通常为一些不可替代的电池或者能量收集器件,因此需要在设计节点时考虑降低功耗,以延长节点的使用寿命。
3. 分布式环境:无线传感器网络节点通常分布在广泛或者甚至无人地区,节点之间通信环境复杂、不稳定。
第二章多路径路由协议的基本概念多路径路由协议指的是一种可以利用多条通信路径进行数据传输的路由协议。
在无线传感器网络中,节点之间的通信环境较为复杂,节点数量众多,因此单一的通信路径可能存在很多问题,例如信号不稳定、路由瓶颈问题等。
利用多条路径进行传输可以增加网络的稳定性和可靠性,提高数据传输的效率和成功率。
多路径路由协议主要包含以下几个主要概念:1. 多路径分裂:指的是在路由过程中,将数据流量分流到多条不同的路径上传输。
2. 多路径汇合:指的是在路由过程中,将多条不同路径上的数据流量进行合并,进行数据传输。
3. 多路径选择:指的是在网络中有多条路径可以选择进行数据传输时,如何合理选择路径,以保证网络的可靠性和效率。
4. 多路径维护:指的是在网络中,不断维护多条可供选择的路径,并尽可能增加可选路径的数量,以保证网络的可靠性和性能。
第三章多路径路由协议的应用多路径路由协议在无线传感器网络中的应用具有重要的作用。
物联网中的无线传感器网络覆盖优化方法
物联网中的无线传感器网络覆盖优化方法物联网(Internet of Things,简称IoT)无线传感器网络(Wireless Sensor Network,简称WSN)是物联网系统中的重要组成部分,它由大量的分布式无线传感器节点组成,用于收集、传输和处理环境中的各种数据。
随着物联网应用的快速发展,如何优化无线传感器网络的覆盖成为了迫切需要解决的问题。
本文将介绍物联网中的无线传感器网络覆盖优化方法,并阐述其原理和实际应用。
无线传感器网络覆盖优化方法的研究目标是提高网络的覆盖率和感知质量,使得传感器节点能够更好地感知环境并准确地传输数据。
以下是几种常见的无线传感器网络覆盖优化方法:1. 节点部署优化方法节点部署是无线传感器网络覆盖优化的关键环节。
传感器节点的部署位置直接影响网络的覆盖率和感知精度。
传统的节点部署方法通常是随机部署或者通过经验设置节点位置。
然而,这种方法容易导致节点密集或者节点稀疏的情况,从而影响网络的均衡性。
因此,研究人员提出了一些改进方法,如基于均匀分布、最大覆盖半径和最佳节点位置等算法,通过优化节点的布局,提高网络的覆盖率和均衡性。
2. 路由协议优化方法路由协议是无线传感器网络中数据传输的关键。
传统的路由协议通常是基于固定的路由路径,容易导致部分节点覆盖不均衡或者出现数据拥堵等问题。
为了解决这些问题,研究人员提出了一些改进的路由协议,如动态路由、多路径路由和分层路由等。
这些协议可以优化传感器节点之间的数据传输路径,提高网络的覆盖率和传输效率。
3. 能量管理优化方法无线传感器节点通常由电池供电,并且无法定期更换电池。
因此,节点能量的管理对于延长网络寿命至关重要。
研究人员提出了一些能量管理优化方法,如分簇、动态功率调整和能量均衡等。
这些方法可以有效地管理节点能量消耗,减少能量消耗不均衡或者能量耗尽的情况,延长网络的寿命。
4. 拓扑优化方法无线传感器网络的拓扑结构对于覆盖率和感知质量具有重要影响。
《无线传感器网络技术概论》课程标准
《无线传感器网络技术概论》课程标准无线传感器网络技术概论课程标准课程简介本课程旨在为学生提供有关无线传感器网络的技术基础知识,包括它们的设计、实现和应用。
学生将了解无线传感器网络的特点和应用领域,熟悉无线传感器网络的硬件和软件设计,并研究如何在实际问题中应用无线传感器网络。
研究目标本课程主要目标是让学生熟悉无线传感器网络技术的基本概念和应用,包括:- 理解无线传感器网络的特点、工作原理以及基本组成部分;- 熟悉无线传感器网络的硬件设计、软件设计和通信协议;- 掌握无线传感器网络应用的基本方法和实践技巧;- 能够针对特定需求设计无线传感器网络应用,并具备实际应用能力。
课程内容第一章无线传感器网络的概述1.1 无线传感器网络的概念和特点1.2 无线传感器网络的应用领域1.3 无线传感器网络的组成部分第二章无线传感器网络的硬件设计2.1 无线传感器网络的节点2.2 无线传感器网络的传感器2.3 无线传感器网络的能量管理第三章无线传感器网络的软件设计3.1 无线传感器网络的操作系统3.2 无线传感器网络的编程语言3.3 无线传感器网络的仿真软件第四章无线传感器网络的通信协议4.1 无线传感器网络的协议栈4.2 无线传感器网络的MAC协议4.3 无线传感器网络的路由协议第五章无线传感器网络应用的基本方法和实践技巧5.1 无线传感器网络应用的实验平台5.2 无线传感器网络应用的程序设计5.3 无线传感器网络应用的实际应用案例教学方式本课程采用课堂讲授、实验、讨论等多种教学方式,强调理论与实践相结合,注重学生的探究与实践能力培养。
考核方式学生的考核将包括课堂表现、实验报告、设计案例报告以及课程论文等形式。
其中,实验和设计部分的考核占主要比重。
参考书目- 《无线传感器网络技术》- 《无线传感器网络与物联网》- 《无线传感器网络的设计与实现》。
无线传感器网络中的数据传输和网络协议
无线传感器网络中的数据传输和网络协议无线传感器网络是一种由许多相互连接的无线传感器节点组成的网络,它可以感知和收集环境中的各种数据,并传输到指定的目的地。
数据传输和网络协议是无线传感器网络正常运行的基础,本文将详细介绍无线传感器网络中的数据传输和网络协议,以及相应的步骤。
一、无线传感器网络中的数据传输无线传感器网络中的数据传输是指将传感器节点收集到的数据通过网络传输到指定的目的地。
数据传输的步骤如下:1. 数据采集:传感器节点根据预设的任务进行数据采集,可以是环境温度、湿度、压力等各种物理量。
2. 数据压缩:由于无线传感器网络的资源有限,需要对采集到的数据进行压缩,减小数据的大小。
3. 数据编码:将压缩后的数据进行编码,为了节省能量和网络带宽,通常采用低功耗的编码算法。
4. 数据传输:将编码后的数据通过无线信道传输到目标节点或基站。
数据传输可以采用单跳传输或多跳传输的方式。
5. 数据接收:目标节点或基站接收到传输的数据,通过解码和解压缩还原成原始数据。
二、无线传感器网络中的网络协议无线传感器网络中的网络协议用于管理和控制传感器节点之间的通信,确保数据传输的可靠性和稳定性。
常用的网络协议有以下几种:1. MAC协议:MAC协议用于控制传感器节点之间的介质访问,避免冲突和碰撞。
常用的MAC协议有CSMA/CA、TDMA和FDMA等。
2. 路由协议:路由协议用于确定数据传输的路径,将数据从源节点传输到目标节点。
常用的路由协议有LEACH、AODV、DSDV等。
3. 网络协议:网络协议用于实现节点之间的通信,包括寻址、拓扑管理和数据传输协议等。
常用的网络协议有IP、ICMP、UDP和TCP等。
4. 安全协议:安全协议用于保护无线传感器网络的数据和节点的安全。
常用的安全协议有AES、DES和RSA等。
5. 应用层协议:应用层协议用于实现特定的应用功能,例如数据的存储、查询和处理。
常用的应用层协议有HTTP、FTP、SNMP和CoAP等。
无线传感器网络中的安全路由协议研究
无线传感器网络中的安全路由协议研究无线传感器网络(Wireless Sensor Networks,简称WSN)是由大量分散的、自组织的、低功耗的传感器节点组成的网络系统。
它具有无线通信、环境监测和数据采集等功能,广泛应用于农业、环境监测、智能交通等领域。
然而,由于其分布式、易受攻击的特点,WSN面临着各种安全风险,尤其是在数据传输过程中容易受到攻击。
因此,研究无线传感器网络中的安全路由协议具有重要意义。
一、安全路由协议的背景和意义无线传感器网络的安全问题是当前研究的热点之一。
由于传感器节点处于敌对环境中,容易受到各种攻击,如假冒攻击、重放攻击、拒绝服务攻击等。
而安全路由协议作为传感器网络中的一项重要防护措施,能够在节点之间建立可信任的数据传输路径,有效解决数据安全问题。
因此,通过研究无线传感器网络中的安全路由协议,可以提高网络的安全性和可靠性。
二、无线传感器网络中的安全路由协议分类在无线传感器网络中,安全路由协议按照不同的安全机制可以分为两大类:基于密钥的安全路由协议和基于加密的安全路由协议。
1. 基于密钥的安全路由协议基于密钥的安全路由协议通过预先分配密钥,实现节点之间的安全通信。
这种类型的协议通常基于对称密钥加密算法,如DES、AES等。
节点通过使用相同的密钥来加密和解密传输的数据,从而保证数据的机密性和完整性。
常用的基于密钥的安全路由协议有LEACH、TEEN等。
2. 基于加密的安全路由协议基于加密的安全路由协议利用公钥密码学中的加密算法进行节点间的安全通信。
这种类型的协议通常采用非对称密钥加密算法,如RSA、DSA等。
节点通过交换公钥和私钥来实现加密和解密操作,确保数据的机密性和完整性。
常用的基于加密的安全路由协议有SPINS、TINYSEC等。
三、无线传感器网络中的安全路由协议研究进展目前,无线传感器网络中的安全路由协议研究已经取得了一系列重要进展。
1. 安全路由协议的安全性分析研究人员对现有的安全路由协议进行了安全性分析,发现存在一些安全漏洞和弱点。
无线传感器网络技术概述-2019年精选文档
无线传感器网络技术概述-2019年精选文档-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII无线传感器网络技术概述无线传感器网络被普遍认为是二十一世纪最重要的技术之一,是集成了监测、控制以及无线通信的网络系统,是由传感器、数据处理单元和通信模块的微小节点通过自组织的方式构成的网络。
在无线传感器网络中各传感器节点能够相互协作完成感知、采集网络覆盖区域内的各种环境或监测对象的信息,对这些信息进行处理,以获得详实而准确的信息,并通过无线多跳方式传送给需要这些信息的用户[2]。
可以说由计算机技术、传感器技术、无线通信技术相结合产生的无线传感器网络实现了物理世界、信息世界与人类社会三元世界的连通,将会对人类社会的生产和生活产生深远而积极的影响。
一、无线传感网络的体系结构(一)传感器节点结构。
无线传感器网络是由部署在监测区域内大量的廉价微型传感器节点以无线多跳通信方式形成的自组织网络系统,其中的传感器节点能够协作地感知、采集和处理网络覆盖区域中被感知对象的信息,并发送给用户。
无线传感器网络中最基本的组成要素是传感器节点,它由数据采集单元、处理器单元、数据传输单元和能量供应单元四部分组成[2]。
如图1所示。
数据采集单元负责监测区域内信息的采集和数据转换,借助形式多样的传感部件,传感器节点能够感知温度、湿度、噪声、移动物体的大小、速度和方向等信息。
处理单元负责控制整个传感器节点的操作、存储和处理数据信息。
数据传输单元负责与其他传感器节点交换控制信息和传输采集到的数据信息。
能量供应单元为传感器节点各部件提供运行所需的能量,通常采用微型电池。
(二)网络体系结构。
无线传感器网络的体系结构如图2所示,通常包括传感器节点、汇聚节点和管理节点[1]。
大量传感器节点随即部署在监测区域内部或附近,以自组织的方式构成网络。
传感器节点产生的数据以不同的路由方式沿着其他传感器节点逐跳传输,在传输的过程中,可能被多个节点处理,然后传输到汇聚节点。
无线网络的研究——无线传感器网络路由协议的研究的开题报告
无线网络的研究——无线传感器网络路由协议的研究的开题报告一、背景随着物联网技术的飞速发展和无线传感技术的广泛应用,无线传感器网络成为了一个研究热点,其在环境监测、智能家居、军事侦察等领域具有广泛的应用前景。
无线传感器网络是由大量无线传感器节点组成的一种分布式自组织网络,由于其功耗、尺寸等硬件限制,其节点一般采用电池供电,因此节点的能量管理是网络维护中不可忽视的重要问题。
同时,节点之间的通信链路也受到多种因素的干扰,包括信号弱化、遮挡、多径传播等,因此网络中节点之间的数据传输、路由选择、拓扑控制等问题是无线传感器网络研究中的热点和难点。
因此,无线传感器网络通信协议中的一种重要部分就是路由协议,它负责解决节点之间的通信问题。
目前已经有许多路由协议被提出,在应对不同的应用场景和通信需求的同时,也存在着各自的局限性和优势。
因此,对于路由协议的研究和优化是无线传感器网络研究中的热点和难点。
二、研究目的及意义无线传感器网络路由协议的研究的主要目的就是解决节点之间的通信问题,实现网络中数据的有效传输和能量的高效利用。
合理的路由选择能够降低节点之间的通信延迟和消耗,有利于提高网络传输效率和能源利用率。
因此,无线传感器网络路由协议的研究对于优化网络性能,延长节点寿命以及扩展网络应用具有重要的意义。
三、研究内容1. 对无线传感器网络路由协议的现状及发展趋势进行综述,分析现有路由协议的优缺点。
2. 深入研究几种领先的无线传感器网络路由协议,如LEACH、PEGASIS、TEEN 等,分析其设计思想、工作原理和性能指标。
3. 在结合以上分析的基础上,提出适合特定应用场景的超低功耗、高能效的无线传感器网络路由协议。
4. 通过仿真实验验证所提出的无线传感器网络路由协议的性能表现,包括能源消耗、带宽利用率和数据传输效率等指标,并与现有的几种路由协议进行对比评估。
四、预期成果1. 对当前无线传感器网络路由协议的发展情况及优劣进行详细综述。
无线传感器网络中能量感知路由协议研究
无线传感器网络中能量感知路由协议研究无线传感器网络是由大量分布在特定区域内的无线传感器节点组成的自组织、多跳的网络系统。
传感器节点具有感知环境的能力,并能将采集到的数据通过网络传输到基站或其他目标节点。
然而,传感器节点的能量是有限的,且无法充电,因此能量管理成为无线传感器网络中的重要研究内容之一。
能量感知路由协议在无线传感器网络中起到了关键作用,通过优化路由路径以降低网络能量消耗,从而延长整个网络的生命周期。
能量感知路由协议的研究旨在解决传感器网络中能量消耗不均衡的问题,提高网络的能量利用率。
其主要目标是通过合理选择传感器节点之间的路由路径,使得网络中各个节点的能量消耗相对均衡,延长网络的寿命。
以下将介绍几种常见的能量感知路由协议。
1. 能量感知最小路径算法(EEMRP):该算法考虑到节点能量消耗不平衡的问题,根据每个节点消耗的能量大小,选择能量最低的路径作为传感器节点间的通信路径。
通过动态更新每个节点的剩余能量信息,能够有效降低网络的能量消耗。
然而,该算法没有考虑节点之间的传输距离和链路质量等因素,可能导致部分节点能量消耗过快。
2. 能量感知最大剩余能量路径算法(E-resent):该算法基于节点的剩余能量来选择通信路径,选择节点剩余能量最高的路径进行数据传输。
通过权衡路径的剩余能量和路径长度,能够有效降低网络的能量消耗。
但该算法没有考虑节点之间的链路质量,因此可能选择了高能量剩余路径,但链路质量较差,导致数据传输失败。
3. 能量感知双约束最小剩余能量路径算法(ERLC):该算法综合考虑节点能量和链路质量,通过设定能量和链路质量的约束条件,选择能够同时满足两个条件的路径进行数据传输。
该算法能够实现能量消耗的均衡,并保证传输的稳定性。
但是,该算法需要计算节点之间的信号强度来评估链路质量,增加了计算复杂度。
4. 能量感知拓扑调整和重构路由协议(ETRR):该协议通过根据节点的剩余能量水平来调整和重构网络拓扑结构,使得能量消耗在整个网络中更加均衡。
无线传感器网络
无线传感器网络无线传感器网络(Wireless Sensor Networks,简称WSN)指采用无线通信技术将大量分布式的无线传感器节点进行网络互联,并通过节点之间的协同工作实现对环境信息的采集、处理、传输和应用的一种网络系统。
它具有低成本、低功耗、分布式、自组织等特点,在环境监测、智能交通、物流管理等领域有着广泛的应用前景。
一、无线传感器网络的概念与组成无线传感器网络是由大量的无线传感器节点组成的分布式网络系统。
每个节点都具有感知环境、处理数据和进行通信的能力,可以通过无线通信方式与其他节点进行数据交换和协同工作。
节点之间通过无线信道进行数据传输,形成了一个覆盖范围广、布局灵活的网络。
无线传感器网络的组成主要包括以下几个要素:1. 无线传感器节点:每个节点包含感知器、处理器、无线通信模块和电源等组件。
它们能够感知环境中的各种物理量,如温度、湿度、压力等,并将采集到的数据进行处理和传输。
2. 网络拓扑结构:是指无线传感器节点之间的连接方式。
常见的拓扑结构有星型、多跳、分簇等,不同的拓扑结构适用于不同的应用场景和需求。
3. 路由协议:用于节点之间的数据传输和通信,实现节点之间的协作和信息交换。
常见的路由协议有LEACH、TBRPF等,选择合适的路由协议对于网络性能和能耗有着重要的影响。
4. 数据处理与存储:无线传感器网络中的节点通常会对采集到的数据进行处理和存储,以便后续分析和应用。
节点可以通过数据压缩、聚合等方式减少数据的传输量,并采用存储技术将数据保存在本地或云端。
二、无线传感器网络的应用领域无线传感器网络在许多领域都有着广泛的应用,下面列举了一些典型的应用领域:1. 环境监测:无线传感器网络可以用于实时监测环境中的温度、湿度、气体浓度等参数,对环境变化进行监测和预警。
这在农业、气象、能源等领域都有着重要的应用价值。
2. 智能交通:无线传感器网络可以用于交通状况的实时监测和智能调度,提高交通效率和安全性。
无线传感器网络中的数据传输与中继优化研究
无线传感器网络中的数据传输与中继优化研究随着无线传感器网络(Wireless Sensor Network, WSN)的快速发展,数据传输与中继技术在不断进步,以满足更高效、可靠、安全的通信需求。
本文将重点研究无线传感器网络中的数据传输与中继优化问题,探讨相关的研究成果及未来的研究方向。
首先,了解无线传感器网络的数据传输特点是理解优化问题的基础。
无线传感器网络是由大量分布在特定区域内的传感器节点组成,这些节点能够感知、采集环境中的信息,并通过无线通信协议传输数据。
传感器节点的能量和带宽都是有限的,因此需要合理地调度和管理数据传输,以保证网络的能耗和传输质量。
优化数据传输方案的一种常见方法是通过中继节点实现数据转发。
中继节点位于传感器网络的边缘或中心位置,能够接收来自其他节点的数据,并将其转发到目标节点。
中继优化的核心目标是降低能耗、提高传输可靠性和减少延迟。
此外,中继节点的选择要考虑网络拓扑、信号强度、传输距离等因素,以确保数据能够准确、高效地到达目标节点。
为了优化传感器网络的数据传输与中继效果,有许多研究工作已经展开。
其中之一是基于拓扑控制的中继优化。
通过合理地选择中继节点的位置和数量,可以改善网络的覆盖范围和传输效率。
此外,利用传感器节点的移动性,可以优化中继路径,减少数据传输的跳数和延迟。
这种基于拓扑控制的中继优化方法可以提高传感器网络的能效,降低能耗。
另一种优化数据传输与中继的方法是通过路由协议的改进。
目前存在许多传感器网络路由协议,如LEACH、PEGASIS等。
这些协议根据不同的拓扑结构和传输需求,选择最佳的路径和中继节点,以提高网络的性能。
近年来,一些学者提出了基于机器学习和深度学习的新型路由协议,通过训练模型选择最佳路径,进一步优化数据传输与中继效果。
数据传输与中继的优化也需要考虑网络的安全性。
由于无线传感器网络中的数据往往是敏感的,可能涉及个人隐私或商业秘密,因此需要保证数据的安全和机密性。
无线传感器网络路由协议综述
混合 式 。 先验 式路 由协 议 中 ,所 有 的 路 由都 经 过 预 先 计
算 ,然ห้องสมุดไป่ตู้根据 需要选用 响应式路 由只在 需要发起时才 按需计算路由 ; 混合式路由为两种方法的组合。 ( 根 3)
据 传 输 过 程 中采 用 路 径 的 多 少 ,可 分 为单 路 径 路 由协 议 和 多路 径 路 由协 议 。 前 者 只采 用 一 条路 径 进 行 传 输 ,优
传输和 处理 能力均十分有限 ,需要高效 的网络资源管理
手 段 :五是 无 线 传 感器 网 络节 点通 信 高能 耗 ,数 据 计 算
低 能耗。
无线 传 感 器 网 络 的 上述 特 点 使 得 其 不 能 直 接 采 用众
由协 议 中 ,所 有 节 点 的地 位 是 平 等 的 ,分 等 级 路 由协 议 中 ,节 点 角 色 不 同 ;位 置路 由协 议 中 ,节 点 的 位 置被 用 来 发 送 数据 。 ( 根 据 如何 获 得 从 源 到 目的 的路 由 , 2)
点是节约存储空间 ,适合 数据通信量少 的情况下采用后
者 可 从 众 多 路 由 中 选 择一 条最 佳 路 由 ,鲁棒 性 强 ,具 有
一
定 的容 错 性。
4典型路 由协议分析 .
4 1 lo igJ' . Fo d S, n /  ̄
冗余 大等特 点 ,其 路 由协 议 的设计应 考虑 几个 关键 因
7 8
lH。EE交 AFR 流 EN 。 经 xGEE 验 cEPc ×N
表 1无 线传 感器 路由 协议 的特 点比较 :
S i o n D D R m u or G S P R L A H P Q^ I E C E sS T en e
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要近年来,随着微机电系统和无线通信技术的发展,无线传感器网络WSN (Wireless Sensor Network)得到了越来越广泛的关注和研究。
在无线传感器网络中,减少能量消耗,延长网络生命周期是首要的任务。
基于移动sink的路由协议成为现在研究的热点,让sink节点移动到传感节点附近,通过一跳就可以接收数据,与以往WSN通过多跳的方式向静止的sink发送数据相比,移动sink在数据传输过程中有更少的节点参与转发,因而节约了节点的能量消耗,延长了网络的生命周期。
论文首先提出了基于移动sink的数据接收思想,分析了这种方法的优势;然后阐述了路由协议应以应用为前提,为后续研究的方便提出了另一种路由协议的分类,即逐跳路由协议(sink静止)和基于移动sink的路由协议,并比较了两类路由协议的优劣;再次重点分析了基于移动sink的经典路由协议TTDD的工作原理及系统仿真设计,针对TTDD数据传输路径过长的问题提出了现有的解决方法,即CODE协议和E-TTDD协议,并且通过数学方法计算了三种算法的通信能量开销,并进行了比较。
关键词:无线传感器网络,路由协议,数据收集器移动,TTDDABSTRACTWith the rapid development of wireless communication and Microelectronics Mechanical System (MEMS) technologies, Wireless Sensor Networks (WSN) had attracted extensive attention due to their wide range of potential applications.Energy is the most critical factor when designing sensor network, we must make sure that the lifetime of WSN should be longer. The routing protocol based on sink mobility is being considered as the research hotspots, the data can be sent directly to a collector in 1-hop communication which reduces the need for multi-hop communication. So we can save the energy and prolong the lifetime of WSN.In this paper we first introduce a new idea that uses the mobile sink to collect data, and analyze the advantage of this method.Then we illustrates that wireless sensor network routing protocols are based on applications and proposes another classifying scheme, based on that there are two kinds of routing protocols, hop-by-hop routing protocols and sink mobility routing protocols. I also compare them in this paper.At last, this paper analyzes the basic principle and systems simulation design on TTDD, in order to solve the problem exists in the condition of data transmission path is too long in TTDD,another two modified methods are presented, CODE and E-TTDD, and we compare the three protocols’communication energy consumption through mathematical calculation.Keywords: Wireless Sensor Network, routing protocols, sink mobility, TTDD目录第1章绪论............................................................................错误!未定义书签。
1.1无线传感器网络产生及特点..........................................错误!未定义书签。
1.2无线传感器网络应用范围..............................................错误!未定义书签。
1.3移动sink路由协议的研究进展.....................................错误!未定义书签。
1.4论文的研究内容..............................................................错误!未定义书签。
第2章基于移动sink路由协议的研究背景 ..............错误!未定义书签。
2.1无线传感器网络路由协议概述......................................错误!未定义书签。
2.2现有路由协议的分类......................................................错误!未定义书签。
2.3引入sink移动思想的路由协议.....................................错误!未定义书签。
第3章移动sink经典路由协议的研究........................错误!未定义书签。
3.1 TTDD路由协议..............................................................错误!未定义书签。
3.1.1路由协议简介............................................................错误!未定义书签。
3.1.2路由协议工作原理....................................................错误!未定义书签。
3.1.3通信能量消耗分析....................................................错误!未定义书签。
3.2 TTDD的改进路由协议-CODE ......................................错误!未定义书签。
3.2.1路由协议工作原理....................................................错误!未定义书签。
3.2.2通信能量消耗分析....................................................错误!未定义书签。
3.3 TTDD的改进路由协议- E-TTDD .................................错误!未定义书签。
3.3.1路由协议工作原理....................................................错误!未定义书签。
3.3.2通信能量消耗分析....................................................错误!未定义书签。
3.4 TTDD及其两种改进路由协议的比较..........................错误!未定义书签。
第4章TTDD系统仿真设计............................................错误!未定义书签。
4.1 NS2软件简介 .................................................................错误!未定义书签。
4.2网格初始化......................................................................错误!未定义书签。
4.3 sink的工作情况..............................................................错误!未定义书签。
4.4在DN中设定计时器......................................................错误!未定义书签。
4.5移动sink与agent的联系 ..............................................错误!未定义书签。
4.6 sink更新agent ................................................................错误!未定义书签。
4.7 TTDD模拟结果..............................................................错误!未定义书签。
第5章结论............................................................................错误!未定义书签。
参考文献...................................................................................错误!未定义书签。
致谢 ............................................................................................错误!未定义书签。
源节点利用地理贪婪转发策略传播数据信息到附近的DN,DN又用相同的方法传播数据到邻居DN,直到数据到达sink节点。