数学竞赛试题汇编三-《二次函数、方程、不等式》讲义
二次函数与一元二次方程、不等式知识点总结与例题讲解
二次函数与一元二次方程、不等式知识点总结与例题讲解一、本节知识点(1)一元二次不等式的概念. (2)三个二次的关系. (3)一元二次不等式的解法. 知识点拓展:(4)分式不等式的解法. (5)高次不等式的解法. 二、本节题型(1)解不含参数的一元二次不等式. (2)解含参数的一元二次不等式. (3)三个二次之间的关系.(4)简单高次不等式、分式不等式的解法. (5)不等式恒成立问题. (6)一元二次不等式的应用. 三、知识点讲解.知识点 一元二次不等式的概念我们把只含有1个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.即形如02>++c bx ax (≥0)或02<++c bx ax (≤0)(其中0≠a )的不等式叫做一元二次不等式.元二次不等式的解与解集使一元二次不等式成立的x 的值,叫做这个一元二次不等式的解,其解的集合,叫做这个一元二次不等式的解集.注意 一元二次不等式的解集要写成集合或区间的形式. 知识点 三个二次的关系一元二次不等式的解集、一元二次方程的解以及二次函数的图象之间有着紧密的联系.一元二次方程()002≠=++a c bx ax 与二次函数()002≠=++=a c bx ax y 的关系是:(1)当ac b 42-=∆≥0时,一元二次方程()002≠=++a c bx ax 有实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有交点,且方程的解是交点的横坐标,交点的横坐标亦是方程的解;①当0>∆时,一元二次方程()002≠=++a c bx ax 有两个不相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有两个不同的交点;②当0=∆时,一元二次方程()002≠=++a c bx ax 有两个相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴只有一个交点(即抛物线的顶点).(2)当042<-=∆ac b 时,一元二次方程()002≠=++a c bx ax 无实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴没有交点.具体关系见下页表(1)所示.一元二次不等式与二次函数()002≠=++=a c bx ax y 的关系是:(1)一元二次不等式02>++c bx ax (≥0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴上方(包括x 轴)的部分所对应的自变量的取值范围;(2)一元二次不等式02<++c bx ax (≤0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴下方(包括x 轴)的部分所对应的自变量的取值范围.由表可知 一元二次不等式的解集的端点值就是对应的一元二次方程的解. 知识点 一元二次不等式的解法解一元二次不等式的一般步骤是:(1)利用不等式的性质,将二次项系数化为正数; (2)计算ac b 42-=∆的值,并判断∆的符号; (3)当∆≥0时,求出相应的一元二次方程的根; (4)画出对应的二次函数的简图;(5)根据一元二次不等式的形式,结合简图,写出其解集.注意 一元二次不等式的解集结构与二次项系数的符号有着直接的关系.其中,①当0>∆时,一元二次不等式()002>>++a c bx ax 的解集在“两根之外”,即“大于大根或小于小根”;一元二次不等式()002><++a c bx ax 的解集在“两根之内”,即“大于小根且小于大根”,简记为“大于0取两边,小于0取中间”;②当0=∆时,一元二次不等式()002>>++a c bx ax 的解集为⎭⎬⎫⎩⎨⎧-≠a b x x 2;一元二次不等式()002><++a c bx ax 的解集为∅;③当0<∆时,一元二次不等式()002>>++a c bx ax 的解集为R ;一元二次不等式()002><++a c bx ax 的解集为∅.表(1)一元二次方程、二次函数以及一元二次不等式的关系:一元二次不等式在R 上恒成立的问题(1)02>++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆>0402ac b a 或⎩⎨⎧>==00c b a ; (2)02<++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆<0402ac b a 或⎩⎨⎧<==00c b a ;(3)一元二次不等式c bx ax ++2≥0在R 上恒成立,则有:⎩⎨⎧≤-=∆>0402ac b a ; (4)一元二次不等式c bx ax ++2≤0在R 上恒成立,则有:⎩⎨⎧≤-=∆<0402ac b a . 补充概念 二次函数的零点我们把使一元二次方程02=++c bx ax 的实数x 叫做二次函数c bx ax y ++=2的零点. 对零点的理解(1)二次函数的零点即相应一元二次方程02=++c bx ax 的实数根;(2)根据数形结合,二次函数的零点,即二次函数的图象与x 轴的交点的横坐标,且交点的个数等于零点的个数;(3)并非所有的二次函数都有零点.当ac b 42-=∆≥0时,一元二次方程有实数根,相应二次函数存在零点.知识点 分式不等式的解法 分式不等式的概念分母中含有未知数的不等式叫做分式不等式.利用不等式的性质,可将分式不等式化为以下标准形式: ①0)()(>x g x f ; ②)()(x g x f ≥0; ③0)()(<x g x f ; ④)()(x g x f ≤0. 分式不等式的解法解分式不等式的思路是把其转化为整式不等式求解.解分式不等式时,要先把分式不等式转化为标准形式. 各标准形式的分式不等式的解法为: (1)0)()(>x g x f 与不等式组⎩⎨⎧>>0)(0)(x g x f 或⎩⎨⎧<<0)(0)(x g x f 同解,与不等式0)()(>⋅x g x f 同解; (2))()(x g x f ≥0与不等式组⎩⎨⎧≠≥⋅0)(0)()(x g x g x f 同解;(3)0)()(<x g x f 与不等式组⎩⎨⎧<>0)(0)(x g x f 或⎩⎨⎧><0)(0)(x g x f 同解,与不等式0)()(<⋅x g x f 同解;(4))()(x g x f ≤0与不等式组⎩⎨⎧≠≤⋅0)(0)()(x g x g x f .由以上解法可以看出:将分式不等式转化为标准形式后,再将其转化为不等式组或同解整式不等式进行求解.知识点 高次不等式的解法解高次不等式,一般用“数轴标根法”,也叫“穿根引线法”,其步骤如下:(1)把高次不等式化为左边是几个因式的乘积,右边是0的形式,注意每个因式最高次项的系数必须为正;(2)把不等号换成等号,求出所得方程的所有实数根; (3)标根: 把各个实数根在数轴上标出;(4)画穿根线: 从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,如此一上一下依次穿过各根.但要注意偶次根不穿过,即奇过偶不过;(5)写出解集: 若不等号为“ > ”,则取数轴上方穿根线以内的范围;若不等号为“ < ”,则取数轴下方穿根线以内的范围.四、例题讲解例1. 解不等式0452>-+-x x .分析 先把不等式的二次项系数化为正数,再进行求解.注意不等式的解集要写成区间或集合的形式.解: 原不等式可化为:0452<+-x x .对于方程0452=+-x x ,∵()0941452>=⨯⨯--=∆∴该方程有两个不相等的实数根,解之得:4,121==x x . ∴不等式0452>-+-x x 的解集为{}41<<x x .点评 在求解一元二次不等式时,先观察二次项系数是否为正,若为负,则先把不等式的二次项系数化为正数(利用不等式的基本性质).例2. 已知关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ,求不等式022>-+-a x cx 的解集.分析 先根据一元二次不等式与相应一元二次方程之间的关系,利用根与系数的关系定理,求出c a ,的值.注意 一元二次不等式的解集的端点值是对应一元二次方程的根. 解: 由题意可知:0<a .∵关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ∴21,3121=-=x x 是方程022=++c x ax 的两个实数根由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-213121312a c a ,解之得:⎩⎨⎧=-=212c a . ∴022>-+-a x cx 即012222>++-x x ∴062<--x x ,解之得:32<<-x .∴不等式022>-+-a x cx 的解集为{}32<<-x x .例3. 一元二次不等式()()052>-+x x 的解集为 【 】 (A ){}52>-<x x x 或 (B ){}25>-<x x x 或 (C ){}52<<-x x (D ){}25<<-x x分析 本题可用数轴标根法求解.使用该方法时,要把乘积中所有因式的最高次项的系数化为正数.解: 原不等式可化为:()()052<-+x x .∵方程()()052=-+x x 的根为5,221=-=x x .∴不等式()()052<-+x x 的解集为{}52<<-x x ,即原不等式的解集. ∴选择答案【 C 】.例4. 已知不等式042<++ax x 的解集为空集,则实数a 的取值范围是 【 】 (A ){}44≤≤-a a (B ){}44<<-a a (C ){}44≥-≤a a a 或 (D ){}44>-<a a a 或分析 本题考查一元二次不等式与相应的二次函数之间的关系,同时问题还可以转化为一元二次不等式恒成立的问题.不等式042<++ax x 的解集为空集,即相应的二次函数42++=ax x y 的图象位于x 轴上及其上方,或者不等式42++ax x ≥0在R 上恒成立.解: ∵不等式042<++ax x 的解集为空集∴162-=∆a ≤0,解之得:4-≤a ≤4. ∴实数a 的取值范围是{}44≤≤-a a . ∴选择答案【 A 】.例5. 若关于x 的不等式()()021>--x mx 的解集为⎭⎬⎫⎩⎨⎧<<21x m x ,则实数m 的取值范围是 【 】 (A ){}0>m m (B ){}20<<m m(C )⎭⎬⎫⎩⎨⎧>21m m (D ){}0<m m分析 本题由题意可知:0<m . 解: ∵()()021>--x mx∴()02122>++-x m mx .∵其解集为⎭⎬⎫⎩⎨⎧<<21x m x ∴0<m .∴实数m 的取值范围是{}0>m m . ∴选择答案【 D 】.例6. 已知函数182++=bx ax y 的定义域为[]6,3-,则实数a 的值为_________,实数b 的值为_________.解: ∵函数182++=bx ax y 的定义域为[]6,3-∴一元二次不等式182++bx ax ≥0的解集为[]6,3-. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-631863aab ,解之得:⎩⎨⎧=-=31b a . ∴实数a 的值为1-,实数b 的值为3. 例7. 已知函数m x x y +-=2.(1)当2-=m 时,求不等式0>y 的解集; (2)若0,0<>y m 的解集为{}b x a x <<,,求ba 41+的最小值. 解:(1)2-=m 时,22--=x x y .∵0>y ,∴()()02122>-+=--x x x x 解之得:1-<x 或2>x .∴不等式0>y 的解集为{}21>-<x x x 或;(2)∵02<+-=m x x y 的解集为{}21>-<x x x 或 ∴m ab b a ==+,1,且041>-=∆m ,解之得:41<m . ∵0>m ,∴0,0>>b a ,410<<m . ∴()a b b a b a b a b a ++=⎪⎭⎫ ⎝⎛++=+454141≥9425=⋅+a b b a . 当且仅当a b b a =4,即32,31==b a 时,等号成立.此时41923231<=⨯=m ,符合题意. ∴ba 41+的最小值为9. 例8. 解关于x 的不等式02>-x ax (0≠a ).分析 本题考查含有参数的一元二次不等式的解法.当二次项系数含有参数时,要对二次项系数的正负进行讨论(一元二次不等式解集的结构与二次项系数的符号有关).解: ∵02>-x ax ,∴()01>-ax x∴01>⎪⎭⎫ ⎝⎛-a x ax .∵0≠a ,∴分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或;②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x .另解: 解方程02=-x ax (0≠a )得:ax x 1,121==. 分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或; ②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 点评 不等式02>-x ax (0≠a )可化为01>⎪⎭⎫⎝⎛-a x ax .当0>a 时,根据不等式的性质可知,原不等式同解于不等式01>⎪⎭⎫⎝⎛-a x x ;当0<a 时,原不等式同解于不等式01<⎪⎭⎫⎝⎛-a x x .例9. 若对于0>∀x ,132++x x x≤a 恒成立,则实数a 的取值范围是 【 】 (A )⎭⎬⎫⎩⎨⎧≥31a a (B )⎭⎬⎫⎩⎨⎧>31a a (C )⎭⎬⎫⎩⎨⎧>51a a (D )⎭⎬⎫⎩⎨⎧≥51a a . 解: ∵132++x x x≤a 恒成立 ∴只需a ≥max213⎪⎭⎫ ⎝⎛++x x x 即可. ∵0>∀x ∴311132++=++x x x x x≤513121=+⋅xx . 当且仅当xx 1=,即1=x 时,等号成立. ∴5113max 2=⎪⎭⎫ ⎝⎛++x x x . ∴a ≥51,即实数a 的取值范围是⎭⎬⎫⎩⎨⎧≥51a a .∴选择答案【 D 】.例10.(1)若关于x 的不等式0232>+-x ax (∈a R )的解集为{}b x x x ><或1(∈b R ),求b a ,的值;(2)解关于x 的不等式ax x ax ->+-5232(∈a R ).解:(1)由题意可知:0>a .一元二次方程0232=+-x ax 的根为b x x ==21,1.由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=baba1213,解之得:⎩⎨⎧==21b a .∴a 的值为1,b 的值为2;(2)∵ax x ax ->+-5232(∈a R ) ∴()0332>--+x a ax .当0=a 时,原不等式为523>+-x ,解之得:1-<x . ∴原不等式的解集为{}1-<x x ;当0≠a 时,原不等式可化为()031>⎪⎭⎫ ⎝⎛-+a x x a . ①若0>a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或; ②若03<<-a 时,原不等式同解于()031<⎪⎭⎫ ⎝⎛-+a x x ,且13-<a ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; ③若3-=a ,原不等式为()0132<+x ,其解集为∅;④若3-<a ,则13->a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 综上所述,当0=a 时, 原不等式的解集为{}1-<x x ;当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或;当03<<-a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; 当3-=a 时,原不等式的解集为∅; 当3-<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 例11.已知关于x 的不等式08322<-+kx kx . (1)若不等式的解集为⎭⎬⎫⎩⎨⎧<<-123x x ,求实数k 的值;(2)若不等式08322<-+kx kx 恒成立,求实数k 的取值范围. 解:(1)由题意可知:0>k .一元二次方程08322=-+kx kx 的根是1,2321=-=x x . 由根与系数的关系定理:123283⨯-=-k ,解之得:81=k .∴实数k 的值为81;(2)当0=k 时,083<-恒成立,符合题意;当0≠k 时,由题意可知:⎪⎩⎪⎨⎧<⎪⎭⎫ ⎝⎛-⨯⨯-=∆<08324022k k k ,解之得:03<<-k . 综上所述,实数k 的取值范围为{}03≤<-k k .例12. 若∀1≤x ≤4,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.分析 本题考查一元二次不等式在给定闭区间上的恒成立问题,要把问题转化为相应二次函数在闭区间上的最值问题.解: ∵()422++-x a x ≥1--a∴()1-x a ≤522+-x x . ∵1≤x ≤4∴当1=x 时,显然0⨯a ≤4521=+-成立,∴∈a R ; 当x <1≤4时,01>-x∴a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.此时3=x []4,1∈,符合题意.∴a ≤4.综上所述,实数a 的取值范围是(]4,∞-. 例13. 已知不等式012<--mx mx .(1)当∈x R 时不等式恒成立,求实数m 的取值范围; (2)当∈x {}31≤≤x x 时不等式恒成立,求实数m 的取值范围.解:(1)当0=m 时,01<-恒成立,符合题意;当0≠m 时,则有⎩⎨⎧<+=∆<0402m m m ,解之得:04<<-m . 综上,实数m 的取值范围是(]0,4-;(2)当0=m 时,显然∈x {}31≤≤x x 时,01<-恒成立,符合题意; 当0≠m 时,()11<-x mx .若1=x ,显然10<恒成立,此时∈m R ; 若x <1≤3,则()01>-x x ∴()11-<x x m 恒成立,只需()min11⎥⎦⎤⎢⎣⎡-<x x m 即可. ∵()4121111122-⎪⎭⎫ ⎝⎛-=-=-x x x x x ≥614121312=-⎪⎭⎫ ⎝⎛- ∴()6111min=⎥⎦⎤⎢⎣⎡-<x x m . 综上所述,实数m 的取值范围为⎪⎭⎫⎝⎛∞-61,.例14. 解关于x 的不等式()m x m mx --+122≥0.解: 当0=m 时,x -≥0,解之得:x ≤0.∴原不等式的解集为{}0≤x x ;当0≠m 时,原不等式可化为()()m x mx +-1≥0∴()[]m x m x m --⎪⎭⎫⎝⎛-1≥0.方程()m x m mx --+122的两个实数根分别为m x mx -==21,1. 当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1; 当0<m 时,原不等式同解于()[]m x m x --⎪⎭⎫ ⎝⎛-1≤0,且m m -<1. ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 综上所述,当0=m 时,原不等式的解集为{}0≤x x ;当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1;当0<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 例15. 已知关于x 的不等式222->-x kx kx . (1)当2=k 时,解不等式; (2)当∈k R 时,解不等式.解:(1)当2=k 时,2422->-x x x∴02522>+-x x ∴()()0212>--x x . 解之得:2>x 或21<x . ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>212x x x 或;(2)原不等式可化为()02122>++-x k kx . 当0=k 时,02>+-x ,解之得:2<x . ∴原不等式的解集为{}2<x x ;当0≠k 时,原不等式可化为()()012>--kx x∴()012>⎪⎭⎫⎝⎛--k x x k .方程222->-x kx kx 的根为kx x 1,221==. 当0<k 时,原不等式同解于()012<⎪⎭⎫ ⎝⎛--k x x ,且21<k .∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当0>k 时,原不等式同解于()012>⎪⎭⎫⎝⎛--k x x .①若21>k ,则21<k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或; ②若21=k ,则21=k,∴原不等式的解集为{}2≠x x ; ③若210<<k ,则21>k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或.综上所述,当0=k 时,原不等式的解集为{}2<x x ;当0<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当210<<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或;当21=k 时,原不等式的解集为{}2≠x x ; 当21>k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或.例16. 已知关于x 的不等式0622<+-k x kx .(1)若不等式的解集为{}23->-<x x x 或,求实数k 的取值; (2)若不等式的解集为R ,求实数k 的取值范围.解:(1)由题意可知:0<k .一元二次方程0622=+-k x kx 的两个实数根分别为2,321-=-=x x .由根与系数的关系定理可得:232--=--k ,解之得:52-=k . ∴实数k 的值为52-;(2)当0=k 时,原不等式的解集为{}0>x x ,不符合题意;当0≠k 时,则有:⎩⎨⎧<-=∆<024402k k ,解之得:66-<k . 综上所述,实数k 的取值范围是⎭⎬⎫⎩⎨⎧-<66k k .例17. 已知122++ax ax ≥0恒成立,解关于x 的不等式022<+--a a x x .解:∵122++ax ax ≥0恒成立∴当0=a 时,1≥0恒成立,符合题意;当0≠a 时,则有:⎩⎨⎧≤-=∆>04402a a a ,解之得:a <0≤1. 综上,实数a 的取值范围是[]1,0. 对于不等式022<+--a a x x当0≤a ≤1时,原不等式可化为()()01<-+-a x a x∴()()[]01<---a x a x ,方程022=+--a a x x 的根为a x a x -==1,21.①若a <21≤1,则a a ->1,∴原不等式的解集为{}a x a x <<-1; ②若21=a ,则a a -=1,∴原不等式的解集为∅;③若210<<a ,则a a -<1,∴原不等式的解集为{}a x a x -<<1.综上所述,对于不等式022<+--a a x x :当a <21≤1时,不等式的解集为{}a x a x <<-1; 当21=a 时,不等式的解集为∅;当0≤21<a 时,不等式的解集为{}a x a x -<<1.例18. 不等式()()xa c xb x -++≤0的解集为{}321≥<≤-x x x 或,则=+c b 【 】(A )5- (B )2- (C )1 (D )3解: 原不等式可化为()()ax c x b x -++≥0,同解于()()()⎩⎨⎧≠-≥++-00a x c xb x a x .方程()()0=-++ax c x b x 的解为c x b x -=-=21,.∵该不等式的解集为{}321≥<≤-x x x 或∴2=a ,⎩⎨⎧=--=-31c b 或⎩⎨⎧-=-=-13c b ,∴⎩⎨⎧-==31c b 或⎩⎨⎧=-=13c b .∴2-=+c b . ∴选择答案【 B 】.例19. 已知函数b ax x y +=2(b a ,为常数),且方程012=+-x y 的两个根为31=x ,42=x .(1)求b a ,的值;(2)设1>k ,解关于x 的不等式()xkx k y --+<21.解:(1)由题意可得:⎪⎪⎩⎪⎪⎨⎧=+-+=+-+0124416012339b a b a ,整理得:⎪⎪⎩⎪⎪⎨⎧-=+-=+142131ba ba ,解之得:⎩⎨⎧=-=21b a . ∴a 的值为1-,b 的值为2;(2)由(1)可知:xx y -=22.∵()x kx k y --+<21,∴()xkx k x x --+<-2122. ∴()()()021212<---=-++-xk x x x k x k x . 原不等式同解于()()()021>---k x x x .∵1>k∴当21<<k 时,原不等式的解集为{}21><<x k x x 或; 当2=k 时,()()0212>--x x ,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.综上所述,当21<<k 时,原不等式的解集为{}21><<x k x x 或;当2=k 时,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.例20. 已知集合()()[]{}0132<+--=a x x x A ,()⎭⎬⎫⎩⎨⎧<+--=012a x a x x B . (1)当2=a 时,求B A ;(2)若A B ⊆,求实数a 的取值范围.解:(1)当2=a 时∵()(){}{}72072<<=<--=x x x x x A ,{}52052<<=⎭⎬⎫⎩⎨⎧<--=x x x x x B∴{}52<<=x x B A ;(2)∵∈∀a R ,恒有a a >+12,()()()[]{}010122<+--=⎭⎬⎫⎩⎨⎧<+--=a x a x x a x a x x B ∴{}12+<<=a x a x B . 当213>+a ,即31>a 时,{}132+<<=a x x A . ∵A B ⊆,∴⎩⎨⎧+≤+≥13122a a a ,解之得: 2≤a ≤3.∴实数a 的取值范围是[]3,2;当213=+a ,即31=a 时,(){}∅=<-=022x x A ,显然不符合题意; 当213<+a ,即31<a 时,{}213<<+=x a x A .∵A B ⊆,∴⎩⎨⎧≤+≤+21132a aa ,解之得: 1-≤a ≤21-.∴实数a 的取值范围是⎥⎦⎤⎢⎣⎡--21,1. 综上所述,实数a 的取值范围是[]3,221,1 ⎥⎦⎤⎢⎣⎡--. 例21. 已知不等式442-+>+m x mx x .(1)若对任意实数x 不等式恒成立,求实数m 的取值范围; (2)若对于0≤m ≤4不等式恒成立,求实数x 的取值范围.解:(1)∵442-+>+m x mx x∴()0442>-+-+m x m x . ∵对任意实数x 不等式恒成立∴()()04442<---=∆m m ,解之得: 40<<m .∴实数m 的取值范围是()4,0; (2)∵442-+>+m x mx x ∴()04412>+-+-x x m x . ∵对[]4,0∈∀m ,不等式恒成立∴()()⎩⎨⎧>+-+⨯->+-+⨯-044410440122x x x x x x ,解之得:0≠x 且2≠x . ∴实数x 的取值范围是{}2200><<<x x x x 或或.点评 解决恒成立问题时一定要清楚谁是主元,谁是参数.一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数,构造以主元为变量的函数,根据主元的取值范围求解.例22. 设()12--=mx mx x f ,求使()0<x f ,且m ≤1恒成立的x 的取值范围.解: ∵()0<x f ,m ≤1,∴012<--mx mx ,[]1,1-∈m .∴()012<--m x x 对[]1,1-∈m 恒成立. 设()()12--=m x x m g ,则有:()()()()()⎩⎨⎧<-⨯-=<--⨯-=-0111011122x x g x x g ,解之得:251251+<<-x .∴实数x 的取值范围是⎪⎪⎭⎫⎝⎛+-251,251.重要结论 一次函数()b kx x f +=()0≠k 在区间[]n m ,上的恒成立问题:(1)若()0>x f 恒成立,则()()⎩⎨⎧>>00n f m f ;(2)若()0<x f 恒成立,则()()⎩⎨⎧<<0n f m f .例23. 设函数()12--=mx mx x f ()0≠m ,若对于[]3,1∈x ,()5+-<m x f 恒成立,求m 的取值范围.解: ∵()5+-<m x f 在[]3,1∈x 上恒成立∴062<-+-m mx mx 在[]3,1∈x 上恒成立. 令()62-+-=m mx mx x g ,只需()0max <x g 即可. 函数()x g 图象的对称轴为直线212=--=m m x . 当0>m 时,()x g 在[]3,1上单调递增 ∴()()0673max <-==m g x g ,解之得:76<m . ∴760<<m ; 当0<m 时,()x g 在[]3,1上单调递减 ∴()()061max <-==m g x g ,解之得:0<m .综上所述,m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或.另解: ∵062<-+-m mx mx 在[]3,1∈x 上恒成立∴()612<+-x x m 在[]3,1∈x 上恒成立.∵04321122>+⎪⎭⎫ ⎝⎛-=+-x x x ∴162+-<x x m 在[]3,1∈x 上恒成立.只需761336162min 2=+-=⎪⎭⎫ ⎝⎛+-<x x m 即可. ∵0≠m∴m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或. 例24. 已知集合{}042≤-=t t A ,对于任意的A t ∈,使不等式122->-+x t tx x 恒成立的x 的取值范围是_____________.解: {}{}22042≤≤-=≤-=t t t t A .∵当A t ∈时,不等式122->-+x t tx x 恒成立 ∴()01212>+-+-x x t x 恒成立. 设()()1212+-+-=x x t x t f ,则有:()()⎩⎨⎧>-=>+-=-012034222x f x x f ,解之得:1-<x 或3>x . ∴x 的取值范围是{}31>-<x x x 或.例25. 对一切实数x ,不等式12++x a x ≥0恒成立,则实数a 的取值范围是_____________.解: 当0=x 时,显然对∈∀a R 成立;当0≠x 时,a ≥⎪⎭⎫ ⎝⎛+-=--=--x x x x x x 1112,只需a ≥max 1⎪⎭⎫ ⎝⎛+-x x 即可.∵⎪⎭⎫ ⎝⎛+-x x 1≤212-=⋅-x x∴21max -=⎪⎭⎫ ⎝⎛+-x x ,∴a ≥2-.∴实数a 的取值范围是[)+∞-,2.例26. 已知0,0>>y x ,且()()()144152++--+y x m y x ≥0恒成立,则实数m 的取值范围是_____________.解: ∵0,0>>y x ,∴0>+y x .∵()()()144152++--+y x m y x ≥0恒成立∴15-m ≤()y x y x yx y x +++=+++1441442恒成立,只需15-m ≤min144⎪⎭⎫ ⎝⎛+++y x y x 即可. ∵y x y x +++144≥()241442=+⋅+yx y x (当且仅当12=+y x 时,等号成立) ∴24144min =⎪⎭⎫ ⎝⎛+++y x y x ,∴15-m ≤24,解之得:m ≤5.∴实数m 的取值范围是(]5,∞-. 例27. 已知61>k ,对任意正实数y x ,,不等式ky x k +⎪⎭⎫ ⎝⎛-213≥xy 2恒成立,求实数k 的取值范围.解: ∵61>k ,∴0213>-k . ∴ky x k +⎪⎭⎫ ⎝⎛-213≥xy k k ky x k ⎪⎭⎫⎝⎛-=⋅⎪⎭⎫ ⎝⎛-213221322.当且仅当ky x k =⎪⎭⎫⎝⎛-213,即x kk y 213-=时,等号成立.∴ky x k +⎪⎭⎫ ⎝⎛-213的最小值为xy k k ⎪⎭⎫⎝⎛-21322∵不等式ky x k +⎪⎭⎫⎝⎛-213≥xy 2恒成立∴xy k k ⎪⎭⎫ ⎝⎛-21322≥xy 2∴xy k k ⎪⎭⎫ ⎝⎛-21342≥xy 2,解之得:k ≥21.∴实数k 的取值范围是⎪⎭⎫⎢⎣⎡+∞,21.例28. 若关于x 的不等式()()0121122>+++-+-x x x k x k 的解集为R ,则实数k 的取值范围是_____________.解: ∵04321122>+⎪⎭⎫ ⎝⎛+=++x x x 在R 上恒成立 ∴原不等式同解于不等式()()02112>+-+-x k x k ,其解集为R 当1=k 时,02> 在R 上恒成立,符合题意;当1≠k 时,则有:()()⎩⎨⎧<---=∆>-0181012k k k ,解之得:91<<k . 综上所述,实数k 的取值范围是[)9,1.例29.(1)解关于x 的不等式()422++-x a x ≤a 24-(∈a R );(2)若x <1≤4时,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.解:(1)∵()422++-x a x ≤a 24-∴()()a x x --2≤0.当2>a 时,原不等式的解集为{}a x x ≤≤2; 当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x .综上所述,当当2>a 时,原不等式的解集为{}a x x ≤≤2;当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x . (2)由题意可知,当(]4,1∈x 时,不等式()5212+---x x a x ≥0恒成立.∴当(]4,1∈x 时,a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵(]4,1∈x ,∴()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.∴4152min 2=⎪⎭⎫ ⎝⎛-+-x x x .∴a ≤4,即实数a 的取值范围为(]4,∞-.例30.(1)已知命题∈∀x p :R ,a x x +-22≥0,命题∈∃x q :R ,0122=-++a x x ,若p 为真命题,q 为假命题,求实数a 的取值范围;(2)已知a ≥21,二次函数c ax x a y ++-=22,其中c a ,均为实数,证明对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.解:(1)∵命题∈∀x p :R ,a x x +-22≥0为真命题∴()a a 44422-=--=∆≤0,解之得: a ≥1.∵命题∈∃x q :R ,0122=-++a x x 为假命题 ∴⌝q :∈∀x R ,0122≠-++a x x 为真命题. ∴()01241<--=∆a ,解之得:85>a . ∴实数a 的取值范围是[)+∞,1;(2)证明: 二次函数c ax x a y ++-=22图象的对称轴为直线aa a x 2122=--=. ∵a ≥21,∴a210<≤1. ∵[]1,0∈∀x ,02<-a∴函数c ax x a y ++-=22的最大值在顶点处取得,即4144222max +=---=c a a c a y . 充分性: ∵c ≤43,∴41+c ≤14143=+,即max y ≤1. ∴y ≤1;必要性: ∵[]1,0∈∀x ,均有y ≤1成立. ∴max y ≤1,即41+c ≤1,解之得: c ≤43. 综上所述, 对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.例31.已知关于x 的不等式222++-m mx x ≤0(∈m R )的解集为M . (1)当M 为空集时,求m 的取值范围;(2)在(1)的条件下,求1522+++m m m 的最小值;(3)当M 不为空集,且{}41≤≤⊆x x M 时,求实数m 的取值范围.解:(1)∵不等式222++-m mx x ≤0(∈m R )的解集为M 为空集∴()()084424222<--=+--=∆m m m m ,解之得:21<<-m .∴m 的取值范围是{}21<<-m m ;(2)由(1)可知: 21<<-m ,∴310<+<m .∴()14114115222+++=+++=+++m m m m m m m ≥()41412=+⋅+m m . 当且仅当141+=+m m ,即1=m 时,等号成立. ∴1522+++m m m 的最小值为4;(3)由题意可知,方程0222=++-m mx x 的两个实数根均在[]4,1内 设()222++-=m mx x x f ,则有:()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤--≤≥++-=≥++-=≥+--=∆42210281640221102422m m m f m m f m m ,解之得: 2≤m ≤718. ∴实数m 的取值范围是⎥⎦⎤⎢⎣⎡718,2. 例32. 当10<<x 时,若关于x 的二次方程m mx x 2122-=++有两个不相等的实数根,求实数m 的取值范围.分析 本题考查的是一元二次方程的K 分布:两根均在()21,k k 内. 解: ∵m mx x 2122-=++∴01222=+++m mx x . 设()1222+++=m mx x x f .∵该方程在()1,0内有两个不相等的实数根∴()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧>+++=>+=<-<>+-=∆01221101201220012422m m f m f m m m ,解之得:2121-<<-m . ∴实数m 的取值范围是⎪⎭⎫ ⎝⎛--21,21.重要结论 一元二次方程的实数根的K 分布:一元二次方程02=++c bx ax (0>a )的两个实数根分别为21,x x ,且21x x <.(1)若k x x <<21,则有:()⎪⎪⎩⎪⎪⎨⎧><->∆020k f k a b; (2)若21x x k <<,则有:()⎪⎪⎩⎪⎪⎨⎧>>->∆020k f k a b; (3)若21x k x <<,则有:()0<k f ;(4)若2211k x x k <<<,即两根21,x x 在()21,k k 内,则有:()()⎪⎪⎩⎪⎪⎨⎧>><-<>∆00202121k f k f k a b k(5)若11k x <,且22k x >(21k k <),则有:()()⎩⎨⎧<<021k f k f ; (6)()()212211,,,k k x k k x ∈∈中只有一个成立,即方程只有一个实数根在()21,k k 内,则有:()()021<k f k f或⎪⎩⎪⎨⎧<-<=∆2120k ab k . 例33. 已知二次函数1222-+-=t tx x y (∈t R ).(1)若该二次函数有两个互为相反数的零点,解不等式1222-+-t tx x ≥0; (2)若关于x 的方程01222=-+-t tx x 的两个实数根均大于2-且小于4,求实数t 的取值范围.解:(1)∵二次函数1222-+-=t tx x y 有两个互为相反数的零点∴方程01222=-+-t tx x 有两个互为相反数的实数根,设为21,x x ,∴021=+x x . 由根与系数的关系定理可得:0221==+t x x ,解之得:0=t .∵1222-+-t tx x ≥0∴12-x ≥0,解之得:x ≥1或x ≤1-. ∴该不等式的解集为{}11-≤≥x x x 或;(2)∵()()044441422222>=+-=---=∆t t t t∴∈∀t R ,该方程总有两个不相等的实数根. ∵方程的两个实数根均大于2-且小于4∴()()⎪⎪⎩⎪⎪⎨⎧>+-=>++=-<--<-015840342422222t t f t t f t ,解之得:31<<-t .∴实数t 的取值范围是()3,1-. 例34. 已知二次函数12+-=bx ax y .(1)是否存在实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ?若存在,求实数b a ,的值,若不存在,请说明理由;(2)若a 为整数,2+=a b ,且方程012=+-bx ax 在{}12-<<-∈x x x 上恰有一个实数根,求a 的值.解:(1)假设存在这样的实数b a ,.∵不等式012>+-bx ax 的解集是{}21<<x x ∴0<a ,方程012=+-bx ax 的两个实数根分别为2,1. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=--21121aa b ,解之得:⎪⎪⎩⎪⎪⎨⎧==2321b a . ∵021>=a ,与0<a 矛盾 ∴不存在这样的实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ; (2)∵2+=a b ∴()0122=++-x a ax .∵()[]()0314242222>+-=+-=-+-=∆a a a a a∴方程()0122=++-x a ax 总有两个不相等的实数根.∵方程()0122=++-x a ax 在{}12-<<-∈x x x 上恰有一个实数根 ∴()()[]()[]0121122222<+++-⨯⨯+++-⨯a a a a整理得:()()03256<++a a ,解之得:6523-<<-a . ∵a 为整数 ∴a 的值为1-.例35. 已知不等式052>+-b ax x 的解集为{}14<>x x x 或. (1)求实数b a ,的值; (2)若10<<x ,()xbx a x f -+=1,求函数()x f 的最小值. 分析 (1)一元二次不等式的解的结构与二次项系数的符号有关,且一元二次不等式解集的端点值就是其对应的一元二次方程的两个实数根;(2)注意到()11=-+x x ,且01,10>-<<x x ,考虑利用基本不等式求函数()x f 的最小值.解:(1)∵不等式052>+-b ax x 的解集为{}14<>x x x 或∴方程052=+-b ax x 的两个实数根分别4和1. 由根与系数的关系定理可得:⎩⎨⎧⨯=+=14145b a ,解之得:⎩⎨⎧==41b a . ∴a 的值为1,b 的值为4; (2)由(1)可知:4,1==b a . ∴()xx x f -+=141. ∵10<<x ,∴01>-x . ∴()()[]x x x x x x x x x x x f -+-+=⎪⎭⎫ ⎝⎛-+-+=-+=11451411141 ≥911425=-⋅-+xxx x . 当且仅当x x x x -=-114,即31=x 时,等号成立. ∴函数()x f 的最小值为9.。
二次函数与方程、不等式(知识点串讲)(原卷版)
专题03 二次函数与方程、不等式知识网络重难突破知识点一二次函数与一元二次方程二次函数y=ax2+bx+c(a,b,c是常数,a≠0)1.抛物线与x轴的交点的横坐标是一元二次方程ax2+bx+c=0的解.2.若已知二次函数y=ax2+bx+c的函数值为s,求自变量x的值,就是解一元二次方程ax2+bx+c=s.【典例1】(2020•滦州市模拟)二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A.t>﹣5 B.﹣5<t<3 C.3<t≤4 D.﹣5<t≤4【变式训练】1.二次函数y=x2+bx+c的部分对应值如下表:x…﹣2 ﹣1 0 1 2 4 …y… 5 0 ﹣3 ﹣4 ﹣3 5 …则关于x的一元二次方程x2+bx+c=0的解为()A.x1=﹣1,x2=﹣3 B.x1=﹣1,x2=1C.x1=﹣1,x2=3 D.x1=﹣1,x2=52.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则方程ax2+bx+c﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.有两个不相等的负实数根D.没有实数根3.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x ﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b知识点二二次函数与x轴交点情况对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0)△=b2﹣4ac决定抛物线与x轴的交点个数:①△=b2﹣4ac>0时,抛物线与x轴有2个交点;②△=b2﹣4ac=0时,抛物线与x轴有1个交点;③△=b2﹣4ac<0时,抛物线与x轴没有交点.【典例2】若关于x的函数y=kx2+2x﹣1的图象与x轴仅有一个交点,则实数k的值为.【变式训练】1.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2019的值为2.函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=cx2﹣bx+a的图象与x轴的交点分别是()A.(,0)、(1,0)B.(﹣1.0)、(,0)C.(﹣1,0)、(3,0)D.(﹣3,0)、(1,0)3.已知函数y=x2+(m+3)x+2m+2(1)判断该函数的图象与x轴的交点个数.(2)若m=﹣5,求出函数值y在0<x<5时的取值范围.(3)若方程x2﹣2x﹣8=k在0<x<5内有且只有一个解,直接写出k的范围.4.在平面直角坐标系中,已知m≠n,函数y=x2+(m+n)x+mn的图象与x轴有a个交点,函数y=mnx2+(m+n)x+1的图象与x轴有b个交点,则a与b的数量关系是()A.a=b B.a=b﹣1 C.a=b或a=b+1 D.a=b或a=b﹣1知识点三二次函数与不等式(组)1.涉及一元二次不等式的,可以利用二次函数图像图象求解2.两个函数的值的大小比较,上方图象的函数值大于下方图象的函数值.【典例4】已知直线y=mx+n和抛物线y=ax2+bx+c在同一坐标系中的位置如图所示,且抛物线与x轴交于点(﹣1,0)、(2,0),抛物线与直线交点的横坐标为1和﹣,那么不等式mx+n<ax2+bx+c<0的解集是()A.1<x<2 B.x<﹣或x>1 C.﹣<x<2 D.﹣1<x<2【变式训练】1.如图,抛物线y1=﹣x2+4x和直线y2=2x.当y1<y2时,x的取值范围是()A.0<x<2 B.x<0 或x>2 C.x<0 或x>4 D.0<x<42.给出下列命题及函数y=x,y=x2和y=的图象.(如图所示)①如果>a>a2,那么0<a<1;②如果a2>a>,那么a>1;③如果a2>>a,那么a<﹣1.则真命题的个数是()A.0 B.1 C.2 D.33.如图,已知直线y1=﹣x+2与x轴交于点A,与y轴交于点B.过A,B两点的抛物线y2=ax2+bx+c交x轴于点C(﹣1,0).(1)求A,B的坐标;(2)求抛物线的解析式;(3)求出当y1>y2时,自变量x的取值范围.巩固训练1.如图,以(1,﹣4)为顶点的二次函数y=ax2+bx+c的图象与x轴负半轴交于A点,则一元二次方程ax2+bx+c =0的正数解的范围是()A.2<x<3 B.3<x<4 C.4<x<5 D.5<x<62.已知函数y=3﹣(x﹣m)(x﹣n),并且a,b是方程3﹣(x﹣m)(x﹣n)=0的两个根,则实数m,n,a,b的大小关系可能是()A.m<n<b<a B.m<a<n<b C.a<m<b<n D.a<m<n<b3.抛物线y=﹣x2+2kx+2与x轴交点的个数为()A.0个B.1个C.2个D.以上都不对4.二次函数y=kx2﹣6x+3的图象与x轴有交点,则k的取值范围是()A.k<3 B.k<3且k≠0 C.k≤3 D.k≤3且k≠05.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①b=2a;②c﹣a=n;③抛物线另一个交点(m,0)在﹣2到﹣1之间;④当x<0时,ax2+(b+2)x<0;⑤一元二次方程ax2+(b﹣)x+c=0有两个不相等的实数根其中正确结论的个数是()A.1个B.2个C.3个D.4个6.关于x的一元二次方程a(x﹣h+1)2+k+2=0(a>0)的解是x1=﹣5,x2=1,则不等式a(x+h﹣2)2+k <﹣2的解集为.7.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B,且当x=4时,二次函数的值为6.(1)求m的值和抛物线的解析式;(2)求不等式x2+bx+c>x+m的解集.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.。
高中数学竞赛教材讲义 第二章 二次函数与命题讲义
第二章 二次函数与命题一、基础知识1.二次函数:当0时,y =ax 2+bx +c 或f (x )=ax 2+bx +c 称为关于x 的二次函数,其对称轴为直≠a 线x =-,另外配方可得f (x )=a (x -x 0)2+f (x 0),其中x 0=-,下同。
a b 2ab 22.二次函数的性质:当a >0时,f (x )的图象开口向上,在区间(-∞,x 0]上随自变量x 增大函数值减小(简称递减),在[x 0, -∞)上随自变量增大函数值增大(简称递增)。
当a <0时,情况相反。
3.当a >0时,方程f (x )=0即ax 2+bx +c =0…①和不等式ax 2+bx +c >0…②及ax 2+bx +c <0…③与函数f (x )的关系如下(记△=b 2-4ac )。
1)当△>0时,方程①有两个不等实根,设x 1,x 2(x 1<x 2),不等式②和不等式③的解集分别是{x |x <x 1或x >x 2}和{x |x 1<x <x 2},二次函数f (x )图象与x 轴有两个不同的交点,f (x )还可写成f (x )=a (x -x 1)(x -x 2).2)当△=0时,方程①有两个相等的实根x 1=x 2=x 0=,不等式②和不等式③的解集分别是{x |x ab 2-}和空集,f (x )的图象与x 轴有唯一公共点。
ab 2-≠∅3)当△<0时,方程①无解,不等式②和不等式③的解集分别是R 和.f (x )图象与x 轴无公共∅点。
当a <0时,请读者自己分析。
4.二次函数的最值:若a >0,当x =x 0时,f (x )取最小值f (x 0)=,若a <0,则当x =x 0=ab ac 442-a b 2-时,f (x )取最大值f (x 0)=.对于给定区间[m,n ]上的二次函数f (x )=ax 2+bx +c (a >0),当x 0∈[m, ab ac 442-n ]时,f (x )在[m, n ]上的最小值为f (x 0); 当x 0<m 时。
高中数学竞赛讲义二次函数2A 试题(共10页)
§6二次函数(hánshù)(2)二次方程问题其本质就是其相应二次函数的零点(图象与x轴的交点)问题,因此,二次方程的实根分布问题,即二次方程的实根在什么区间内的问题,借助于二次函数及其图象利用形数结合的方法来研究是非常有益的。
设f(x)=ax2+bx+c(a≠0)的二实根为x1,x2,(x1<x2),Δ=b2-4ac,且α、β(α<β)是预先给定的两个实数。
1.当两根都在区间(α,β)内,方程系数所满足的充要条件:∵α<x1<x2<β,对应的二次函数f (x)的图象有以下两种情形(图1)当a>0时的充要条件是:Δ>0,α<-b/2a<β,f(α)>0,f (β)>0当a<0时的充要条件是:Δ>0,α<-b/2a<β,f(α)<0,f (β)<0两种情形合并后的充要条件是:Δ>0,α<-b/2a<β,af(α)>0,af (β)>0 ①2.当两根中有且仅有一根在区间〔α,β〕内,方程系数所满足的充要条件:∵α<x1<β或者α<x2<β,对应的函数f(x)的图象有以下四种情形〔图2〕从四种(sì zhǒnɡ)情形得充要条件是:f (α)·f (β)<0②3.当两根都不在区间[α,β]内方程系数所满足的充要条件:〔1〕两根分别在区间[α,β]之外的两旁时:∵x1<α<β<x2,对应的函数f(x)的图象有以下两种情形〔图3〕:当a>0时的充要条件是:f (α)<0,f (β)<0当a>0时的充要条件是:f (α)>0,f (β)>0两种情形合并后的充要条件是:af (α)<0,af (β)<0③〔2〕两根分别在区间[α,β]之外的同旁时:∵x1<x2<α<β或者α<β<x1<x2,对应函数f(x)的图象有以下四种情形〔图4〕:当x1<x2<α时的充要条件是:Δ>0,-b/2a<α,af (α)>0④当β<x1<x2时的充要条件是:Δ>0,-b/2a>β,af (β)>0⑤二次函数(hánshù)与二次不等式前面提到,一元二次不等式的解集相应于一元二次函数的正值、负值区间。
第22章《二次函数》讲义 第8讲 二次函数与方程(有答案)
第3讲 二次函数与方程、不等式1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3.两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.(1)、a+b+c 的符号:由x=1时抛物线上的点的位置确定:点在x 轴上方,则a+b+c 。
点在x 轴下方,则a+b+c 。
点在x 轴上,则a+b+c 。
(2)、a-b+c 的符号:由x=-1时抛物线上的点的位置确定:点在x 轴上方,则a -b+c 。
点在x 轴下方,则a -b+c 。
点在x 轴上,则a -b+c 。
(3)、2a±b 的符号: 由对称轴与X=1或X=-1的位置相比较的情况决定. (4)、b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0; 1个交点,b 2-4ac=0; 没有交点,b 2-4ac <0.1、二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:①、当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-. ②、当0∆=时,图象与x 轴只有一个交点;③、当0∆<时,图象与x 轴没有交点.(1)当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;(2)当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2、抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3、二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母考点1、待定系数法求二次函数解析式例1、已知点A(2,3)在函数y=ax2-x+1的图象上,则a等于()A.-1 B.1 C.2 D.-2例2、若一次函数y=x+m2与y=2x+4的图象交于x轴上同一点,则m的值为()A.m=2 B.m=±2 C.m=D.m=±例3、已知抛物线顶点为(1,3),且与y轴交点的纵坐标为-1,则此抛物线解析式是.例4、已抛物线过点A(-1,0)和B(3,0),与y轴交于点C,且BC=,则这条抛物线的解析式为.例5、二次函数y=2x2+bx+c的图象经过点(2,3),且顶点在直线y=3x-2上,则二次函数的关系式为:.例6、已知二次函数的图象经过点(0,-1)、(1,-3)、(-1,3),求这个二次函数的解析式.并用配方法求出图象的顶点坐标.例7、已知抛物线y=ax2+bx+c的顶点在直线y=x上,且这个顶点到原点的距离为又知抛物线与x轴两交点横坐标之积等于-1,求此抛物线的解析式.1、已知抛物线的顶点坐标是(2,1),且抛物线的图象经过(3,0)点,则这条抛物线的解析式是()A.y=-x2-4x-3 B.y=-x2-4x+3 C.y=x2-4x-3 D.y=-x2+4x-32、已知抛物线y=ax2+bx+c与x轴交点的横坐标的和为-4,积是-5,且抛物线经过点(0,-5),则此抛物线的解析式为( C )A.y=x2-4x-5 B.y=-x2+4x-5 C.y=x2+4x-5 D.y=-x2-4x-53、已知二次函数y=x2+bx+c的图象过A(c,0),对称轴为直线x=3,则此二次函数解析式为.4、抛物线y=ax2+bx+c中,已知a:b:c=l:2:3,最小值为6,则此抛物线的解析式为.5、已知y与x2+2成正比例,且当x=1时,y=6.(1)求y与x之间的函数关系式;(2)若点(a,12)在函数图象上,求a的值.6、如图,抛物线y=2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0).(1)求抛物线的解析式及顶点D的坐标;(2)若将上述抛物线先向下平移3个单位,再向右平移2个单位,请直接写出平移后的抛物线的解析式.考点2、函数与方程例1、如果抛物线y=x2+(k-1)x+4与x轴有且只有一个交点,那么正数k的值是()A.3 B.4 C.5 D.6例2、二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则以下关于m的结论正确的是()A.m的最大值为2 B.m的最小值为-2C.m是负数D.m是非负数例3、设抛物线y=x2+kx+4与x轴有两个不同的交点(x1,0),(x2,0),则下列结论中,一定成立的是()A.x12+x22=17 B.x12+x22=8 C.x12+x22<17 D.x12+x22>8例4、已知抛物线y=x2-2ax+a+2的顶点在x轴上,则方程的实数根的积为.☆例5、已知关于x的方程mx2-(3m-1)x+2m-2=0.(1)求证:无论m取任何实数时,方程恒有实数根;(2)若m为整数,且抛物线y=mx2-(3m-1)x+2m-2与x轴两交点间的距离为2,求抛物线的解析式;(3)若直线y=x+b与(2)中的抛物线没有交点,求b的取值范围.1、抛物线y=x2-2x-3与坐标轴的交点个数为()A.0个B.1个C.2个D.3个2、如图所示,抛物线y=ax2+bx+c与两坐标轴的交点分别是A、B、E,且△ABE是等腰直角三角形,AE=BE,则下列关系式中不能成立的是()A.b=0 B.S△ABE=c2 C.ac=-1 D.a+c=03、二次函数y=ax2+bx+c的图象与x轴相交于(-1,0)和(5,0)两点,则该抛物线的对称轴是.4、已知抛物线y=x2+kx+4-k交x轴于整点A、B,与y轴交于点C,则△ABC的面积为.5、已知关于x的函数y=ax2+x+1(a为常数)(1)若函数的图象与x轴恰有一个交点,求a的值;(2)若函数的图象是抛物线,且顶点始终在x轴上方,求a的取值范围.考点3、二次函数与不等式(组)例1、如图,是二次函数和一次函数y2=mx+n的图象,观察图象,写出y1>y2时x的取值范围是()A.-2<x<1 B.x<-2或x>1 C.x>-2 D.x<1例2、若函数y=mx2+mx+m-2的值恒为负数,则m取值范围是()例3、已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(1,3)及部分图象(如图所示),其中图象与横轴的正半轴交点为(3,0),由图象可知:①当x 时,函数值随着x的增大而减小;②关于x的一元二次不等式ax2=bx+c>0的解是.例4、如图,已知二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象相交于 A(-2,4)、B(8,2)两点,则能使关于x的不等式ax2+(b-k)x+c-m>0成立的x的取值范围是.例5、如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(2,0),B(5,3).(1)求m的值和抛物线的解析式;(2)求不等式ax2+bx+c≤x+m的解集(直接写出答案);(3)若抛物线与y轴交于C,求△ABC的面积.1、抛物线y=ax2+bx+c(a>0)和直线y=mx+n(m≠0)相交于两点P(-1,2),Q(3,5),则不等式-ax2+mx+n>bx+c的解集是()A.x<-1 B.x>3 C.-1<x<3 D.x<-1或x>32、已知:二次函数y=x2-4x+a,下列说法中错误的个数是()①当x<1时,y随x的增大而减小②若图象与x轴有交点,则a≤4③当a=3时,不等式x2-4x+a>0的解集是1<x<3④若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-3.A.1 B.2 C.3 D.43、直线y=-3x+2与抛物线y=x24、已知函数y=x2-2x-3的图象,根据图象回答下列问题.(1)当x取何值时y=0.(2)方程x2-2x-3=0的解是什么?(3)当x取何值时,y<0?当x取何值时,y>0?(4)不等式x2-2x-3<0的解集是什么?5、如图,二次函数的图象与x轴交于A、B 两点,与y轴交于点C,且点B的坐标为(1,0),点C的坐标为(0,-3),一次函数y2=mx+n的图象过点A、C.(1)求二次函数的解析式;(2)求二次函数的图象与x轴的另一个交点A的坐标;(3)根据图象写出y2<y1时,x的取值范围.1、一抛物线和抛物线y=-2x2的形状、开口方向完全相同,顶点坐标是(-1,3),则该抛物线的解析式为()A.y=-2(x-1)2+3 B.y=-(2x+1)2+3C.y=-2(x+1)2+3 D.y=-(2x-1)2+32、已知关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根是1,-1,给出下列结论:①a+b+c=0;②b=0;③a=1.c=-1.其中正确的是()A.①②B.①③C.②③D.①②③3、已知:二次函数y=x2-4x-a,下列说法中错误的个数是()①若图象与x轴有交点,则a≤4②若该抛物线的顶点在直线y=2x上,则a的值为-8③当a=3时,不等式x2-4x+a>0的解集是1<x<3④若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-1⑤若抛物线与x轴有两个交点,横坐标分别为x1、x2,则当x取x1+x2时的函数值与x取0时的函数值相等.A.1 B.2 C.3 D.44、二次函数y=ax2+bx+c的图象如图所示,则这个二次函数的关系式为,5、如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1.若抛物线与x轴一个交点为A(3,0),则由图象可知,不等式ax2+bx+c≥0的解集是:.6、若关于x的方程3x2+5x+11m=0的一个根大于2,另一根小于2,则m的取值范围是.7、如图,已知二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象相交于点A(-2,4),B(8,2),则能使y1<y2成立的x的取值范围是.8、已知点(2,5),(4,5)是抛物线y=ax2+bx+c上的两点,则这条抛物线的对称轴是.9、如图,抛物线y=ax2+bx+c经过A(-4,0)、B(1,0)、C(0,3)三点,直线y=mx+n经过A(-4,0)、C(0,3)两点.(1)写出方程ax2+bx+c=0的解;(2)若ax2+bx+c>mx+n,写出x的取值范围.10、已知抛物线y=ax2+bx+c经过点A(-1,0),且经过直线y=x-3与x轴的交点B及与y轴的交点C.(1)求抛物线的解析式;(2)求抛物线的顶点坐标.11、如图,已知O为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(2,0).(1)求直线AB的解析式;(2)若二次函数y=ax2+bx+c的图象经过A、B、O三点,求此二次函数的解析式;(3)结合(1)(2)及图象,直接写出使一次函数的值大于二次函数的值的x的取值范围.1、若x1,x2(x1<x2)是方程(x-a)(x-b)=1(a<b)的两个根,则实数x1,x2,a,b的大小关系为()A.x1<x2<a<b B.x1<a<x2<bC.x1<a<b<x2 D.a<x1<b<x22、已知直线与x轴交于点A,与y轴交于点B,C是x轴上一点,如果∠ABC=∠ACB,求:(1)点C的坐标;(2)图象经过A、B、C三点的二次函数的解析式.3、在直角坐标平面内,二次函数图象的经过A(-1,0)、B(3,0),且过点C(0,3).(1)求该二次函数的解析式;(2)若P是该抛物线上一点,且△ABC与△ABP面积相同,求P的坐标.1、抛物线y=x2-mx+m-2与x轴交点的情况是()A.无交点B.一个交点C.两个交点D.无法确定2、已知函数y=ax2+bx+z的图象如图所示,那么函数解析式为()A.y=-x2+2x+3 B.y=x2-2x-3 C.y=-x2-2x+3 D.y=-x2-2x-33、如图,已知直线y=kx+b(k>0)与抛物线y=x2交于A、B两点(A、B两点分别位于第二和第一象限),且A、B两点的纵坐标分别是1和9,则不等式x2-kx-b>0的解集为()A.-1<x<3 B.x<-1或x>3C.1<x<9 D.x<1或x>9(2)(3)4、已知二次函数y=2x2-(4k+1)x+2k2-1的图象与x轴交于两个不同的点,则关于x的一元二次方程2x2-(4k+1)x+2k2-1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定5、已知一条抛物线经过E(0,10),F(2,2),G(4,2),H(3,1)四点,选择其中两点用待定系数法能求出抛物线解析式的为()A.E,F B.E,G C.E,H D.F,G6、已知抛物线y=(m-1)x2+x+1与x轴有交点,则m范围是.7、已知二次函数的图象关于直线x=3对称,最大值是0,在y轴上的截距是-1,这个二次函数解析式为.8、如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①abc<0;②b>2a;③a+b+c=0④ax2+bx+c=0的两根分别为-3和1;⑤8a+c>0.其中正确的命题是.9、如图二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)观察图象,写出A、B、C三点的坐标,并求出抛物线解析式;(2)观察图象,当x取何值时,y<0?y=0?y>0?10、已知函数y=ax2+bx+c的图象如图所示,试根据图象回答下列问题:(1)求出函数的解析式;(2)写出抛物线的对称轴方程和顶点坐标?(3)当x取何值时y随x的增大而减小?(4)方程ax2+bx+c=0的解是什么?(5)不等式ax2+bx+c>0的解集是什么?11、如图,抛物线y=-x2+3x-n经过点C(0,4),与x轴交于两点A、B.(1)求抛物线的解析式;(2)若点P是抛物线上位于x轴上方的一个动点,求△ABP面积的最大值.12、如图,△AOB是边长为2的等边三角形,过点A的直线y=点E.(1)求点E的坐标;(2)求过A、O、E三点的抛物线的解析式.参考答案第8讲二次函数与方程、不等式考点1、待定系数法求二次函数解析式例1、B例2、D例3、例4、例5、例6、例7、1、D2、C3、4、5、6、考点2、函数与方程例1、C例2、A例3、D例4、例5、解:(1)证明:分两种情况讨论.①当m=0时,方程为x-2=0,∴x=2,方程有实数根;②当m≠0,则一元二次方程的根的判别式△=[-(3m-1)]2-4m(2m-2)=9m2-6m+1-8m2+8m=m2+2m+1=(m+1)2∴不论m为何实数,△≥0成立,∴方程恒有实数根;综合①、②,可知m取任何实数,方程mx2-(3m-1)x+2m-2=0恒有实数根.(2)设x1,x2为抛物线y=mx2-(3m-1)x+2m-2与x轴交点的横坐标.令y=0,则mx2-(3m-1)x+2m-2=0∴抛物线y=mx2-(3m-1)x+2m-2不论m为任何不为0的实数时恒过定点(2,0).∵|x1-x2|=2,∴|2-x2|=2,当m=1时,y=x2-2x,把(2,0)代入,左边=右边,m=1符合题意,∴抛物线解析式为y=x2-2x答:抛物线解析式为y=x2-2x;1、D2、D3、4、5、考点3、二次函数与不等式(组)例1、B例2、C例3、例4、例5、1、C2、A3、4、5、1、C2、A3、B4、5、6、7、8、9、10、11、1、C2、3、1、C2、A3、B4、B5、C6、7、8、9、10、11、12、31。
初中数学竞赛讲义及习题解答含答案 二次函数 抛物线
初中奥数二次函数之抛物线一般地说来,我们称函数c bx ax y ++=2 (a 、b 、c 为常数,0≠a )为x 的二次函数,其图象为一条抛物线,与抛物线相关的知识有:1.a 、b 、c 的符号决定抛物线的大致位置;2.抛物线关于ab x 2-=对称,抛物线开口方向、开口大小仅与a 相关,抛物线在顶点(ab 2-,a b ac 442-)处取得最值; 3.抛物线的解析式有下列三种形式:①一般式:c bx ax y ++=2;②顶点式:k h x a y +-=2)(;③交点式:))((21x x x x a y --=,这里1x 、2x 是方程02=++c bx ax 的两个实根.确定抛物线的解析式一般要两个或三个独立条件,灵活地选用不同方法求出抛物线的解析式是解与抛物线相关问题的关键.注:对称是一种数学美,它展示出整体的和谐与平衡之美,抛物线是轴对称图形,解题中应积极捕捉、创造对称关系,以便从整体上把握问题,由抛物线捕捉对称信息的方式有:(1)从抛物线上两点的纵坐标相等获得对称信息;(2)从抛物线的对称轴方程与抛物线被x 轴所截得的弦长获得对称信息.【例题求解】【例1】 二次函数c bx x y ++=2的图象如图所示,则函数值0<y 时,对应x 的取值范围是 .思路点拨 由图象知抛物线顶点坐标为(一1,一4),可求出b ,c 值,先求出0=y 时,对应x 的值.【例2】 已知抛物线c bx x y ++=2(a <0)经过点(一1,0),且满足024>++c b a .以下结论:①0>+b a ;②0>+c a ;③0>++-c b a ;④2252a ac b >-.其中正确的个数有( )A .1个B .2个C .3个D .4个思路点拨 由条件大致确定抛物线的位置,进而判定a 、b 、c 的符号;由特殊点的坐标得等式或不等式;运用根的判别式、根与系数的关系.【例3】 如图,有一块铁皮,拱形边缘呈抛物线状,MN =4分米,抛物线顶点处到边MN 的距离是4分米,要在铁皮上截下一矩形ABCD ,使矩形顶点B 、C 落在边MN 上,A 、D 落在抛物线上,问这样截下的矩形铁皮的周长能否等于8分米?思路点拨 恰当建立直角坐标系,易得出M 、N 及抛物线顶点坐标,从而求出抛物线的解析式,设A(x ,y ),建立含x 的方程,矩形铁皮的周长能否等于8分米,取决于求出x 的值是否在已求得的抛物线解析式中自变量的取值范围内.注: 把一个生产、生活中的实际问题转化,成数学问题,需要观察分析、建模,建立直角坐标系下的函数模型是解决实际问题的常用方法,同一问题有不同的建模方式,通过分析比较可获得简解.【例4】 二次函数223212-++-=m x x y 的图象与x 轴交于A 、两点(点A 在点B 左边),与y 轴交于C 点,且∠ACB =90°.(1)求这个二次函数的解析式;(2)设计两种方案:作一条与y 轴不重合,与△A BC 两边相交的直线,使截得的三角形与△ABC 相似,并且面积为△BOC 面积的41,写出所截得的三角形三个顶点的坐标(注:设计的方案不必证明).思路点拨 (1)A 、B 、C 三点坐标可用m 的代数式表示,利用相似三角形性质建立含m 的方程;(2)通过特殊点,构造相似三角形基本图形,确定设计方案.注: 解函数与几何结合的综合题,善于求点的坐标,进而求出函数解析式是解题的基础;而充分发挥形的因素,数形互助,把证明与计算相结合是解题的关键.【例5】 已知函数1)1(2)2(22+--+=x a x a y ,其中自变量x 为正整数,a 也是正整数,求x 何值时,函数值最小.思路点拨 将函数解析式通过变形得配方式,其对称轴为23)2(212++-=+-=a a a a x ,因1230≤+<a ,12122-≤+-<-a a a a ,故函数的最小值只可能在x 取2-a ,2-a ,212+-a a 时达到.所以,解决本例的关键在于分类讨论.学历训练1.如图,若抛物线2ax y =与四条直线1=x 、2=x 、1=y 、2=y 所围成的正方形有公共点,则a 的取值范围是 .2.抛物线c bx ax y ++=2与x 轴的正半轴交于A ,B 两点,与y 轴交于C 点,且线段AB 的长为1,△ABC 的面积为1,则b 的值为 .3.如图,抛物线的对称轴是直线1=x ,它与x 轴交于A 、B 两点,与y 轴交于点C ,点A 、C 的坐标分别为(-l ,0)、(0,23),则(1)抛物线对应的函数解析式为 ;(2)若点P 为此抛物线上位于x 轴上方的一个动点,则△ABP 面积的最大值为 .4.已知二次函数c bx ax y ++=2的图象如图所示,且OA =OC ,则由抛物线的特征写出如下含有a 、b 、c 三个字母的式子①1442-=-ab ac ,②01=++b ac ,③0>abc ,④0>+-c b a ,>0,其中正确结论的序号是 (把你认为正确的都填上).5.已知1-<a ,点(1-a ,1y ),(a ,2y ),(1+a ,3y )都在函数2x y =的图象上,则( )A .321y y y <<B .231y y y <<C .123y y y <<D .312y y y <<6.把抛物线c bx x y ++=2的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为532+-=x x y ,则有( )A .3=b ,7=cB .9-=b ,15-=cC .3=b ,c =3D .9-=b ,21=c7.二次函数c bx ax y ++=2的图象如图所示,则点(b a +,ac )所在的直角坐标系是( )A .第一象限B .第二象限C .第三象限D .第四象限8.周长是4m 的矩形,它的面积S(m 2)与一边长x (m)的函数图象大致是( )9.阅读下面的文字后,回答问题:“已知:二次函数c bx ax y ++=2的图象经过点A(0,a ),B(1,-2) ,求证:这个二次函数图象的对称轴是直线2=x .题目中的横线部分是一段被墨水污染了无法辨认的文字.(1)根据现有的信息,你能否求出题目中二次函数的解析式?若能,写出求解过程;若不能,说明理由.(2)请你根据已有信息,在原题中的横线上,填加一个适当的条件,把原题补充完整.10.如图,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.(1)建立如图所示的直角坐标系,求抛物线的解析式;(2)该运动员身高1. 8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?11.如图,抛物线和直线k kx y 4-= (0<k )与x 轴、y 轴都相交于A 、B 两点,已知抛物线的对称轴1-=x 与x 轴相交于C 点,且∠ABC =90°,求抛物线的解析式.12.抛物线c bx ax y ++=2与x 轴交于A 、B 两点,与y 轴交于点C ,若△ABC 是直角三角形,则=ac .13.如图,已知直线32+-=x y 与抛物线2x y =相交于A 、B 两点,O 为坐标原点,那么△OAB 的面积等于 .14.已知二次函数c bx ax y ++=2,一次函数4)1(2k x k y --=.若它们的图象对于任意的实数是都只有一个公共点,则二次函数的解析式为 .15.如图,抛物线c bx ax y ++=2与两坐标轴的交点分别是A ,B ,E ,且△ABE 是等腰直角三角形,AE =BE ,则下列关系式中不能总成立的是( )A .b=0B .S △ADC =c 2 C .ac =一1D .a+c =016.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数c bx x y ++=2的图象过点(1,0)…求证:这个二次函数的图象关于直线2=x 对称.根据现有信息,题中的二次函数不具有的性质是( )A .过点(3,0)B .顶点是(2,一2)C .在x 轴上截得的线段长为2D .与y 轴的交点是(0,3)17.已知A(x 1,2002),B(x 2,2002)是二次函数52++=bx ax y (0≠a )的图象上两21x x x += 时,二次函数的值是( )A .522+a bB .542+-ab C . 2002 D .518.某种产品的年产量不超过1000吨,该产品的年产量(单位:吨)与费用(单位:万元)之间函数的图象是顶点在原点的抛物线的一部分(如图1所示);该产品的年销售量(单位:吨)与销售单价(单位:万元/吨)之间函数的图象是线段(如图2所示).若生产出的产品都能在当年销售完,问年产量是多少吨时,所获毛利润最大?(毛利润=销售额一费用).19.如图,已知二次函数222-=x y 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,直线:x =m(m>1)与x 轴交于点D .(1)求A 、B 、C 三点的坐标;(2)在直线x =m (m>1)上有一点P (点P 在第一象限),使得以P 、D 、B 为顶点的三角形与以B 、C 、O 为顶点的三角形相似,求P 点坐标(用含m 的代数式表示);(3)在(2)成立的条件下,试问:抛物线222-=x y 上是否存在一点Q ,使得四边形ABPQ 为平行四边形?如果存在这样的点Q ,请求出m 的值;如果不存在,请简要说明理由.20.已知二次函数22--=x x y 及实数2->a ,求(1)函数在一2<x ≤a 的最小值;(2)函数在a ≤x ≤a+2的最小值.21.如图,在直角坐标:x O y 中,二次函数图象的顶点坐标为C(4,3-),且在x 轴上截得的线段AB 的长为6.(1)求二次函数的解析式;(2)在y 轴上求作一点P (不写作法)使PA+PC 最小,并求P 点坐标;(3)在x 轴的上方的抛物线上,是否存在点Q ,使得以Q 、A 、B 三点为顶点的三角形与△ABC 相似?如果存在,求出Q 点的坐标;如果不存在,请说明理由.22.某校研究性学习小组在研究有关二次函数及其图象性质的问题时,发现了两个重要结论.一是发现抛物线y=ax 2+2x+3(a≠0),当实数a 变化时,它的顶点都在某条直线上;二是发现当实数a 变化时,若把抛物线y=ax 2+2x+3的顶点的横坐标减少a 1,纵坐标增加,得到A 点的坐标;若把顶点的横坐标增加a 1,纵坐标增加a1,得到B 点的坐标,则A 、B 两点一定仍在抛物线y=ax 2+2x+3上.(1)请你协助探求出当实数a 变化时,抛物线y=ax 2+2x+3的顶点..所在直线的解析式; (2)问题(1)中的直线上有一个点不是该抛物线的顶点,你能找出它来吗?并说明理由;(3)在他们第二个发现的启发下,运用“一般——特殊—一般”的思想,你还能发现什么?你能用数学语言将你的猜想表述出来吗?你的猜想能成立吗?若能成立请说明理由.参考答案。
数学竞赛试题汇编三-《二次函数、方程、不等式》讲义
高中数学竞赛试题汇编二《二次函数、方程、不等式》1. 如果不等式21x x a <-+的解集是()3,3-的子集,则实数a 的取值范围是( )(A) (),7-∞ (B) (],7-∞ (C) (),5-∞ (D) (],5-∞2. 若[]1,1a ∈-,则2(4)420x a x a +-+->的解为( )(A) 3x >或2x < (B) 2x >或1x <(C) 3x >或1x < (D) 13x <<3. 函数2()20112012f x x x =-+的图像与x 轴交点的横坐标之和为 .4. 已知2()2f x x x a =++,2()441f bx x x =-+,则()0f ax b +>的解集为 .5. 设方程22210x mx m -+-=的根大于2-,且小于4,则实数m 的范围是 .6. 实数,x y 满足224+3=0x x y -+,则22x y +的最大值与最小值之差是 .7. 已知,x y R ∈,且221x y +≤,则x y xy +-的最大值是 .8. 已知,x y 满足14xy x y +=+,且1x >则()()12x y ++的最小值是 .9. 已知,x y 为实数,22(,)f x y x xy y x y =++--的最小值是 .10. 已知实数,x y 满足22116y x +=,则的最大值是 .11. 若,x y R ∈,满足2222222()5x x y y x x x --+-=,则x = ,y = .12. 已知,x y 为实数,则()22225410max x y x x y +=+= .13. 实数,x y 满足x -,则x 的取值范围是 .14. 已知0,0x y ≥≥,且221x y +=,则()x x y +的最大值是 .15. 实数,x y 满足228624=0x x y y -+-+,则2x y -的最大值是 .。
01【数学】高中数学竞赛讲义-二次函数(1)
§5二次函数(1)二次函数是最简单的非线性函数之一,而且有着丰富内涵。
在中学数学数材中,对二次函数和二次方程,二次三项式及二次不等式以及它们的基本性质,都有深入和反复的讨论与练习。
它对近代数学,乃至现代数学,影响深远,为历年来高考数学考试的一项重点考查内容,历久不衰,以它为核心内容的重点试题,也年年有所变化,不仅如此,在全国及各地的高中数学竞赛中,有关二次函数的内容也是非常重要的命题对象。
因此,必须透彻熟练地掌握二次函数的基本性质。
学习二次函数的关键是抓住顶点(-b/2a,(4ac-b2)/4a),顶点的由来体现了配方法(y=ax2+bx+c=a(x+b/2a)2+(4ac-b2)/4a);图象的平移归结为顶点的平移(y=ax2→y=a(x-h)2+k);函数的对称性(对称轴x=-b/2a,f (-b/2a+x)=f (-b/2a-x),x↔R),单调区间(-∞,-b/2a),[-b/2a,+∞]、极值((4ac-b2)/4a),判别式(Δb2-4ac)与X轴的位置关系(相交、相切、相离)等,全都与顶点有关。
一、“四个二次型”概述(一元)二次函数y=ax2+bx+c (a≠0)→a=0→(一元)一次函数y=bx+c(b≠0)↑↑↑↑(一元)二次三项式ax2+bx+c(a≠0)→a=0→一次二项式bx+c(b≠0)↓↓↓↓↓↓↓↓↓一元二次方程ax2+bx+c=0(a≠0)→a=0→一元一次方程bx+c=0(b≠0)↓↓↓一元二次不等式ax2+bx+c>0或ax2+bx+c<0(a≠0)→a=0→一元一次不等式bx+c>0或bx+c<0(b≠0)观察这个框图,就会发现:在a≠0的条件下,从二次三项式出发,就可派生出一元二次函数,一元二次方程和一元二次不等式来。
故将它们合称为“四个二次型”。
其中二次三项式ax2+bx+c(a≠0)像一颗心脏一样,支配着整个“四个二次型”的运动脉络。
高中数学题型讲座:二次函数与一元二次方程、不等式
第2讲:二次函数与一元二次方程、不等式(重点题型方法与技巧)目录类型一:一元二次不等式(不含参)的求解 类型二:一元二次不等式(含参)的求解 角度1:两根大小不确定,从两根相等开始讨论角度2:最高项系数含参从0开始讨论 角度3:不可因式分解型,从开始讨论 类型三:一元二次不等式与对应函数、方程的关系类型四:二次不等式恒成立问题 类型五:一元二次函数求最值(含参数)类型六::根据不等式的解求参数1、四个二次的关系 1.1一元二次函数的零点一般地,对于二次函数2y ax bx c =++,我们把使20ax bx c ++=的实数x 叫做二次函数2y ax bx c =++的零点.1.2次函数与一元二次方程的根、一元二次不等式的解集的对应关系对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设ac b 42-=∆,它的解按照0>∆,0=∆,0<∆可分三种情况,相应地,二次函数2y ax bx c =++(0)a >的图象与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20ax bx c ++>(0)a >或20ax bx c ++<(0)a >的解集.判别式ac b 42-=∆ 0∆>0∆=0∆<二次函数2y ax bx c =++(0a >的图象一元二次方程20ax bx c ++=(0a >)的根有两个不相等的实数有两个相等的实数根没有实数根根1x ,2x (12x x <)122b x x a==-20ax bx c ++>(0a >)的解集 12{|}x x x x x <>或 {|}2b x x a≠-R20ax bx c ++<(0a >)的解集12{|}x x x x <<∅ ∅2、一元二次不等式的解法1:先看二次项系数是否为正,若为负,则将二次项系数化为正数; 2:写出相应的方程20ax bx c ++=(0)a >,计算判别式∆:①0∆>时,求出两根12x x 、,且12x x <(注意灵活运用十字相乘法); ②0∆=时,求根ab x x 221-==; ③0∆<时,方程无解 3:根据不等式,写出解集.类型一:一元二次不等式(不含参)的求解典型例题例题1.(2022·全国·高一课时练习)不等式21560x x +->的解集为( ) A .{1x x 或1}6x <-B .116x x ⎧⎫-<<⎨⎬⎩⎭C .{1x x 或3}x <-D .{}32x x -<<【答案】B【详解】法一:原不等式即为26510x x --<,即()()6110x x +-<,解得116x -<<,故原不等式的解集为116x x ⎧⎫-<<⎨⎬⎩⎭.法二:当2x =时,不等式不成立,排除A ,C ;当1x =时,不等式不成立,排除D . 故选:B .例题2.(2022·陕西省丹凤中学高一期末(理))不等式2280x x +-≤的解集是________. 【答案】{|42}x x -≤≤【详解】解:因为2280x x +-≤,即()()420x x +-≤, 解得42x -≤≤,所以原不等式的解集为{|42}x x -≤≤; 故答案为:{|42}x x -≤≤同类题型演练1.(2022·广东珠海·高一期末)不等式()()130x x ++<的解集是( )A .RB .∅C .{31}x x -<<-∣D .{3xx <-∣,或1}x >- 【答案】C【详解】解:由()()130x x ++<,解得31x -<<-,即不等式的解集为{31}xx -<<-∣; 故选:C2.(2022·四川成都·高一期末(文))不等式()()120x x +->的解集为___________. 【答案】{}|12x x -<<【详解】不等式()()120x x +->可化为()()120x x +-<, 解得:12x -<<.所以原不等式的解集为{}|12x x -<<. 故答案为:{}|12x x -<<类型二:一元二次不等式(含参)的求解 角度1:两根大小不确定,从两根相等开始讨论 典型例题例题1.(2022·全国·高一课时练习)解不等式()2220x c x c -++<.【答案】解:不等式化为()2220x c x c -++<,即()(2)0x c x --<当2>c 时,不等式的解集为{}2x x c <<, 当2c =时,不等式的解集为∅, 当2c <时,不等式的解集为{}2x c x <<例题2.(2022·全国·高三专题练习)求不等式2212x ax a ->(a R ∈)的解集. 【答案】当a>0时,不等式的解集为{|}43a ax x x <->或 当a =0时,不等式的解集为{x|x ∈R 且x≠0}; 当a<0时,不等式的解集为{|}34a ax x x <>-或 【详解】试题分析:解含参数的二次不等式,通常要比较其对应方程的两根大小才能写出不等式的解集.本题对应方程两根为13a x =,24ax =-比较这两个根的大小,只需讨论与零的大小关系就可以了.试题解析:原不等式可化为(3x -a )(4x +a )>0. 当a>0时,不等式的解集为{|}43a a x x x <->或 当a =0时,不等式的解集为{x|x ∈R 且x≠0}; 当a<0时,不等式的解集为{|}34a a x x x <>-或 例题3.(2022·广东·高一期末)设函数2()(1)1f x ax a x =-++. (1)当a +∈R 时,求关于x 的不等式()0f x <的解集.【答案】(1)当1a =时,解集为∅;当01a <<时,解集为11x x a ⎧⎫<<⎨⎬⎩⎭;当1a >时,解集为11x x a ⎧⎫<<⎨⎬⎩⎭. ()0f x <,即()2110ax a x -++<,当a +∈R 时,原不等式可化为()110x x a⎛⎫--< ⎪⎝⎭,其解得情况应由1a与1的大小关系确定, 当1a =时,解得x ∈∅; 当1a >时,解得11x a<<; 当01a <<时,解得11x a<<. 综上所述:当1a =时,解集为∅;当01a <<时,解集为11x x a ⎧⎫<<⎨⎬⎩⎭;当1a >时,解集为11x x a ⎧⎫<<⎨⎬⎩⎭. 同类题型演练1.(2022·福建南平·高一期末)当0a <时,求关于x 的不等式2(24)80ax a x +-->的解集. 【答案】2(24)80ax a x +-->,因为0a <,所以不等式可化为2(4)0x x a ⎛⎫+-< ⎪⎝⎭当24a <-时,即102a -<<,原不等式的解集24,a ⎛⎫- ⎪⎝⎭当24a =-时,即12a =-,原不等式的解集为∅当24a >-时即12a <-原不等式的解集2,4a ⎛⎫- ⎪⎝⎭.综上所述,当102a -<<时,原不等式的解24,a ⎛⎫- ⎪⎝⎭;当12a =-时,原不等式的解集为∅;当12a <-时,原不等式的解集2,4a ⎛⎫- ⎪⎝⎭.2.(2022·四川成都·高一期末)设函数()()3y x x a =--,R a ∈. (1)解关于x 的不等式0y <; 【答案】(1)答案见解析.当3a <时,不等式()0f x <的解集为(),3a , 当3a =时,不等式()0f x <的解集为∅, 当3a >时,不等式()0f x <的解集为()3,a .3.(2022·甘肃省武威第一中学高一开学考试)解关于x 的不等式:()2230x a a x a -++<.【答案】答案见解析【详解】解:()2230x a a x a -++<即()()20x a x a --<, 则对应方程的根为212,==x a x a ,①当0a <或1a >时,原不等式的解集为{}2x a x a <<,②当0a =或1a =时,原不等式的解集为∅,③当01a <<时,原不等式的解集为{}2x a x a <<.角度2:最高项系数含参从0开始讨论典型例题例题1.(2022·湖南·新邵县第二中学高一开学考试)解关于x 的不等式2(1)21(R)ax a x a a a +-+-<-∈.【答案】由题意可得22(1)21(1)10ax a x a a ax a x +-+-<-⇒+--<,当0a =时,不等式可化为1x <,所以不等式的解集为{}1x x <,当0a >时,21(1)10(1)(1)01ax a x ax x x a+--<⇒+-<⇒-<<,当0a <时,2(1)10(1)(1)0ax a x ax x +--<⇒+-<,①当1a =-,解集{}1x x ≠,②当10a -<<,解集为{1x x <或1x a ⎫>-⎬⎭,③当1a <-,解集为{1x x >或1x a ⎫<-⎬⎭.综上所述,当1a <-,不等式的解集为{1x x >或1x a ⎫<-⎬⎭,当1a =-,不等式的解集为{}1x x ≠,当10a -<<,不等式的解集为{1x x <或1x a ⎫>-⎬⎭,当0a =时,不等式的解集为{}1x x <,当0a >时,不等式的解集为11x x a ⎧⎫-<<⎨⎬⎩⎭.例题2.(2022·陕西·西安高新第三中学高一期中)已知函数()2(2)()f x ax a x a =+-∈R .若2a >-,解关于x 的不等式()2f x ≥.【答案】20a -<<时,解集为2|1x x a ⎧⎫≤≤-⎨⎬⎩⎭;0a =时,解集为{}1x x ≤-; 0a >时,解集为2{|x x a≥或1}x ≤- 不等式()2f x ≥,可化为:()2220ax a x +--≥.当0a =时,原不等式即为220x --≥,∴1x ≤-.当0a >时,原不等式化为()210a x x a ⎛⎫-+≥ ⎪⎝⎭,∴2x a ≥或1x ≤-.当20a -<<时,原不等式为()210a x x a ⎛⎫-+≥ ⎪⎝⎭,可化为()210x x a ⎛⎫-+≤ ⎪⎝⎭因21a<-,∴21x a ≤≤-.综上,20a -<<时,原不等式的解集为2|1x x a ⎧⎫≤≤-⎨⎬⎩⎭;0a =时,原不等式的解集为{}1x x ≤-; 0a >时,原不等式的解集为2{|x x a≥或1}x ≤- 同类题型演练1.(2022·全国·高一专题练习)若R a ∈,解关于x 的不等式2(1)10ax a x +++>.【答案】答案见解析.【详解】当0a =时,1x >-,当0a ≠时,1()(1)0a x x a++>,当0a <时,1()(1)0x x a ++<,解得11x a-<<-,当0a >时,1()(1)0x x a++>,若1a =,则1x ≠-,若01a <<,则1x a <-或1x >-,若1a >,则1x <-或1x a>-,所以当0a <时,原不等式的解集是{}|11x x a -<<-;当0a =时,原不等式的解集是{|1}x x >-;当01a <≤时,原不等式的解集是1{|x x a <-或1}x >-;当1a >时,原不等式的解集是{|1x x <-或1}x a>-.2.(2022·福建·莆田一中高一期末)已知函数2()(1)2f x ax a x a =+-+-. 若0a <,解关于x 的不等式()1f x a <-. 【答案】依题意,因0a <,则2()1(1)101()(1)0f x a ax a x x x a<-⇔+-⇔--+><,当1a =-时,11a-=,解得1x ≠, 当10a -<<时,11a ->,解得1x <或1x a>-, 当1a <-时,101a <-<,解得1x a<-或1x >,所以,当1a =-时,原不等式的解集为{R |1}x x ∈≠;当10a -<<时,原不等式的解集为{|1x x <或1}x a>-;当1a <-时,原不等式的解集为1{|x x a<-或1}x >.角度3:不可因式分解型,从开始讨论典型例题例题1.(2022·全国·高一专题练习)解关于x 的不等式:2220()x ax a R ++>∈. 【答案】答案见解析.【详解】关于x 的不等式:2220()x ax a R ++>∈中,∆2242216a a =-⨯⨯=-,当4a >或4a 时,∆0>,对应的一元二次方程有两个实数根2164a a x ---=和2164a a x -+-=,且22161644a a a a ----+-<, 故不等式的解集为216{|4a a x x ---<或216}4a a x -+->;当4a =±时,∆0=,对应的一元二次方程有两个相等的实数根4ax =-,∴不等式的解集为{|}4ax x ≠-;当44a -<<时,∆0<, ∴不等式的解集为R ;综上,4a >或4a时,不等式的解集为216{|4a a x x ---<或216}4a a x -+->;4a =±时,不等式的解集为{|}4ax x ≠-;44a -<<时,不等式的解集为R .同类题型演练1.(2022·山东滨州·高二期中)已知一元二次函数2()f x x bx c =++,满足(0)2,(1)(1)=-=f f f .(1)求()f x 的解析式;(2)解关于x 的不等式()2≤f x ax . 【答案】(1)2()2f x x =+(2)解集见解析(1)解:函数2()f x x bx c =++,由(0)2f =,得2,c = 因为(1)(1)f f -=,所以1212,++=-+b b 解得0b =; 所以2()2f x x =+.(2)关于x 的不等式()2≤f x ax 可化为2220,-+≤x ax 因为248,∆=-a所以当0,∆<即22a -<<时,原不等式对应的方程无实数根, 又二次函数222y x ax =-+的图像开口向上,所以原不等式的解集为∅; 当0∆=,即2a =±时,原不等式对应的方程有两个相等的实数根, 2a =时,原不等式的解集为{}|2=x x ;2a =-时,原不等式的解集为{}|2=-x x ;当0,∆>即2a <-或2a >时,原不等式对应的有两个相等的实数根, 分别为22122,2,=--=+-x a a x a a 且12,x x <所以原不等式解集为{}22|22--≤≤+-x a a a a a .综上所知,当22a -<<时,原不等式的解集为∅; 当2a =时,原不等式的解集为{}|2=x x ; 当2a =-时,原不等式的解集为{}|2=-x x ;当2a <-或2a >时,原不等式解集为{}22|22--≤≤+-x a a a a a .类型三:一元二次不等式与对应函数、方程的关系典型例题例题1.(2022·全国·高一课时练习)已知二次函数2y ax bx c =++的图象如图所示,则不等式20ax bx c ++>的解集是( )A .{}21x x -<<B .{|2x x <-或1}x >C .{}21x x -≤≤D .{|2x x ≤-或1}x ≥【答案】A【详解】由二次函数图象知:20ax bx c ++>有21x -<<. 故选:A例题2.(2022·黑龙江·大庆实验中学高二期末)已知220x kx m -+<的解集为()1,t -(1t >-),则k m +的值为( ) A .1- B .2- C .1 D .2【答案】B【详解】解:因为220x kx m -+<的解集为()1,t -(1t >-), 所以1x =-为220x kx m -+=的根,所以2k m +=-. 故选:B例题3.(2022·黑龙江·大庆中学高二期末)若不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则0ax b +>的解集为( )A .1,6⎛⎫-∞- ⎪⎝⎭B .1,6⎛⎫-∞ ⎪⎝⎭C .1,6⎛⎫-+∞ ⎪⎝⎭D .1,6⎛⎫+∞ ⎪⎝⎭【答案】A【详解】不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭则根据对应方程的韦达定理得到:112311223ba a⎧⎛⎫-+=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪-⋅= ⎪⎪⎝⎭⎩,解得122a b =-⎧⎨=-⎩,则1220x -->的解集为1,6⎛⎫-∞- ⎪⎝⎭故选:A同类题型演练1.(2022·浙江·高三专题练习)已知二次函数2y ax bx c =++的图像如图所示,则不等式20ax bx c ++>的解集是( )A .()2,1-B .()(),21,-∞-⋃+∞C .[]2,1-D .(][),21,-∞-+∞【答案】A【详解】结合图像易知,不等式20ax bx c ++>的解集()2,1-, 故选:A.2.(2022·全国·高一单元测试)若方程()200ax bx c a ++=<有唯一的实数根3,则不等式20ax bx c ++≥的解集为______.【答案】{}3x x =【详解】由已知得抛物线()20y ax bx c a =++<的开口向下,与x 轴交于点()3,0,故不等式20ax bx c ++≥的解集为{}3x x =. 故答案为:{}3x x =3.(2022·江苏·高一)若关于x 的不等式28210mx mx ++<的解集为{}71x x -<<-,则实数m 的值为______. 【答案】3【详解】由题可知,-7和-1是二次方程28210mx mx ++=的两个根, 故()21713m m=-⨯-⇒=.经检验满足题意 故答案为:3.类型四:二次不等式恒成立问题典型例题例题1.(2022·江西吉安·高二期末(文))若关于x 的不等式2220ax ax --<恒成立,则实数a 的取值范围为( ) A .[]2,0- B .(]2,0- C .()2,0-D .()(),20,-∞-⋃+∞【答案】B【详解】当0a =时,不等式成立;当0a ≠时,不等式2220ax ax --<恒成立, 等价于()()20,2420,a a a <⎧⎪⎨∆=--⨯-<⎪⎩20a ∴-<<. 综上,实数a 的取值范围为(]2,0-. 故选:B .例题2.(2022·黑龙江·鸡东县第二中学高二期中)已知命题“[1,2]x ∃∈-,230x x a +>-”是假命题,则实数a 的取值范围是________. 【答案】(,4]-∞-【详解】由题意得,“[1,2]x ∀∈-,230x x a -+≤”是真命题, 则23a x x ≤-+对[1,2]x ∀∈-恒成立,在区间[]1,2-上,23x x -+的最小值为()()21314--+⨯-=-,所以()2min 34a x x ≤-+=-,即a 的取值范围是(,4]-∞-. 故答案为:(,4]-∞-例题3.(2022·全国·高一课时练习)已知关于x 的不等式244x mx x m +>+-. (1)若对任意实数x ,不等式恒成立,求实数m 的取值范围; (2)若对于04m ≤≤,不等式恒成立,求实数x 的取值范围.【答案】(1)(0,4) (2)()()(),00,22,-∞⋃⋃+∞(1)若对任意实数x ,不等式恒成立,即2440x mx x m +--+>恒成立 则关于x 的方程2440x mx x m +--+=的判别式()()24440m m ∆=---+<, 即240m m -<,解得04m <<,所以实数m 的取值范围为(0,4). (2)不等式244x mx x m +>+-,可看成关于m 的一次不等式()21440m x x x -+-+>,又04m ≤≤,所以224404(1)440x x x x x ⎧-+>⎨-+-+>⎩,解得2x ≠且0x ≠,所以实数x 的取值范围是()()(),00,22,-∞⋃⋃+∞.同类题型演练1.(多选)(2022·全国·高一课时练习)不等式22x bx c x b ++≥+对任意的x ∈R 恒成立,则( ) A .2440b c -+≤ B .0b ≤ C .1c ≥ D .0b c +≥【答案】ACD【详解】22x bx c x b ++≥+可整理为()220x b x c b +-+-≥,则()()2224440b c b b c ∆=---=-+≤,故A 正确. 当1b =,2c =时,满足0∆≤,即原不等式成立.B 错误;由0∆≤,得214b c ≥+,所以1c ≥.C 正确;2211042b b b c b ⎛⎫+≥++=+≥ ⎪⎝⎭.D 正确.故选:ACD .2.(2022·江苏南京·高二期末)2R,10x x x λ∀∈-+>,则λ的取值范围为__________. 【答案】22λ-<<【详解】由题设240λ∆=-<,可得22λ-<<. 故答案为:22λ-<<3.(2022·四川广安·高一期末(理))已知不等式()21460a x x +--<的解集是{}13x x -<<.(1)求常数a 的值;(2)若关于x 的不等式240ax mx ++≥的解集为R ,求m 的取值范围. 【答案】(1)1a =(2)[]4,4-(1)因为不等式()21460a x x +--<的解集是{}13x x -<<.所以-1和3是方程()21460a x x +--=的解,把1x =-代入方程解得1a =.经验证满足题意(2)若关于x 的不等式240ax mx ++≥的解集为R ,即240x mx ++≥的解集为R , 所以2160m ∆=-≤,解得44m -≤≤,所以m 的取值范围是[]4,4-.4.(2022·四川·盐亭中学高二阶段练习(文))已知函数()()211f x x a x =-++.(1)若关于x 的不等式的()0f x <的解集是{}2x m x <<,求a ,m 的值; (2)设关于x 不等式的()0f x >在[]0,1上恒成立,求实数a 的取值范围. 【答案】(1)32a =,12m =(2)(),1-∞ (1)根据二次不等式的解集与系数的关系可得x m =和2x =是方程()2110x a x -++=的两根,故()221210a -+⨯+=,解得32a =,由韦达定理有21m =,解得12m =. 故32a =,12m = (2)()0f x >在[]0,1上恒成立,即()211x a x +>+恒成立.当0x =时满足题意,当(]0,1x ∈时,min 11x a x ⎛⎫+>+ ⎪⎝⎭恒成立,因为1122x x x x+≥⋅=,当且仅当1x =时取等号.故12a +<,即a的取值范围为(),1-∞.5.(2022·浙江·镇海中学高二期末)已知函数2()4f x x x b =-+,若()0f x <的解集为{}1|x x m <<.(1)求b ,m 的值;(2)当a 为何值时,2()2()10a b x a b x +++-<的解集为R ? 【答案】(1)3m =,3b = (2)(]4,3--(1)解:由题意可知,240x x b -+<的解集为{}1|x x m <<, 所以1x =与x m =为方程240x x b -+=的两根,141m m b +=⎧∴⎨⋅=⎩,33m b =⎧∴⎨=⎩; (2)解:()()2210a b x a b x +++-<的解集为R ,①当0a b +=时,10-<的解集为R ,30a ∴+=,3a ∴=-;②当0a b +<时,()20Δ4()40a b a b a b +<⎧⎨=+++<⎩,10a b ∴-<+<,130a ∴-<+<,43a ∴-<<-综上所述,a 的取值范围为(]4,3--.类型五:一元二次函数求最值(含参数)典型例题例题1.(2022·全国·高一专题练习)已知函数()222f x x ax =++.(1)当1a =时,求函数()f x 在区间[)23-,上的值域; (2)当1a =-时,求函数()f x 在区间[]1t t +,上的最大值;(3)求()f x 在[]55-,上的最大值与最小值. 【答案】(1)[)1,17(2)221(1)12112t t t t ⎧-+<⎪⎪⎨⎪+≥⎪⎩,,(3)答案见解析(1)当1a =时,()()222211f x x x x =++=++,函数在[)21-,-上单调递减,在()1,3-上单调递增, ()()min 11317x f x f ∴===-,,,∴函数()f x 在区间[)23-,上的值域是[)1,17;(2)当1a =-时,()()222211f x x x x =-+=-+,12t,函数()f x 在区间[]1t t +,上的最大值()()211f t t =-+; 12t ≥,函数()f x 在区间[]1t t +,上的最大值()211f t t +=+; ∴函数()f x 在区间[]1t t +,上的最大值221(1)12112t t t t ⎧-+<⎪⎪⎨⎪+≥⎪⎩,,;(3)函数()()222222f x x ax x a a =++=++- 的对称轴为x a =-,①当5a -<-,即5a >时,函数y 在[]55-,上是增函数, 当5x =-时,函数y 取得最小值为2710a -;当5x =时,函数y 取得最大值为2710a +. ②当50a -≤<,即05a <≤时,当x a =-时,函数y 取得最小值为22-a ;当5x =时,函数y 取得最大值为2710a +.③当05a ≤≤-,即50a ≤≤-时,x =-a 时,函数y 取得最小值为22a -;当5x =-时,函数y 取得最大值为2710a -.④当5a >-,即5a <-时,函数y 在[]55-,上是减函数, 故当5x =-时,函数y 取得最大值为2710a -;当5x =时,函数y 取得最小值为2710a +. 综上,当5a >时,函数的最大值为2710a +,最小值为2710a -,当05a <≤时,函数的最大值为2710a +,最小值为22-a ,当50a ≤≤-时,函数的最大值为2710a -,最小值为22a -,当5a <-时,函数的最大值为2710a -,最小值为2710a + 例题2.(2022·黑龙江·大庆市东风中学高二期末)已知二次函数2()(0)f x ax bx c a =++≠,且满足(0)2f =,(1)()21f x f x x +-=+. (1)求函数()f x 的解析式;(2)当[,2]x t t ∈+(R t ∈)时,求函数()f x 的最小值()g t (用t 表示). 【答案】(1)2()2f x x =+ (2)222,0()2,2046,2t t g t t t t t ⎧+≥⎪=-<<⎨⎪++≤-⎩(1)因为二次函数2()(0)f x ax bx c a =++≠,且满足(0)2f =,(1)()21f x f x x +-=+, 所以2c =,且22(1)(1)()21a x b x c ax bx c x ++++-++=+,由22(1)(1)()21a x b x c ax bx c x ++++-++=+,得221ax b a x ++=+,所以221a b a =⎧⎨+=⎩,得10a b =⎧⎨=⎩,所以2()2f x x =+.(2)因为2()2f x x =+是图象的对称轴为直线0x =,且开口向上的二次函数, 当0t ≥时,2()2f x x =+在[,2]x t t ∈+上单调递增,则2min ()()2f x f t t ==+;当20t +≤,即2t ≤-时,2()2f x x =+在[,2]x t t ∈+上单调递减,则22min ()(2)(2)246f x f t t t t =+=++=++;当01t t <<+,即20t -<<时,min ()(0)2f x f ==, 综上222,0()2,2046,2t t g t t t t t ⎧+≥⎪=-<<⎨⎪++≤-⎩同类题型演练1.(2021·全国·高一专题练习)已知函数()22f x x mx n =++的图象过点(0,1)-,且满足()()12f f -=.(1)求函数()f x 的解析式;(2)求函数()f x 在[],2a a +上的最小值; 【答案】(1)2()221f x x x =--(2)2min23263,,2331[()],,2221221,.2a a a f x a a a a ⎧++≤-⎪⎪⎪=--<<⎨⎪⎪--≥⎪⎩(1)解:因为函数2()2f x x mx n =++的图象过点(0,1)-, 所以1n =- 又(1)(2)f f -=, 所以1224m -+=-, 解得2m =-,所以2()221f x x x =--;(2)2213()221222f x x x x ⎛⎫=--=-- ⎪⎝⎭,[,2]x a a ∈+,当122a +≤时,即32a ≤-时,函数()f x 在[],2a a +上单调递减,所以2min [()](2)263f x f a a a =+=++,当122a a <<+时,即3122a -<<时,函数()f x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,在1,22a ⎡⎤+⎢⎥⎣⎦单调递增,所以min 13[()]22f x f ⎛⎫==- ⎪⎝⎭;当12a ≥时,函数()f x 在[],2a a +上单调递增, 所以2min [()]()221f x f a a a ==--.综上:2min23263,,2331[()],,2221221,.2a a a f x a a a a ⎧++≤-⎪⎪⎪=--<<⎨⎪⎪--≥⎪⎩2.(2021·江西·兴国县将军中学高一期中)已知二次函数()2f x x bx c =++,且()()31f f -=,()00=f .(1)求函数()f x 的解析式;(2)若函数()()()422g x f x a x =-++,[]1,2x ∈,求函数()g x 的最小值. 【答案】(1)2()2f x x x =+;(2)2min12,0()21,0124,1a a g x a a a a a -≤⎧⎪=--+<<⎨⎪-≥⎩. (1)由(3)(1),(0)0f f f -==,则(0)0f c ==,又931b b -=+,解得2b =, ∴函数()f x 的解析式为2()2f x x x =+.(2)由(1)知,2()2(1)2g x x a x =-++, 其对称轴1x a =+,而[]1,2x ∈, 当11a +≤,即0a ≤时,()g x 在[]1,2上单调递增,min ()(1)12g x g a ==-, 当12a +≥,即1a ≥时,()g x 在[]1,2上单调递减,min ()(2)24g x g a ==-,当01a <<时,2min ()(1)21g x g a a a =+=--+,∴2min12,0()21,0124,1a a g x a a a a a -≤⎧⎪=--+<<⎨⎪-≥⎩. 类型六::根据不等式的解求参数典型例题例题1.(2021·福建三明·高一期中)已知函数2()2f x ax x c =++,若不等式()0f x <的解集是{|53}x x -<< (1)求()f x 的解析式;(2)若函数()f x 在区间[,2]m m +上的最小值为20,求实数m 的值. 【答案】(1)2()215f x x x =+- (2)-9或5(1)125,3x x =-=是对应方程ax 2+2x +c =0的两根.由韦达定理得12122211515x x a ac c x x a ⎧+=-=-⎪=⎧⎪∴⎨⎨=-⎩⎪==-⎪⎩,2()215f x x x ∴=+-;(2)22()215(1)16f x x x x =+-=+-,对称轴为1x =-,当21m +≤-,即3m ≤-时,2min ()(2)(3)16f x f m m =+=+-,由已知得:2(3)1620m +-=, 解得:m =3或-9,又3m ≤-,9m ∴=-,当1m ≥-时,2min ()()(1)16f x f m m ==+-,由已知得:2(1)1620m +-=, 解得:m =5或-7,又1m ≥-,5m ∴=,当12m m <-<+时,min ()1620f x =-≠,(舍去), 综上所述,m =-9或5.例题2.(2021·河南开封·高一阶段练习)已知函数()221f x x ax =-+,[]1,2x ∈,R a ∈.(1)若()0f x ≤恒成立,求a 的取值范围; (2)若()f x 最小值为4-,求a 的值. 【答案】(1)54a ≥; (2)94. (1)因为2()21f x x ax =-+开口向上,由[]1,2x ∈时,()0f x ≤恒成立,可得()max 0f x ≤,所以(1)0(2)0f f ≤⎧⎨≤⎩,即220540a a -≤⎧⎨-≤⎩,解得:54a ≥,所以a 的取值范围为54a ≥. (2)()221f x x ax =-+对称轴为x a =,开口向上,当1a ≤时,()()min 1224f x f a ==-=-,解得:3a =(舍);当12a <<时,2min ()()14f x f a a ==-+=-,5a =±(舍);当2a ≥时,min ()(2)544f x f a ==-=-,94a =; 所以a 的值为94.同类题型演练1.(2022·贵州毕节·高一期末)已知函数2()2(0)f x x ax a =->. (1)当3a =时,解关于x 的不等式5()7f x -<<;(2)函数()y f x =在[],2t t +上的最大值为0,最小值是4-,求实数a 和t 的值. 【答案】(1)(1,1)(5,7)-⋃ (2)0,2t a ==或2,2t a ==(1)当3a =时,不等式5()7f x -<<, 即为2567x x -<-<,即226756⎧-<⎪⎨-<-⎪⎩x x x x ,所以171,5或-<<⎧⎨<>⎩x x x , 所以11x -<<或57x <<,所以原不等式的解集为(1,1)(5,7)-⋃. (2)(0)(2)0f f a ==,由题意0=t 或22t a +=,这时24a -≤-解得2a ≥, 若0=t ,则2t a +≤,所以()()2242f t f a +==-⇒=;若22t a +=,即22t a a =-≥, 所以()()422f t f a =-=-,则2a =,综上,0,2t a ==或2,2t a ==.2.(2022·全国·高三专题练习(理))已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,求a的值.【答案】a=-1或a=2.【详解】函数f(x)=-x2+2ax+1-a=-(x-a)2+a2-a+1,对称轴方程为x=a.(1)当a<0时,f(x)max=f(0)=1-a,∴1-a=2,∴a=-1.(2)当0≤a≤1时,f(x)max=f(a)=a2-a+1,∴a2-a+1=2,即a2-a-1=0,∴a=125(舍去).(3)当a>1时,f(x)max=f(1)=a,∴a=2.综上可知,a=-1或a=2.。
初中数学竞赛——二次函数与不等式
初中数学竞赛——二次函数与不等式(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第8讲 二次函数与不等式典型例题一. 一元二次不等式【例1】 解不等式:(1)24210x x +-≥;(2)2310<x x --.【例2】 解不等式:51(2)24>x x x ---【例3】 解关于x 的不等式:2256>x ax a +.【例4】 若一元二次不等式20>ax bx c ++的解时13<<x ,求不等式20<cx bx a ++的解.【例5】 不等式2(1)0>ax ab x b +++的解是12<<x ,求a ,b 的值.【例6】 a 为何值时,只有一个x 值满足不等式:2054<x ax ++≤.【例7】 解关于x 的不等式:2(1)10<ax a x -++.【例8】 若不等式2(2)2(2)40<a x a x -+--对一切x ∈成立,求a 的取值范围.【例9】 若关于m 的不等式2(21)10mx m x m -++-≥无解,求m 的取值范围.【例10】 已知不等式组22021<>x x a a x a ⎧-+-⎪⎨+⎪⎩的整数解恰好有两个,求a 的取值范围.二. 高次不等式和分式不等式【例11】 解不等式:22(45)(2)0<x x x x --+-.【例12】 解不等式:32326>x x x ++.【例13】 解不等式:23(2)(1)(1)(2)0<x x x x +-+-.【例14】 解不等式:302>x x --.【例15】解不等式:223223<x xx x-+--.【例16】解不等式:22911721x xx x-+-+≥.【例17】解不等式:1 >xx.【例18】解不等式:23(1)(2)0 (3)(5)x x xx x+---≤.【例19】 解不等式:232(2)(1)01>x x x x -⋅+++.【例20】 k 为何值时,下式恒成立:22221463<x kx k x x ++++三. 含绝对值的不等式【例21】 解下列不等式:(1)4237x -≤≤;(2)214>x x ++;(3)2124>x x ++-.【例22】 (1)对任意实数x ,12>x x a ++-恒成立,求a 的取值范围. (2)对任意实数x ,13<x x a --+恒成立,求a 的取值范围.【例23】 求不等式31425>x x ++的解集.【例24】 解不等式:2232>x x --.【例25】 解不等式:2231243>x x x x --+-.【例26】 解不等式:2560>x x -+.【例27】 解不等式:22331>x x x ---.作业1. 解不等式:(1)2280x x +-≥;(2)2370<x x --.2. 解不等式:22<<x x x --.3. 已知不等式20>ax bx c ++的解集为{|24}<<x x ,求不等式20<cx bx a ++的解集.4. 解不等式:22(43)(2)0<x x x x -++-.5. 解关于x 的不等式:2242>x ax a -.6. 解不等式:2560>x x --.7. 解不等式:211<x x x -++.8. 若一元二次不等式20>ax bx c ++的解时23<<x -,求不等式20<cx bx a ++的解.9. 解下列不等式:(1)2256<x -≤;(2)124>x x ++;(3)2125>x x -+-.10. 解不等式:22151120232<x x x x -+-++.11. 若不等式240<x kx -+-的解集为,求实数k 的取值范围.12. 若关于m 的不等式22(41)210mx m x m -++-≥无解,求m 的取值范围.13. 关于x 的不等式2(1)2(1)3(1)0<m x m x m +--+-的解释一切实数,求实数m 的取值范围.14. 已知不等式2364>ax x -+的解集为1<x 或>x b .(1)求a 、b ;(2)解不等式0>x c ax b--(c 为常数).。
二次函数复习专题讲义全
二次函数复习专题讲义全1.二次函数概念:指形如y=ax^2(a≠0)的函数。
2.简单二次函数:其图像为过原点的一条抛物线,对称轴为y轴,最值依赖于a的正负性。
3.增减性:当a>0时,在对称轴左边(x0),y随x的增大而增大;当a0),y随x的增大而减小。
4.一般二次函数概念:指形如y=ax^2+bx+c(a≠0)的函数,注意还有顶点式、交点式以及它们之间的转换。
5.二次函数图像:是一条抛物线,开口方向依赖于a的正负性,顶点坐标为(-b/2a。
c-b^2/4a)。
6.对称轴:为x=-b/2a。
7.最值:当a>0时,y的最小值为c-b^2/4a;当a<0时,y 的最大值为c-b^2/4a。
8.增减性:当a>0时,在对称轴左边(x-b/2a),y随x的增大而增大;当a-b/2a),y随x的增大而减小。
9.待定系数法可以用来求解析式,二次函数可以应用于建立函数模型解决实际问题。
10.二次函数的三种解析式:一般式、顶点式和交点式。
其中,顶点式和交点式可以相互转换。
注意,a≠0,而b和c可以为零。
1.系数a决定抛物线的开口方向和大小。
当a>0时,开口向上;当a<0时,开口向下。
绝对值|a|决定开口大小,|a|越大,开口越小;|a|越小,开口越大。
2.系数c决定抛物线与y轴的交点位置。
当c>0时,交点在y轴正半轴;当c=0时,交点在抛物线顶点上方;当c<0时,交点在y轴负半轴。
3.系数a和b共同决定抛物线对称轴的位置。
当- b/2a>0时,对称轴在y轴右侧;当- b/2a<0时,对称轴在y轴左侧;当- b/2a=0时,对称轴为y轴。
4.特别地,当a=1时,顶点坐标为(-b/2.a+b+c),当x=-1时,有y=a-b+c。
5.抛物线y=ax^2+bx+c(a≠0)与一元二次方程ax^2+bx+c=0(a≠0)的关系:若抛物线与x轴有两个交点,则方程有两个不相等的实根;若抛物线与x轴有一个交点,则方程有两个相等的实根;若抛物线与x轴无交点,则方程无实根。
浙江九年级竞赛题——二次函数与方程汇编解析
浙江省九年级数学竞赛——二次函数与方程汇编解析1、方程|2x -x 2|=x2的正根个数是 ( )B .A. 0B. 1C. 2D. 32、方程2122x x x-=-实根的情况是( )C A 、有三个实根 B 、有两个实根 C 、有一个实根 D 、无实根3、已知函数()()()()22113513x x y x x ⎧--⎪=⎨--⎪⎩≤>,则使y =k 成立的x 值恰好有三个,则k 的值为( )D A .0 B .1 C .2 D .34、三角形两边的长分别是6和8,第三边的长是一元二次方程216600x x -+=的一个实数根,则该三角形的面积是( )BA 、24B 、24或85C 、48D 、855、若x -1=2(y +1)=3(z +2),则x 2+y 2+z 2可取得的最小值为( ) D(A) 6 (B) (C) (D)6.a 、b 、c 都是实数,且a ≠0,a +b=﹣2c ,则方程ax 2+bx +c=0( ) A .有两个正根 B .至少有一个正根 C .有且只有一个正根D .无正根6.解析:设方程两根分别为x 1,x 2, 由a ≠0,a +b=﹣2c ,得b=﹣a ﹣2c ,∴△=b 2﹣4ac=(﹣a ﹣2c )2﹣4ac=a 2+4c 2>0,若c=0,则a +b=0,方程变为ax 2﹣ax=0,解得x=0或1.若a 与c 异号,则x 1x 2=<0,即两根异号,所以原方程有一正根和一负根. 若a 与c 同号,由b=﹣a ﹣2c 可得a ,b 异号; 则x 1x 2=>0,即两根同号;x 1+x 2=>0,则方程一定有正根,所以原方程此时有两个正根.综上所述原方程至少有一个正根. 故选:B .7.已知关于x 的方程x 2+mx +m +2=0有不同的实数根,其中m 为整数,且仅有一个实根的整数部分是2,则m 的值为( ) A .﹣2B .﹣3C .﹣2或﹣3D .不存在7.解析:当m=﹣2,原方程变为:x 2﹣2x=0,x (x ﹣2)=0, ∴x 1=0,x 2=2,所以当m=﹣2时,原方程仅有一个实根的整数部分是2; 当m=﹣3,原方程变为:x 2﹣3x ﹣1=0, ∴△=b 2﹣4ac=(3)2﹣4×1×(﹣1)=13, ∴x=, 即x 1=,x 2=,x 1的整数部分为3,x 2为负数,所以当m=﹣3,没有一个实根的整数部分是2. 所以A 对,B ,C ,D 错. 故选:A .8、若关于x 的函数()()22212y a x a x a =+--+-的图象与坐标轴有两个交点,则a 的值为 12、2-,2或1749、设关于x 的方程ax 2+(a +2)x +9a =0有两个不相等的实数根x 1、x 2,且x 1<1<x 2.则a 的取值范围是 。
数学竞赛第三讲 二次函数
第三讲 二 次 函 数一.含有参变数的二次函数1. 集合A ={42|2++=x x y y },B ={a x ax y y 42|2+-=},A⊆B ,求实数a 的取值集合.({a |0≤a ≤1})2. 抛物线c bx x y ++=2的顶点位于区域}10.10|),{(≤≤≤≤=y x y x G 内部或边界上,求b 、c 的取值范围.二.二次函数的最值3. 已知0≤x ≤1, )(x f =)0( 22>+-a a ax x ,)(x f 的最小值为m . (1)用a 表示m ;(2)求m 的最大值及此时a 的值.(动轴,定区间)4. 函数)(x f =4943322++--m x x ,x ∈[―m ,1―m ],该函数的最大值是25,求该函数取最大值时自变量的值.(定轴,动区间)三.利用二次函数的性质5. 若方程22++ax x 1+=x 在区间[0,2]上有两个有两个不等的实根,求a 的取值范围.6. 设}31|{<<=x x A ,又设X 是关于x 的不等式组⎩⎨⎧≤+-≤+-0520222bx x a x x 的解集,试确定b a ,的取值范围,使得X A ⊆.2011年高考题选讲:必修一一、集合1.(辽宁理2)已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若Φ=M C N I ,则=N M(A )M (B )N (C )I(D )∅2.(湖北理2)已知{}21|log ,1,|,2U y y x x P y y x x ⎧⎫==>==>⎨⎬⎩⎭,则U C P =A .1[,)2+∞B .10,2⎛⎫ ⎪⎝⎭C .()0,+∞D .),21[]0,(+∞-∞二、函数1.(江苏11)已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为________2.(北京理6)根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为()x A f x x A <=≥(A ,c 为常数)。
高中数学奥赛辅导系列 二次函数与方程、不等式教案
二次函数与方程、不等式基础知识:一、二次函数1. 定义:形如2y ax bx c =++(0a ≠)的函数叫二次函数.2. 二次函数的有关性质① 开口方向00a a >⎧⎨<⎩时,开口向上时,开口向下② 对称轴方程 2b x a=- ③ 定义域RD⎧⎨⎩自然定义域:指定定义域: 3. 图象x =4. 二次函数的解析式 ① 一般式:2y ax bx c =++② 顶点式:2()y a x m n =-+,其中(m ,n )是二次函数图象的顶点③ 交点式:12()()y a x x x x =--,其中12x x ,是一元二次方程20ax bx c ++=的两实根.二、二次方程1. 当2()f x ax bx c =++中,()0f x =时,即得到二次方程20ax bx c ++=其解的几何意义即为二次函数的图象与x 轴的交点横坐标.2. 根的判别式24b ac ∆=-∆>0时,方程有两个不相等的实数根; ∆=0时,方程有两个相等的实数根;∆<0时,方程无实数根,但有两个共轭的虚数根.3. 根与系数的关系(韦达定理)12b x x a +=-12c x x a= 4. 二次方程根的分布根的位置<=>图象位置<=>等价条件20ax bx c ++=(0a >)若有二根11x >,21x <则(1)0f <若有二根12x x ∈,(2,3) 则(2)0(3)00(23)2f f b a>⎧⎪>⎪⎪∆⎨⎪⎪-∈⎪⎩≥,三、一元二次不等式一元二次不等式20ax bx c ++>(或<0)的解集,即函数2()f x ax bx c =++的自变量的取值X 围,使其函数值()0f x >(或<0)的自变量的取值X 围.0∆>0∆=0∆<例题:1. 选择题①2()f x x bxc =++对任意实数t 都有(2)(2)f t f t +=-,那么( )A .(2)(1)(4)f f f <<B .(1)(2)(4)f f f <<C .(2)(4)(1)f f f <<D .(4)(2)(1)f f f <<解:由题意,()f x 的图象关于直线2x =对称,且图象开口向上,画出示意图,由图a象知(2)(1)(4)f f f <<,选A .② 已知22log (2)a y x x =-在区间(-∞,0)上单调递增,则a 的取值X 围是( )A .1a >B .11a -<<C .R a ∈且0a ≠D .1a <-或1a >解:由函数的单调性的定义知:x 在(-∞,0)上增大时,函数值y 随之增大,故有以下过程:x : -∞−−−→增大022u x x =-: +∞−−→−减小0故必有0<a 2<1∴ -1<a <1且a ≠0.选B③ 已知函数y =log 21(x 2-6x +7),则y ( )A .有最大值没有最小值B .有最小值没有最大值C .有最大值也有最小值D .没有最大值也没有最小值 解:∵ u =x 2-6x +7∈[-2,+∞) 而定义域要求u >0,即u ∈(0,+∞) ∴ b =log 0.5u ∴ b ∈(-∞,+∞).选D 2. 填空题①方程22||(R)x x a a -=∈有且仅有两个不同的实数根,则实数a 的取值X 围是_______.解:令212||y x x =-,2y a =则2122(0)2(0)x x x y x x x ⎧-⎪=⎨+<⎪⎩≥,其函数图象如下:思考:a 为何(X②关于x 的方程2290x ax -+=的两个实数根分别为αβ,,则22(1)(1)αβ-+-的最小值是_______________.解:方程有实数根,故24490a ∆=-⨯≥∴3a -≤或3a ≥又29a αβαβ+==,∴ 22(1)(1)y αβ=-+-2()2()22αβαβαβ=+-+-+24416a a =-- ∵ 3a -≤或3a ≥∴ 8y ≥(a =3时取等号)∴ min 8y =3. 已知函数24230y x ax a =-++的图象与x 轴无交点,求关于x 的方程3x a +|1|1a =-+的根的X 围. 分析:由于图象与x 轴没有交点,所以0∆<,解得a 的取值X 围又对于每一个a 值,原方程都是一元一次方程,但由于a 是变化的,可知,x 是a 的二次函数,又再转化为二次函数在有限制的区间内的值域问题.解:∵24230y x ax a =-++的图象与x 轴无交点,所以2(4)4(230)0a a ∆=--+< 解得:-2.5<a <3(1)当a ∈(-2.5,1]时,方程化为x =(a +3)(2-a )=-a 2-a +6∈(425,49] (2)当a ∈(1,3)时,方程化为x =(a +3)a =a 2+3a ∈(4,18)综上所述:x ∈(49,18)4. 设a ,b 为实常数,k 取任意实数时,函数y =(k 2+k +1)x 2-2(a +k )2x +(k 2+3ak +b )的图象与x 轴都交于点A (1,0).① 求a 、b 的值;② 若函数与x 轴的另一个交点为B ,当k 变化时,求|AB |的最大值.分析:由A 在曲线上,得k 的多项式对k 恒成立,即可求的a ,b 的值.解:⑴由已知条件,点A (1,0)在函数图象上,故(k 2+k +1)-2(a +k )2+(k 2+3ak +b )=0整理得:(1-a )k +(b +1-2a 2)=0∵ 对k ∈R ,上式恒成立∴ 1-a =0且b +1-2a 2=0从而a =1,b =1y =(k 2+k +1)x 2-2(k +1)2x +(k 2+3k +1)⑵设B (α,0),则|AB |=|α-1|∵(k 2+k +1)x 2-2(k +1)2x +(k 2+3k +1)=0的两个根为1、α,由韦达定理1•α=22311k k k k ++++ 整理得:2(1)(3)(1)0k k ααα-+-+-=α=1时,得2k =0 ⇒k =0 α≠1时,∵ k ∈R ,∴ 0∆≥即2(3)4(1)0αα---≥ 得:513α-≤≤且1α≠ 综合得:513α-≤≤ ∴ 2213α--≤≤ ∴ |AB |=|α-1|∈[0,2] 即|AB |的最大值为2.5. 设实数a 、b 、c 满足a 2-bc -8a +7=0 …………①b 2+c 2+bc -6a +6=0 …………②求a 的取值X 围.分析:如何将含有三个变量的两个方程组成的方程组问题,转化为只含有a 的不等式,是解决本题的关键,仔细分析观察方程组的特点,发现可以利用a 来表示bc 及b +c ,从而用韦达定理构造出a 为变量的一元二次方程,由0∆≥建立a 的不等式.解:由①得:bc =a 2-8a +7 …………③由①②得:(b +c )2=a 2-2a +1即b +c =±(a -1) …………④由③④得b ,c 为方程x 2±(a -1)x +(a 2-8a +7)=0的两个实数根,由于b ,c ∈R,所以0∆≥即:[±(a -1)]2-4(a 2-8a +7)≥0即:a 2-10a +9≤0得:1≤a ≤96. 设二次函数2()f x ax bx c =++(a >0),方程()0f x x -=的两个根12x x ,满足1210x x a<<<. I .当x ∈(0,1x )时,证明x <()f x <1x ;Ⅱ.设函数()f x 的图象关于直线0x x =对称,证明:102x x <. 分析:由于涉及方程根的问题,故需用韦达定理来分析和解决.证明: I .令F (x )=f (x )-x .因为x 1、x 2是方程f (x )-x =0的根,得F (x )=a (x -x 1)(x -x 2)当x ∈(0,x 1)时,由于x 1<x 2,x -x 1<0,x -x 2<0得(x -x 1)(x -x 2)>0,又a >0,得F (x )=a (x -x 1)(x -x 2)>0即x <f (x ).而x 1-f (x )=x 1-[x -F (x )]=x 1-x +a (x -x 1)(x -x 2)=(x 1-x )[1-a (x -x 2)]因为0<x <x 1<x 2<1a所以x 1-x >0, 1-a (x -x 2)>1-a ·1a>0 得 x 1-f (x )>0即 f (x )<x 1. Ⅱ.依题意知x 0=-2b a. 因为x 1,x 2是方程f (x )-x =0的根,即x 1,x 2是方程ax 2+(b -1)x +c =0的根,所以 x 1+x 2=-1b a -x 0=-1212()11222a x x ax ax b a a a+-+-==因为21ax <,所以0x <1122ax x a =. 7. 若关于x 的二次方程7x 2-(p +13)x +p 2-p -2=0的两根αβ,满足0<α<1<β<2,某某数p 的取值X 围.解:设f (x )=7x 2-(p +13)x +p 2-p -2根据题意得:(0)0(1)0(2)0f f f >⎧⎪<⎨⎪>⎩即 2222028030p p p p p p ⎧-->⎪--<⎨⎪->⎩解得:p ∈(-2,-1)∪(3,4).。
第3讲 二次函数与方程不等式综合
第3讲二次函数与方程不等式综合
模块一二次函数与方程综合
例1二次函数y=kx2﹣5x+1的图象与x轴有交点,k的取值范围是()A.k≤B.k<且k≠0
C.k≤且k≠0D.k≤且k≠0
例2.抛物线与直线y=m的交点,图中抛物线的解析式为y=ax2+bx+c,根据图象判断下列方程根的情况.
(1)方程ax2+bx+c=0的两根分别为;
(2)方程ax2+bx+c﹣3=0的两根分别为;
(3)方程ax2+bx+c=2的根的情况是;
(4)方程ax2+bx+c=4的根的情况是.
练习:已知二次函数y=﹣x2+4x+m的部分图象如图,则关于x的一元二次方程﹣x2+4x+m =0的解是.
模块二二次函数与不等式综合
例3
(2)在同一坐标系下,抛物线y1=﹣x2+4x和直线y2=2x的图象如图所示,那么不等式﹣x2+4x>2x的解集是()
A.x<0B.0<x<2C.x>2D.x<0或x>2
(3)如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是()
A.﹣1<x<5B.x>5C.x<﹣1且x>5D.x<﹣1或x>5(4)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,m)、B(1,1).(1)求m的值及直线y=bx+c的解析式;
(2)直接写出关于x的不等式ax2<bx+c的解集为.。
专题1 二次函数、二次不等式及二次方程--讲义练习及答案
C. D.
5.B求函数 的最值.
6.C函数 的最小值为_____________.
7.C已知不等式 ≤ ,若对任意 且 ,该不等式恒成立,
则实数 的取值范围是_________.
思维拓展
8.C已知二次函数 ,若a固定(a≠0),c固定,b变化,
则该抛物线如何运动?
专题1 二次函数、二次不等式及二次方程
参考答案
重难点易错点解析
1.A
金题精讲
2.
3.
4.D
5.有最大值 ,没有最小值.
6.0.
7.a≥-1
思维拓展
8.抛物线的顶点将沿y=c-ax2运动.
专题1 二次函数、二次不等式及二次方程
重难点易错ቤተ መጻሕፍቲ ባይዱ解析
1.A定义在N上的函数 是增函数,则实数k的取值范围是( )
A. B. C. D.
金题精讲
2.C函数 , 的最大值与最小值的差记做 ,
求 的表达式.
3.B关于 的方程 的两根均大于1,求实数 的取值范围.
4.C设函数 ,若互不相等的实数 满足
,则 的取值范围是( )
高考数学竞赛二次函数与命题教案讲义
第二章 二次函数与命题一、基础知识1.二次函数:当≠a 0时,y =ax 2+bx +c 或f (x )=ax 2+bx +c 称为关于x 的二次函数,其对称轴为直线x =-a b 2,另外配方可得f (x )=a (x -x 0)2+f (x 0),其中x 0=-ab 2,下同。
2 二次函数的性质:当a >0时,f (x )的图象开口向上,在区间(-∞,x 0]上随自变量x 增大函数值减小(简称递减),在[x 0, -∞)上随自变量增大函数值增大(简称递增)。
当a <0时,情况相反。
3.当a >0时,方程f (x )=0即ax 2+bx +c =0…①和不等式ax 2+bx +c >0…②及ax 2+bx +c <0…③与函数f (x )的关系如下(记△=b 2-4ac )。
1)当△>0时,方程①有两个不等实根,设x 1,x 2(x 1<x 2),不等式②和不等式③的解集分别是{x |x <x 1或x >x 2}和{x |x 1<x <x 2},二次函数f (x )图象与x 轴有两个不同的交点,f (x )还可写成f (x )=a (x -x 1)(x -x 2).2)当△=0时,方程①有两个相等的实根x 1=x 2=x 0=a b 2-,不等式②和不等式③的解集分别是{x |x ab 2-≠}和空集∅,f (x )的图象与x 轴有唯一公共点。
3)当△<0时,方程①无解,不等式②和不等式③的解集分别是R 和∅.f (x )图象与x 轴无公共点。
当a <0时,请读者自己分析。
4.二次函数的最值:若a >0,当x =x 0时,f (x )取最小值f (x 0)=ab ac 442-,若a <0,则当x =x 0=ab 2-时,f (x )取最大值f (x 0)=a b ac 442-.对于给定区间[m,n ]上的二次函数f (x )=ax 2+bx +c (a >0),当x 0∈[m, n ]时,f (x )在[m, n ]上的最小值为f (x 0); 当x 0<m 时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学竞赛试题汇编二《二次函数、方程、不等式》
1. 如果不等式21x x a <-+的解集是()3,3-的子集,则实数a 的取值范围是( )
(A) (),7-∞ (B) (],7-∞ (C) (),5-∞ (D) (],5-∞
2. 若[]1,1a ∈-,则2
(4)420x a x a +-+->的解为( ) (A) 3x >或2x < (B) 2x >或1x <
(C) 3x >或1x < (D) 13x <<
3. 函数2()20112012f x x x =-+的图像与x 轴交点的横坐标之和为 .
4. 已知2()2f x x x a =++,2()441f bx x x =-+,则()0f ax b +>的解集为 .
5. 设方程22
210x mx m -+-=的根大于2-,且小于4,则实数m 的范围是 .
6. 实数,x y 满足224+3=0x x y -+,则22x y +的最大值与最小值之差是 .
7. 已知,x y R ∈,且22
1x y +≤,则x y xy +-的最大值是 .
8. 已知,x y 满足14xy x y +=+,且1x >则()()12x y ++的最小值是 .
9. 已知,x y 为实数,22(,)f x y x xy y x y =++--的最小值是 .
10. 已知实数,x y 满足2
2
116y x +=,则的最大值是 .
11. 若,x y R ∈,满足2222222()5x x y y x x x --+-=,则x = ,y = .
12. 已知,x y 为实数,则
()22225410max x y x x y +=+= .
13. 实数,x y 满足x -,则x 的取值范围是 .
14. 已知0,0x y ≥≥,且221x y +=,则()x x y +的最大值是 .
15. 实数,x y 满足228624=0x x y y -+-+,则2x y -的最大值是 .。