北师大八年级数学下册复习

合集下载

北师大版八年级下册数学各章知识要点总结

北师大版八年级下册数学各章知识要点总结

北师大版八年级下册数学各章知识要点总结北师大版八年级下册数学各章学问要点总结北师大版八年级数学下册各章学问要点总结第一章一元一次不等式和一元一次不等式组一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。

1、能使不等式成立的未知数的值,叫做不等式的解. 2、不等式的解不唯一,把全部满意不等式的解集合在一起,构成不等式的解集.3、求不等式解集的过程叫解不等式.4、由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组5、不等式组的解集:一元一次不等式组各个不等式的解集的公共局部。

6、等式根本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.根本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、不等式的根本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变。

)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向转变.不等式的根本性质、若a>b,则ac>bc;、若a>b,c>0则ac>bc,若cc,则a>c四、一元一次不等式与一次函数五、一元一次不等式组※1.定义:由含有一个一样未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.※2.一元一次不等式组中各个不等式解集的公共局部叫做不等式组的解集.假如这些不等式的解集无公共局部,就说这个不等式组无解.几个不等式解集的公共局部,通常是利用数轴来确定.※3.解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共局部,(3)写出这个不等式组的解集.两个一元一次不等式组的解集的四种状况(a、b为实数,且a找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取一样的字母,字母的指数取较低的;(3)取一样的多项式,多项式的指数取较低的.(4)全部这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)若有“-”先提取“-”,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则依据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如a+2ab+b或a-2ab+b的式子称为完全平方式.六、分解因式的方法:1、提公因式法。

北师大版八年级数学下册第三章图形的平移与旋转全章复习

北师大版八年级数学下册第三章图形的平移与旋转全章复习

全章复习一.选择题1.下列图案中是旋转对称图形,但不是中心对称图形的是()A.B.C.D.2.下列四个图案中,不能由1号图形平移得到2号图形的是()A.B.C.D.3.如图,是一个装饰物品连续旋转所成的三个图形,照此规律旋转,下一个呈现出来的图形是()A.B.C.D.4.如图,小聪坐在秋千上,秋千旋转了80°,小聪的位置也从P点运动到了P'点,则∠P'OP的度数为()A.40°B.50°C.70°D.80°5.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针旋转90°后,B点的坐标为()A.(﹣2,2)B.(4,1)C.(3,1)D.(4,0)6.如图所示,将四边形ABOC绕点O按顺时针方向旋转得四边形DFOE,则下列角中,不是旋转角的是()A.∠BOFB.∠AODC.∠COED.∠AOF7.如图,∠A=70°,O是AB上一点,直线OD与AB所夹的∠BOD=82°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转()A.8°B.10°C.12°D.18°△8.如图,在ABC中,∠C=90°,AC=BC=△5,现将ABC沿着CB的方向平移到△A′B′C′的位置,若平移的距离为2,则图中的阴影部分的面积为()A.4.5B.8C.9D.10△9.如图,ABC中,∠B=90°,∠C=30°,AB=△1,将ABC绕顶点A旋转180°,点C落在C′处,则CC′的长为()A.4B.4C.2D.210.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,)B.(,)C.(,)D.(,4)二.填空题11.如图所示的4组图形中,左右两个图形成轴对称的是第组.12.已知线段CD是由线段AB平移得到的,点A(﹣2,3)的对应点为C(3,6),则点B(﹣5,﹣1)的对应点D的坐标为.13.如图,已知△ABD沿BD平移到了△FCE的位置,若BE=12,CD=5,则平移的距离是___.14.如图所示,在正方形网格中,图①经过变换可以得到图②;图③是由图②经过旋转变换得到的,其旋转中心是点(填“A”或“B”或“C”).15.如图,在平面直角坐标系中,线段AB的两个端点是A(﹣5,1),B(﹣2,3),平移线段AB得到线段A1B1,若点B的对应点B1的坐标为(1,2),则点A的对应点A1的坐标为.16.如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=3,OD=2,则阴影部分的面积之和为.17.如图,在△Rt ABC中,∠ACB=90°,AC=5cm,BC=12△cm,将ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为cm.18.如图,在△Rt ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=△45°,将ADC绕点A顺时针旋转△90°后,得到AFB,连接EF,下列结论:△①AED≌△AEF;△②ABC的面积等于四边形AFBD 的面积;③BE2+DC2=DE2;④BE+DC=DE,其中正确的是(只填序号)三.解答题19.如图在△ABC中,AB=△BC,将ABC绕点A沿顺时针方向旋转得△AB1C1,使点C1落在直线BC上(点C1与点C不重合),求证:AB1∥CB.20.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(﹣3,2),B(﹣1,4),C(0,2).(△1)将ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;(△2)平移ABC,若A的对应点A2的坐标为(﹣5,﹣△2),画出平移后的A2B2C2;(△3)若将A2B2C2绕某一点旋转可以得到△A1B1C,请直接写出旋转中心的坐标.21.如图,△ABC的边BC在直线m上,AC⊥BC,且AC=△BC,DEF的边FE也在直线m上,边DF与边AC重合,且DF=EF.(1)在图(1)中,请你通过观察、思考,猜想并写出AB与AE所满足的数量关系和位置关系;(不要求证明)(△2)将DEF沿直线m向左平移到图(2)的位置时,DE交AC于点G,连接AE,△BG.猜想BCG 与△ACE能否通过旋转重合?请证明你的猜想.22.将两块大小相同的含30°角的直角三角板(∠BAC=∠B′A′C=30°)按图①方式放置,固定三角板A′B′C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB与A′C交于点E,AC与A′B′交于点F,AB与A′B′相交于点O.(△1)求证:BCE≌△B′CF;(2)当旋转角等于30°时,AB与A′B′垂直吗?请说明理由.。

北师大版数学八年级下册全册复习教案

北师大版数学八年级下册全册复习教案

34D 第一章三角形的证明【学习目标】1、在回顾与思考中建立本章的知识框架图,复习有关定理的探索与证明,证明的思路和方法,尺规作图等。

2、发展学生的初步的演绎推理能力,进一步掌握综合法的证明方法,提高学生用规范的数学语言表达论证过程的能力。

【学习重难点】重点:通过例题的讲解和课堂练习对所学知识进行复习巩固难点:本章知识的综合性应用。

【学习过程】1、等腰三角形的性质:(边);(角);“三线合一”的内容。

2、等边三角形的性质:(边);(角)。

3、判定等腰三角形的方法有:(边);(角)。

4、判定等边三角形的方法有:(边);(角)。

5、线段垂直平分线的性质定理:。

逆定理:。

三角形的垂直平分线性质:。

6、角的性质定理:。

逆定理:。

三角形的角平分线性质:。

7、三角形全等的判定方法有:。

8、30°锐角的直角三角形的性质:。

9、方法总结:(1)证明线段相等的方法:1)可证明它们所在的两个三角形全等;2)角平分线的性质定理:角平分线上的点到角两边的距离相等;)等角对等边;)等腰三角形三线合一的性质;5)中垂线的性质定理:线段垂直平分线上的点到线段两端点的距离相等。

(2)证明两角相等的方法:1)同角的余角相等;2)平行线性质;3)对顶角相等;4)全等三角形对应角相等;5)等边对等角;6)角平分线的性质定理和逆定理。

(3)证明垂直的方法:1)证邻补角相等;2)证和已知直角三角形全等;3)利用等腰三角形的三线合一性质;4)勾股定理的逆定理。

(4)等腰三角形的证明:主要用等腰三角形的两腰相等,两底角相等和三线合一性质解题。

1、填空:(1)△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,最小边BC =4cm ,最长边AB=。

(2)直角三角形两直角边分别是5cm 、12cm ,其斜边上的高是。

(3)若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形是三角形。

(4)三角形三边分别为a 、b 、c ,且a 2-bc =a (b -c ),则这个三角形(按边分类)一定是________2、已知:如图,是△ABC 的BC 边上的中点,DE ⊥AC ,DF ⊥AB ,垂足分别是E 、F ,且DE=DF 。

北师大版八年级下册数学《第一章复习》教学设计

北师大版八年级下册数学《第一章复习》教学设计

北师大版八年级下册数学《第一章复习》教学设计一. 教材分析北师大版八年级下册数学《第一章复习》主要是对八年级上册的知识进行复习,包括实数、不等式、函数、几何等知识点。

本章的目的是使学生对已学的知识有一个全面、深入的理解,并为后续的学习打下坚实的基础。

教材通过大量的例题和练习题,帮助学生巩固知识点,提高解题能力。

二. 学情分析八年级的学生已经学习了实数、不等式、函数、几何等知识点,对数学有了一定的认识和理解。

但是,由于学习时间的推移,部分学生可能对一些知识点的理解和掌握有所遗忘。

因此,在复习过程中,教师需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。

三. 教学目标1.知识与技能:使学生对实数、不等式、函数、几何等知识点有一个全面、深入的理解,提高解题能力。

2.过程与方法:通过复习,培养学生独立思考、合作交流的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自信心。

四. 教学重难点1.实数的性质和运算2.不等式的解法和应用3.函数的性质和图像4.几何图形的性质和计算五. 教学方法采用讲练结合的教学方法,通过讲解、示范、练习、讨论等方式,引导学生主动参与学习,提高学生的学习兴趣和积极性。

六. 教学准备1.教材和教学参考书2.PPT和教学课件3.练习题和测试题4.板书和教学工具七. 教学过程1.导入(5分钟)通过提问的方式,了解学生对已学知识的掌握情况。

然后,教师简要介绍本章的复习内容,激发学生的学习兴趣。

2.呈现(15分钟)教师利用PPT和教学课件,呈现本章的主要知识点,包括实数的性质和运算、不等式的解法和应用、函数的性质和图像、几何图形的性质和计算。

在呈现过程中,教师引导学生积极参与,提出问题和观点。

3.操练(20分钟)教师给出一些练习题,让学生独立完成。

然后,教师选取部分学生的作业进行讲解和示范,引导学生掌握解题方法和技巧。

对于学生的错误,教师要及时指出并给予纠正。

4.巩固(10分钟)教师给出一些测试题,让学生在规定时间内完成。

北师大版_初二数学下册复习汇总资料

北师大版_初二数学下册复习汇总资料

北师大版_初二数学下册复习汇总资料一元一次不等式(组)(一)一、全章教学内容及要求1、理解不等式的概念和基本性质2、会解一元一次不等式,并能在数轴上表示不等式的解集3、会解一元一次不等式组,并能在数轴上表示不等式组的解集。

二、技能要求1、会在数轴上表示不等式的解集。

2、会运用不等式的基本性质(或不等式的同解原理)解一元一次不等式。

3、掌握一元一次不等式组的解法,会运用数轴确定不等式组的解集。

三、重要的数学思想:1、通过一元一次不等式解法的学习,领会转化的数学思想。

2、通过在数轴上表示一元一次不等式的解集与运用数轴确定一元一次不等式组的解集,进一步领会数形结合的思想。

四、主要数学能力1、通过运用不等式基本性质对不等式进行变形训练,培养逻辑思维能力。

2、通过一元一次不等式解法的归纳及一元一次方程解法的类比,培养思维能力。

3、在一元一次不等式,一元一次不等式组解法的技能训练基础上,通过观察、分析、灵活运用不等式的基本性质,寻求合理、简捷的解法,培养运算能力。

五、类比思想:把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。

这种数学思想通常称为“类比”,它体现了“不同事物之间存在内部联系”的唯物辩证观点,是发现数学真理和解题方法的重要手段之一,在数学中有着广泛的运用。

在本章中,类比思想的突出运用有:1、不等式与等式的性质类比。

对于等式(例如a=b)的性质,我们比较熟悉。

不等式(例如a>b或a<b)与等式虽然是不同的式子,表达的也是不同的数量关系,但它们在形式上显然有某些相同或类似的地方,于是可推断在性质上两者也可能有某些相同或类似之处。

这就是“类比”思想的运用之一,它也是我们探索不等式性质的基本途径。

等式有两个基本性质:1、等式两边都加上(或减去)同一个数或同一个整式,等号不变。

(即两边仍然相等)。

2、等式两边都乘以(或除以)同一个不等于0的数,等号不变(即两边仍然相等)。

复习计划八年级数学北师大

复习计划八年级数学北师大

复习计划八年级数学北师大
为了复习八年级数学北师大教材,可以按照以下的计划进行复习,每天花费一定时间,合理规划复习内容。

这里给出了一个参考的复习计划:
1. 复习整数:
- 复习整数的概念和加减运算。

- 复习整数的乘除法运算规则,并进行练习。

2. 复习分数:
- 复习分数的概念和基本运算。

- 复习分数的化简、比较大小等知识点,并进行练习。

3. 复习代数表达式与方程:
- 复习代数表达式的概念和基本运算。

- 复习一元一次方程的解法,包括等式变形和消元法,并进
行练习。

4. 复习图形的认识与性质:
- 复习图形的基本概念,包括直线、线段、角等。

- 复习平面图形的性质,如三角形的分类、四边形的性质等,并进行练习。

5. 复习平面坐标系:
- 复习平面直角坐标系的建立和使用。

- 复习点、线、图形在平面坐标系中的表示和性质,并进行
练习。

6. 复习数与量的关系:
- 复习数与物理量的关系,包括长度、面积、体积等。

- 复习数与量的换算,如米与厘米、升与毫升等,并进行练习。

7. 复习概率与统计:
- 复习事件、样本空间、概率的概念。

- 复习简单的概率计算和统计数据的分析,并进行练习。

8. 复习函数与图像:
- 复习函数的概念和基本性质,如定义域、值域等。

- 复习一些简单的函数图像,并进行练习。

针对每个知识点,最好准备一些练习题目进行巩固,可以选择相关的习题集进行练习。

复习时注意理解概念,弄清楚各类题目的解题思路,并通过练习提升解题能力。

因式分解 北师大版数学八年级下册期末复习

因式分解 北师大版数学八年级下册期末复习
∵(x+1)(x+16)=x²+17x+16 ∴b=16,a≠17
(选做题)1.观察下列各式:3²-1²=8×1, 5²-3²=8×2,7²-5²=8×3,……,探索以上式子的规律, 试写出第n个等式,并运用所学的数学知识说明你所写 式子的正确性.
解:规律:(2n+1)²-(2n-1)²=8n 验证: (2n+1)²-(2n-1)²
1、整式乘法与分解因式的概念易混 2、分解因式要彻底
3.(x 5)(x 3)是多项式x2 px 15分解因式的结果, 则5. p的值是 8 .
6.多项式 a(a x)(x b) ab(a x)(b x) 的公因式是( B )
A.-a B. a(a x)(x b) C. a(a x) D. a(x a)
7.若 mx 2 kx 9 (2x 3)2 ,则m,k的值分别是( C )
=3a(a+2b)
(2)原式=[(x²-5)+1]² (3)原式=(x²+y²)²-4(x²+y²)+4
=(x²-4)²
=[(x²+y²)-2]²
=[(x+2)(x-2)]²
=(x²+y²-2)²
=(x+2)²(x-2)²
2.已知:a,b,c是△ABC的三边长,且满足
a2b a2c b3 b2c 0 ,试判断三角形的形状.
2.下列各式中:①x2﹣6x+9; ②25a2+10a﹣1; ③x2﹣4x+4; ④a2+a+ .其中能用完全平方公式
因式分解的个数为( C )
A.1
B.2
C.3
D.4
3.因式分解(1)a²-4a-b²+4=_(_a_-_2_+_b_)_(_a_-_2_-_b)

北师大版八年级数学下册全册复习课件(共206张PPT)精选全文

北师大版八年级数学下册全册复习课件(共206张PPT)精选全文

第一章 | 复习
针对第8题训练
1.在直角三角形中,一条直角边长为a,另一条边长为2a,那么
它的三个内角之比为( D ) A.1∶2∶3 B.2∶2∶1 C.1∶1∶2 D.以上都不对
2.如图1-10,△ABC中,∠ACB=90°,BA的垂直平分线交
CB边于点D,若AB=10,AC=5,则图中等于60°的角的个数为
第一章 | 复习
6.直角三角形的性质及判定 性质(1):在直角三角形中,如果一个锐角等于30°,那么它 所对的直角边等于斜边的___一__半____; 性质(2):直角三角形的两个锐角互余. 判定:有两个角互余的三角形是直角三角形. 7.勾股定理及其逆定理 勾股定理:直角三角形两条直角边的平方和等于斜边的 __平__方___. 逆定理:如果三角形两边的平方和等于第三边的平方,那么 这个三角形是_直__角______三角形.
第二章 | 复习
考点攻略
►考点一 不等式的性质 例1 >

< <
[易错地带] 不等式两边都乘(或除以)同一个复数时,不等号的 方向要改变。
第二章 | 复习
►考点二 一元一次不等式(组)的解法 例2
第二章 | 复习 [技巧总结]
第二章 | 复习
难易度

1,2,3,4,5,6,7,8,11,12,13,14, 15,17,18,19,20

9,10,21,22

16,23,24
第一章 | 复习
知识与 技能
全等三角形
等腰三角形 及直角三角

直角三角形 和勾股定理
及逆定理
线段的垂直 平分线及角
平分线
逆命题
反证法
2,16,17,22,24 1,4,10,14,20,21,23,24

北师大版八年级下册数学知识点必看

北师大版八年级下册数学知识点必看

北师大版八年级下册数学知识点必看求学的三个条件是:多观察、多吃苦、多研究。

每一门科目都有自己的学习方法,但其实都是万变不离其中的,也是要记、要背、要讲练的。

下面是小编给大家整理的一些北师大版八年级下册数学知识点的学习资料,希望对大家有所帮助。

北师大版初二数学下册知识点归纳第一章分式1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3整数指数幂的加减乘除法4分式方程及其解法第二章反比例函数1反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2反比例函数在实际问题中的应用第三章勾股定理1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

第四章四边形1平行四边形性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(完整版)北师大版八年级下册数学复习知识点及例题相结合

(完整版)北师大版八年级下册数学复习知识点及例题相结合

一. 不等关系第一章一元一次不等式和一元一次不等式组1. 一般地,用符号“<”(或“ ≥”), “>”(或“ ≤”)连接的式子叫做不等式.2.区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。

3.准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数⇔ 非正数⇔ 大于等于0( ≥ 0) ⇔小于等于0( ≤ 0) ⇔0 和正数0 和负数⇔不小于0⇔不大于0二. 不等式的基本性质1.掌握不等式的基本性质,并会灵活运用:(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc, a >b .c c(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc, a <bc c2.比较大小:(a、b 分别表示两个实数或整式) 一般地:如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b;如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b;如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b;即:a>b ⇔ a-b>0 a=b ⇔ a-b=0 a<b ⇔ a-b<0(由此可见,要比较两个实数的大小,只要作差即可)例下列各式一定成立的是( )A.7a﹥4a B. a﹥-a C. a+1﹥a-1 D. a≤a2例若a﹥b,且a、b 同号,以下不等式中一定成立的有①a2﹥b2 ②a3<b3 ③1/a<1/b ④a/b﹥1A. 0B. 1C. 2D. 3三. 不等式的解集:1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2.不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心点,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:1.只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2.解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3.解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题)4.一元一次不等式基本情形为ax>b(或ax<b)①当a>0 时,解为x >b;②当a=0 时,且b<0,则x 取一切实数;当a=0 时,且b≥0,则a无解;③当a<0 时, 解为x <b ;a5.不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式;④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意.例不等式mx﹥n(m≠0)的解集是( )A.x﹥n/m B.当m﹥0 时,x﹥n/m,当m<0 时,x<-n/mC.x<n/m D.当m﹥0 时,x﹥n/m,当m<0 时,x<n/m例如果不等式(a+1) x﹥(a+1)的解集为x<1,则a 必须满足的的条件是:A. a<0B. a≤-1C. a﹥-1D. a<-1例已知关于x 的不等式(2a-b)x+a-5b ﹥0 的解集为x<10/7,则ax+b﹥0 的解集为例若不等式组x﹥a 无解,则不等式组x﹥2-a 的解集是例水果店进了某中水果1t,进价是7 元/kg。

北师大版八年级下册数学期末知识点复习

北师大版八年级下册数学期末知识点复习

北师大版八年级下册数学期末知识点复习八年级下册数学考试知识点复第一章证明(二)一、全等三角形的判定及性质全等三角形的性质是对应相等,即对应的角相等,对应的边相等。

判定全等三角形有五种方法:SSS(分别相等的三边)、SAS(分别相等的两边和它们夹角的正弦值相等)、ASA(分别相等的两角和夹角中间的边)、AAS(分别相等的两角和它们夹角的正弦值相等)、HL(分别相等的斜边和一个直角边的长度)。

等腰三角形的性质是两个底角相等,即等边对等角。

判定等腰三角形有一个角等于另一个角,即等角对等边。

等腰三角形还有一个推论是互相重合,即两个等腰三角形的两个底边相等,两个等腰角也相等。

等边三角形的性质是三个角都相等,每个角都等于60度,是轴对称图形,有一条对称轴。

判定等边三角形有两个方法:有一个角是60度的等腰三角形是等边三角形,三个角都相等的三角形是等边三角形。

直角三角形的勾股定理是直角边的平方和等于斜边的平方,逆定理是如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

含30度的直角三角形的边的性质是如果一个锐角等于30度,那么它所对的斜边等于另一条直角边的一半。

直角三角形斜边上的中线等于斜边的一半。

线段的垂直平分线的性质是线段垂直平分线上的点到线段两端点的距离相等。

判定线段垂直平分线的方法是到一条线段两个端点距离相等的点在这条线段的中垂线上。

三角形三边的垂直平分线相交于一点,这一点到三个顶点的距离相等。

角平分线的性质是角平分线上的点到角的两边距离相等。

判定角平分线的方法是到一个角的内部,且到角的两边距离相等的点在这个角的平分线上。

三角形的三条角平分线相交于一点,这一点到三条边的距离相等,叫做内心。

二、一元一次不等式和一元一次不等式组不等关系是数学中的一种关系,包括大于、小于、大于等于、小于等于四种形式。

一元一次不等式是形如ax+b>c的不等式,其中a、b、c都是实数,且a不等于0.解一元一次不等式可以用图像法或代数法,将不等式变形为x>或x<的形式。

北师大版数学八年级下册期末复习(六) 平行四边形

北师大版数学八年级下册期末复习(六) 平行四边形

期末复习(六) 平行四边形01 各个击破)命题点1 平行四边形的性质与判定【例1】 (桂林中考)如图,在▱ABCD 中,E ,F 分别是AB ,CD 的中点. (1)求证:四边形EBFD 为平行四边形;(2)对角线AC 分别与DE ,BF 交于点M ,N ,求证:△ABN≌△CDM.【思路点拨】 (1)先根据平行四边形的性质得AB∥CD,AB =CD ,再根据一组对边平行且相等的四边形是平行四边形即可得证;(2)因为AB =CD ,∠CAB =∠ACD 已知,则只需要再证明一组对应角相等即可. 【解答】 证明:(1)∵四边形ABCD 是平行四边形, ∴ABCD.∵E ,F 分别是AB ,CD 的中点, ∴BE =12AB ,DF =12DC. ∴BEDF.∴四边形EBFD 为平行四边形. (2)∵四边形ABCD 是平行四边形, ∴ABCD.∴∠CAB =∠ACD.∵四边形EBFD 为平行四边形, ∴∠ABN =∠CDM. 又∵AB=CD ,∴△ABN ≌△CDM(ASA).【方法归纳】 1.判定平行四边形的基本思路:(1)若已知一组对边平行,可以证这一组对边相等或另一组对边平行;(2)若已知一组对边相等,可以证这一组对边平行或另一组对边相等;(3)若已知一组对角相等,可以证另一组对角相等;(4)若已知条件与对角线有关,可以证明对角线互相平分. 2.利用平行四边形的性质进行计算的方法:(1)利用平行四边形的性质,通过角度或线段之间的等量转化进行相应的计算;(2)找出所求线段或角所在的三角形,若三角形为直角三角形,通过直角三角形的性质或勾股定理求解;若三角形为任意三角形,可通过三角形全等的性质进行求解.1.如图,在四边形ABCD 中,已知AB =CD ,AD =BC ,AC ,BD 相交于点O ,若AC =6,则AO 的长度等于3.2.如图,已知D 是△ABC 的边AB 上一点,CE ∥AB ,DE 交AC 于点O ,且OA =OC ,猜想线段CD 与线段AE 的大小关系和位置关系,并说明理由.解:线段CD 与线段AE 的大小关系和位置关系是相等且平行. 理由:∵CE∥AB, ∴∠DAO =∠ECO.∵OA =OC ,∠AOD =∠COE, ∴△ADO ≌△CEO.∴AD =CE. 又∵AD∥CE,∴四边形ADCE 是平行四边形. ∴CD ∥AE ,CD =AE.3.如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F. (1)求证:△ADE≌△FCE;(2)若∠BAF=90°,BC =5,EF =3,求CD 的长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD.∴∠DAE =∠F,∠D =∠ECF. ∵E 是▱ABCD 的边CD 的中点, ∴DE =CE.在△ADE 和△FCE 中,⎩⎨⎧∠DAF=∠F,∠D =∠ECF,DE =CE ,∴△ADE ≌△FCE(AAS). (2)∵△ADE≌△FCE, ∴AE =EF =3. ∵AB ∥CD ,∴∠AED =∠BAF=90°. 在▱ABCD 中,AD =BC =5, ∴DE =AD 2-AE 2=52-32=4. ∴CD =2DE =8.命题点2 三角形的中位线【例2】 (邵阳中考)如图,等边三角形ABC 的边长是2,D ,E 分别为AB ,AC 的中点,延长BC 至点F ,使CF =12BC ,连接CD 和EF. (1)求证:DE =CF ; (2)求EF 的长.【思路点拨】 (1)欲证DE =CF ,由三角形中位线定理可知DE =12BC ,而条件中有CF =12BC 故易证得;(2)欲求EF 的长,可证四边形DEFC 是平行四边形,因此只需求出CD 的长.在等边三角形ABC 中,点D 是AB 的中点,因此运用勾股定理可求出,问题获解.【解答】 (1)证明:∵D,E 分别为AB ,AC 的中点,∴DE =12BC ,且DE∥BC. ∵点F 在BC 的延长线上,且CF =12BC ,∴DE ∥CF ,且DE =CF.(2)由(1)知DE∥CF,且DE =CF , ∴四边形DEFC 为平行四边形.∵△ABC 是等边三角形,边长是2,点D 是AB 的中点,AB =BC =2, ∴CD ⊥AB ,∠BDC =90°,BD =12AB =1. ∴CD =BC 2-BD 2=22-12= 3. ∵四边形DEFC 为平行四边形, ∴EF =CD = 3.【方法归纳】 若题中有中点通常考虑到三角形的中线和中位线,而在等边三角形(等腰三角形)中,中线同时也是高和角平分线.4.如图,CD 是△ABC 的中线,点E ,F 分别是AC ,DC 的中点,EF =2,则BD =4.5.如图所示,在四边形ABCD 中,AB =CD ,M ,N ,P 分别是AD ,BC ,BD 的中点,∠ABD =20°,∠BDC =70°,求∠PMN 的度数.解:∵M,N ,P 分别是AD ,BC ,BD 的中点,∴MP ,PN 分别是△ABD,△BCD 的中位线, ∴MP12AB, PN12CD.∴∠MPD =∠ABD=20°,∠BPN =∠BDC=70°. ∴∠DPN =110°.∴∠MPN =∠MPD+∠DPN=20°+110°=130°. 又∵AB=CD ,∴MP =PN. ∴∠PMN =∠PNM. ∴∠PMN =25°.命题点3 多边形的内角和与外角和【例3】(泰安中考)如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3等于(B)A.90°B.180°C.210°D.270°【思路点拨】由AB∥CD,推导∠B+∠C=180°,故∠B,∠C两角的外角和是180°,根据多边形外角和等于360°可计算∠1+∠2+∠3度数.【方法归纳】对于求多边形的外角和或部分外角的和的问题,都要根据任意多边形的外角和是360°以及邻角和其补角的互补关系这两个知识点,来解决问题.6.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为8.7.如图,在六边形ABCDEF中,AB⊥AF,BC⊥DC,∠E+∠F=260°,求两外角和α+β的度数.解:∵AB⊥AF,BC⊥DC,∴∠A=∠C=90°.又∵∠E+∠F=260°,∴∠EDC+∠ABC=(6-2)×180°-90°×2-260°=280°.∴β+α=(180°-∠EDC)+(180°-∠ABC)=360°-(∠EDC+∠ABC)=80°.故两外角和α+β的度数为80°.02整合集训一、选择题(每小题3分,共24分)1.已知平行四边形ABCD的周长为32 cm,AB=4 cm,则BC的长为(B)A.4 cm B.12 cmD.16 cm D.24 cm2.(西宁中考)如果等边三角形的边长为4,那么等边三角形的中位线长为(A)A.2 B.4 C.6 D.83.(临沂中考)将一个n边形变成n+1边形,内角和将(C)A.减少180°B.增加90°C.增加180°D.增加360°4.(乐山中考)如图,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD 的周长为(D)A.5B.7C.10D.145.某平行四边形的对角线长为x,y,一边长为6,则x与y的值可能是(C)A.4和7 B.5和7C.5和8 D.4和176.(葫芦岛中考)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P 的度数是(A)A.60°B.65°C.55°D.50°7.如图,在▱ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为(B)A.2 3 B.43C.4 D.88.已知在正方形的网格中,每个小方格的边长都相等,A,B两点在小方格的顶点上,位置如图所示,则以A,B 为顶点的网格平行四边形的个数为(D)A.6个B.8个C.10个D.12个二、填空题(每小题4分,共24分)9.(陕西中考)一个正多边形的外角为45°,则这个正多边形的边数是8.10.如图所示,在▱ABCD中,E,F分别为AD,BC边上的一点,若添加一个条件AE=FC或∠ABE=∠CDF,则四边形EBFD为平行四边形.11.(娄底中考)如图,▱ABCD的对角线AC,BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO 的周长是9.12.(泉州中考)如图,顺次连接四边形ABCD四边的中点E,F,G,H,则四边形EFGH的形状一定是平行四边形.13.如图,在▱ABCD中,∠ABC=60°,E,F分别在CD,BC的延长线上,AE∥BD,EF⊥BC,CF=3,则AB 的长为3.14.在某张三角形纸片上,取其一边的中点,沿着过这点的两条中位线分别剪去两个三角形,剩下的部分就是如图所示的四边形;经测量这个四边形的相邻两边长为10 cm ,6 cm ,一条对角线的长为8 cm ;则原三角形纸片的周长是48_cm 或(32+813)cm .三、解答题(共52分)15.(6分)一个多边形的内角和与外角和的差为1 260度,求它的边数. 解:设多边形的边数是n ,则(n -2)·180-360=1 260.解得n =11. 答:它的边数为11.16.(8分)(陕西中考)如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF ,CE ,求证:AF∥CE.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC. ∴∠ADB =∠CBD. ∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.在△ADF 和△CBE 中,⎩⎨⎧AD =CB ,∠ADF =∠CBE,DF =BE ,∴△ADF ≌△CBE(SAS). ∴∠AFD =∠CEB. ∴AF ∥CE.17.(8分)(永州中考)如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC,BN ⊥AN 于点N ,延长BN 交AC 于点D ,已知AB =10,BC =15,MN =3. (1)求证:BN =DN ; (2)求△ABC 的周长.解:(1)证明:∵AN 平分∠BAC, ∴∠BAN =∠DAN. ∵BN ⊥AN ,∴∠ANB =∠AND=90°. 又∵AN=AN ,∴△ABN ≌△ADN(ASA).∴BN=DN. (2)∵△ABN≌△ADN, ∴AD =AB =10,DN =NB. 又∵点M 是BC 中点,∴MN 是△BDC 的中位线. ∴CD =2MN =6.∴△ABC 的周长为AB +AC +BC =AB +AD +CD +BC =10+10+6+15=41.18.(10分)如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,连接DE 并延长到点F ,使EF =ED ,连接CF.(1)四边形DBCF 是平行四边形吗?说明理由;(2)DE 与BC 有什么样的位置关系和数量关系?说明理由. 解:(1)四边形DBCF 是平行四边形. 理由:∵E 是AC 的中点, ∴AE =CE.又∵EF=ED ,∠CEF =∠AED, ∴△AED ≌△CEF(SAS). ∴AD =CF ,∠A =∠ECF. ∴AD ∥CF ,即CF∥BD.又∵D 为AB 的中点,∴BD =AD.∴BD=CF. ∴四边形DBCF 是平行四边形. (2)DE∥BC,DE =12BC. 理由:∵EF=ED ,∴DE =12DF. 又∵四边形DBCF 是平行四边形, ∴DF =BC ,DF ∥BC. ∴DE ∥BC ,DE =12BC.19.(10分)(怀化中考)已知:如图,在△ABC 中,DE ,DF 是△ABC 的中位线,连接EF ,AD ,其交点为点O.求证: (1)△CDE≌△DBF; (2)OA =OD.证明:(1)∵DE,DF 是△ABC 的中位线, ∴DF =CE ,DF ∥CE ,DB =DC. ∵DF ∥CE , ∴∠C =∠BDF.在△CDE 和△DBF 中,⎩⎨⎧DC =BD ,∠C =∠BDF,CE =DF ,∴△CDE ≌△DBF(SAS).(2)∵DE,DF 是△ABC 的中位线, ∴DF =AE ,DF ∥AE.∴四边形DEAF 是平行四边形. ∵EF 与AD 交于点O , ∴OA =OD.20.(10分)(扬州中考改编)如图,AC 为长方形ABCD 的对角线,将边AB 沿AE 折叠,使点B 落在AC 上的点M 处,将边CD 沿CF 折叠,使点D 落在AC 上的点N 处. (1)求证:四边形AECF 是平行四边形;(2)若AB =6,AC =10,求四边形AECF 的面积.解:(1)证明:由折叠的性质可知:AM =AB ,CN =CD ,∠FNC =∠D=90°,∠AME =∠B=90°, ∴∠ANF =90°,∠CME =90°. ∵四边形ABCD 为长方形, ∴AB =CD ,AD ∥BC.∴AM =CN ,∠FAN =∠ECM. ∴AM -MN =CN -MN , 即AN =CM.在△ANF 和△CME 中,∠FAN =∠ECM,AN =CM ,∠ANF =∠CME, ∴△ANF ≌△CME(ASA). ∴AF =CE. 又∵AF∥CE,∴四边形AECF 是平行四边形. (2)∵AB=6,AC =10,∴BC =8.设CE =x ,则EM =8-x ,CM =10-6=4. 在Rt △CEM 中,(8-x)2+42=x 2, 解得x =5.∴S 四边形AECF =EC·AB=5×6=30.。

北师大版数学八年级下册知识点汇总

北师大版数学八年级下册知识点汇总

北师大版数学八年级下册知识点汇总第一章三角形的证明一、全等三角形判定、性质:1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)2.全等三角形的对应边相等、对应角相等。

二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。

推论1:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。

(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。

等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;三、等腰三角形的判定1. 有关的定理及其推论定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。

)推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。

2. 反证法:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。

这种证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形的两锐角互余直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。

2、直角三角形判定如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.五、线段的垂直平分线、角平分线1、线段的垂直平分线。

性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

北师大版八年级下册数学《第四章复习》教学设计

北师大版八年级下册数学《第四章复习》教学设计

北师大版八年级下册数学《第四章复习》教学设计一. 教材分析北师大版八年级下册数学《第四章复习》主要包括了第四章的内容,即二次根式、二次方程、二次不等式以及函数的性质。

这一章节的内容是初中数学的重要部分,也是初高中数学衔接的关键。

在教学设计中,我们需要让学生通过复习加深对基本概念的理解,强化对基本方法的掌握,提高解决问题的能力。

二. 学情分析学生在学习本章内容时,可能存在对二次根式的理解不够深入,对二次方程和二次不等式的解法掌握不牢固,以及对函数性质的理解不够全面等问题。

因此,在教学设计中,我们需要针对学生的这些问题,进行有针对性的讲解和辅导。

三. 教学目标1.让学生掌握二次根式的基本概念和运算方法;2.让学生熟练掌握二次方程和二次不等式的解法;3.让学生理解并掌握函数的性质,提高解决问题的能力。

四. 教学重难点1.二次根式的化简和运算;2.二次方程和二次不等式的解法;3.函数的性质的理解和应用。

五. 教学方法采用讲解法、问答法、案例分析法、小组讨论法等,结合多媒体教学,以提高学生的学习兴趣和参与度。

六. 教学准备1.准备相关的教学PPT和教学案例;2.准备相关习题和测试题,以便进行巩固和拓展;3.准备黑板和粉笔,以便进行板书。

七. 教学过程1.导入(5分钟):通过一个实际问题,引出二次根式、二次方程和二次不等式以及函数性质的重要性,激发学生的学习兴趣。

2.呈现(10分钟):讲解二次根式的基本概念和运算方法,通过PPT和板书进行展示,让学生理解和掌握。

3.操练(10分钟):让学生进行相关的练习,巩固对二次根式的理解和掌握。

4.巩固(10分钟):通过问答法,让学生回答二次方程和二次不等式的解法,并进行讲解和辅导。

5.拓展(10分钟):讲解函数的性质,并通过案例分析法,让学生理解和掌握。

6.小结(5分钟):对本节课的内容进行小结,让学生明确学习的主要内容。

7.家庭作业(5分钟):布置相关的习题,让学生进行巩固和提高。

北师大版八年级数学下册第一章复习(知识点+试题)

北师大版八年级数学下册第一章复习(知识点+试题)

知识点一:等腰三角形1、全等三角形的性质及判定全等三角形的性质:对应边相等,对应角相等。

判定三角形全等的四种方法:SSS, SAS, ASA, AAS.2、等腰三角形的性质定理:①等腰三角形,两底角相等(等边对等角)。

②等腰三角形,底边的高,顶角的角平分线,底边的中线重合。

(“三线合一”)③等腰三角形两底角的角平分线相等,两腰的中线相等,两腰的高相等。

(特殊线段相等)等腰三角形的判定定理:有两角相等的三角形是等腰三角形(等角对等边)。

知识点二:等边三角形1、等边三角形的性质定理:等边三角形,三条边相等,三个内角都相等,且都等于60°。

2、等边三角形的判定定理:①有一个角是60 °的等腰三角形是等边三角形。

②三个角都相等的三角形是等边三角形。

知识点三:反证法步骤:①假设:假设结论不成立;②推论:将假设当条件继续推论,得岀与已知条件、公理、定义、定理相矛盾的结论;③假设不成立;④原命题成立。

知识点四:直角三角形1、直角三角形性质定理:①角的角度:直角三角形,两锐角互余。

②边的角度:勾股定理:直角三角形中,两直角边的平方和等于斜边的平方。

2、直角三角形的判定定理:①角的角度:两锐角互余的三角形是直角三角形。

②边的角度:勾股定理的逆定理(在三角形中,若其中两边的平方等于第三边的平方,则此三角形是直角三角形。

)3、特殊的直角三角形:①在直角三角形中,有一个角是30°,则它所对的直角边是斜边的一半。

②在直角三角形中,若直角边是斜边的一半,那么直角边所对的角为30°。

4、“ HL”定理:斜边和一条直角边分别相等的两个三角形全等。

(注意:此定理只是用于直角三角形中,用之前要强调两个三角形是直角三角。

)知识点五:垂直平分线(点到点)1、性质定理:垂直平分线上的点到这条线段两个端点的距离相等。

2、判定定理:到线段两个端点的距离相等的点在这条线段的垂直平分线上。

(垂直平分线点到点的距离相等)V------------------判定定理3、三角形三边的垂直平分线:三角形的三条边的垂直平分线交于一点,并且这一点到三角形三个顶点的距离相等。

新北师大版八年级初二数学下册知识点总结归纳

新北师大版八年级初二数学下册知识点总结归纳

欢迎阅读北师大版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形判定、性质:1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)2.全等三角形的对应边相等、对应角相等。

二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。

推论1推论21.推论1推论22.1231性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

(外心)判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

2、角平分线。

性质:角平分线上的点到这个角的两边的距离相等。

三角形三条角平分线相交于一点,并且这一点到三条边的距离相等。

(内心)判定:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。

第二章一元一次不等式和一元一次不等式组1.定义:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。

2.基本性质:性质1:.不等式的两边都加(或减)同一个整式,不等号的方向不变. 如果a>b,那么a+c>b+c, a-c>b-c.(注:移项要变号,但不等号不变)性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变. 如果a>b,并且c>0,那么ac>bc,cb c a >. 性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变. 如果a>b,并且c<0,那么ac<bc, c b c a < 说明: 比较大小:作差法a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<03.不等式的解:能使不等式成立的未知数的值,叫做不等式的解4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

北师大版八年级下册数学知识点

北师大版八年级下册数学知识点

北师大版八年级下册数学知识点本文将介绍北师大版八年级下册数学的重点知识点,包括平面图形、三角形、线段比例、线性方程组和二次根式等内容。

一、平面图形1.平行四边形:具有两组对边分别平行的四边形,对边相等,对角线互相平分。

2.三角形:根据三边关系,可以分为等边三角形、等腰三角形和一般三角形。

根据角的关系,可以分为锐角三角形、钝角三角形和直角三角形。

3.多边形:指定端点后依次连线连接起来的图形。

常见的多边形有三角形、四边形、五边形、六边形等。

4.正方形:具有四个边相等,四个角相等的特殊四边形。

二、三角形1.三角形的内角和:三角形内角和等于180度。

2.直角三角形:其中一个内角为90度的三角形。

3.锐角三角形:三个内角均小于90度的三角形。

4.钝角三角形:其中一个内角大于90度的三角形。

5.等边三角形:具有三个边相等的三角形。

6.等腰三角形:具有两个边相等的三角形,对应的两个角也相等。

三、线段比例1.相似三角形:具有对应角相等,对应边成比例的两个三角形。

2.线段的比例:给定线段AB和CD,若存在点E使得AE/EB =CE/ED成立,则称线段AB和CD成比例。

四、线性方程组1.一元一次方程:仅含有一个未知数x,并且未知数的最高次数为1的方程。

形如ax+b=0。

2.一次方程组:含有两个或以上未知数、最高次数分别为1的多个方程组成的方程组。

3.边量:方程中不含未知数,只有常数项的项。

4.逐次消去法:通过将两给定方程之一的一个变量消去,使它变成一个新的方程组,在应用逐次消去法时,我们可以消去方程组中的任意一个或几个变量。

5.唯一解:方程组中,未知数的取值只有一个,能使所有的方程都成立。

6.无解:方程组中不存在任何一个解。

7.有无穷多个解:方程组中,未知数的取值有无穷多个,能使所有的方程都成立。

五、二次根式1.平方根:非负数a的平方根是满足b²=a的非负数b。

2.平方根性质:非负数a和b的平方根满足:平方根的积等于非负数的平方根,即√(a*b)=√a * √b。

北师大版初中数学八年级下册期末总复习

北师大版初中数学八年级下册期末总复习
八年级数学(下)总复习
第一章 一元一次不等式和一元一次不等式组
一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式
子叫做不等式。能使不等式成立的未知数的值,叫做不等式的解. 不等式的解
不唯一,把所有满足不等式的解集合在一起,构成不等式的解集. 求不等式解
集的过程叫解不等式.
3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间。
第一章 整章水平测试
一、填空题(每小题3分,共30分)
1.若代数式t?1t?1?的值不小于-3,则t的取值范围是_________. 52
2.不等式3x?k?0的正数解是1,2,3,那么k的取值范围是________.
由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组。
不等式组的解集 :一元一次不等式组各个不等式的解集的公共部分。
等式基本性质:
1、在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.
2、在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.
二、不等式的基本性质:
五、列一元一次不等式组解实际问题的一般步骤:
(1) 审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)
关系式列不等式(组)(4)解不等式组;检验并作答。
六、常考题型:
1、 求4x-6 7x-12的非负数解.
2、已知3(x-a)=x-a+1r的解适合2(x-5) 8a,求a 的范围.
若c&lt;0, 则ac&lt;bc
不等式的其他性质:反射性:若a&gt;b,则b&lt;a;传递性:若a&gt;b,且b&gt;c,、去分母; 2、去括号; 3、移项合并同类项; 4、系

1-1等腰三角形1-2直角三角形复习2022-2023学年北师大版数学八年级下册

1-1等腰三角形1-2直角三角形复习2022-2023学年北师大版数学八年级下册
(1)如图1,若∠BAC=∠DAE=60°,则△BEF是___等__边__三
角形;
(2)若∠BAC=∠DAE≠60° ①如图2,当点D在线段BC上移动,判断△BEF的形状并证明; ②当点D在线段BC的延长线上移动,△BEF是什么三角形?请 直接写出结论并画出相应的图形.
解:(1)∵AB=AC,AD=AE,∠BAC=∠DAE=60°, ∴△AED和△ABC为等边三角形, ∴∠C=∠ABC=60°,∠EAB=∠DAC, ∴△EAB≌△DAC, ∴∠EBA=∠C=60°, ∵EF∥BC, ∴∠EFB=∠ABC=60°, ∵在△EFB中,∠EFB=∠EBA=60°,
B
30°
的正北方向,此时它与灯塔的距离是
_2_0___3_海里(结果保留根号).
A
C

小结(2分钟)
(考点)
1、等腰三角形的性质与判定: 等边对等角、三线合一
2、等边三角形的性质定理及其判定定理 3、直角三角形的性质定理及其判定定理 4、反证法的证明步骤,互逆命题、互逆定理的概念
(易错点) 1.做没有图形的几何问题求边长或角度时应注意:
是否进行分类讨论
2.做互逆命题的问题应注意:
注意互逆命题的语言的准确性
当堂训练(15分钟) 1、如图,长方形纸片ABCD,AD∥BC,将长方
形纸片折叠,使点D与点B重合,点C落在点C’ 处,折痕为EF,则 △BEF为 等腰 三角形.
2.如图,已知∠AOB=60°,点P在边OA上,OP=8, 点M,N在边OB上,PM=PN,若MN=2,则ON=( B )
②AB=AC,点D为射线BC上一个动点(不与B、C重合),
以AD为一边向AD的左侧作△ADE,使AD=AE,
∠DAE=∠BAC,过点E作BC的平行线,交直线AB于点F,连 接BE.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学·新课标(BS)
易错地带 不等式两边都乘以(或除以)同一个பைடு நூலகம்数时,不等号的 方向要改变.
数学·新课标(BS)

考点二
一元一次不等式(组)的解法
2x-1 x+1 例 2 解不等式: -0.5(3x-5)- +1.25>0. 3 6 2x-1 3x-5 x+1 5 解:将小数全部变为分数,得 - - + >0. 3 2 6 4
1、如图,AB CD, ABD、BCE都是等腰三角形, 如果CD 8cm,BE 3cm,那么AC长为()
A.4cm
B.5cm
C.8cm
D. 34cm
2、如图,现要建一个加 油站,要求它到 l1 , l2 , l3
三条公路的距离相等, 则可供选择的地址有( )
A.1处
B.2处
C.3处
解:设至少涨到每股 x 元时才能卖出. 根据题意,得 1000x-(5000+1000x)×0.5%≥5000+1000. 1205 解这个不等式,得 x≥ ,即 6.06. 199 答:至少涨到每股 6.06 元时才能卖出.
数学·新课标(BS)
方法总结 列不等式解应用题关键是找到表示不等关系的语句, 如 本题中:“期望获利不低于 1000 元”.
数学·新课标(BS)
方法总结 解题的关键是根据题目中的关系列出函数关系式, 将 实际问题转化为数学问题, 再根据题目中的不等关系列出 不等式.
第一单元
证明二复习
第二单元一元一次不等式、一元一次不等式组 复习
第三单元 图形的平移与旋转复习
第四单元分解因式 复习(一) 第四章 复习(二) 第五单元 第六单元 分式 平行四边形
阶段综合测试四(期末一) 阶段综合测试五(期末二) 阶段综合测试六(期末三)
龙山学校:刘灶先
数学·新课标(BS)
1:等腰三角形 一、主要知识点 • 证明三角形全等的判定方法(SSS,SAS,ASA,AAS, • 证直角三角形全等 • 除上述外还有HL)及全等三角形的性质是对应边相等 ,对应角相等。 • 等腰三角形的有关知识点。 等边对等角;等角对等边;等腰三角形顶角的平分线 、底边上的中线、底边上的高互相重合。(三线合一) • 等边三角形的有关知识点。 判定:有一个角等于60°的等腰三角形是等边三角形 ; 三条边都相等的三角形是等边三角形; 三个角都是60°的三角形是等边三角形; 有两个叫是60°的三角形是等边三角形。 性质:等边三角形的三边相等,三个角都是60°。
数学·新课标(BS)
3.解不等式组 求不等式组的解集的过程,叫做解不等式组 ________________________. 4.解一元一次不等式组的两个步骤 (1)求出这个不等式组中各个不等式的解集; 公共部分 ,即 (2)利用数轴求出这些不等式的解集的________________________ 求出了这个不等式组的解集.
3.线段的垂直平分线 4.角平分线 一、主要知识点 • 线段的垂直平分线。线段垂直平分线上的点到这条线段两 个端点的距离相等; 到一条线段两个端点距离相等的点,在这条线段的垂直平 分线上。 三角形三条边的垂直平分线相交于一点,并且这一点到三 个顶点的 距离相等。 • 角平分线。 角平分线上的点到这个角的两边的距离相等。 在一个角的内部,且到角的两边距离相等的点,在这个角 的平分线上。 三角形三条角平分线相交于一点,并且这一点到三条边的 距离相等
数学·新课标(BS)
四、一元一次不等式组和它的解法 1.一元一次不等式组 一般地,关于同一未知数的几个一元一次不等式合在一 一元一次不等式组 . 起,就组成一个_________________________________________ 2.一元一次不等式组的解集
公共部分 , 一元一次不等式组中各个不等式的解集的 ________________________ 叫做这个一元一次不等式组的解集.
图 1-4
数学·新课标(BS)
方法总结 不等式组要分别求解,用数轴表示解集时要注意选取 公共部分.
数学·新课标(BS)
例4
x>2m+ 1, 如果不等式组 x>m+ 2
的解集为 x>-1, 那 ( D )
么 m 的值为
A.3 B.1 C.-1 D.-3 [解析] 由于不等式组的解集为 x>-1, 所以 2m+1 与 m +2 中必有一个是-1,故需要分类求解. 当 2m+1=-1 时,由不等式组解集的特点可知,2m+ 1≥m+2,解得 m=-1 且 m≥1,此时无解; 当 m+2=-1 时, 由不等式组解集的特点可知 m+2≥2m +1,解得 m=-3 且 m≤1,所以 m=-3,故选 D.
解:设有 x 个小朋友,则玩具的个数是(3x+4),根据
3x 题意,得 3x
+4-4x-1≥0, +4-4x-1<3.
解得 5<x≤8. 所以,小朋友的人数是 x=6,7,8. 相应的玩具数是: 3x+4=22,25,28.
数学·新课标(BS)
方法总结 列不等式组时,注意各个不等式符号的方向要在理解题 意的基础上来确定.
∠A+∠ABC+∠C=x+2x+2x=180°。
解得 x=36°,
在 ABC中,∠A=36°,∠ABC=∠C=72°。
2.直角三角形 一、主要知识点 1、直角三角形的有关知识。 直角三角形两条直角边的平方和等于斜边的平方; 如果三角形两边的平方和等于第三边的平方,那么这 个三角形是直角三角形; 在直角三角形中,如果一个锐角等于30°,那么它所 对的直角边等于斜边的一半; 在直角三角形中,斜边上的中线等于斜边的一半。 2、互逆命题、互逆定理 在两个命题中,如果一个命题的条件和结论分别是另 一个命题的结论和条件,那么这两个命题称为互逆命题, 其中一个命题称为另一个命题的逆命题. 如果一个定理的逆命题经过证明是真命题,那么它也 是一个定理,这两个定理称为互逆定理,其中一个定理称 为另一个定理的逆定理.
数学·新课标(BS)
2.一元一次不等式的解法 一元一次不等式的解法步骤和解的情况与一元一次方程对比如下表所示. 解一元一次方程 (1)去分母 (2)去括号 解法步骤 (3)移项 (4)合并同类项 (5)系数化成 1 解的情况 一元一次方程 只有一个解 解一元一次不等式 (1) 去 分 母 (2) 去 括 号 (3) 移 项 (4)合并同类项 (5)系数化成 1 在上面的步骤(1)和步骤(5)中, 如果乘数或除数是负数,要把 ____________________________ 不等号 改变方向 一元一次不等式的解集含有无 限多个数
去分母,得 4(2x-1)-6(3x-5)- 2(x+1)+3×5>0. 去括号,得 8x-4-18x+30-2x-2+15>0. 合并同类项,得-12x+39>0. 移项,得-12x>-39. 1 系数化为 1,得 x<3 . 4
数学·新课标(BS)
技巧总结 既含有分母又含有小数的不等式,可将小数化为分数, 也可将分数化为小数,但后者有可能出现无限小数,会使运 算答案不准确,故常将小数全部化成分数后再解不等式.
数学·新课标(BS)

考点一
不等式的性质
例 1 在下面横线上填上等号或不等号. 设 m>n,那么 < m-5________ n-5;-5m________ -5n; > m n > < ________ ;mp________ np(p<0) 10 10
[解析] 因为 m>n, 所以 m-5>n-5(根据不等式性 质 1); -5m<-5n(根据不等式性质 3); m n > (根据不等式性质 2); 10 10 mp<np(p<0)(根据不等式性质 3).
D.4处
3、如图,在等边三角形 ABC中,D、E分别为BC、AC上的点, 且AE CD,连结AD、BE交于点P,作BQ AD, 垂直为Q, 求证:BP 2 PQ
┃知识归纳 知识归纳┃ 第二章复习 ┃
一、不等式及其基本性质 1.定义 凡 用 符 号 “ < ”( 或 “≤”) , “ > ”( 或 “≥”) 连 接 的 式 子 叫 做 不等式 . __________________ 2.性质 性质 1 不等式两边都加上 (或减去 )同一个数或同一个整 不变 . 式,不等号的方向__________________ 性质 2 不等式两边都乘以(或除以)同一个正数 ,不等号 不变 . 的方向__________________ 性质 3 不等式两边都乘以(或除以)同一个负数, 不等号的 方向__________________ 要改变 .
数学·新课标(BS)
三、一元一次不等式和它的解法 1.一元一次不等式 左、右两边都是整式,只含有一个未知数,并且未知数 的 最 高 次 数 是 1 , 像 这 样 的 不 等 式 , 叫 做 一元一次不等式 ______________________________________________ .
例1 如图,在△ABC中,点D在AC边上, 且BD=BC=AD,求△ABC各角的度数.
解:∵AB=AC,BD=BC=AD, ∴ ∠ABC=∠C=∠BDC, ∠A=∠ABD(等边对等角)。 设∠A=x,则 ∠BDC=∠A+∠ABD=2x, 从而∠ABC=∠C=∠BDC=2x. 于是在 ABC中,有 B C D A
数学·新课标(BS)
例 6 一堆玩具分给若干个小朋友,若每人分 3 件,则 剩余 4 件;若前面每人分 4 件,则最后一人得到的玩具不足 3 件,求小朋友的人数与玩具数.
[解析] 本题属于分不足问题.这样的问题要注意最后 分配的语句.如本题中“最后一人得到的玩具不足 3 件”. 这里很多同学认为这不足 3 件, 至少应该是 1 件. 实 际上最后一个小朋友得到的玩具数最少是 0 个这样理解才 是正确的.
数学·新课标(BS)
2-x>0, 例 3 解不等式组5x+1 2x-1 +1≥ , 3 2 轴上表示出来.
相关文档
最新文档