第一章_从自然数到有理数复习课课件2
有理数复习 浙教版初中数学七年级上册课件(共12张PPT)
在数轴上表示的两个数,右边的总比左边的数_大__。 从左到右,越__来__越__大_ ;从右到左,_越__来__越__小_。
正数都_大_于__零,负数都_小__于_零,正数都_大__于_负数; 两个正数比较大小,_绝__对_值__大__的__数__大____; 两个负数比较大小,_绝_对__值__大__的_数__反__而__小_。
5. 把下列各数及它们的相反数表示在同一条数轴上, 并按从小到大的顺序用“<”连接。
1.5, 0, 1, 3
1、如果|a-1|与|b+2|互为相反数,那么a= 1,b= .
2、有理数a、b在数轴上的位置如下图所示 -2
a -b 0 b
-a
请比较a,-a,b,-b的大小,并用“>” 连接.
-a > b > -b >a
如果两个数只有符号不同,我们就称其中一个数为另一数的相反数。 在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧, 并且到原点的距离相等。
我们把一个数在数轴上对应的点到原点的距离叫做 这个数的绝对值。用符号“| |”来表示。
一个正数的绝对值是它本身; 一个负数的绝对值是它的相反数; 零的绝对值是零。 互为相反数是两个数的绝对值相等。 任何数的绝对值都是非负数
第一章复习课
1.1.1 从自然数到有理数 1.1.2从自然数到有理数 1.2 数轴 1.3 绝对值 1.4 有理数的大小比较
正整数 自然数
整数 零
(根据定义)
有理数
负整数
正分数 分数
负分数
用正负数来表示相反意义的量
数轴的定义:规定了原点、单位长度和正方向的直线 数轴的画法:画直线→定方向→取原点→定单位长度→标数 相反数及其在数轴上的性质
1、我们把两个具有 相反意义 的量,规定一种意义 的量为正的,另一种意义的量为 负 的. 比如,超过标准质量2克记为+2克,那么-3克表示 低__于_标__准__质__量__3_克__,恰好等于标准质量记作___0_克
浙教版2020-2021学年七年级数学上册 1.1 从自然数到有理数精品课件
课堂总结
归纳小结、反思提高
1.谈一谈:请学生回忆这节课主要 学了哪些内容,你感受最深的是什 么? 2.读一读:课本第15页的阅读材料
亲亲爱爱的的读读者者:: 1、学盛生而年活不思重相则来信罔,眼,一泪思日,而难眼不 再 泪学晨并则。不殆及代。时表宜软20自弱.7.勉。12,270.岁.172.月1.22不072.待1020人.92:。025。0099:0:055:0039J:0u5l-:20030J9u:l0-25009:05 春亲去爱春的又读回者,: 20、.7一世.1年上27之没.1计有2.在绝20于望20春的09,处:0一境50日 ,9:之只05计有:0在对3J于处ul晨境-20。绝0二望9:0〇的5二人〇。年二七〇月二十〇二年日七月20十20二年日7月201220日年星7月期1日2日 春去春又回,新新桃桃换换旧旧符符。。在在那那桃桃花花 32星、期莫千日等里闲之,行白,了始少于年足头下, 。空20悲20切年。7月12日星期日
2.张大妈在超市买了一袋洗衣粉,发现包装袋 上标有“净重500 5克”,张大妈看不懂是 什么意思,你能帮她解释清楚吗?
课后作业
3.如图一个台阶要铺地毯,则至少 要买地毯___m.
0.9m
2.8m
课后作业
4.一种商品有两种不同规格的包装,A种 商品的质量为75千克,价格为18元;B 种商品质量为120千克价格24元;哪一 种包装每千克的价格更低?
新课引入
大家想一想,在小学里,学习过哪些数?
自然数、整数、 分数、奇数、偶 数、质数(素 数)、合数。
新课引入
自然数概念指用以计量事物的件 数或表示事物件数的数 。 即用数 码0,1,2,3,4,……所表示的 数 。自然数由0开始 , 一个接一 个,组成一个无穷集体。
从自然数到有理数的知识点
从自然数到有理数的知识点
1. 自然数可是咱们最开始认识的数呀!就像咱们从一开始学走路一样,先得会站,自然数就是数学世界的第一步呢!比如说,你有 3 个苹果,这 3 就是自然数啦!
2. 后来呀,发现光有自然数不够用啦!这就像咱光会走路还不行,还得会跑呀!有理数就出现啦!像温度零下 3 度,这里的-3 就是有理数呀!
3. 有理数包含了自然数呢,这多神奇呀!就好比大树包含了小树苗呀!比如5 这个自然数,它也是有理数呀!
4. 那负数也是有理数哦,是不是很有意思呀!这就好像生活中不光有好事,也有坏事一样。
像支出 100 元,用-100 表示,它就是有理数呢!
5. 有理数还包括小数呢,哇塞,这范围可广啦!就像一个大宝藏,有各种各样的宝贝!呀,就是有理数。
6. 有理数在生活中用处可大啦!难道不是吗?像计算身高、体重都可能用到呀!你看,如果小明身高米,这不就是有理数嘛!
我觉得呀,从自然数到有理数,就像我们在数学世界里不断成长和探索,越来越有趣,越来越精彩!。
人教版七年级数学上册第一章《有理数》复习PPT课件
2/ 3 化简(1)-|-2/3|=___ ;
1/
由绝对值求数
3. 若|a|=3,则a=____ -1 ±3 ;|a+1|=0,则a=____ 若|a+1|=3,则a=____ 2,-4
1 4、已知a>0,ab<0,化简|a-b+4|-|b-a-3|=_____ 。
5、若
a a
> ,若 =1,则a____0
×
×
考点二:有理数的分类
一、按整数、分数分类:
整数
正整数 0 负整数 正分数 负分数
二、按正数、负数分类:
正有理数
正整数
正分数
有 理 数
有 理 数
0 负有理数
分数
负整数 负分数
1、0和正数 叫非负数 2、0和负数 叫非正数
3、0和负整数 叫非正整数
4、0和正整数叫非负整数 也叫自然数
分数 。 5、有限小数和无限循环小数属于_____
下列各式中用了哪条运算律?如何用字母表示? 1、(-4) × 8=8 ×(-4) ab=ba 乘法交换律: 2、[(-8)+5]+(-4)=(-8)+[5+(-4)] 加法结合律:( a+b)+c=a+(b+c) 2 1 2 1 3、 (6) [ ( )] (6) (6) ( ) 3 2 3 2 分配律: a(b+c)=ab+bc 4、[29×(-5/6)] ×(-12)=29×[(-5/6) ×(-12)] 乘法结合律:(ab)c=a(bc) 5、(-8)+(-9)=(-9)+(-8) 加法交换律: a+b=b+a
乘法三结合 1、积为整数结合 解 题 技 能
浙教版七年级数学上册第一章从自然数到有理数复习课件
两个正数比较大小,绝对值大的数大。两个负数 比较大小,绝对值大的数反而小。
18.用“>”或“<”填空
-3_<__1 3.15 __>___ -0.1__<___0.01
19.把有理数 2, 2 , 0, 1 用“<”连
接
2
2 0 1 2
2
2 _>___ 5
3
7
综合练习
21.下列说法错误的是
2,3,-7.5,-3,5,-8,3.5,4.5,8,-1.5 求这10名同学的总质量。 506千克
7.把下列各数填入相应的括号内:
2.3,13,1 ,0,1 ,0.15, 2, 2, 5
6
3
自然数: {13,0,1}
负整数: { 2, 5}
正有理数: {13,1 ,1 ,0.15} 6
正分数: { 1 ,0.15} 6
( B)
A.任何有理数都有相反数
B.-1是最大的负有理数
C.任何有理数都有绝对值
D.零是最小的自然数
22.甲、乙两数在数轴上表示如图,下列说法正确的是( C )
甲
0乙
A.甲数的相反数比0小,乙数的相反数比0大 B.甲数的相反数小于乙数的相反数,都比0小 C.甲数的相反数比0大,乙数的相反数比0小 D.甲数的相反数大于乙数的相反数,都比0大
正整数 零 负整数
正分数 负分数
自然数
注:所有的有理数都 可以写成有限小数或 无限循环小数情势.
3.请你按正数,负数的标准对有理数进行分类。 正整数
正有理数
有理数
零 负有理数
正分数 负整数 负分数
注:零既不是正数 也不是负数
4.具有相反意义的量
我们把两个具有 相反意义 的量,规定一种意义 的量为正的,另一种意义的量为 负 的.
第一章有理数 小结 课件(共25张PPT) 人教版数学七年级上册
知识回顾
问题 3:尝试用一个图表示有理数的分类.
正有理数
有理数
0
负有理数
问题 4:数轴与普通的直线有什么不同?怎样在数轴上表示有理数? 怎样利用数轴解释一个数的相反数和绝对值?
规定了原点、正方向和单位长度的直线.
-4 -3 -2 -1 0 1 2 3 4
问题 4:数轴与普通的直线有什么不同?怎样在数轴上表示有理数? 怎样利用数轴解释一个数的相反数和绝对值?
学以致用
课堂练习
1. 填空题: (1)如果温度上升 3 ºC 记作+3 ºC,那么下降 2 ºC 记作 __-__2__ ºC; (2)如果收入用正数表示,支出用负数表示,那么-56 元表示 支__出__ ____5_6_元_____. 分析:本题考查了用正数和负数表示具有相反意义的量,指定方向 为正,与指定方向相反的方向即为负.
只有符号不同的两个数互为相反数.0 的相反数是 0.
例如:-4 的相反数是 4;-(-4)=4.
4
4
-4 -3 -2 -1 0 1 2 3 4
数轴上表示数 a 的点与原点的距离叫作数 a 的绝对值.记作∣a∣.
例如:∣-4∣=4.
这里的数 a 可以是 正数、负数和 0.
4 -4 -3 -2 -1 0 1 2 3 4
有理数
数 与 点 的 对 应
数轴
数形结合
相反数 绝对值
研究有理数的重要工具
4
4
-4 -3 -2 -1 0 1 2 3 4
4
-4 -3 -2 -1 0 1 2 3 4
直观描述
问题 5:如何比较有理数的大小?数轴能发挥怎样的作用? 在水平的数轴上表示有理数,数学中规定:它们从左到右的顺序, 就是从小到大的顺序,即左边的数小于右边的数.
1.1.(1)从自然数到有理数
自然数:2008,5,1,6,8,100,36,100. 用于计数和测量:"6车道""8万辆""100千 米/时""36千米""100年"中的数 表示标号或排序:"2008年5月1日"中的数.
1、2002年全国共有高等学校2003所 • 标号和排序 计数 2、小明乘坐K598从杭州到临安,然后 做K7去学校 • 标号和排序 3、香港特别行政区的中国银行大厦高 36米,地上70层,至1993年为止是 世界上第5高楼。
课后作业
1、作业本1.:1.1从自然数到有理数(1) 2、书本P6, 2、3、5题
1.1从自然数到有理数(1)
七年级上册
数的起源
有/没有 多/ 少 一对一比较 屈指数数
自然数的作用:
计数
测量 标号 排序
杭州湾跨海大桥
杭州湾跨海大桥于2008年5月1 日全线通车.这座6车道公路斜拉桥设 计日通车量为8万辆,时速100千米/时, 全长36千米,使用年限为100年, 是当 时世界上最长、工程量最大的跨海大 桥. 你在这段报道中看到了哪些数?请找 出这些数,并说明它们哪些表示计数和 测量,哪些表示标号或排序.
• 测量 计数 标号和排序
1. 小华和她的7位朋友一起过生日,要平均分 享一块生日蛋糕,每人可得多少蛋糕?
2.小明的身高是168厘米,如果改用米作单位, 应怎样表示?
• 分数可以看做是两个整数相 除。分数都可以化为小数
1、你能帮小慧列出算式吗? 如果用自 然数怎样列算式? 用分数呢? 自然数列算式:400÷100=4(时),
1. 鸟类中最大的示鸵鸟蛋的质量?
小结
1、自然数可用来计数、测量、标 号和排序;分数在实际生活在起 着测量和分配的作用 2、分数和小数之间可以相互转换 3、体验数的运算是人们分析、判断、 解决实际问题的重要手段 4、数不够用了,数的范围是不断扩 大的
1.1从自然数到有理数2讲课讲稿
思考1:
月球表面白天气温可高 达123℃,夜晚可低至- 233℃. 图中阿波罗11号的 宇航员登上月球后不得不 穿着既防寒又御热的太空 服。
上面123℃和-233℃这两个量 分别表示什么吗?
具有相反意义的量的含义:
一是两个量,数字部分可以不相等; 二是必须要具有相反的意义,缺一不可。
3.如果+3表示转盘沿逆时针方向转3圈,那么-6表 示_转___盘____沿__顺___时___ 针___方____向_ _转____6_圈__ 。
记住啦!
我们学过的数中又来新成员了:
1,2,3,称为正整数; 相应的,1, 2, 3,称为负整数; 1 ,2,5,称为正分数; 234 相应的, 1 , 2, 5,称为负分数。
;
6.非负数集合 7,0,33 4,0.01, 67,20000,2 7 2
;
7.有理数集合 2 0 ,7 , 7 5 2 ,0 ,3 3 4 , 2 .7 5 ,0 .0 1 , 6 7 , 7 4 ,2 0 0 0 0 ,2 7 2 .
练一练:
1、判断表中各数分别是什么数,在相应的空 格内打“√”:
练一练:
1.填空:
(1)汽车在一条南北走向的高速公路上行驶,规定 向北行驶的路程为正。汽车向北行驶75km,记做 __7_5___km(或_+_7_5_km),汽车向南行驶100km, 记做__-__1_0_0__km;
(2)如果向银行存入50元记为50元,那么-30.50元 表示_从__银__行__取__出__3__0_.5__0_元_____; (3)规定增加的百分比为正,增加25%记做__2_5_%___,
234
特别提醒:零既不是正数,也不是 负数!
从自然数到有理数(解析版)--暑假自学课
第01讲 从自然数到有理数1.掌握正数和负数的定义和实际应用;2.掌握有理数的概念,认识带“非”字的有理数;3、认识0的实际含义;知识点一、自然数的概念自然数是指用以计量事物的件数或表示事物次序的数。
即用数码0,1,2,3,4……所表示的数。
自然数由0开始,一个接一个,组成一个无穷的集体。
自然数有有序性,无限性。
分为偶数和奇数,合数和质数等知识点二、正数与负数1)正数:像3,1.8%,3.5这样大于0的数叫做正数.正数都大于0.2)负数:像3−, 2.7−这样在正数前加上符号“−”(负)号的数叫做负数.负数都小于0. 3)符号:一个数前面的“+”,“−”号叫做它的符号.正数前面的“+”号可以省略,注意3与3+表示是同一个正数.负数前面的“−” 号不可以省略. 注:不能简单的根据符号来判断正负,而需要根据正负数的定义判别.,0,00,0a a a a < −=> =正数负数知识点三、用正数和负数表示具有相反意义的量:如果正数表示某种意义,那么负数表示它的相反意义,反之亦然.比如:用正数表示向南,那么向北3km −可以用负数表示为3km −.“相反意义的量”包括两个方面的含意:一是相反意义;二是要有量.知识点四、.“0”的特殊性1)0既不是正数,也不是负数;2)0是正数与负数的分界;3)0是自然数;4)0的意义:0有时表示没有,比如文具盒中有0支铅笔,表示没有铅笔;0有时是一个数,比如0℃是一个确定的温度;0有时也作为基准,比如海拔高度为0m 表示的是海平面的平均高度.知识点五、有理数的概念与分类1)整数:正整数、0、负整数统称为整数.所有的正整数组成正整数集合,所有的负整数组成负整数集合.2)分数:正分数、负分数统称为分数.有限小数和无限循环小数可以化为分数,所以我们也把它们看成分数.3)有理数:整数和分数统称为有理数.4)有理数的分类:(1)()正整数自然数整数零有理数按定义分类负整数正分数分数负分数 (2)()(,)正整数正有理数正分数有理数按符号分类零零既不是正数也不是负数负整数负有理数负分数 注意:1)会对整数和分数进行简单分类;2)整数与分数都是有理数的范畴,有限小数、无限循环小数是有理数;5)常用数学概念的含义1)正整数:既是正数,又是整数;2)负整数:既是负数,又是整数3)正分数:既是整数,又是分数;4)负分数:既是负数,又是分数5)非正数:负数和0;6)非负数:正数和07)非正整数:负整数和0;8)非负整数:正整数和0考点一:正负数的意义例【变式训练】考点二:正负数的实际应用例2.(2023·云南昆明·统考一模)中国是最早采用正负数表示相反意义的量,并使用负数进行运算的国家.当前,手机移动支付已经成为新型的消费方式,节日当天妈妈收到微信红包80元记作80+元,则妈妈微信转账支付67元可以表示为( )A .80+元B .80−元C .67+元D .67−元 【答案】D【分析】根据正数和负数表示相反意义的量,可得答案.【详解】解:如果微信红包80元记作80+元,那么微信转账支付67元记为67−元.故选:D .【点睛】本题考查了正数和负数,理解相反意义的量是解题关键.【变式训练】1.(2022秋·福建漳州·七年级统考期末)“英寸”是电视机常用尺寸,如图,“1时”即“1英寸”约为中学生大拇指第一节的长,则7英寸长相当于( )A .一支粉笔的长度B .课桌的长度C .教室门的宽度D .数学课本的宽度【答案】D 【分析】1英寸约为大拇指第一节的长大约有3~4厘米,7英寸长是它的7倍.【详解】解:根据题意可得1英寸约为大拇指第一节的长,大约有3~4厘米,所以7英寸长相当于数学课本的宽度.故选:D .【点睛】本题考查了数学常识,基本的计算能力和估算的能力,属于基础题,解答时可联系生活实际去解.2.(2022秋·七年级单元测试)一袋食品的包装袋上标有300g 5g ±的字样,它的含义是______.【答案】这袋食品的质量与标准质量300g 相比,超重不超过5g ,不足也不超过5g【分析】利用生活中的数学知识,利用±表示比标准质量可能多也可能少解决本题即可.【详解】解:5±表示比300g 超重不超过5g ,不足也不超过5g .故答案为:这袋食品的质量与标准质量300g 相比,超重不超过5g ,不足也不超过5g .【点睛】本题考查了有理数中正负数的实际应用,把正数和负数与日常生活相联系是解答本题的关键. 3.(2022秋·安徽蚌埠·七年级校考阶段练习)下表是某班5名同学某次数学测试成绩,根据信息回答问题:姓名王芳 刘兵 张沂 李聪 江文 成绩89 84 与全班平均分之差+2 0 6− 2−(1)把表格补充完整;(2)若不低于平均分的成绩是合格,求5名同学的合格率?【答案】(1)86,78,82,+5(2)60%【分析】根据有理数加减法在实际问题中的应用,可知高于基准为正,低于基准为负,有张沂可知,平均分为84 分,由此即可求出其他同学的成绩,由合格人数除以总人数乘以百分比即可求出答案.【详解】(1)解:由表格中张沂的信息可得出,平均分为84分,∴刘兵成绩:84286+=(分),李聪成绩:84678−=(分),江文成绩:84282−=(分),王芳成绩:89845−=+,故答案是:86,78,82,+5;(2)解:平均分为84 分,合格有刘兵,张沂,王芳,∴合格率是:(35)100%60%÷×=, 故答案是:60%.【点睛】本题主要考查有理数的加减法的应用,以及合格率的计算,解题的关键的找出“基准”,且“高于基准为正,低于基准为负”.考点三:认识0的实际意义 例【变式训练】1.(2022秋·河北保定·七年级统考期中)下面关于0的说法,正确的是( )A .0既不是正数也不是负数B .0既不是整数也不是分数C.0不是有理数D.0的倒数是0【答案】A【分析】依据倒数,有理数相关概念以及有理数分类判断即可.【详解】A.0既不是正数,也不是负数,故此选项正确,符合题意;B.0是整数,不是分数,故此选项错误,不符合题意;C.0是有理数,故此选项错误,不符合题意;D.0不存在倒数,故此选项错误,不符合题意.故选A.【点睛】本题考查了有理数,0是重要的数字,掌握有理数的相关概念和分类是解题的关键.2.(2022秋·全国·七年级专题练习)下列关于零的说法中,正确的是________①零是正数②零是负数③零既不是正数,也不是负数④零仅表示没有【答案】③【分析】根据零既不是正数也不是负数以及不同情形下零表示的意义不同进行逐一判断即可.【详解】解:①零不是正数,说法错误;②零不是负数,说法错误;③零既不是正数,也不是负数,说法正确;④零不仅仅表示没有,不同情形下,零表示的意义不同,说法错误;故答案为:③.【点睛】本题主要考查了有理数的分类,熟知零表示的意义是解题的关键.3.(2022秋·全国·七年级专题练习)“不是正数的数一定是负数,不是负教的数一定是正数”的说法对吗?为什么?【答案】不对,因为0既不是正数也不是负数.【分析】举反例进行说明即可.【详解】不对.因为0既不是正数也不是负数.【点睛】本题主要考查了0的意义,掌握“0既不是正数也不是负数”是解题的关键.考点四:有理数的概念与分类例4.(2022秋·云南昆明·七年级校考期中)下列说法中正确的是()A.0既不是整数也不是分数B.绝对值等于本身的数是0和1C.一个数的绝对值一定是正数D.整数和分数统称有理数【答案】D【分析】根据有理数、绝对值等相关概念进行判断.【详解】A选项:0是整数,故A选项错误;B选项:非负数的绝对值等于本身,故B选项错误;C选项:一个数的绝对值是正数或0(即非负数),故C选项错误;D选项:整数和分数统称为有理数,故D选项正确.故选:D【点睛】本题考查有理数、绝对值等相关概念,正确理解有理数、绝对值等概念是解题的关键.【变式训练】考点五:带“非”字的有理数例错误的说法为()A.①②③④⑤B.①②③④C.②③④⑤D.①②④⑤【答案】B【变式训练】−.故答案为:5【点睛】本题考查用正负数表示两种具有相反意义的量,熟练掌握用正负数表示两种具有相反意义的量是解答本题的关键.相反意义的量:按照指定方向的标准来划分,规定指定方向为正方向的数用正数表示,则向指定方向的相反的方向变化用负数表示,正与负是相对的.8.(2020·湖北宜昌·中考真题)向指定方向变化用正数表示,向指定方向的相反方向变化用负数表示,“体重减少1.5kg”换一种说法可以叙述为“体重增加_______kg”.【答案】-1.5【分析】根据负数在生活中的应用来表示.【详解】减少1.5kg可以表示为增加﹣1.5kg,故答案为:﹣1.5.【点睛】本题考查负数在生活中的应用,关键在于理解题意.9.(2020·福建·统考中考真题)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为+米,根据题意,“海斗基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为100一号”下潜至最大深度10907米处,该处的高度可记为_________米.−【答案】10907【分析】海平面以上的高度用正数表示,海平面以下的高度用负数表示.据此可求得答案.+米,【详解】解:∵高于马里亚纳海沟所在海域的海平面100米的某地的高度记为100∴“海斗一号”下潜至最大深度10907米处,可记为-10907,故答案为:-10907.【点睛】本题考查了正数,负数的意义及其应用,解题的关键是掌握正数、负数的意义.1.(2023·吉林·统考一模)中国是最早采用正负数表示相反意义的量并进行负数运算的国家. 若气温上升7℃,记作:7+℃,那么气温下降10℃可记作()A.7℃B.10℃C.D.7−℃这一年上述四国中服务出口增长的国家是()A.美国B.德国C.英国D.中国【答案】D【分析】根据正负数的意义,进行判断即可.【详解】解:由表格可知,美国,德国,英国的增长率为负数,服务出口降低,中国的增长率为正数,服务出口增长;故选D.【点睛】本题考查正负数的意义.熟练掌握正负数的意义,是解题的关键.6.(2023秋·河北邯郸·七年级统考期末)北京与柏林的时差为7小时,例如,北京时间14:00,同一时刻的柏林时间是7:00.小丽和小红分别在北京和柏林,她们相约在各自当地时间8:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间()A.9:30 B.11:30 C.13:30 D.15:30【答案】D【分析】根据柏林时间比北京时间早7小时解答即可.【详解】解:由题意得,柏林时间比北京时间早7小时,当柏林时间为8:00,则北京时间为15:00;当北京时间为17:00,则柏林时间为10:00;所以这个时间可以是北京时间的15:00到17:00之间,故选:D.【点睛】本题考查了正数和负数,解此题的关键是根据题意写出算式,即把实际问题转化成数学问题.7.(2023秋·山东日照·七年级日照市新营中学校考阶段练习)如图所示的是图纸上一个零件的标注,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A.29.8mm B.30.03mm C.30.02mm D.29.98mm【答案】A【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.【详解】解:∵30+0.03=30.03,30-0.02=29.98,∴零件的直径的合格范围是:29.98mm≤零件的直径≤30.03mm.∵29.8mm不在该范围之内,∴不合格的是A.故选:A.【点睛】本题主要考查的是正数和负数的意义,根据正负数的意义求得零件直径的合格范围是解题的关键.8.(2023秋·河南郑州·七年级校考阶段练习)小强在笔记上整理了以下结论,其中错误的是()A.有理数可分为正数、零、负数三类B.一个有理数不是整数就是分数C.正有理数分为正整数和正分数D.负整数、负分数统称为负有理数【答案】A【分析】根据有理数的分类逐一分析即可.【详解】解:A.有理数可分为正有理数、零和负有理数,故该项结论错误;B.整数和分数统称为有理数,所以一个有理数不是整数就是分数,故该项结论正确;C.正有理数分为正整数和正分数,故该项结论正确;【答案】6【分析】直接根据正负数的意义计算即可.【详解】∵当天最高气温∴这一天我市的温差是故答案为:6.【答案】4天后,甲水库水位上升12cm ,乙水库水位下降20cm【分析】根据甲、乙水库水位每天的升高和下降的量,即可计算总的变化量【详解】∵甲水库的水位每天升高3cm ,∴4天后,甲水库水位总的变化量是:()3412cm ×=∵乙水库的水位每天下降5cm ,∴4天后,乙水库水位总的变化量是:()5420cm −×=−答:4天后,甲水库水位上升12cm ,乙水库水位下降20cm【点睛】本题考查了正负数的实际应用,读懂题意是解决问题的关键17.(2023春·上海·六年级专题练习)某班级抽查了10名同学的期末成绩,以80分为基准,超出的分数记为正数,不足的分数记为负数,记录的结果如下(单位:分):+8、﹣3、+12、﹣7、﹣10、﹣3、﹣8、+1、5、+10.这10名同学中,(1)最高分是多少?(2)最低分是多少?(3)10名同学的平均成绩是多少?【答案】(1)92分(2)70分(3)80.5分【分析】(1)根据正负数的意义,可得答案;(2)根据正负数的意义,可得答案;(3)根据平均数的意义,可得答案.【详解】(1)最高分是801292+=分; (2)最低分是801070−=分; (3)10名同学的平均成绩是()8083127103815101080.5+−+−−−−+++÷=分. 【点睛】本题考查了正数和负数,利用正负数的意义超出的分数记为正数,不足的分数记为负数是解题关键.18.(2023秋·山东滨州·七年级统考期末)某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g) 5 2 0 1 3 6袋数 1 4 3 4 5 3这批样品的平均质量比标准质量多还是少?多或少几克?若每袋标准质量为500克,则抽样检测的总质量是多少?【答案】这批样品的平均质量比标准质量多,多1.2克,抽样检测的总质量是10024克.【分析】根据表格中的数据计算与标准质量的差值的总数,再除以20,如果是正数,即多,如果是负数,即少;根据标准质量结合前边的结论进行计算抽样检测的总质量.【详解】与标准质量的差值的和为-5×1+(-2)×4+0×3+1×4+3×5+6×3=24,其平均数为24÷20=1.2,即这批样品的平均质量比标准质量多,多1.2克.则抽样检测的总质量是(500+1.2)×20=10024(克).【点睛】本题考查了正数和负数,掌握有理数的加法是解题关键.。
七年级上册数学第一章+有理数复习课件(共51张PPT)
7.某检修队从A 地出发,在东西方向 的公路上检修线路,如果规定向东行 驶为正,向西行驶为负,这个检修队 一天中行驶的距离记录如下(单位千 米):-4,+7,-9,+8,+6, -5,-3。
问:⑴ 收工时在A地的什么位置?
⑵若每千米所耗油0.3升,从出发到收
工时总共耗油多少升?
规定了_原__点__、___正__方__向___和__单__位__长___度__的直线叫数轴。
正整数
正有理数
有
正分数
理
0
数
负整数
负有理数
负分数
说明:①分类的标准不同,结果也不同;②分类 的结果应无遗漏、无重复;③零是整数,但零既 不是正数,也不是负数.
1.零是整数吗?自然数一定是整数吗?自 然数一定是正整数吗?整数一定是自然数 吗?
零是整数;自然数一定是整数;自 然数不一定是正整数,因为零也是 自然数;整数不一定是自然数,因 为负整数不是自然数。
(2)|-3.3|-|+4.3|=__-_1_____;
1
(3)1-|-
1 2
|=____2____;
(4)-1-|1- 1
2
3
|=____2______。
5.填空题。 1)若|a-1|=3,则a=_4_或_-_2; 2)|a+1|=0,则a=__-1__。 3)若|a-5|+|b+3|=0, 则a=_5_,b=_-_3。
3.互为相反数的两个数相加得0。 4.一个数与零相加,仍得这个数。
分析特征 强化理解 总结步骤
(- 4) + (- 8)= -
↓
↓
↓
(4+8) =-12
↓
同号两数相加 取相同符号 通过绝对值化归
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A C B -3 -2 -1 0 1 2 3 4
抢答题2:
1 小蚂蚁CoCo找到了三个数4 ,5 3 ,-2
它想把三个数拿到下面的圆圈中,你能 帮助小蚂蚁吗?
负数集合
整数集合
抢答题3:
小蚂蚁CoCo不小心把一个正方体纸盒 -7、2都掉下了 ,请同学们把六个数分别
踢翻了,它上面的六个数-10、7、10、-2、 填入六个正方形,使得折成正方体后,相对
谢谢同学们与我 一起经历了学习的过 程,祝:同学们,健康、 快乐.
小蚂蚁CoCo
1、通过这节课的学习活动你有哪些 收获? 2、对这节课的学习,你还有什么想 法吗?
面上的两个数互为相反数。
抢答题4:30分
小蚂蚁CoCo这一天边玩边学,在东西走向的 路上开着小汽车 从原点0处出发,规定向 东为正。它这一天的行车的情况如下(单位: 千米) +5,-2,-1,+3,-6,-1. 问:(1)小蚂蚁CoCo一共行了多少千米? (2)若小汽车耗油量为0.2升/千米,则共 耗油多少升? (3)同学们,你们知道小蚂蚁CoCo最后在 谁家吗?
哇噻!数学的世界 真精彩。我要进去 闯一下!!!
小蚂蚁CoCo
问题
小蚂蚁CoCo发现了下面的一个图形, 同学们你能告诉小蚂蚁这个图形是什么 吗? 从数轴上同学们还能发现其它知识 吗?并尽可能多的写出.
数形结合
- 4 -3 -2 -1 0 1 2 3 4
抢答题1:
小蚂蚁CoCo到小猪家点A处,则距 小猪家3个单位长度,这个数是什么? 你是如何做出?
A C B -3 -2 -1 0 1 2 3 4
抢答题3:
小蚂蚁CoCo从原点0出发,先向右移动1 个单位,再向左移动2个单位,然后向右移动3 假如小蚂蚁CoCo继 个单位,再向左移动4个单位. 求小蚂蚁CoCo共移动了几个单位长度? 续移动,向右移动5个单位,再向左移动6个单位 终止时小蚂蚁CoCo对应的的数是多少? 再继续移动,向右移动7个单位,再向左移动8个 单位,向右移动9个单位,再向左移动10个单 位,…最后向右移动(n-1)个单位,再向左移动 n个单位.
抢答题5:30分
a b c a, b, c 是有理数,试 探究 a b c
的值是多少?
温馨提示:分类讨论
图中数轴单位为相反数,试在 数轴上标出原点 O的位置.
(2)试分别写出点A,B,C 所表示的数.
正式足球比赛所用足球的质量有严格规定:下面 6个足球的质量检测结果,用正数记超过规定质 量的克数,用负数记不足规定质量的克数.检测结 果(1)-25,(2)+10,(3)-20,(4)+30, (5)+15,(6)-40 请指出哪个足球的质量好一些,说明理由.