2020年甘肃省白银市中考数学试卷

合集下载

甘肃省白银市2020年(春秋版)中考数学试卷B卷

甘肃省白银市2020年(春秋版)中考数学试卷B卷

甘肃省白银市2020年(春秋版)中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)等式(a+1)0=1的条件是()A . a≠﹣1B . a≠0C . a≠1D . a=﹣12. (2分) (2020八上·常州期末) 近年来,人们对PM2.5 (空气中直径小于等于2.5微米的颗粒)的关注日益密切.我市某天中PM2.5的值y1 (u g/m3) 随时间t (h)的变化如图所示,设y2表示0时,到t时PM2.5的最大值与最小值的差,则y2与t的函数关系大致是()A .B .C .D .3. (2分)(2020·黑龙江) 如图是由5个立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是()A .B .C .D .4. (2分) 12月2日,2018年第十三届南宁国际马拉松比赛开跑,2.6万名跑者继续刷新南宁马拉松的参与人数纪录!把2.6万用科学记数法表示为()A . 0.26×103B . 2.6×103C . 0.26×104D . 2.6×1045. (2分) (2015九上·山西期末) 下列计算正确的是()A .B .C .D .6. (2分) (2016九上·南开期中) 如图,△ABO中,AB⊥OB,OB= ,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为()A . (﹣1,)B . (﹣1,)或(﹣2,0)C . (,﹣1)或(0,﹣2)D . (,﹣1)7. (2分) (2018九上·唐河期末) 已知关于x的方程kx2+(1-k)x-1=0,下列说法正确的是().A . 当时,方程无解B . 当时,方程有两个相等的实数解C . 当时,方程有一个实数解D . 当时,方程总有两个不相等的实数解8. (2分)已知两圆的半径分别为1和3,当这两圆内含时,圆心距d的范围是()A . 0<d<2B . 1<d<2C . 0<d<3D . 0≤d<29. (2分)如图,这是一个可以自由转动的转盘,转动这个转盘,当它停下时,指针最可能停的区域是()A . AB . BC . CD . D10. (2分)已知一次函数y=ax﹣c的图象如图所示,则二次函数y=ax2+c的图象大致是()A .B .C .D .11. (2分)若圆锥的母线长为4cm,底面半径为3cm,则圆锥的侧面展开图的面积是()A . 6πcm2B . 12πcm2C . 18πcm2D . 24πcm212. (2分) (2018九上·嵩县期末) 如图,在直角梯形ABCD中,AD∥BC,∠B=90度,AC将梯形分成两个三角形,其中△ACD是周长为18cm的等边三角形,则该梯形的中位线的长是()A . 9cmB . 12cmC . cmD . 18cm二、填空题. (共6题;共7分)13. (1分) (2019八上·西安期中) 比较大小: ________ (填“>”,“<”或“=”).14. (1分) (2019八上·合肥期中) 已知与成正比例关系,且当时,,则时,________.15. (1分)(2013·深圳) 写有“中国”、“美国”、“英国”、“韩国”的四张卡片,从中随机抽取一张,抽到卡片所对应的国家为亚洲的概率是________.16. (1分)(2017·济宁模拟) 分式方程 +1= 的解是________.17. (1分) (2019八下·高要期中) 如图,折叠形ABCD的一边AD,点D落在BC边上的点F处,AE是折痕,已知AB=8cm,BC=10cm.则CE=________cm.18. (2分) (2018七上·昌图月考) 观察下列各数,按某种规律在横线上填上适当的数:-23,-18,-13,________,________.三、解答题. (共8题;共76分)19. (10分) (2018七下·深圳期中) 计算(1)(2)(3x+y)(3x-y)20. (5分)如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD ,CD∥AB .若⊙O的半径为1,求图中阴影部分的面积(结果保留π).21. (10分)(2016·抚顺模拟) 我市某蔬菜生产基地在气温较低时,用装有恒温系统的大鹏栽培一种在自然光照且温度为18℃的条件下生长最快的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解析下列问题:(1)求y与x的函数关系式;(2)当x=16时,大棚内的温度约为多少度?22. (15分)某中学为了了解八年级学生体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级,请根据两幅统计图中的信息,回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?23. (7分)(2011·南京) 小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍.小颖在小亮出发后50min 才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m,图中的折线表示小亮在整个行走过程中y与x的函数关系.(1)小亮行走的总路程是________ m,他途中休息了________ min;(2)①当50≤x≤80时,求y与x的函数关系式;②当小颖到达缆车终点时,小亮离缆车终点的路程是多少?24. (6分)(2020·昆明) (材料阅读)2020年5月27日,2020珠峰高程测量登山队成功登顶珠穆朗玛峰,将用中国科技“定义”世界新高度.其基本原理之一是三角高程测量法,在山顶上立一个规标,找到2个以上测量点,分段测量山的高度,再进行累加.因为地球面并不是水平的,光线在空气中会发生折射,所以当两个测量点的水平距离大于300m时,还要考虑球气差,球气差计算公式为f=(其中d为两点间的水平距离,R为地球的半径,R取6400000m),即:山的海拔高度=测量点测得山的高度+测量点的海拔高度+球气差.(问题解决)某校科技小组的同学参加了一项野外测量某座山的海拔高度活动.如图,点A,B的水平距离d=800m,测量仪AC=1.5m,觇标DE=2m,点E,D,B在垂直于地面的一条直线上,在测量点A处用测量仪测得山项觇标顶端E的仰角为37°,测量点A处的海拔高度为1800m.(1)数据6400000用科学记数法表示为________;(2)请你计算该山的海拔高度.(要计算球气差,结果精确到0.01m)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)25. (11分)(2013·淮安) 如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方向的运动,到达点B后立即原速返回,若P、Q两点同时运动,相遇后同时停止,设运动时间为t秒.(1)当t=________时,点P与点Q相遇;(2)在点P从点B到点C的运动过程中,当t为何值时,△PCQ为等腰三角形?(3)在点Q从点B返回点A的运动过程中,设△PCQ的面积为S平方单位.①求S与t之间的函数关系式;②当S最大时,过点P作直线交AB于点D,将△ABC中沿直线PD折叠,使点A落在直线PC上,求折叠后的△APD 与△PCQ重叠部分的面积.26. (12分)(2020·濮阳模拟)(1)发现探究:如图1,矩形和矩形位似,,连接,则线段与有何数量关系,关系是________.直线与直线所夹锐角的度数是________.(2)拓展探究:如图2,将矩形绕点逆时针旋转角,上面的结论是否仍然成立?如果成立,请就图2给出的情况加以证明.(3)问题解决:若点是的中点,,连接,,在矩形绕点旋转过程中,请直接写出长的取值范围.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题. (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题. (共8题;共76分)19-1、19-2、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。

白银市2020版中考数学试卷B卷

白银市2020版中考数学试卷B卷

白银市2020版中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) 4的平方根是()A . 8B . 2C . ±2D .2. (2分)(2018·番禺模拟) 如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是()A . ①②B . ①③C . ②④D . ③④3. (2分)下面关于投针实验的说法正确的是()A . 针与平行线相交和不相交的可能性是相同的B . 针与平行线相交的概率与针的长度没有关系C . 实验次数越多,估算针与平行线相交的概率越精确D . 针与平行线相交的概率受两平行线间距离的影响4. (2分)在函数y=中,自变量x的取值范围为()A . x≥2B . x>﹣2C . x≥﹣2且x≠0D . x<﹣2且x≠05. (2分) (2017八下·丰台期中) 如图,四边形中,,,,,则四边形的面积是().A .B .C .D .6. (2分) 1.0239精确到百分位的近似值是()A . 1.0239B . 1.024C . 1.02D . 1.07. (2分) (2016九上·吴中期末) 如图,是一个圆锥形纸杯的侧面展开图,已知圆锥底面半径为5cm,母线长为15cm,那么纸杯的侧面积为()A . 75πcm2B . 150πcm2C .D .8. (2分)晓明家到学校的路程是3 500米,晓明每天早上7∶30离家步行去上学,在8∶10(含8∶10)至8∶20(含8∶20)之间到达学校。

如果设晓明步行的速度为x米/分,则晓明步行的速度范围是()A . 70≤x≤87.5B . x≤70或x≥87.5C . x≤70D . x≥87.59. (2分)下列图形都是由同样大小的矩形按一定的规律组成,其中第①个图形中一共有6个矩形,第②个图形中一共有11个矩形,……,按此规律,第⑧个图形中矩形的个数为()A . 38B . 41C . 44D . 4810. (2分)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1.有位学生写出了以下五个结论:(1)ac>0;(2)方程ax2+bx+c=0的两根是x1=﹣1,x2=3;(3)2a﹣b=0;(4)当x>1时,y随x的增大而减小;则以上结论中正确的有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)11. (1分)(﹣2x2)2=________。

2020年中考数学全真模拟试卷(甘肃白银专用)(一)(原卷版)

2020年中考数学全真模拟试卷(甘肃白银专用)(一)(原卷版)

2020年中考数学全真模拟试卷(甘肃白银专用)(一)数学试卷注意事项:1.本试题满分150分,考试时间120分钟.2.试卷由四部分组成.3.所有学生必须按题目要求答题.一.单选题(共10题;共30分)1.下列既是轴对称图形又是中心对称图形的是()A. B. C. D.2.习近平总书记提出精准扶贫战略以来,各地积极推进精准扶贫,加大帮扶力度,全国脱贫人口数不断增加,脱贫人口接近11000000人,将数据11000000用科学记数法表示为()A.1.1×106B.1.1×107C.1.1×108D.1.1×1093.若√x−2有意义,则x的取值范围是( )A.x≥2B.x≥-2C.x>2D.x>-24.﹣22=()A.﹣2B.﹣4C.2D.45.6.下列计算中,不正确的是()A.a2⋅a5=a10B.a2−2ab+b2=(a−b)2C.−(a−b)=b−aD.3a3b2÷a2b2=3a和y=kx﹣3的图象大致是()6.在同一直角坐标系中,函数y= kxA. B. C. D.7.若分式方程3x−ax2−2x +1x−2=2x有增根,则实数a的取值是()A.0或2B.4C.8D.4或88.已知⊙O1的半径为3cm, ⊙O2的半径为2cm,圆心距O1O2=4cm,则⊙O1与⊙O2的位置关系是()A.外离B.外切C.相交D.内切9.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A. B. C. D.10.如图,在Rt△ABC中,△C=90°,AC=4,BC=3,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC 与半圆弧上的动点,则MN的最小值和最大值之和是()A.5B.6C.7D.8二.填空题:本大题共8小题(每小题4分;共32分)11.计算: √4−2−1= =________.12如果不等式组 {x <3a +2x <a −4的解集是x <a ﹣4,则a 的取值范围是________. 13.若关于x 的一元二次方程 ax 2−x −14=0(a ≠0) 有两个不相等的实数根,则点 P(a +1,−a −3) 在第________象限.14.把函数y =x 2的图象向右平移2个单位长度,再向下平移1个单位长度,得到函数________的图象.15.抛物线 y =2(x −3)(x −1) 的顶点坐标是________.16.二次函数y =ax 2+bx +c(a≠0)的图像如图所示,当y <3时,x 的取值范围是________.17.如图,在△O 中,圆心角△AOB=70°,那么圆周角△C=________.18.如图,把一张长为 4 ,宽为 2 的矩形纸片,沿对角线折叠,则重叠部分的面积为________.三.解答题(一);本大题共5小题,共38分解答应写出必要的文字说明,证明过程或演算步骤.19.(6分)计算: −2−2+√8cos45°−|1−√2|+(3.14−π)020.(6分)解不等式组: {2−x ≤2(x +4)x <x−13+3,并写出它的所有整数解.21.(8分)两个城镇A.B 与两条公路l 1.l 2位置如图所示,电信部门需在C 处修建一座信号反射塔,要求发射塔到两个城镇A.B 的距离必须相等,到两条公路l 1 , l 2的距离也必须相等,那么点C 应选在何处?请在图中,用尺规作图找出所有符合条件的点C .(不写已知.求作.作法,只保留作图痕迹)22.(8分)2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力.如图,在一场马拉松比赛中,某人在大楼 A 处,测得起点拱门 CD 的顶部 C 的俯角为 35° ,底部 D 的俯角为45°,如果A处离地面的高度AB=20米,求起点拱门CD的高度.(结果精确到1米;参考数据: sin35°≈0.57, cos35°≈0.82, tan35°≈0.70)23.(10分)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:A.1.5小时以上B.1~1.5小时C.0.5~1小时D.0.5小时以下图1.2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了________名学生;学生参加体育活动时间的中位数落在________时间段(填写上面所给“A”.“B”.“C”.“D”中的一个选项);(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.四.解答题(二);本大题共5小题,共50分解答应写出必要的文字说明,证明过程或演算步骤.24(8分).水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤.通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.为保证每天至少售出260斤,张阿姨决定降价销售.销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?25.(10分)如图,矩形ABCD中,对角线AC的垂直平分线MN与AD相交于点M,与BC相交于点N,连接AN,CM.求求证:四边形AMCN是菱形.26.(10分)如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A.B两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.27.(10分)如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆△O于点D,连接BD,过点D作直线DM,使△BDM=△DAC.(△)求证:直线DM是△O的切线;(△)求证:DE2=DF•DA.28.(12分)如图,直线y=kx+b(k.b为常数)分别与x轴.y轴交于点A(﹣4,0).B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(△)求直线y=kx+b的函数解析式;(△)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(△)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.。

2020年甘肃省白银市中考数学试卷含答案解析

2020年甘肃省白银市中考数学试卷含答案解析

2020年甘肃省白银市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(2020•金昌)下列实数是无理数的是( )A .﹣2B .16C .√9D .√112.(2020•金昌)若α=70°,则α的补角的度数是( )A .130°B .110°C .30°D .20°3.(2020•金昌)若一个正方形的面积是12,则它的边长是( )A .2√3B .3C .3√2D .44.(2020•金昌)下列几何体中,其俯视图与主视图完全相同的是( )A .B .C .D .5.(2020•金昌)下列各式中计算结果为x 6的是( )A .x 2+x 4B .x 8﹣x 2C .x 2•x 4D .x 12÷x 26.(2020•金昌)生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a 与全身b 的高度比值接近0.618,可以增加视觉美感.若图中b 为2米,则a 约为( )A .1.24米B .1.38米C .1.42米D .1.62米7.(2020•金昌)已知x =1是一元二次方程(m ﹣2)x 2+4x ﹣m 2=0的一个根,则m 的值为( )A .﹣1或2B .﹣1C .2D .08.(2020•金昌)如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE间的距离.若AE间的距离调节到60cm,菱形的边长AB=20cm,则∠DAB的度数是()A.90°B.100°C.120°D.150°9.(2020•金昌)如图,A是⊙O上一点,BC是直径,AC=2,AB=4,点D在⊙O上且平̂,则DC的长为()分BCA.2√2B.√5C.2√5D.√10 10.(2020•金昌)如图①,正方形ABCD中,AC,BD相交于点O,E是OD的中点.动点P从点E出发,沿着E→O→B→A的路径以每秒1个单位长度的速度运动到点A,在此过程中线段AP的长度y随着运动时间x的函数关系如图②所示,则AB的长为()A.4√2B.4C.3√3D.2√2二、填空题:本大题共8小题,每小题3分,共24分.11.(2020•金昌)如果盈利100元记作+100元,那么亏损50元记作元.12.(2020•金昌)分解因式:a2+a=.13.(2020•金昌)暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如下,请你为广告牌填上原价.原价:元暑假八折优惠,现价:160元14.(2020•金昌)要使分式x+2x−1有意义,x需满足的条件是.15.(2020•金昌)在一个不透明的袋中装有若干个材质、大小完全相同的红球,小明在袋中放入3个黑球(每个黑球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,估计袋中红球有个.16.(2020•金昌)如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,√3),(4,0).把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,√3),则点E 的坐标为.17.(2020•金昌)若一个扇形的圆心角为60°,面积为π6cm2,则这个扇形的弧长为cm(结果保留π).18.(2020•金昌)已知y=√(x−4)2−x+5,当x分别取1,2,3,…,2020时,所对应y 值的总和是.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.19.(4分)(2020•金昌)计算:(2−√3)(2+√3)+tan60°﹣(π﹣2√3)0.20.(4分)(2020•金昌)解不等式组:{3x−5<x+12(2x−1)≥3x−4,并把它的解集在数轴上表示出来.21.(6分)(2020•金昌)如图,在△ABC中,D是BC边上一点,且BD=BA.(1)尺规作图(保留作图痕迹,不写作法):①作∠ABC的角平分线交AD于点E;②作线段DC的垂直平分线交DC于点F.(2)连接EF,直接写出线段EF和AC的数量关系及位置关系.22.(6分)(2020•金昌)图①是甘肃省博物馆的镇馆之宝﹣﹣铜奔马,又称“马踏飞燕”,于1969年10月出土于武威市的雷台汉墓,1983年10月被国家旅游局确定为中国旅游标志.在很多旅游城市的广场上都有“马踏飞燕”雕塑.某学习小组把测量本城市广场的“马踏飞燕”雕塑(图②)最高点离地面的高度作为一次课题活动,同学们制定了测量方案,并完成了实地测量,测得结果如下表:课题测量“马踏飞燕“雕塑最高点离地面的高度测量示意图如图,雕塑的最高点B 到地面的高度为BA,在测点C用仪器测得点B 的仰角为α,前进一段距离到达测点E,再用该仪器测得点B 的仰角为β,且点A,B,C,D,E,F均在同一竖直平面内,点A ,C ,E 在同一条直线上.测量数据 α的度数 β的度数 CE 的长度 仪器CD(EF )的高度31° 42° 5米1.5米请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高度(结果保留一位小数).(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)23.(6分)(2020•金昌)2019年甘肃在国际知名旅游指南《孤独星球》亚洲最佳旅游地排名第一.截至2020年1月,甘肃省已有五家国家5A 级旅游景区,分别为A :嘉峪关文物景区;B :平凉崆峒山风景名胜区;C :天水麦积山景区;D :敦煌鸣沙山月牙泉景区;E :张掖七彩丹霞景区.张帆同学与父母计划在暑假期间从中选择部分景区游玩.(1)张帆一家选择E :张掖七彩丹霞景区的概率是多少?(2)若张帆一家选择了E :张掖七彩丹霞景区,他们再从A ,B ,C ,D 四个景区中任选两个景区去旅游,求选择A ,D 两个景区的概率(要求画树状图或列表求概率).四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.24.(7分)(2020•金昌)习近平总书记于2019年8月在兰州考察时说“黄河之滨也很美”.兰州是古丝绸之路商贸重镇,也是黄河唯一穿城而过的省会城市,被称为“黄河之都”.近年来,在市政府的积极治理下,兰州的空气质量得到极大改善,“兰州蓝”成为兰州市民引以为豪的城市名片.如图是根据兰州市环境保护局公布的2013~2019年各年的全年空气质量优良天数绘制的折线统计图.请结合统计图解答下列问题:(1)2019年比2013年的全年空气质量优良天数增加了天;(2)这七年的全年空气质量优良天数的中位数是天;(3)求这七年的全年空气质量优良天数的平均天数;(4)《兰州市“十三五”质量发展规划》中指出:2020年,确保兰州市全年空气质量优良天数比率达80%以上.试计算2020年(共366天)兰州市空气质量优良天数至少需要多少天才能达标.25.(7分)(2020•金昌)通过课本上对函数的学习,我们积累了一定的经验.下表是一个函数的自变量x与函数值y的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:x…012345…y…632 1.5 1.21…(1)当x=时,y=1.5;(2)根据表中数值描点(x,y),并画出函数图象;(3)观察画出的图象,写出这个函数的一条性质:.26.(8分)(2020•金昌)如图,⊙O是△ABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AE=AB.(1)求∠ACB的度数;(2)若DE=2,求⊙O的半径.27.(8分)(2020•金昌)如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN =45°.把△ADN绕点A顺时针旋转90°得到△ABE.(1)求证:△AEM≌△ANM.(2)若BM=3,DN=2,求正方形ABCD的边长.28.(10分)(2020•金昌)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)若PC∥AB,求点P的坐标;(3)连接AC,求△P AC面积的最大值及此时点P的坐标.2020年甘肃省白银市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(2020•金昌)下列实数是无理数的是( )A .﹣2B .16C .√9D .√11解:√9=3,则由无理数的定义可知,实数是无理数的是√11.故选:D .2.(2020•金昌)若α=70°,则α的补角的度数是( )A .130°B .110°C .30°D .20° 解:α的补角是:180°﹣∠A =180°﹣70°=110°.故选:B .3.(2020•金昌)若一个正方形的面积是12,则它的边长是( )A .2√3B .3C .3√2D .4解:∵正方形的面积是12,∴它的边长是√12=2√3.故选:A .4.(2020•金昌)下列几何体中,其俯视图与主视图完全相同的是( )A .B .C .D .解:圆锥的主视图是等腰三角形,俯视图是圆,因此A 不符合题意;圆柱的主视图是矩形,俯视图是圆,因此B 不符合题意;正方体的主视图、俯视图都是正方形,因此选项C 符合题意;三棱柱的主视图是矩形,俯视图是三角形,因此D 不符合题意;故选:C .5.(2020•金昌)下列各式中计算结果为x 6的是( )A .x 2+x 4B .x 8﹣x 2C .x 2•x 4D .x 12÷x 2解:x 2与x 4不是同类项,不能合并计算,它是一个多项式,因此A 选项不符合题意; 同理选项B 不符合题意;x 2•x 4=x 2+4=x 6,因此选项C 符合题意;x 12÷x 2=x 12﹣2=x 10,因此选项D 不符合题意; 故选:C .6.(2020•金昌)生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a 与全身b 的高度比值接近0.618,可以增加视觉美感.若图中b 为2米,则a 约为( )A .1.24米B .1.38米C .1.42米D .1.62米解:∵雕像的腰部以下a 与全身b 的高度比值接近0.618,∴a b ≈0.618, ∵b 为2米,∴a 约为1.24米.故选:A .7.(2020•金昌)已知x =1是一元二次方程(m ﹣2)x 2+4x ﹣m 2=0的一个根,则m 的值为( )A .﹣1或2B .﹣1C .2D .0解:把x =1代入(m ﹣2)x 2+4x ﹣m 2=0得:m ﹣2+4﹣m 2=0,﹣m 2+m +2=0,解得:m 1=2,m 2=﹣1,∵(m ﹣2)x 2+4x ﹣m 2=0是一元二次方程,∴m ﹣2≠0,∴m≠2,∴m=﹣1,故选:B.8.(2020•金昌)如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE间的距离.若AE间的距离调节到60cm,菱形的边长AB=20cm,则∠DAB的度数是()A.90°B.100°C.120°D.150°解:连结AE,∵AE间的距离调节到60cm,木制活动衣帽架是由三个全等的菱形构成,∴AC=20cm,∵菱形的边长AB=20cm,∴AB=BC=20cm,∴AC=AB=BC,∴△ACB是等边三角形,∴∠B=60°,∴∠DAB=120°.故选:C.9.(2020•金昌)如图,A是⊙O上一点,BC是直径,AC=2,AB=4,点D在⊙O上且平̂,则DC的长为()分BCA.2√2B.√5C.2√5D.√10̂,解:∵点D在⊙O上且平分BĈ=CD̂,∴BD∵BC是⊙O的直径,∴∠BAC=∠D=90°,∵AC=2,AB=4,∴BC=√22+42=2√5,Rt△BDC中,DC2+BD2=BC2,∴2DC2=20,∴DC=√10,故选:D.10.(2020•金昌)如图①,正方形ABCD中,AC,BD相交于点O,E是OD的中点.动点P从点E出发,沿着E→O→B→A的路径以每秒1个单位长度的速度运动到点A,在此过程中线段AP的长度y随着运动时间x的函数关系如图②所示,则AB的长为()A.4√2B.4C.3√3D.2√2解:如图,连接AE.∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=OD=OB,由题意DE=OE,设DE=OE=x,则OA=OD=2x,∵AE=2√5,∴x2+(2x)2=(2√5)2,解得x=2或﹣2(不合题意舍弃),∴OA=OD=4,∴AB=AD=4√2,故选:A.二、填空题:本大题共8小题,每小题3分,共24分.11.(2020•金昌)如果盈利100元记作+100元,那么亏损50元记作﹣50元.解:∵盈利100元记作+100元,∴亏损50元记作﹣50元,故答案为:﹣50.12.(2020•金昌)分解因式:a2+a=a(a+1).解:a2+a=a(a+1).故答案为:a(a+1).13.(2020•金昌)暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如下,请你为广告牌填上原价.原价:元暑假八折优惠,现价:160元解:设广告牌上的原价为x元,依题意,得:0.8x=160,解得:x=200.故答案为:200.14.(2020•金昌)要使分式x+2x−1有意义,x需满足的条件是x≠1.解:当x﹣1≠0时,分式有意义,∴x≠1,故答案为x≠1.15.(2020•金昌)在一个不透明的袋中装有若干个材质、大小完全相同的红球,小明在袋中放入3个黑球(每个黑球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,估计袋中红球有17个.解:通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,口袋中有3个黑球,∵假设有x个红球,∴xx+3=0.85,解得:x=17,经检验x=17是分式方程的解,∴口袋中红球约有17个.故答案为:17.16.(2020•金昌)如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,√3),(4,0).把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,√3),则点E 的坐标为(7,0).解:∵A(3,√3),D(6,√3),∴点A向右平移3个单位得到D,∵B(4,0),∴点B向右平移3个单位得到E(7,0),故答案为(7,0).17.(2020•金昌)若一个扇形的圆心角为60°,面积为π6cm 2,则这个扇形的弧长为π3cm(结果保留π).解:设扇形的半径为R ,弧长为l , 根据扇形面积公式得;60π⋅R 2360=π6,解得:R =1,∵扇形的面积=12lR =π6, 解得:l =13π. 故答案为:π3.18.(2020•金昌)已知y =√(x −4)2−x +5,当x 分别取1,2,3,…,2020时,所对应y 值的总和是 2032 . 解:当x <4时,原式=4﹣x ﹣x +5=﹣2x +9, 当x =1时,原式=7; 当x =2时,原式=5; 当x =3时,原式=3;当x ≥4时,原式=x ﹣4﹣x +5=1,∴当x 分别取1,2,3,…,2020时,所对应y 值的总和是: 7+5+3+1+1+…+1 =15+1×2017 =2032. 故答案为:2032.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.19.(4分)(2020•金昌)计算:(2−√3)(2+√3)+tan60°﹣(π﹣2√3)0. 解:原式=4﹣3+√3−1 =√3.20.(4分)(2020•金昌)解不等式组:{3x −5<x +12(2x −1)≥3x −4,并把它的解集在数轴上表示出来.解:解不等式3x﹣5<x+1,得:x<3,解不等式2(2x﹣1)≥3x﹣4,得:x≥﹣2,则不等式组的解集为﹣2≤x<3,将不等式组的解集表示在数轴上如下:21.(6分)(2020•金昌)如图,在△ABC中,D是BC边上一点,且BD=BA.(1)尺规作图(保留作图痕迹,不写作法):①作∠ABC的角平分线交AD于点E;②作线段DC的垂直平分线交DC于点F.(2)连接EF,直接写出线段EF和AC的数量关系及位置关系.解:(1)如图,①BE即为所求;②如图,线段DC的垂直平分线交DC于点F.(2)∵BD=BA,BE平分∠ABD,∴点E是AD的中点,∵点F是CD的中点,∴EF是△ADC的中位线,∴线段EF和AC的数量关系为:EF=12AC,位置关系为:EF∥AC.22.(6分)(2020•金昌)图①是甘肃省博物馆的镇馆之宝﹣﹣铜奔马,又称“马踏飞燕”,于1969年10月出土于武威市的雷台汉墓,1983年10月被国家旅游局确定为中国旅游标志.在很多旅游城市的广场上都有“马踏飞燕”雕塑.某学习小组把测量本城市广场的“马踏飞燕”雕塑(图②)最高点离地面的高度作为一次课题活动,同学们制定了测量方案,并完成了实地测量,测得结果如下表: 课题 测量“马踏飞燕“雕塑最高点离地面的高度测量示意图如图,雕塑的最高点B 到地面的高度为BA ,在测点C 用仪器测得点B 的仰角为α,前进一段距离到达测点E ,再用该仪器测得点B 的仰角为β,且点A ,B ,C ,D ,E ,F 均在同一竖直平面内,点A ,C ,E 在同一条直线上.测量数据α的度数β的度CE仪器数的长度CD (EF)的高度31°42°5米1.5米请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高度(结果保留一位小数).(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)解:如图,设BG=x米,在Rt△BFG中,FG=BGtanβ=xtan42°,在Rt△BDG中,DG=BGtanα=xtan31°,由DG﹣FG=DF得,x tan31°−xtan42°=5,解得,x=9,∴AB=AG+BG=1.5+9=10.5(米),答:这座“马踏飞燕”雕塑最高点离地面的高度为10.5米.23.(6分)(2020•金昌)2019年甘肃在国际知名旅游指南《孤独星球》亚洲最佳旅游地排名第一.截至2020年1月,甘肃省已有五家国家5A 级旅游景区,分别为A :嘉峪关文物景区;B :平凉崆峒山风景名胜区;C :天水麦积山景区;D :敦煌鸣沙山月牙泉景区;E :张掖七彩丹霞景区.张帆同学与父母计划在暑假期间从中选择部分景区游玩. (1)张帆一家选择E :张掖七彩丹霞景区的概率是多少?(2)若张帆一家选择了E :张掖七彩丹霞景区,他们再从A ,B ,C ,D 四个景区中任选两个景区去旅游,求选择A ,D 两个景区的概率(要求画树状图或列表求概率). 解:(1)共有5种可能选择的结果,因此张帆一家选择“E :张掖七彩丹霞景区”的概率是15;(2)从A ,B ,C ,D 四个景区中任选两个景区所有可能出现的结果如下:共有12种可能出现的结果,其中选择A 、D 两个景区的有2种, ∴P (选择A 、D )=212=16. 四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.24.(7分)(2020•金昌)习近平总书记于2019年8月在兰州考察时说“黄河之滨也很美”.兰州是古丝绸之路商贸重镇,也是黄河唯一穿城而过的省会城市,被称为“黄河之都”.近年来,在市政府的积极治理下,兰州的空气质量得到极大改善,“兰州蓝”成为兰州市民引以为豪的城市名片.如图是根据兰州市环境保护局公布的2013~2019年各年的全年空气质量优良天数绘制的折线统计图.请结合统计图解答下列问题:(1)2019年比2013年的全年空气质量优良天数增加了26天;(2)这七年的全年空气质量优良天数的中位数是254天;(3)求这七年的全年空气质量优良天数的平均天数;(4)《兰州市“十三五”质量发展规划》中指出:2020年,确保兰州市全年空气质量优良天数比率达80%以上.试计算2020年(共366天)兰州市空气质量优良天数至少需要多少天才能达标.解:(1)∵296﹣270=26,∴2019年比2013年的全年空气质量优良天数增加了26天;故答案为:26;(2)∵这七年的全年空气质量优良天数分别为:213,233,250,254,270,296,313,∴这七年的全年空气质量优良天数的中位数是254天;故答案为:254;(3)∵x=17(213+233+250+254+270+296+313)≈261(天),则这七年的全年空气质量优良天数的平均天数为261天;(4)∵全年空气质量优良天数比率达80%以上.∴366×80%=292.8≈293(天),则兰州市空气质量优良天数至少需要293天才能达标.25.(7分)(2020•金昌)通过课本上对函数的学习,我们积累了一定的经验.下表是一个函数的自变量x与函数值y的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:x…012345…y…632 1.5 1.21…(1)当x=3时,y=1.5;(2)根据表中数值描点(x,y),并画出函数图象;(3)观察画出的图象,写出这个函数的一条性质:函数y随x的增大而减小.解:(1)当x=3时,y=1.5;故答案为:3;(2)函数图象如图所示:(3)观察画出的图象,这个函数的一条性质:函数y随x的增大而减小.故答案为:函数y随x的增大而减小.26.(8分)(2020•金昌)如图,⊙O是△ABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AE=AB.(1)求∠ACB的度数;(2)若DE=2,求⊙O的半径.解:(1)连接OA,∵AE是⊙O的切线,∴∠OAE=90°,∵AB=AE,∴∠ABE=∠AEB,∵OA=OB,∴∠ABO=∠OAB,∴∠OAB=∠ABE=∠E,∵∠OAB+∠ABE+∠E+∠OAE=180°,∴∠OAB=∠ABE=∠E=30°,∴∠AOB=180°﹣∠OAB﹣∠ABO=120°,∴∠ACB=12∠AOB=60°;(2)设⊙O的半径为r,则OA=OD=r,OE=r+2,∵∠OAE=90°,∠E=30°,∴2OA=OE,即2r=r+2,∴r=2,故⊙O的半径为2.27.(8分)(2020•金昌)如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN =45°.把△ADN绕点A顺时针旋转90°得到△ABE.(1)求证:△AEM≌△ANM.(2)若BM=3,DN=2,求正方形ABCD的边长.(1)证明:∵△ADN≌△ABE,∴∠DAN=∠BAE,DN=BE,∵∠DAB=90°,∠MAN=45°,∴∠MAE=∠BAE+∠BAM=∠DAN+∠BAM=45°,∴∠MAE=∠MAN,∵MA=MA,∴△AEM≌△ANM(SAS).(2)解:设CD=BC=x,则CM=x﹣3,CN=x﹣2,∵△AEM≌△ANM,∴EM=MN,∵BE=DN,∴MN=BM+DN=5,∵∠C=90°,∴MN2=CM2+CN2,∴25=(x﹣2)2+(x﹣3)2,解得,x=6或﹣1(舍弃),∴正方形ABCD的边长为6.28.(10分)(2020•金昌)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)若PC∥AB,求点P的坐标;(3)连接AC,求△P AC面积的最大值及此时点P的坐标.解:(1)抛物线y =ax 2+bx ﹣2,则c =﹣2,故OC =2,而OA =2OC =8OB ,则OA =4,OB =12,故点A 、B 、C 的坐标分别为(﹣4,0)、(12,0)、(0,﹣2); 则y =a (x +4)(x −12)=a (x 2+72x ﹣2)=ax 2+bx ﹣2,故a =1, 故抛物线的表达式为:y =x 2+72x ﹣2;(2)抛物线的对称轴为x =−74,当PC ∥AB 时,点P 、C 的纵坐标相同,根据函数的对称性得点P (−72,﹣2);(3)过点P 作PH ∥y 轴交AC 于点H ,由点A 、C 的坐标得,直线AC 的表达式为:y =−12x ﹣2,则△P AC 的面积S =S △PHA +S △PHC =12PH ×OA =12×4×(−12x ﹣2﹣x 2−72x +2)=﹣2(x +2)2+8,∵﹣2<0,∴S 有最大值,当x =﹣2时,S 的最大值为8,此时点P (﹣2,﹣5).。

白银市2020年(春秋版)中考数学试卷(I)卷

白银市2020年(春秋版)中考数学试卷(I)卷

白银市2020年(春秋版)中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)﹣的倒数的相反数等于()A . ﹣2B .C . -D . 22. (2分)(2019·泰山模拟) 2018年国庆小长假,奉安市旅游再次交出漂亮“成绩单”,全市纳入重点监测的21个旅游景区、旅游大项目、乡村旅游点实现旅游收入近1320000元,将1320000用科学记数法表示为()A . 1.32×109B . 1.32×108C . 1.32×107D . 1.32×1063. (2分) (2017九下·张掖期中) 桌面上按如图所示放着1个长方体和1个圆柱体,其左视图是()A .B .C .D .4. (2分) (2017八下·东台期中) 下列图案中,是中心对称图形的有()A . 1个B . 2个C . 3个D . 4个5. (2分) (2019九上·射阳期末) 人民商场对上周女装的销售情况进行了统计,销售情况如下表所示:颜色黄色绿色白色紫色红色数量(件)10018022080550经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A . 平均数B . 中位数C . 众数D . 方差6. (2分)若3ax+7b4与-a4b2y是同类项,则xy的值为()A . 9B . -9C . 4D . -47. (2分)如图,菱形OABC的顶点O为坐标原点,顶点A在x轴正半轴上,顶点B、C在第一象限,OA=2,∠AOC=60°,点D在边AB上,将四边形ODBC沿直线OD翻折,使点B和点C分别落在这个坐标平面内的B′和C′处,且∠C′DB′=60°,某正比例函数图象经过B′,则这个正比例函数的解析式为()A . y=﹣ xB . y=﹣C . y=﹣D . y=﹣x8. (2分)如图.若乙、丙都在甲的北偏东70°方向上.乙在丁的正北方向上,且乙到丙、丁的距离相同.则α的度数是()A . 25°B . 30°C . 35°D . 40°9. (2分)若∠A的两边与∠B的两边分别平行,且∠A的度数比∠B的度数的3倍少40°,则∠B的度数为()A . 20°B . 55°C . 20°或55°D . 75°10. (2分)如图,在正方形ABCD中,AB=4,点E在以点B为圆心的上,过点E作所在圆的切线分别交边AD,CD于点F,G,连接AE,DE,若∠DEA=90°,则FG的长为()A . 4B .C .D . 311. (2分)(2016·淄博) 已知一元二次方程x2+bx-3=0的一根为-3,在二次函数y=x2+bx-3的图象上有三点(-, y1)、(-, y2)、(-, y3),y1、y2、y3的大小关系是()A . y1<y2<y3B . y2<y1<y3C . y3<y1<y2D . y1<y3<y212. (2分) (2017七下·兴化期末) 如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则结论:①PA平分∠RPS;②AS=AR;③QP∥AR;④△BRP≌△CSP.其中正确的有()A . 4个B . 3个C . 2个D . 1个二、填空题 (共4题;共4分)13. (1分) (2016八上·县月考) 已知,求的值为________.14. (1分) (2016九上·常熟期末) 不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出________球的可能性最大.15. (1分)(2018·济宁模拟) 如图,正方形AFCE中,D是边CE上一点,B是CF延长线上一点,且AB=AD,若四边形ABCD的面积是24cm2 .则AC长是________cm.16. (1分) (2019九上·利辛月考) 如图,矩形ABCD中,AB=3,BC=4,点P是对角线AC上一动点,过点P 作PE⊥AD于点E,若点P,A,B构成以AB为腰的等腰三角形时,则线段PE的长是________。

白银市2020年中考数学试卷(II)卷

白银市2020年中考数学试卷(II)卷

白银市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)下列运算正确的是()A . =±3B . |﹣3|=﹣3C . =﹣3D . =π﹣42. (2分) (2017八下·姜堰期末) 某市2017年有25000名学生参加中考,为了了解这25000名考生的中考成绩,从中抽取了1000名考生的成绩进行分析,以下说法正确的是()A . 25000名考生是总体B . 每名考生的成绩是个体C . 1000名考生是总体的一个样本D . 样本容量是250003. (2分)(2011·宜宾) 分式方程的解是()A . 3B . 4C . 5D . 无解4. (2分)如图,的直径的长为,弦长为,的平分线交于,则长为()A . 7B . 7C . 8D . 95. (2分)如图是某几何体的三视图,则该几何体的体积是()A . 18B . 54C . 108D . 2166. (2分)某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后甲、乙两名战士进入决赛。

在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是是0.21。

则下列说法中,正确的是()A . 甲的成绩比乙的成绩稳定B . 乙的成绩比甲的成绩稳定C . 甲、乙两人成绩的稳定性相同D . 无法确定谁的成绩更稳定7. (2分) (2017八下·萧山期中) 如图,在平行四边形中,点A1 , A2 , A3 , A4和C1 , C2 , C3 ,C4分别是ABCD的五等分点,点B1 , B2和D1 , D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为2,则平行四边形ABCD的面积为()A . 4B .C .D . 308. (2分) (2018九上·巴南月考) 如图,在平面直角坐标系中,△ABC的顶点A,B在反比例函数的图象上,横坐标分别为1、3.5,AB=AC,BC与轴平行,若△ABC的面积为,则的值为()A .B . 5C .D .9. (2分)(2020·武汉模拟) 一个不透明的袋子中装有2个红球、2个蓝球,小球除颜色外其他均相同,若同时从袋子中任取两个小球,则摸到的两个小球中,至少有一个小球为蓝色的概率为()A .B .C .D .10. (2分)(2020·杭州模拟) 已知反比例函数y=的图象在每一个象限内,y随x的增大而增大,那么一次函数y=kx+2的大致图象是()A .B .C .D .11. (2分)(2017·吴忠模拟) 二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=﹣1,有以下结论:①abc>0;②4ac<b2;③2a+b=0;④a﹣b+c>2.其中正确的结论的个数是()A . 1B . 2C . 3D . 412. (2分)用“⊕”定义新运算:对于任意实数a、b,都有a⊕b=b+1,例如7⊕2=2+1=5,当m为实数时,m⊕(m⊕2)的值是A . 25B . m+1C . 5D . 26二、填空题 (共8题;共9分)13. (1分) (2019七上·宁波期中) 已知、互为相反数,、互为倒数,则 ________.14. (1分) (2016八下·平武期末) 函数y= 的自变量x的取值范围是________.15. (1分) (2016八上·肇庆期末) 已知空气的单位体积质量为0.00124g/cm3 ,将它用科学记数表示为________g/cm3.16. (1分) (2020八下·深圳期中) 分解因式: ________.17. (1分) (2015八上·吉安期末) “十一”黄金周,国光超市“女装部”推出“全部服装八折”,男装部推出“全部服装八五折”的优惠活动,某顾客在女装部购买了原价为x元,男装部购买了原价为y元的服装各一套,优惠前需付700元,而他实际付款580元,则可列方程组为________.18. (2分) (2020七下·达县期末) 如图所示,在△ABC中,DM,EN分别垂直平分AB和AC,交BC于点D,E,若∠DAE=50°°,则∠BAC=________,若△ADE的周长为19cm,则BC=________cm.19. (1分)(2020·天台模拟) 如图,以半圆O的半径OA为直径作一个半圆,点C为小半圆上一点,射线AC交半圆O于点D,已知的长为3,则的长为________.20. (1分)(2017·武汉模拟) 如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为________ cm.三、解答题: (共8题;共87分)21. (10分) (2019七下·瑞安期末) 计算下列各题:(1) (3.14-π)0+(-1)2019+3-2(2) (m+1)2-m(m+3)-322. (5分) (2018八上·东湖期中) 如图,C是路段AB的中点,两人从C同时出发,以相同的速度分别沿两条直线行走,并同时到达D,E两地,DA⊥AB,EB⊥AB,D,E与路段AB的距离相等吗?为什么?23. (10分)物体受重力作用的作用点叫做这个物体的重心.例如一根均匀的棒,重心是棒的中点,一块均匀的三角形木板,重心就是这个三角形三条中线的交点,等等.(1)你认为平行四边形的重心位置在哪里?请说明理由;(2)现有如图的一块均匀模板,请只用直尺和铅笔,画出它的重心(直尺上没有刻度,而且不允许用铅笔在直尺上做记号).24. (7分)观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作AD⊥BC于D(如图1),则sinB=,sinC =,即AD=csinB,AD=bsinC,于是csinB=bsinC,即 .同理有:,,所以 = ,即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图2,△ABC中,∠B=45°,∠C=75°,BC=60,则∠A=________;AC=________;(2)如图3,一货轮在C处测得灯塔A在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得灯塔A在货轮的北偏西75°的方向上(如图3),求此时货轮距灯塔A的距离AB.25. (10分)(2019·昆明模拟) 某区域为响应“绿水青山就是金山银山”的号召,加强了绿化建设.为了解该区域群众对绿化建设的满意程度,某中学数学兴趣小组在该区域的甲、乙两个片区进行了调查,得到如下不完整统计图.请结合图中信息,解决下列问题:(1)此次调查中接受调查的人数为多少人,其中“非常满意”的人数为多少人;(2)兴趣小组准备从“不满意”的4位群众中随机选择2位进行回访,已知这4位群众中有2位来自甲片区,另2位来自乙片区,请用画树状图或列表的方法求出选择的群众来自甲片区的概率.26. (10分) (2018八上·大田期中) 对于实数p,q,我们用符号引表示p,q两数中较大的数,如:,(1)请直接写出;;(2)我们知道,当时,,利用这种方法解决下面问题:若,其中,求x的值.27. (20分)(2014·盐城) 【问题情境】张老师给爱好学习的小军和小俊提出这样一个问题:如图1,在△ABC 中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.(1) .小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.(2) .【变式探究】如图3,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;(3) .【结论运用】如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF 上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;(4) .【迁移拓展】图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=2 dm,AD=3dm,BD= dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.28. (15分)(2020·临洮模拟) 如图抛物线y=x2+bx+c(c<0)与x轴交于A、B两点,(点A在点B的左侧),与y轴交于点C,顶点为D,且OB=OC=3,点E为线段BD上的一个动点,EF⊥x轴于F.(1)求抛物线的解析式;(2)是否存在点E,使△ECF为直角三角形?若存在,求点E的坐标;不存在,请说明理由;(3)连接AC、BC,若点P是抛物线上的一个动点,当P运动到什么位置时,∠PCB=∠ACO,请直接写出点P 的坐标.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共8题;共9分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题: (共8题;共87分)21-1、21-2、22-1、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、27-2、27-3、28-1、28-2、28-3、。

甘肃省白银市2020版中考数学试卷B卷(新版)

甘肃省白银市2020版中考数学试卷B卷(新版)

甘肃省白银市2020版中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2011九上·四川竞赛) 若一个三角形的任意两边都不相等,则称之为不规则三角形,用一个正方体上的任意三个顶点构成的所有三角形中,不规则三角形的个数是()A . 18B . 24C . 30D . 362. (2分)(2011·希望杯竞赛) 6个人用35天完成了某项工程的,如果再增加工作效率相同的8个人,那么完成这项工程,前后共用的天数是()A . 30B . 40C . 60D . 653. (2分)若是方程组的解,则a、b的值为()A .B .C .D .4. (2分) 1978年,我国国内生产总值是3 645亿元,2007年升至249 530亿元.将249 530亿元用科学记数表示为().A . 24.953×1013元B . 24.953×1012元C . 2.4953×1013元D . 2.4953×1014元5. (2分) (2019八下·太原期末) 已知一个多边形内角和是外角和的4倍,则这个多边形是()A . 八边形B . 九边形C . 十边形D . 十二边形6. (2分)若÷ 等于3,则x等于()A .B . ﹣C . 2D . ﹣27. (2分)(2017·锡山模拟) 下列函数的图象在每一个象限内,y值随x值的增大而增大的是()A . y=﹣x+1B . y=x2﹣1C .D .8. (2分)若将点A(﹣3,2)先向右平移1个单位,再向下平移4个单位,得到点B,则点B的坐标为()A . (﹣1,6)B . (﹣4,﹣2)C . (﹣2,6)D . (﹣2,﹣2)二、填空题 (共8题;共8分)9. (1分) (2019九上·婺城期末) 一个三角板含、角和一把直尺摆放位置如图所示,直尺与三角板的一角相交于点A,一边与三角板的两条直角边分别相交于点D、点E,且,点F在直尺的另一边上,那么的大小为________°.10. (1分) (2020八下·北京月考) 使式子有意义的条件是________.11. (1分) (2017七下·南沙期末) 若m<n,则3m﹣2________3n﹣2.12. (1分) (2017九上·青龙期末) 如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4 ,则S阴影=________.13. (1分) (2018九上·邓州期中) 如图,在▱ABCD中,E为AD的三等分点,AE= AD,连结BE,交AC于点F,AC=15,则AF为________.14. (1分)对新城初中某年级学生的体重(单位:kg,精确到1kg )情况进行了抽查,将所得数据处理后分成A,B,C三组(每组含最低值,不含最高值),并制成如图1、表1的统计图表(部分数据未填),在被抽查的学生中偏瘦和偏胖的学生共有________.15. (1分)要把1张50元的人民币兑换成面额为5元和10元的人民币,面值5元x张,面值10元y张,那么x与y间的关系为________ .16. (1分) (2019八上·全椒期中) 如图:、两地相距,甲、乙两人从两地出发相向而行,甲先出发,图中,表示两人离地的距离与时间的关系,则甲出发后________小时,两人恰好相距 .三、解答题 (共12题;共161分)17. (15分)(2017·集宁模拟) 已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与⊙O的位置关系,并证明你的结论;(3)若⊙O的直径为18,cosB= ,求DE的长.18. (20分) (2017八上·普陀开学考) 计算:(1)(﹣)2+3 × .(2)﹣()2× ÷ .(3)(8×27)﹣(π﹣1)0﹣()﹣1;(4)× × .19. (5分)(2019·盐城) 解不等式组:20. (10分) (2017九上·海淀月考) 已知关于的一元二次方程.(1)求证:此方程总有两个不相等的实数根.(2)若是此方程的一个根,求实数的值.21. (10分) (2019八下·柯桥期末) 如图,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2) )若正方形ABCD的边长为4,AE=,求菱形BEDF的面积.22. (15分)(2017·江西模拟) 如图,圆形靠在墙角的截面图,A、B分别为⊙O的切点,BC⊥AC,点P在上以2°/s的速度由A点向点B运动(A、B点除外),连接AP、BP、BA.(1)当∠PBA=28°,求∠OAP的度数;(2)若点P不在AO的延长线上,请写出∠OAP与∠PBA之间的关系;(3)当点P运动几秒时,△APB为等腰三角形.23. (15分)(2020·宁波模拟) 如图所示,已知P(2,3)是反比例函数图象上的一点。

2020年中考数学模拟试卷(甘肃白银市专用)(二)(解析版)

2020年中考数学模拟试卷(甘肃白银市专用)(二)(解析版)

2020年中考数学全真模拟试卷(甘肃白银专用)(二)数学试卷注意事项:1.本试题满分150分,考试时间120分钟。

2.试卷由四部分组成。

3.所有学生必须按题目要求答题。

一、单选题(共10题;共30分)1.下列电动车品牌标志中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】C【解析】A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、是轴对称图形,也是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意.故答案为:C.2.甲、乙、丙、丁四名同学进行跳高测试,每人10次跳高成绩的平均数都是1.28m,方差分别是s甲2=0.60,s乙2=0.62,s丙2=0.58,s丁2=0.45,则这四名同学跳高成绩最稳定的是()A.甲B.乙C.丙D.丁【答案】D【解析】【解答】解:∵s甲2=0.60,s乙2=0.62,s丙2=0.58,s丁2=0.45,∴s丁2<s丙2<s甲2<s乙2,∴成绩最稳定的是丁.故答案为:D.3.如图,下列说法正确的是()A.∠2和∠4是同位角B.∠2和∠4是内错角C.∠1和∠A是内错角D.∠3和∠4是同旁内角.【答案】D【解析】解:AB、∠2和∠4即不是同位角,也不是内错角,不符合题意;C、∠2和∠A是内错角,而∠1和∠A不是内错角,不符合题意;D、∠3和∠4是同旁内角,符合题意.故答案为:D.4.已知实数x,y满足√x−2+(y+1)2=0,则x−y等于()A.3B. -3C.1D. -1【答案】A【解析】因为根号和平方都具备非负性,所以x−2=0,y+1=0,可得x=2,y=−1,所以x−y= 2−(−1)=3.故答案为:A.5.下列计算中,不正确的是()A.a2⋅a5=a10B.a2−2ab+b2=(a−b)2C.−(a−b)=b−aD.3a3b2÷a2b2=3a 【答案】A【解析】解:A.原式=a7,故答案为:A.6.如图,从一张腰长为90cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A.15cmB.12cmC.10cmD.20cm【答案】A【解析】【解答】解:过O作OE⊥AB于E,∵OA=OB=90cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=12OA=45cm,∴弧CD的长=120π×45180=30π,设圆锥的底面圆的半径为r,则2πr=30π,解得r=15.故答案为:A.7.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035B.12x(x+1)=1035 C.x(x﹣1)=1035 D.12x(x﹣1)=1035【答案】C【解析】解:∵全班有x名同学,∴全班有x名同学.∵是互送照片,∴总共送的张数应该是x(x﹣1)=1035.故答案为:C.8.如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=mx(m为常数且m≠0)的图象都经过A(−1,2),B(2,−1),结合图象,则不等式kx的解集是()A.x<−1B.−1<x<0C.x<−1或0<x<2D.−1<x<0或x>2【答案】 C【解析】解:由函数图象可知,当一次函数y1=kx+b(k≠0)的图象在反比例函数y2=mx(m为常数且m≠0)的图象上方时,x的取值范围是:x<−1或0<x<2,∴不等式kx+b>mx的解集是x<−1或0<x<2.故答案为:C.9关于y=2(x﹣3)2+2的图象,下列叙述正确是()A.顶点坐标为(﹣3,2)B.对称轴为直线y=3C.当x≥3时,y随x增大而增大D.当x≥3时,y随x增大而减小【答案】C【解析】解:∵y=2(x﹣3)2+2的图象开口向上,顶点坐标为(3,2),对称轴为直线x=3,∴当x≥3时,y随x的增大而增大.∴选项A、B、D中的说法都是错误的,只有选项C中的说法是正确.故答案为:C.10.如图,在△ABC中,AC=BC=2,D是BC的中点,过A,C,D三点的⊙O与AB边相切于点A,则⊙O 的半径为()A.√73B.2√55C.1D.2√147【答案】D【解析】解:连接OA,作AH⊥BC,连接DO并延长交圆于K,∵AB是⊙O的切线,∴∠BAD=∠ACD,∵∠ABD=∠CBA,∴△ABD∽△CAB,∴ABBD =BCAB,∴1AB =AB2,∴AB=√2,∵AC2-CH2=AB2-BH2=AH2,∴22-(2-BH)2=2-BH2,解得BH=12,∴AH=√AB2−BH2=√2−14=√72,∴sin∠ACH=AHAC =√722=√74,∵∠AKD=∠ACH,∴sin∠AKD=ADKD ,即√74=√2KD,解得KD=4√147,∴OD=2√147.故答案为:D.;;二、填空题:本大题共8小题(每小题4分;共32分)11.若一正数的两个平方根分别是2a-1与-a+2,则a=________.【答案】-1【解析】解:∵一正数的两个平方根分别是2a-1与-a+2,∴2a-1-a+2=0解之:a=-1.故答案为:-112.−1−π________ −3.14.【答案】<【解析】【解答】∵π≈3.14159∴−π−(−3.14)=3.14−π<0∴(−1−π)−(−3.14)=−1+(3.14−π)<0即−1−π<−3.14故答案为:<.13.方程1x−3−2=x−13−x的解是________。

白银市2020版中考数学试卷A卷

白银市2020版中考数学试卷A卷

白银市2020版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017七上·鄂城期末) 下列各数与﹣6相等的()A . |﹣6|B . ﹣|﹣6|C . ﹣32D . ﹣(﹣6)2. (2分)下列等式正确的是A .B .C .D .3. (2分) (2020七上·云梦期末) 已知∠1的补角是它的4倍,那么∠1的度数是()A . 18°B . 30°C . 36°D . 60°4. (2分)如果,那么x的值是()A .B .C .D .5. (2分)若分式的值为零,则x的值必是()A . 3或-3B . 3C . -3D . 06. (2分)体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较两名同学成绩的()A . 平均数B . 方差C . 頻数分布D . 中位数7. (2分)(2017·宽城模拟) 一元二次方程4x2+1=3x的根的情况是()A . 没有实数根B . 只有一个实数根C . 有两个相等的实数根D . 有两个不相等的实数根8. (2分)如图,⊙A 和⊙B内切,它们的半径分别为3和1,过A点作⊙B的切线,切点为C,则AC的长为()A . 2B . 4C .D .9. (2分)(2017·高淳模拟) 如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D,E在圆上,四边形BCDE为矩形,这个矩形的面积是()A . 2B .C .D .10. (2分)(2019·成都) 如图,二次函数的图象经过点,,下列说法正确的是()A .B .C .D . 图象的对称轴是直线二、填空题 (共8题;共9分)11. (1分)(2016·河池) 对于实数a,b,定义运算“*”:a*b= ,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)=________.12. (1分)(2017·石狮模拟) 若有意义,则x的取值范围________.13. (1分)如图,以正六边形ABCDEF的边AB为边,在形内作正方形ABMN,连接MC,则∠BCM的大小为________14. (2分)王老师有一罐茶叶,茶叶罐的高是12厘米,底面是边长为8厘米的正方形,茶叶罐侧面贴着一圈商标纸,商标纸的面积是________平方厘米,茶叶罐的体积是________立方厘米.15. (1分) (2018七上·无锡月考) 若,那么 ________.16. (1分)直线y=kx+b与直线y=3x﹣5平行,且与直线y=﹣2x+1交于y轴上同一点,则该直线的函数表达式为________.17. (1分)(2020·瑶海模拟) 如图,正方形的四个顶点分别在扇形的半径,和上,且点是线段的中点,若的长为,则长为________.18. (1分)瑞士中学教师巴尔末成功地从光谱数据、、、……中得到巴尔末公式,从而打开了光谱奥妙的大门,请你按这种规律写出接下来的两个数据是________.三、解答题 (共5题;共25分)19. (5分) (2020九下·丹江口月考) 化简:(x+2+ )÷ .20. (5分)(2017·渭滨模拟) 尺规作图如图,已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.(不写画图过程,保留作图痕迹)21. (5分)(2011·宜宾) 某县为鼓励失地农民自主创业,在2010年对60位自主创业的失地农民进行了奖励,共计奖励了10万元.奖励标准是:失地农民自主创业连续经营一年以上的给予1000元奖励:自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励.问:该县失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民分别有多少人?22. (5分)在直角三角形中,有一个锐角是另一个锐角的4倍,求这个直角三角形各个角的度数.23. (5分)现有三个自愿献血者,两人血型为O型,一人血型为A型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O型的概率(要求:用列表或画树状图方法解答)四、解答题(二) (共5题;共49分)24. (10分)(2016·济宁) 2016年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.25. (10分) (2019九上·简阳期末) 如图,已知反比例函数y= (x>o)的图象与一次函数y=- x+4的图象交于A和B(6,n)两点.(1)求k和n的值(2)若点C(x,y)也在反比例函数y= (x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.26. (8分)某兴趣小组在学习了勾股定理之后提出:“锐(钝)角三角形有没有类似于勾股定理的结论”的问题.首先定义了一个新的概念:如图1△ABC中,M是BC的中点,P是射线MA上的点,设=k,若∠BPC=90°,则称k为勾股比.(1)如图1,过B,C分别作中线AM的垂线,垂足为E,D.求证:CD=BE.(2)①如图2,当k=1,且AB=AC时,AB2+AC2=________BC2(填一个恰当的数).②如图1,当k=1,△ABC为锐角三角形,且AB≠AC时,①中的结论还成立吗?若成立,请写出证明过程;若不成立,也请说明理由;________③对任意锐角或钝角三角形,如图1,3,请用含勾股比k的表达式直接表示AB2+AC2与BC2的关系(写出锐角或钝角三角形中的一个即可).________27. (10分)(2016·云南模拟) 如图,将圆形纸片沿弦AB折叠后,圆弧恰好能经过圆心O,⊙O的切线BC 与AO延长线交于点C.(1)若⊙O半径为6cm,用扇形OAB围成一个圆锥的侧面,求这个圆锥的底面圆半径.(2)求证:AB=BC.28. (11分) (2019九上·北京开学考) 在平面直角坐标系xOy中,直线的图象经过(1,0),(-2,3)两点,且与y轴交于点A。

甘肃省白银市2020年(春秋版)中考数学试卷(II)卷

甘肃省白银市2020年(春秋版)中考数学试卷(II)卷

甘肃省白银市2020年(春秋版)中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分)有4包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A . +2B . -3C . +3D . +42. (2分)(2019·高台模拟) 某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A .B .C .D .3. (2分)(2017·南山模拟) 过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为()A . 312×104B . 0.312×107C . 3.12×106D . 3.12×1074. (2分)点M(2,-1)向上平移2个单位长度得到的点的坐标是()A . (2,0)B . (2,1)C . (2,2)D . (2,)5. (2分) (2019九上·石家庄月考) 若关于的方程有实数根,则实数的取值范围是()A .B .C . 且D . 且6. (2分)(2020·南开模拟) 下列常用手机 APP 的图标中,是中心对称图形的是()A .B .C .D .7. (2分)(2020·南通模拟) 下列运算正确的是()A .B .C .D .8. (2分) (2020七下·陈仓期末) 小丽书包里准备的3只包装相同的备用口罩中有2只是医用外科口罩,由于感冒她想取一只医用外科口罩去医院就医时佩戴,则她一次取对的概率是()A . 0B .C .D .9. (2分) (2019八下·沙雅期中) 如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论:①OA=OD;②AD⊥EF;③当DE=AE时,四边形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正确的是()A . ②③B . ②④C . ①③④D . ②③④二、填空题 (共7题;共7分)10. (1分)二次函数的图象如图,点O为坐标原点,点A在y轴的正半轴上,点B、C在二次函数的图象上,四边形OBAC为菱形,且∠OBA=120°,则菱形OBAC的面积为________ .11. (1分) (2020九下·扬中月考) 如图,已知,,,则的度数为________.12. (1分)(2018·重庆模拟) 数学老师布置10道选择题作为课堂练习,科代表将全班同学的答题情况绘制成条形统计图,根据图中信息,全班每位同学答对题数的中位数和众数分别为________和________.13. (1分) (2019九下·镇原期中) 在直角三角形ABC中,∠ACB=90°,D、E是边AB上两点,且CE所在直线垂直平分线段AD,CD平分∠BCE,BC=2 ,则AB=________.14. (1分)七(1)班小明同学通过《测量硬币的厚度与质量》实验得到了每枚硬币的厚度和质量,数据如下表.他从储蓄罐取出一把5角和1元硬币,为了知道总的金额,他把这些硬币叠起来,用尺量出它们的总厚度为22.6mm,又用天平称出总质量为78.5g,请你帮助小明同学算出这把硬币的总金额为________ 元.1元硬币5角硬币每枚厚度(单位:mm) 1.8 1.7每枚质量(单位:g) 6.1 6.015. (1分)如图,小明在楼AB顶部的点A处测得楼前一棵树CD的顶端C的俯角为37°,已知楼AB高为18m,楼与树的水平距离BD为8.5m,则树CD的高约为________ m(精确到0.1m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)16. (1分) (2020八下·富县期末) 甲、乙两龙舟队举行赛龙舟比赛,两队在比赛过程中的路程y(米)与时间t(分钟)之间的函数关系如图所示,下列结论:①甲队率先到达终点;②甲队比乙队多划200米路程;③划完全程乙队比甲队少用0.2分钟;④比赛过程中当时,乙队的速度比甲队的速度快.其正确的结论有________个.三、解答题 (共10题;共88分)17. (5分)(2017·江阴模拟) 化简下列各式:(1)(2).18. (5分) (2019八上·吉林期末) 解方程:(1)(2).19. (5分)(2018·龙岩模拟) 如图,在□ABCD中,是对角线上的两点,且,求证:.20. (7分)(2018·深圳模拟) 为了提高学生书写汉字的能力,增强保护汉字的意识,某市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如下:组别成绩x分频数(人数)第1组25≤x<304第2组30≤x<358第3组35≤x<4016第4组40≤x<45a第5组45≤x<5010请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.21. (10分)(2018·天河模拟) 始兴县太平镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?22. (10分)已知一次函数的图象经过(3,5)和(-4,-9)两点.(1)求这个一次函数的解析式;(2)若点(a,2)在这个函数图象上,求a的值.23. (10分)(2019·海港模拟) 如图,半圆D的直径AB=4,线段OA=7,O为原点,点B在数轴的正半轴上运动,点B在数轴上所表示的数为m.(1)当半圆D与数轴相切时,m= ________ .(2)半圆D与数轴有两个公共点,设另一个公共点为C.①直接写出m的取值范围是________.(3)当△A0B的内心、外心与某一个顶点在同一条直线上时,求tan∠AOB的值。

甘肃省白银市2020年中考数学试卷(II)卷

甘肃省白银市2020年中考数学试卷(II)卷

甘肃省白银市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列运算正确的是()A . ﹣(﹣1)=﹣1B . |﹣3|=﹣3C . ﹣22=4D . (﹣3)÷(﹣)=92. (2分)下列四个几何体:其中左视图与俯视图相同的几何体共有()A . 1个B . 2个C . 3个D . 4个3. (2分)(2017·五华模拟) 下列运算或变形正确的是()A . ﹣2a+2b=﹣2(a+b)B . a2﹣2a+4=(a﹣2)2C . (2a2)3=6a6D . 3a2•2a3=6a54. (2分) (2019八上·瑞安月考) 如图,AB∥CD,AD和BC相交于点O,∠A=35°,∠AOB=75°,则∠C等于()A . 35°B . 75°C . 70°D . 80°5. (2分)某班抽取6名同学进行体育达标测试,成绩如下:80,90,75,80,75,80. 下列关于对这组数据的描述错误的是()A . 众数是80B . 平均数是80C . 中位数是75D . 极差是156. (2分) (2020九上·莘县期末) 如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为S,则四边形ABCE的面积为()A . 11SB . 10SC . 9SD . 8S7. (2分) (2019八上·锦州期末) 均匀地向如图所示的容器中注满水,下列图象中,能反映在注水过程中水面高度h随时间t变化的函数关系的图象大致是()A .B .C .D .8. (2分)已知m为﹣9,﹣6,﹣5,﹣3,﹣2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A .B .C .D .9. (2分) (2019七上·鞍山期中) 观察如图所示图形,则第n个图形中三角形的个数是()A . 2n+2B . 4n+4C . 4nD . 4n-410. (2分) (2017九上·上城期中) 已知二次函数,当自变量分别取、3、0时,对应的函数值分别:,,,则,,的大小关系正确的是().A .B .C .D .二、填空题 (共6题;共6分)11. (1分)如果锐角α满足2cosα=,那么α=________°.12. (1分) (2019九上·博白期中) 如图,是由绕点O顺时针旋转40°后得到的图形,若点D恰好落在AB上,且,则的度数是________°.13. (1分)(2011·徐州) 方程组的解为________.14. (1分)如图,⊙O与正方形ABCD的各边分别相切于点E、F、G、H,点P是上的一点,则tan∠EPF 的值是________.15. (1分)(2017·河西模拟) 在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,位似比为2:1将△EFO缩小,则点E的对应点E′的坐标是________.16. (1分) (2015八下·伊宁期中) 在△ABC中,∠B=90度,BC=6,AC=8,则AB=________三、解答题 (共8题;共94分)17. (5分) (2017七下·永春期末) 求不等式的非负整数解.18. (15分) (2018九上·东营期中) 如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.19. (10分)父亲节快到了,明明准备为爸爸煮四个大汤圆作早点:一个芝麻馅,一个水果馅,两个花生馅,四个汤圆除内部馅料不同外,其它一切均相同.(1)求爸爸吃前两个汤圆刚好都是花生馅的概率;(2)若给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生馅的可能性是否会增大?请说明理由.20. (12分)(2018·江苏模拟) 已知△ABC中,点E为边AB的中点,将△ABC沿CE所在的直线折叠得△A′EC,BF∥AC,交直线A′C于F.(1)如图①,若∠ACB=90º,∠A=30º,BC= ,求A′F的长.(2)如图②,若∠ACB为任意角,已知A′F= ,求BF的长(用表示)(3)如图③,若∠ACB为任意角,猜想出AC、CF、BF之间的数量关系:________,并说明理由。

甘肃省白银市2020年(春秋版)中考数学试卷(I)卷

甘肃省白银市2020年(春秋版)中考数学试卷(I)卷

甘肃省白银市2020年(春秋版)中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)-3的相反数是()A .B . -C . -3D . 32. (2分)(2017·东莞模拟) 某种细胞的直径是0.000067厘米,将0.000067用科学记数法表示为()A . 6.7×10﹣5B . 0.67×10﹣6C . 0.67×10﹣5D . 6.7×10﹣63. (2分)(2016·慈溪模拟) 如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是()A .B .C .D .4. (2分)(2019·宁波模拟) 下列图形中既是轴对称图形又是中心对称图形的是()A .B .C .D .5. (2分) (2020八上·辽阳期末) 甲乙两名同学本学期参加了相同的5次数学考试,老师想判断这两位同学的数学成绩谁更稳定,老师需比较这两人5次数学成绩的()A . 平均数B . 中位数C . 众数D . 方差6. (2分)已知2x6y2和﹣是同类项,那么2m+n的值是()A . 2B . 4C . 6D . 57. (2分)一次函数y=﹣2x+1的图象不经过下列哪个象限()A . 第一象限B . 第二象限C . 第三象限D . 第四象限9. (2分)在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x名,二等奖的学生有y名,根据题意可列方程组为()A .B .C .D .10. (2分) (2020九上·柳州期末) 如图,从圆 O 外一点引圆 P 的两条切线 PA , PB ,切点分别为 A ,B .如果∠APB=60°, PA=8 ,那么圆 O 的半径是()A . 4B .C .D .11. (2分) (2016九上·威海期中) 如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1 ,其中正确的是()A . ①②③B . ①③④C . ①③⑤D . ②④⑤12. (2分) (2019八上·孝南月考) 如图,△A BC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①AP⊥BC;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共4题;共4分)13. (1分)分解因式: ________.14. (1分)(2019·江岸模拟) 有四张背面完全相同的卡片,正面上分别标有数字﹣2,﹣1,1,2.把这四张卡片背面朝上,随机抽取一张,记下数字为m;放回搅匀,再随机抽取一张卡片,记下数字为n,则y=mx+n不经过第三象限的概率为________.15. (1分)(2018·枣庄) 如图,在正方形ABCD中,AD=2 ,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为________.16. (1分)如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE-ED-DC 运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同发t秒时,△BPQ的面积为ycm2 .已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②cos∠ABE=;③当0<t≤5时,y=t2;④当t=秒时,△ABE∽△QBP;其中正确的结论是________(填序号).三、解答题 (共7题;共71分)17. (5分)(2017·兰陵模拟) 计算: +(1﹣)0﹣4cos45°.18. (5分)(2011·苏州) 先化简,再求值:(a﹣1+ )÷(a2+1),其中a= ﹣1.19. (13分)(2018·黄梅模拟) 某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有________人,在扇形统计图中,“乒乓球”的百分比为________%,如果学校有800名学生,估计全校学生中有________人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.20. (15分)(2018·南山模拟) 已知,如图1,抛物线y=ax2+bx+3与x轴交于点B、C,与y轴交于点A,且AO=CO,BC=4.(1)求抛物线解析式;(2)如图2,点P是抛物线第一象限上一点,连接PB交y轴于点Q,设点P的横坐标为t,线段OQ长为d,求d与t之间的函数关系式;(3)在(2)的条件下,过点Q作直线l⊥y轴,在l上取一点M(点M在第二象限),连接AM,使AM=PQ,连接CP并延长CP交y轴于点K,过点P作PN⊥l于点N,连接KN、CN、CM.若∠MCN+∠NKQ=45°时,求t值.21. (10分) (2016九上·黑龙江月考) 某学校计划组织师生参加哈尔滨冰雪节,感受冰雪艺术的魅力.出租公司现有甲、乙两种型号的客车可供租用,且每辆乙型客车的租金比每辆甲型客车少60元.若该校租用3辆甲种客车,4辆乙种客车,则需付租金1720元.(1)该出租公司每辆甲、乙两型客车的租金各为多少元?(2)若学校计划租用6辆客车,租车的总租金不超过1560元,那么最多租用甲型客车多少辆?22. (8分)(2018八上·桥东期中)(1)【问题探究】如图①已知锐角△ABC,分别以AB、AC为腰,在△ABC的外部作等腰Rt△ABD和Rt△ACE,连接CD、BE,是猜想CD、BE的大小关系________;(不必证明)(2)【深入探究】如图②△ABC、△ADE都是等腰直角三角形,点D在边BC上(不与B、C重合),连接EC,则线段BC,DC,EC之间满足的等量关系式为________;(不必证明)线段AD2,BD2,CD2之间满足的等量关系,并证明你的结论;________(3)【拓展应用】如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.23. (15分)(2019·泸西模拟) 如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP 沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC,分别交PM,PB于点E,F.若 = ,求的值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共71分)17-1、18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、。

2020年甘肃省白银等九市州中考试卷初中数学

2020年甘肃省白银等九市州中考试卷初中数学

2020年甘肃省白银等九市州中考试卷初中数学数学试卷抛物线2y ax bx c =++的顶点坐标是⎪⎪⎭⎫⎝⎛--a b ac a b 44,22.一、选择题:本大题共10小题,每题3分,共30分.每题给出的四个选项中,只有一项为哪一项符合题目要求的,将此选项的代号填入题后的括号内.1.化简:4=〔 〕A .2B .-2C .4D .-42. 如以下图,一个碗摆放在桌面上,那么它的俯视图是〔 〕3. 2018年在北京举办的第29届奥运会的火炬传递在各方面差不多上创记录的:火炬境外传递都市19个,境内传递都市和地区116个,传递距离为137万公里,火炬手的总数达到21780人.用科学记数法表示21780为〔 〕A .2.178×105B .2.178×104C .21.78×103D .217.8×1024. 如以下图,小红和小丽在操场上做游戏,她们先在地上画出一个圆圈,然后蒙上眼在一定距离外向圆圈内投小石子,那么投一次就正好投到圆圈内是〔 〕A .必定事件〔必定发生的事件〕B .不可能事件〔不可能发生的事件〕C .确定事件〔必定发生或不可能发生的事件〕D .不确定事件〔随机事件〕5.把不等式组110xx+⎧⎨-⎩≤的解集表示在数轴上,正确的为〔〕6.张颖同学把自己一周的支出情形,用如以下图所示的统计图来表示.那么从图中能够看出( )A.一周支出的总金额B.一周各项支出的金额C.一周内各项支出金额占总支出的百分比D.各项支出金额在一周中的变化情形7.如以下图四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为〔〕A.①③B.①④C.②③D.②④8.中央电视台2套〝快乐辞典〞栏目中,有一期的题目如以下图所示,两个天平都平稳,那么与2个球体相等质量的正方体的个数为〔〕A.5 B.4 C.3 D.29.高速公路的隧道和桥梁最多.如以下图是一个隧道的横截面,假设它的形状是以O为圆心的圆的一部分,路面AB=10米,净高CD=7米,那么此圆的半径OA=〔〕A .5B .7C .375D .37710.如以下图,把矩形ABCD 沿EF 对折后使两部分重合,假设150∠=,那么AEF ∠=〔 〕A .110°B .115°C .120°D .130°二、填空题:本大题共8小题,每题4分,共32分.把答案填在题中的横线上.11. 假设向南走2m 记作2m -,那么向北走3m 记作 m .12.点P 〔-2,3〕关于x 轴的对称点的坐标是________.13. 等腰三角形的一条腰长是5,底边长是6,那么它底边上的高为 .14. 抛物线 y=x 2+x-4与y 轴的交点坐标为 .15. 如以下图,将左边的矩形绕点B 旋转一定角度后,位置如右边的矩形,那么∠ABC=______ .16.某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x 元,那么x 满足的方程是 .17. 一个函数具有以下性质:①它的图像通过点〔-1,1〕;②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.那么那个函数的解析式能够为 .18. 如以下图 (1)是一个等腰梯形,由6个如此的等腰梯形恰好能够拼出如以下图 (2)所示的一个菱形.关于图(1)中的等腰梯形,请写出它的内角的度数或腰与底边长度之间关系的一个正确结论: .三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字讲明、证明过程或演算步骤.19. (6分) 化简:a a a a a a 4222-⋅⎪⎭⎫ ⎝⎛+-- 20.〔6分〕请你类比一条直线和一个圆的三种位置关系,在以下图①、②、③中,分不各画出一条直线,使它与两个圆都相离、都相切、都相交,并在图④中也画上一条直线,使它与两个圆具有不同于前面3种情形的位置关系.21.〔8分〕以下图是某种蜡烛在燃烧过程中高度与时刻之间关系的图像,由图像解答以下咨询题:〔1〕此蜡烛燃烧1小时后,高度为 cm ;通过 小时燃烧完毕; 〔2〕求那个蜡烛在燃烧过程中高度与时刻之间关系的解析式.22.〔8分〕如以下图,在ABCD 中,点E 是CD 的中点,AE 的延长线与BC 的延长线相交于点F .(1)求证:△ADE ≌△FCE ;(2)连结AC 、DF ,那么四边形ACFD 是以下选项中的〔 〕.A.梯形B.菱形C.正方形D.平行四边形23.(10分) 某校八年级320名学生在电脑培训前后各参加了一次水平相同的考试,考试成绩都以同一标准划分成〝不及格〞、〝及格〞和〝优秀〞三个等级.为了了解电脑培训的成效,用抽签方式得到其中32名学生培训前后两次考试成绩的等级,并绘制成如以下图的统计图,试结合图形信息回答以下咨询题:(1) 这32名学生培训前后考试成绩的中位数所在的等级分不是、;〔2〕估量该校整个八年级学生中,培训后考试成绩的等级为〝及格〞与〝优秀〞的学生共有多少名?四、解答题(二):本大题共5小题,共50分.解答时,应写出必要的文字讲明、证明过程或演算步骤.24.〔8分〕〕以下图是一盒刚打开的〝兰州〞牌香烟,图(1)是它的横截面〔矩形ABCD〕,每支香烟底面圆的直径是8mm.〔1〕〔2〕(1) 矩形ABCD的长AB= mm;〔2〕利用图(2)求矩形ABCD的宽AD.〔3≈1.73,结果精确到0.1mm〕25.〔10分〕如以下图①,在一幅矩形地毯的四周镶有宽度相同的花边.如以下图②,地毯中央的矩形图案长6米、宽3米,整个地毯的面积是40平方分米.求花边的宽.26.〔10分〕如以下图,在梯形ABCD 中,AD ∥BC ,∠B=90°,AD=2,BC=5,tanC=34. 〔1〕求点D 到BC 边的距离;〔2〕求点B 到CD 边的距离.27.〔10分〕小明和小慧玩纸牌游戏. 图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明先从中抽出一张,小慧从剩余的3张牌中也抽出一张.小慧讲:假设抽出的两张牌的数字差不多上偶数,你获胜;否那么,我获胜.〔1〕请用树状图表示出两人抽牌可能显现的所有结果;〔2〕假设按小慧讲规那么进行游戏,那个游戏公平吗?请讲明理由.28.〔12分〕如以下图,在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为〔4,3〕.平行于对角线AC 的直线m 从原点O 动身,沿x 轴正方向以每秒1个单位长度的速度运动,设直线m 与矩形OABC 的两边..分不交于点M 、N ,直线m 运动的时刻为t 〔秒〕. (1) 点A 的坐标是__________,点C 的坐标是__________;(2) 当t= 秒或 秒时,MN=21AC ; (3) 设△OMN 的面积为S ,求S 与t 的函数关系式;(4) 探求(3)中得到的函数S 有没有最大值?假设有,求出最大值;假设没有,要讲明理由.附加题 (12分)1.〔5分〕如以下图,网格小正方形的边长都为1.在⊿ABC 中,试画出三边的中线〔顶点与对边中点连结的线段〕,然后探究三条中线位置及其有关线段之间的关系,你发觉了什么有味的结论?请讲明理由.2.〔7分〕如以下图〔1〕,由直角三角形边角关系,可将三角形面积公式变形, 得 ABC S △=12bc·sin ∠A . ① 即三角形的面积等于两边之长与夹角正弦之积的一半.如以下图〔2〕,在⊿ABC 中,CD ⊥AB 于D ,∠ACD=α, ∠DCB=β.∵ ABC ADC BDC S S S =+△△△, 由公式①,得12AC·BC·sin(α+β)= 12AC·CD·sin α+12BC·CD·sin β, 即 AC·BC·sin(α+β)= AC·CD·sin α+BC·CD·sin β. ②你能利用直角三角形边角关系,消去②中的AC 、BC 、CD 吗?不能,讲明理由;能,写出解决过程.。

2020年甘肃省白银市中考数学试卷及答案

2020年甘肃省白银市中考数学试卷及答案

2020年甘肃省白银市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项. 1.(3分)(2020•金昌)下列实数是无理数的是( ) A .﹣2B .16C .√9D .√112.(3分)(2020•金昌)若α=70°,则α的补角的度数是( ) A .130°B .110°C .30°D .20°3.(3分)(2020•金昌)若一个正方形的面积是12,则它的边长是( ) A .2√3B .3C .3√2D .44.(3分)(2020•金昌)下列几何体中,其俯视图与主视图完全相同的是( )A .B .C .D .5.(3分)(2020•金昌)下列各式中计算结果为x 6的是( ) A .x 2+x 4B .x 8﹣x 2C .x 2•x 4D .x 12÷x 26.(3分)(2020•金昌)生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a 与全身b 的高度比值接近0.618,可以增加视觉美感.若图中b 为2米,则a 约为( )A .1.24米B .1.38米C .1.42米D .1.62米7.(3分)(2020•金昌)已知x =1是一元二次方程(m ﹣2)x 2+4x ﹣m 2=0的一个根,则m 的值为( ) A .﹣1或2B .﹣1C .2D .08.(3分)(2020•金昌)如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE间的距离.若AE间的距离调节到60cm,菱形的边长AB=20cm,则∠DAB 的度数是()A.90°B.100°C.120°D.150°9.(3分)(2020•金昌)如图,A是⊙O上一点,BC是直径,AC=2,AB=4,点D在⊙Ô,则DC的长为()上且平分BCA.2√2B.√5C.2√5D.√1010.(3分)(2020•金昌)如图①,正方形ABCD中,AC,BD相交于点O,E是OD的中点.动点P从点E出发,沿着E→O→B→A的路径以每秒1个单位长度的速度运动到点A,在此过程中线段AP的长度y随着运动时间x的函数关系如图②所示,则AB的长为()A.4√2B.4C.3√3D.2√2二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)(2020•金昌)如果盈利100元记作+100元,那么亏损50元记作元.12.(3分)(2020•金昌)分解因式:a 2+a = .13.(3分)(2020•金昌)暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如下,请你为广告牌填上原价.原价: 元 暑假八折优惠,现价:160元14.(3分)(2020•金昌)要使分式x+2x−1有意义,x 需满足的条件是 .15.(3分)(2020•金昌)在一个不透明的袋中装有若干个材质、大小完全相同的红球,小明在袋中放入3个黑球(每个黑球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,估计袋中红球有 个.16.(3分)(2020•金昌)如图,在平面直角坐标系中,△OAB 的顶点A ,B 的坐标分别为(3,√3),(4,0).把△OAB 沿x 轴向右平移得到△CDE ,如果点D 的坐标为(6,√3),则点E 的坐标为 .17.(3分)(2020•金昌)若一个扇形的圆心角为60°,面积为π6cm 2,则这个扇形的弧长为cm (结果保留π).18.(3分)(2020•金昌)已知y =√(x −4)2−x +5,当x 分别取1,2,3,…,2020时,所对应y 值的总和是 .三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.19.(4分)(2020•金昌)计算:(2−√3)(2+√3)+tan60°﹣(π﹣2√3)0. 20.(4分)(2020•金昌)解不等式组:{3x −5<x +12(2x −1)≥3x −4,并把它的解集在数轴上表示出来.21.(6分)(2020•金昌)如图,在△ABC 中,D 是BC 边上一点,且BD =BA . (1)尺规作图(保留作图痕迹,不写作法):①作∠ABC的角平分线交AD于点E;②作线段DC的垂直平分线交DC于点F.(2)连接EF,直接写出线段EF和AC的数量关系及位置关系.22.(6分)(2020•金昌)图①是甘肃省博物馆的镇馆之宝﹣﹣铜奔马,又称“马踏飞燕”,于1969年10月出土于武威市的雷台汉墓,1983年10月被国家旅游局确定为中国旅游标志.在很多旅游城市的广场上都有“马踏飞燕”雕塑.某学习小组把测量本城市广场的“马踏飞燕”雕塑(图②)最高点离地面的高度作为一次课题活动,同学们制定了测量方案,并完成了实地测量,测得结果如下表:课题测量“马踏飞燕“雕塑最高点离地面的高度测量示意图如图,雕塑的最高点B 到地面的高度为BA,在测点C用仪器测得点B 的仰角为α,前进一段距离到达测点E,再用该仪器测得点B 的仰角为β,且点A,B,C,D,E,F均在同一竖直平面内,点A,C,E在同一条直线上.测量数据α的度数β的度数CE的长度仪器CD(EF)的高度31°42°5米1.5米请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高度(结果保留一位小数).(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)23.(6分)(2020•金昌)2019年甘肃在国际知名旅游指南《孤独星球》亚洲最佳旅游地排名第一.截至2020年1月,甘肃省已有五家国家5A级旅游景区,分别为A:嘉峪关文物景区;B:平凉崆峒山风景名胜区;C:天水麦积山景区;D:敦煌鸣沙山月牙泉景区;E:张掖七彩丹霞景区.张帆同学与父母计划在暑假期间从中选择部分景区游玩.(1)张帆一家选择E:张掖七彩丹霞景区的概率是多少?(2)若张帆一家选择了E:张掖七彩丹霞景区,他们再从A,B,C,D四个景区中任选两个景区去旅游,求选择A,D两个景区的概率(要求画树状图或列表求概率).四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.24.(7分)(2020•金昌)习近平总书记于2019年8月在兰州考察时说“黄河之滨也很美”.兰州是古丝绸之路商贸重镇,也是黄河唯一穿城而过的省会城市,被称为“黄河之都”.近年来,在市政府的积极治理下,兰州的空气质量得到极大改善,“兰州蓝”成为兰州市民引以为豪的城市名片.如图是根据兰州市环境保护局公布的2013~2019年各年的全年空气质量优良天数绘制的折线统计图.请结合统计图解答下列问题:(1)2019年比2013年的全年空气质量优良天数增加了天;(2)这七年的全年空气质量优良天数的中位数是天;(3)求这七年的全年空气质量优良天数的平均天数;(4)《兰州市“十三五”质量发展规划》中指出:2020年,确保兰州市全年空气质量优良天数比率达80%以上.试计算2020年(共366天)兰州市空气质量优良天数至少需要多少天才能达标.25.(7分)(2020•金昌)通过课本上对函数的学习,我们积累了一定的经验.下表是一个函数的自变量x与函数值y的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:x…012345…y…632 1.5 1.21…(1)当x=时,y=1.5;(2)根据表中数值描点(x,y),并画出函数图象;(3)观察画出的图象,写出这个函数的一条性质:.26.(8分)(2020•金昌)如图,⊙O是△ABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AE=AB.(1)求∠ACB的度数;(2)若DE=2,求⊙O的半径.27.(8分)(2020•金昌)如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN =45°.把△ADN绕点A顺时针旋转90°得到△ABE.(1)求证:△AEM≌△ANM.(2)若BM=3,DN=2,求正方形ABCD的边长.28.(10分)(2020•金昌)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)若PC∥AB,求点P的坐标;(3)连接AC,求△P AC面积的最大值及此时点P的坐标.2020年甘肃省白银市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项. 1.(3分)(2020•金昌)下列实数是无理数的是( ) A .﹣2B .16C .√9D .√11【解答】解:√9=3,则由无理数的定义可知,实数是无理数的是√11. 故选:D .2.(3分)(2020•金昌)若α=70°,则α的补角的度数是( ) A .130°B .110°C .30°D .20°【解答】解:α的补角是:180°﹣∠A =180°﹣70°=110°. 故选:B .3.(3分)(2020•金昌)若一个正方形的面积是12,则它的边长是( ) A .2√3B .3C .3√2D .4【解答】解:∵正方形的面积是12, ∴它的边长是√12=2√3. 故选:A .4.(3分)(2020•金昌)下列几何体中,其俯视图与主视图完全相同的是( )A .B .C .D .【解答】解:圆锥的主视图是等腰三角形,俯视图是圆,因此A 不符合题意; 圆柱的主视图是矩形,俯视图是圆,因此B 不符合题意; 正方体的主视图、俯视图都是正方形,因此选项C 符合题意; 三棱柱的主视图是矩形,俯视图是三角形,因此D 不符合题意; 故选:C .5.(3分)(2020•金昌)下列各式中计算结果为x 6的是( ) A .x 2+x 4B .x 8﹣x 2C .x 2•x 4D .x 12÷x 2【解答】解:x 2与x 4不是同类项,不能合并计算,它是一个多项式,因此A 选项不符合题意;同理选项B 不符合题意;x 2•x 4=x 2+4=x 6,因此选项C 符合题意; x 12÷x 2=x 12﹣2=x 10,因此选项D 不符合题意;故选:C .6.(3分)(2020•金昌)生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a 与全身b 的高度比值接近0.618,可以增加视觉美感.若图中b 为2米,则a 约为( )A .1.24米B .1.38米C .1.42米D .1.62米【解答】解:∵雕像的腰部以下a 与全身b 的高度比值接近0.618, ∴ab ≈0.618,∵b 为2米, ∴a 约为1.24米. 故选:A .7.(3分)(2020•金昌)已知x =1是一元二次方程(m ﹣2)x 2+4x ﹣m 2=0的一个根,则m 的值为( ) A .﹣1或2B .﹣1C .2D .0【解答】解:把x =1代入(m ﹣2)x 2+4x ﹣m 2=0得: m ﹣2+4﹣m 2=0, ﹣m 2+m +2=0,解得:m 1=2,m 2=﹣1,∵(m ﹣2)x 2+4x ﹣m 2=0是一元二次方程,∴m﹣2≠0,∴m≠2,∴m=﹣1,故选:B.8.(3分)(2020•金昌)如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE间的距离.若AE间的距离调节到60cm,菱形的边长AB=20cm,则∠DAB 的度数是()A.90°B.100°C.120°D.150°【解答】解:连结AE,∵AE间的距离调节到60cm,木制活动衣帽架是由三个全等的菱形构成,∴AC=20cm,∵菱形的边长AB=20cm,∴AB=BC=20cm,∴AC=AB=BC,∴△ACB是等边三角形,∴∠B=60°,∴∠DAB=120°.故选:C.9.(3分)(2020•金昌)如图,A是⊙O上一点,BC是直径,AC=2,AB=4,点D在⊙Ô,则DC的长为()上且平分BCA.2√2B.√5C.2√5D.√10̂,【解答】解:∵点D在⊙O上且平分BĈ=CD̂,∴BD∵BC是⊙O的直径,∴∠BAC=∠D=90°,∵AC=2,AB=4,∴BC=√22+42=2√5,Rt△BDC中,DC2+BD2=BC2,∴2DC2=20,∴DC=√10,故选:D.10.(3分)(2020•金昌)如图①,正方形ABCD中,AC,BD相交于点O,E是OD的中点.动点P从点E出发,沿着E→O→B→A的路径以每秒1个单位长度的速度运动到点A,在此过程中线段AP的长度y随着运动时间x的函数关系如图②所示,则AB的长为()A.4√2B.4C.3√3D.2√2【解答】解:如图,连接AE.∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=OD=OB,由题意DE=OE,设DE=OE=x,则OA=OD=2x,∵AE=2√5,∴x2+(2x)2=(2√5)2,解得x=2或﹣2(不合题意舍弃),∴OA=OD=4,∴AB=AD=4√2,故选:A.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)(2020•金昌)如果盈利100元记作+100元,那么亏损50元记作﹣50元.【解答】解:∵盈利100元记作+100元,∴亏损50元记作﹣50元,故答案为:﹣50.12.(3分)(2020•金昌)分解因式:a2+a=a(a+1).【解答】解:a2+a=a(a+1).故答案为:a(a+1).13.(3分)(2020•金昌)暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如下,请你为广告牌填上原价.原价:元暑假八折优惠,现价:160元【解答】解:设广告牌上的原价为x元,依题意,得:0.8x=160,解得:x=200.故答案为:200.14.(3分)(2020•金昌)要使分式x+2x−1有意义,x 需满足的条件是 x ≠1 .【解答】解:当x ﹣1≠0时,分式有意义, ∴x ≠1, 故答案为x ≠1.15.(3分)(2020•金昌)在一个不透明的袋中装有若干个材质、大小完全相同的红球,小明在袋中放入3个黑球(每个黑球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,估计袋中红球有 17 个.【解答】解:通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,口袋中有3个黑球, ∵假设有x 个红球, ∴x x+3=0.85,解得:x =17,经检验x =17是分式方程的解, ∴口袋中红球约有17个. 故答案为:17.16.(3分)(2020•金昌)如图,在平面直角坐标系中,△OAB 的顶点A ,B 的坐标分别为(3,√3),(4,0).把△OAB 沿x 轴向右平移得到△CDE ,如果点D 的坐标为(6,√3),则点E 的坐标为 (7,0) .【解答】解:∵A (3,√3),D (6,√3), ∴点A 向右平移3个单位得到D , ∵B (4,0),∴点B 向右平移3个单位得到E (7,0), 故答案为(7,0).17.(3分)(2020•金昌)若一个扇形的圆心角为60°,面积为π6cm 2,则这个扇形的弧长为π3cm (结果保留π).【解答】解:设扇形的半径为R ,弧长为l , 根据扇形面积公式得;60π⋅R 2360=π6,解得:R =1,∵扇形的面积=12lR =π6, 解得:l =13π. 故答案为:π3.18.(3分)(2020•金昌)已知y =√(x −4)2−x +5,当x 分别取1,2,3,…,2020时,所对应y 值的总和是 2032 . 【解答】解:当x <4时, 原式=4﹣x ﹣x +5=﹣2x +9, 当x =1时,原式=7; 当x =2时,原式=5; 当x =3时,原式=3;当x ≥4时,原式=x ﹣4﹣x +5=1,∴当x 分别取1,2,3,…,2020时,所对应y 值的总和是: 7+5+3+1+1+…+1 =15+1×2017 =2032. 故答案为:2032.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.19.(4分)(2020•金昌)计算:(2−√3)(2+√3)+tan60°﹣(π﹣2√3)0. 【解答】解:原式=4﹣3+√3−1 =√3.20.(4分)(2020•金昌)解不等式组:{3x −5<x +12(2x −1)≥3x −4,并把它的解集在数轴上表示出来.【解答】解:解不等式3x﹣5<x+1,得:x<3,解不等式2(2x﹣1)≥3x﹣4,得:x≥﹣2,则不等式组的解集为﹣2≤x<3,将不等式组的解集表示在数轴上如下:21.(6分)(2020•金昌)如图,在△ABC中,D是BC边上一点,且BD=BA.(1)尺规作图(保留作图痕迹,不写作法):①作∠ABC的角平分线交AD于点E;②作线段DC的垂直平分线交DC于点F.(2)连接EF,直接写出线段EF和AC的数量关系及位置关系.【解答】解:(1)如图,①BE即为所求;②如图,线段DC的垂直平分线交DC于点F.(2)∵BD=BA,BE平分∠ABD,∴点E是AD的中点,∵点F是CD的中点,∴EF是△ADC的中位线,∴线段EF和AC的数量关系为:EF=12AC,位置关系为:EF∥AC.22.(6分)(2020•金昌)图①是甘肃省博物馆的镇馆之宝﹣﹣铜奔马,又称“马踏飞燕”,于1969年10月出土于武威市的雷台汉墓,1983年10月被国家旅游局确定为中国旅游标志.在很多旅游城市的广场上都有“马踏飞燕”雕塑.某学习小组把测量本城市广场的“马踏飞燕”雕塑(图②)最高点离地面的高度作为一次课题活动,同学们制定了测量方案,并完成了实地测量,测得结果如下表:课题测量“马踏飞燕“雕塑最高点离地面的高度测量示意图如图,雕塑的最高点B 到地面的高度为BA,在测点C用仪器测得点B 的仰角为α,前进一段距离到达测点E,再用该仪器测得点B 的仰角为β,且点A,B,C,D,E,F均在同一竖直平面内,点A,C,E在同一条直线上.测量数据α的度数β的度数CE的长度仪器CD(EF)的高度31°42°5米1.5米请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高度(结果保留一位小数).(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)【解答】解:如图,设BG=x米,在Rt△BFG中,FG=BGtanβ=xtan42°,在Rt△BDG中,DG=BGtanα=xtan31°,由DG﹣FG=DF得,x tan31°−xtan42°=5,解得,x=9,∴AB=AG+BG=1.5+9=10.5(米),答:这座“马踏飞燕”雕塑最高点离地面的高度为10.5米.23.(6分)(2020•金昌)2019年甘肃在国际知名旅游指南《孤独星球》亚洲最佳旅游地排名第一.截至2020年1月,甘肃省已有五家国家5A 级旅游景区,分别为A :嘉峪关文物景区;B :平凉崆峒山风景名胜区;C :天水麦积山景区;D :敦煌鸣沙山月牙泉景区;E :张掖七彩丹霞景区.张帆同学与父母计划在暑假期间从中选择部分景区游玩. (1)张帆一家选择E :张掖七彩丹霞景区的概率是多少?(2)若张帆一家选择了E :张掖七彩丹霞景区,他们再从A ,B ,C ,D 四个景区中任选两个景区去旅游,求选择A ,D 两个景区的概率(要求画树状图或列表求概率). 【解答】解:(1)共有5种可能选择的结果,因此张帆一家选择“E :张掖七彩丹霞景区”的概率是15;(2)从A ,B ,C ,D 四个景区中任选两个景区所有可能出现的结果如下:共有12种可能出现的结果,其中选择A 、D 两个景区的有2种, ∴P (选择A 、D )=212=16. 四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.24.(7分)(2020•金昌)习近平总书记于2019年8月在兰州考察时说“黄河之滨也很美”.兰州是古丝绸之路商贸重镇,也是黄河唯一穿城而过的省会城市,被称为“黄河之都”.近年来,在市政府的积极治理下,兰州的空气质量得到极大改善,“兰州蓝”成为兰州市民引以为豪的城市名片.如图是根据兰州市环境保护局公布的2013~2019年各年的全年空气质量优良天数绘制的折线统计图.请结合统计图解答下列问题:(1)2019年比2013年的全年空气质量优良天数增加了26天;(2)这七年的全年空气质量优良天数的中位数是254天;(3)求这七年的全年空气质量优良天数的平均天数;(4)《兰州市“十三五”质量发展规划》中指出:2020年,确保兰州市全年空气质量优良天数比率达80%以上.试计算2020年(共366天)兰州市空气质量优良天数至少需要多少天才能达标.【解答】解:(1)∵296﹣270=26,∴2019年比2013年的全年空气质量优良天数增加了26天;故答案为:26;(2)∵这七年的全年空气质量优良天数分别为:213,233,250,254,270,296,313,∴这七年的全年空气质量优良天数的中位数是254天;故答案为:254;(3)∵x=17(213+233+250+254+270+296+313)≈261(天),则这七年的全年空气质量优良天数的平均天数为261天;(4)∵全年空气质量优良天数比率达80%以上.∴366×80%=292.8≈293(天),则兰州市空气质量优良天数至少需要293天才能达标.25.(7分)(2020•金昌)通过课本上对函数的学习,我们积累了一定的经验.下表是一个函数的自变量x与函数值y的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:x…012345…y…632 1.5 1.21…(1)当x=3时,y=1.5;(2)根据表中数值描点(x,y),并画出函数图象;(3)观察画出的图象,写出这个函数的一条性质:函数y随x的增大而减小.【解答】解:(1)当x=3时,y=1.5;故答案为:3;(2)函数图象如图所示:(3)观察画出的图象,这个函数的一条性质:函数y随x的增大而减小.故答案为:函数y随x的增大而减小.26.(8分)(2020•金昌)如图,⊙O是△ABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AE=AB.(1)求∠ACB的度数;(2)若DE=2,求⊙O的半径.【解答】解:(1)连接OA,∵AE是⊙O的切线,∴∠OAE=90°,∵AB=AE,∴∠ABE=∠AEB,∵OA=OB,∴∠ABO=∠OAB,∴∠OAB=∠ABE=∠E,∵∠OAB+∠ABE+∠E+∠OAE=180°,∴∠OAB=∠ABE=∠E=30°,∴∠AOB=180°﹣∠OAB﹣∠ABO=120°,∴∠ACB=12∠AOB=60°;(2)设⊙O的半径为r,则OA=OD=r,OE=r+2,∵∠OAE=90°,∠E=30°,∴2OA=OE,即2r=r+2,∴r=2,故⊙O的半径为2.27.(8分)(2020•金昌)如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN =45°.把△ADN绕点A顺时针旋转90°得到△ABE.(1)求证:△AEM≌△ANM.(2)若BM=3,DN=2,求正方形ABCD的边长.【解答】(1)证明:∵△ADN≌△ABE,∴∠DAN=∠BAE,DN=BE,∵∠DAB=90°,∠MAN=45°,∴∠MAE=∠BAE+∠BAM=∠DAN+∠BAM=45°,∴∠MAE=∠MAN,∵MA=MA,∴△AEM≌△ANM(SAS).(2)解:设CD=BC=x,则CM=x﹣3,CN=x﹣2,∵△AEM≌△ANM,∴EM=MN,∵BE=DN,∴MN=BM+DN=5,∵∠C=90°,∴MN2=CM2+CN2,∴25=(x﹣2)2+(x﹣3)2,解得,x=6或﹣1(舍弃),∴正方形ABCD的边长为6.28.(10分)(2020•金昌)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)若PC∥AB,求点P的坐标;(3)连接AC,求△P AC面积的最大值及此时点P的坐标.【解答】解:(1)抛物线y =ax 2+bx ﹣2,则c =﹣2,故OC =2, 而OA =2OC =8OB ,则OA =4,OB =12,故点A 、B 、C 的坐标分别为(﹣4,0)、(12,0)、(0,﹣2); 则y =a (x +4)(x −12)=a (x 2+72x ﹣2)=ax 2+bx ﹣2,故a =1, 故抛物线的表达式为:y =x 2+72x ﹣2;(2)抛物线的对称轴为x =−74,当PC ∥AB 时,点P 、C 的纵坐标相同,根据函数的对称性得点P (−72,﹣2);(3)过点P 作PH ∥y 轴交AC 于点H ,由点A 、C 的坐标得,直线AC 的表达式为:y =−12x ﹣2,则△P AC 的面积S =S △PHA +S △PHC =12PH ×OA =12×4×(−12x ﹣2﹣x 2−72x +2)=﹣2(x +2)2+8,∵﹣2<0,∴S 有最大值,当x =﹣2时,S 的最大值为8,此时点P (﹣2,﹣5).。

甘肃省白银市2020年中考数学经典试题

甘肃省白银市2020年中考数学经典试题

2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )A .45B .35C .25D .152.估计19273⨯-的运算结果应在哪个两个连续自然数之间( ) A .﹣2和﹣1 B .﹣3和﹣2 C .﹣4和﹣3 D .﹣5和﹣43.若关于x 的一元二次方程x 2-2x -k =0没有实数根,则k 的取值范围是( )A .k >-1B .k≥-1C .k <-1D .k≤-14.下列计算正确的是( )A .(a+2)(a ﹣2)=a 2﹣2B .(a+1)(a ﹣2)=a 2+a ﹣2C .(a+b )2=a 2+b 2D .(a ﹣b )2=a 2﹣2ab+b 25.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S 6,则S 6的值为( )A .3B .23C .332D .2336.下列四个多项式,能因式分解的是( )A .a -1B .a 2+1C .x 2-4yD .x 2-6x +97.如图,已知△ABC 的三个顶点均在格点上,则cosA 的值为( )A 3B 5C 23D 25 8.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y 值随x 值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()A .3y x =B .3y x =C .1y x =-D .2y x9.如果将抛物线2y x 2=+向下平移1个单位,那么所得新抛物线的表达式是A .()2y x 12=-+B .()2y x 12=++C .2y x 1=+D .2y x 3=+10.如图,正比例函数11y k x =的图像与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >2二、填空题(本题包括8个小题) 11.已知线段c 是线段a 和b 的比例中项,且a 、b 的长度分别为2cm 和8cm ,则c 的长度为_____cm . 12.已知x=2是一元二次方程x 2﹣2mx+4=0的一个解, 则m 的值为 .13.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.14.分式方程32xx 2--+22x-=1的解为________. 15.已知二次函数2y ax bx c =++的图象如图所示,若方程2ax bx c k ++=有两个不相等的实数根,则k的取值范围是_____________.16.太阳半径约为696000千米,数字696000用科学记数法表示为 千米.17.若关于x 的一元二次方程x 2+mx+2n =0有一个根是2,则m+n =_____.18.如图,等腰△ABC 中,AB =AC ,∠BAC =50°,AB 的垂直平分线MN 交AC 于点D ,则∠DBC 的度数是____________.三、解答题(本题包括8个小题)19.(6分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出m=,n=;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”D同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.20.(6分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?21.(6分)已知关于x的方程(a﹣1)x2+2x+a﹣1=1.若该方程有一根为2,求a的值及方程的另一根;当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.22.(8分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;若菜园面积为384m2,求x的值;求菜园的最大面积.23.(8分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一块等腰直角三角板的直角顶点放在C处,CP=CQ=2,将三角板CPQ绕点C旋转(保持点P在△ABC内部),连接AP、BP、BQ.如图1求证:AP=BQ;如图2当三角板CPQ绕点C旋转到点A、P、Q在同一直线时,求AP的长;设射线AP与射线BQ相交于点E,连接EC,写出旋转过程中EP、EQ、EC之间的数量关系.24.(10分)某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.请根据图中提供的信息,回答下列问题:扇形统计图中a的值为%,该扇形圆心角的度数为;补全条形统计图;如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?25.(10分)如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.若∠AOD=52°,求∠DEB的度数;若OC=3,OA=5,求AB的长.26.(12分)在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.“从中任意抽取1个球不是红球就是白球”是事件,“从中任意抽取1个球是黑球”是事件;从中任意抽取1个球恰好是红球的概率是;学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】试题解析:列表如下:∴共有20种等可能的结果,P(一男一女)=123=205.故选B.2.C【解析】根据二次根式的性质,可化简得19273⨯-=3﹣33=﹣23,然后根据二次根式的估算,由3<23<4可知﹣23在﹣4和﹣3之间.故选C.点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.3.C【解析】试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.4.D【解析】A、原式=a2﹣4,不符合题意;B、原式=a2﹣a﹣2,不符合题意;C、原式=a2+b2+2ab,不符合题意;D、原式=a2﹣2ab+b2,符合题意,故选D5.C【解析】【分析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.【详解】如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6×12×1×1×sin60°=332.故选C.【点睛】本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.6.D【解析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可.试题解析:x2-6x+9=(x-3)2.故选D.考点:2.因式分解-运用公式法;2.因式分解-提公因式法.7.D【解析】【详解】过B点作BD⊥AC,如图,由勾股定理得,AB=221310+=,AD=222222+=,cosA=ADAB=2210=25,故选D.8.B【解析】y=3x的图象经过一三象限过原点的直线,y随x的增大而增大,故选项A错误;y=3x的图象在一、三象限,在每个象限内y随x的增大而减小,故选项B正确;y=−1x的图象在二、四象限,故选项C错误;y=x²的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D错误;故选B.9.C【解析】【分析】根据向下平移,纵坐标相减,即可得到答案.【详解】∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2-1,即y=x2+1.故选C .10.D【解析】【分析】先根据反比例函数与正比例函数的性质求出B 点坐标,再由函数图象即可得出结论.【详解】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A 、B 两点关于原点对称,∵点A 的横坐标为1,∴点B 的横坐标为-1,∵由函数图象可知,当-1<x <0或x >1时函数y 1=k 1x 的图象在22k y x的上方, ∴当y 1>y 1时,x 的取值范围是-1<x <0或x >1.故选:D .【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y 1>y 1时x 的取值范围是解答此题的关键.二、填空题(本题包括8个小题)11.1【解析】【分析】根据比例中项的定义,列出比例式即可得出中项,注意线段长度不能为负.【详解】根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c 2=2×8,解得c =±1(线段是正数,负值舍去),故答案为1.【点睛】此题考查了比例线段.理解比例中项的概念,这里注意线段长度不能是负数.12.1.【解析】试题分析:直接把x=1代入已知方程就得到关于m 的方程,再解此方程即可.试题解析:∵x=1是一元二次方程x 1-1mx+4=0的一个解,∴4-4m+4=0,∴m=1.考点:一元二次方程的解.13.1【解析】【分析】画出图形,设菱形的边长为x ,根据勾股定理求出周长即可.【详解】当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm ,在Rt △ABC 中,由勾股定理:x 2=(8-x )2+22,解得:x=174, ∴4x=1,即菱形的最大周长为1cm .故答案是:1.【点睛】解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.14.x 1=【解析】【分析】根据解分式方程的步骤,即可解答.【详解】方程两边都乘以x 2-,得:32x 2x 2--=-,解得:x 1=,检验:当x 1=时,x 21210-=-=-≠,所以分式方程的解为x 1=,故答案为x 1=.【点睛】考查了解分式方程,()1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解().2解分式方程一定注意要验根.15.5k <【解析】分析:先移项,整理为一元二次方程,让根的判别式大于0求值即可.详解:由图象可知:二次函数y=ax 2+bx+c 的顶点坐标为(1,1), ∴244ac b a-=1,即b 2-4ac=-20a , ∵ax 2+bx+c=k 有两个不相等的实数根,∴方程ax 2+bx+c-k=0的判别式△>0,即b 2-4a (c-k )=b 2-4ac+4ak=-20a+4ak=-4a (1-k )>0∵抛物线开口向下∴a <0∴1-k >0∴k <1.故答案为k <1.点睛:本题主要考查了抛物线与x 轴的交点问题,以及数形结合法;二次函数中当b 2-4ac >0时,二次函数y=ax 2+bx+c 的图象与x 轴有两个交点.16.56.9610⨯ .【解析】试题分析:696000=6.96×1,故答案为6.96×1.考点:科学记数法—表示较大的数.17.﹣1【解析】【分析】根据一元二次方程的解的定义把x =1代入x 1+mx +1n =0得到4+1m +1n =0得n +m =−1,然后利用整体代入的方法进行计算.【详解】∵1(n≠0)是关于x 的一元二次方程x 1+mx +1n =0的一个根,∴4+1m +1n =0,∴n +m =−1,故答案为−1.【点睛】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.18.15°【解析】分析:根据等腰三角形的性质得出∠ABC的度数,根据中垂线的性质得出∠ABD的度数,最后求出∠DBC 的度数.详解:∵AB=AC,∠BAC=50°,∴∠ABC=∠ACB=(180°-50°)=65°,∵MN为AB的中垂线,∴∠ABD=∠BAC=50°,∴∠DBC=65°-50°=15°.点睛:本题主要考查的是等腰三角形的性质以及中垂线的性质定理,属于中等难度的题型.理解中垂线的性质是解决这个问题的关键.4三、解答题(本题包括8个小题)19.(1)100、35;(2)补图见解析;(3)800人;(4)5 6【解析】分析:(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得其百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比可得答案;(4)列表得出所有等可能结果,从中找到这两位同学最认可的新生事物不一样的结果数,根据概率公式计算可得.详解:(1)∵被调查的总人数m=10÷10%=100人,∴支付宝的人数所占百分比n%=35100×100%=35%,即n=35,(2)网购人数为100×15%=15人,微信对应的百分比为40100×100%=40%,补全图形如下:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人;(4)列表如下:共有12种情况,这两位同学最认可的新生事物不一样的有10种,所以这两位同学最认可的新生事物不一样的概率为105 126=.点睛:本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天. 【解析】【分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为32x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作12006040m-天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为32x米,根据题意得:360360332x x-=,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴32x=32×40=60,答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;(2)设安排甲队工作m天,则安排乙队工作12006040m-天,根据题意得:7m+5×12006040m-≤145,解得:m≥10,答:至少安排甲队工作10天.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式. 21.(3)a=15,方程的另一根为12;(2)答案见解析. 【解析】 【分析】(3)把x=2代入方程,求出a 的值,再把a 代入原方程,进一步解方程即可;(2)分两种情况探讨:①当a=3时,为一元一次方程;②当a≠3时,利用b 2-4ac =3求出a 的值,再代入解方程即可. 【详解】(3)将x =2代入方程2(a 1)x 2x a 10-++-=,得4(a 1)4a 10-++-=,解得:a =15. 将a =15代入原方程得24x 2054x 5-+-=,解得:x 3=12,x 2=2.∴a =15,方程的另一根为12; (2)①当a =3时,方程为2x =3,解得:x =3.②当a≠3时,由b 2-4ac =3得4-4(a -3)2=3,解得:a =2或3. 当a =2时, 原方程为:x 2+2x +3=3,解得:x 3=x 2=-3; 当a =3时, 原方程为:-x 2+2x -3=3,解得:x 3=x 2=3. 综上所述,当a =3,3,2时,方程仅有一个根,分别为3,3,-3. 考点:3.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用. 22.(1)见详解;(2)x=18;(3) 416 m 2. 【解析】 【分析】(1)根据“垂直于墙的长度=2-÷总费用平行于墙的总费用垂直于可得函数解析式;(2)根据矩形的面积公式列方程求解可得;(3)根据矩形的面积公式列出总面积关于x 的函数解析式,配方成顶点式后利用二次函数的性质求解可得. 【详解】(1)根据题意知,y =100002002150x -⨯=-23x +1003;(2)根据题意,得(-23x+1003)x=384,解得x=18或x=32.∵墙的长度为24 m,∴x=18.(3)设菜园的面积是S,则S=(-23x+1003)x=-23x2+1003x=-23(x-25)2+12503.∵-23<0,∴当x<25时,S随x的增大而增大.∵x≤24,∴当x=24时,S取得最大值,最大值为416.答:菜园的最大面积为416 m2.【点睛】本题主要考查二次函数和一元二次方程的应用,解题的关键是将实际问题转化为一元二次方程和二次函数的问题.23.(1)证明见解析(2)142(3)EP+EQ= 2EC【解析】【分析】(1)由题意可得:∠ACP=∠BCQ,即可证△ACP≌△BCQ,可得AP=CQ;作CH⊥PQ 于H,由题意可求PQ=22,可得CH=2,根据勾股定理可求AH=14,即可求AP 的长;作CM⊥BQ 于M,CN⊥EP 于N,设BC 交AE 于O,由题意可证△CNP≌△ CMQ,可得CN=CM,QM=PN,即可证Rt△CEM≌Rt△CEN,EN=EM,∠CEM=∠CEN=45°,则可求得EP、EQ、EC 之间的数量关系.【详解】解:(1)如图1 中,∵∠ACB=∠PCQ=90°,∴∠ACP=∠BCQ 且AC=BC,CP=CQ∴△ACP≌△BCQ(SAS)∴PA=BQ如图 2 中,作CH⊥PQ 于H∵A、P、Q 共线,PC=2,∴PQ=22,∵PC=CQ,CH⊥PQ∴CH=PH= 2在Rt△ACH 中,AH=22= 14AC CH∴PA=AH﹣PH= 14-2解:结论:EP+EQ=2EC理由:如图 3 中,作CM⊥BQ 于M,CN⊥EP 于N,设BC 交AE 于O.∵△ACP≌△BCQ,∴∠CAO=∠OBE,∵∠AOC=∠BOE,∴∠OEB=∠ACO=90°,∵∠M=∠CNE=∠MEN=90°,∴∠MCN=∠PCQ=90°,∴∠PCN=∠QCM,∵PC=CQ,∠CNP=∠M=90°,∴△CNP≌△CMQ(AAS),∴CN=CM,QM=PN,∴CE=CE,∴Rt△CEM≌Rt△CEN(HL),∴EN=EM,∠CEM=∠CEN=45°∴EP+EQ=EN+PN+EM﹣MQ=2EN,EC=2EN,∴EP+EQ=2EC【点睛】本题考查几何变换综合题,解答关键是等腰直角三角形的性质,全等三角形的性质和判定,添加恰当辅助线构造全等三角形.24.(1)25,90°;(2)见解析;(3)该市“活动时间不少于5天”的大约有1.【解析】试题分析:(1)根据扇形统计图的特征即可求得a的值,再乘以360°即得扇形的圆心角;(2)先算出总人数,再乘以“活动时间为6天”对应的百分比即得对应的人数;(3)先求得“活动时间不少于5天”的学生人数的百分比,再乘以20000即可.(1)由图可得该扇形圆心角的度数为90°;(2)“活动时间为6天” 的人数,如图所示:(3)∵“活动时间不少于5天”的学生人数占75%,20000×75%=1∴该市“活动时间不少于5天”的大约有1人.考点:统计的应用点评:统计的应用初中数学的重点,在中考中极为常见,一般难度不大.25.(1)26°;(2)1.【解析】试题分析:(1)根据垂径定理,得到AD DB,再根据圆周角与圆心角的关系,得知∠E=12∠O,据此即可求出∠DEB的度数;(2)由垂径定理可知,AB=2AC,在Rt△AOC中,OC=3,OA=5,由勾股定理求AC即可得到AB的长.试题解析:(1)∵AB是⊙O的一条弦,OD⊥AB,∴AD DB=,∴∠DEB=12∠AOD=12×52°=26°;(2)∵AB是⊙O的一条弦,OD⊥AB,∴AC=BC,即AB=2AC,在Rt△AOC中,AC=22OA OC-=2253-=4,则AB=2AC=1.考点:垂径定理;勾股定理;圆周角定理.26.(1)必然,不可能;(2)35;(3)此游戏不公平.【解析】【分析】(1)直接利用必然事件以及怒不可能事件的定义分别分析得出答案;(2)直接利用概率公式求出答案;(3)首先画出树状图,进而利用概率公式求出答案.【详解】(1)“从中任意抽取1个球不是红球就是白球”是必然事件,“从中任意抽取1个球是黑球”是不可能事件;故答案为必然,不可能;(2)从中任意抽取1个球恰好是红球的概率是:35;故答案为35;(3)如图所示:,由树状图可得:一共有20种可能,两球同色的有8种情况,故选择甲的概率为:82 205=;则选择乙的概率为:35,故此游戏不公平.【点睛】此题主要考查了游戏公平性,正确列出树状图是解题关键.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.将抛物线y =x 2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为( ) A .y =x 2+3x+6B .y =x 2+3xC .y =x 2﹣5x+10D .y =x 2﹣5x+42.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是25400cm ,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --=3.如图,正比例函数11y k x =的图像与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >24.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:弧①是以O 为圆心,任意长为半径所画的弧;弧②是以P 为圆心,任意长为半径所画的弧;弧③是以A 为圆心,任意长为半径所画的弧;弧④是以P 为圆心,任意长为半径所画的弧; 其中正确说法的个数为( ) A .4B .3C .2D .15.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.86.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.237.在△ABC中,AB=AC=13,BC=24,则tanB等于()A.513B.512C.1213D.1258.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为()A.1 B.2 C.3 D.49.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根10.在半径等于5 cm的圆内有长为53cm的弦,则此弦所对的圆周角为A.60°B.120°C.60°或120°D.30°或120°二、填空题(本题包括8个小题)11.如图,某海监船以20km/h的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为_____km.12.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为9m,那么这栋建筑物的高度为_____m .13.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中数据计算,这个几何体的表面积为__________2cm .14.计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,归纳各计算结果中的个位数字规律,猜测22019﹣1的个位数字是_____. 15.分解因式:xy 2﹣2xy+x =_____.16.图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙).图乙种,67AB BC =,EF=4cm ,上下两个阴影三角形的面积之和为54cm 2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为___cm17.如图,小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得8CD =,20BC =米,CD 与地面成30角,且此时测得1米的影长为2米,则电线杆的高度为=__________米.18.有公共顶点A ,B 的正五边形和正六边形按如图所示位置摆放,连接AC 交正六边形于点D ,则∠ADE 的度数为( )A.144°B.84°C.74°D.54°三、解答题(本题包括8个小题)19.(6分)如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O相切于点C.点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC于点D.如果BE=15,CE=9,求EF的长;证明:①△CDF∽△BAF;②CD=CE;探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=3CD,请说明你的理由.20.(6分)“分组合作学习”已成为推动课堂教学改革,打造自主高效课堂的重要措施.某中学从全校学生中随机抽取部分学生对“分组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:请结合图中信息解答下列问题:求出随机抽取调查的学生人数;补全分组后学生学习兴趣的条形统计图;分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.21.(6分)如图,过点A(2,0)的两条直线1l,2l分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知13求点B 的坐标;若△ABC 的面积为4,求2l 的解析式.22.(8分)已知关于x 的一元二次方程x 2+(2m+3)x+m 2=1有两根α,β求m 的取值范围;若α+β+αβ=1.求m 的值.23.(8分)先化简,后求值:(1﹣11a +)÷(2221a a a a -++),其中a =1.24.(10分)计算:﹣14﹣2×(﹣3)2+327-÷(﹣13)如图,小林将矩形纸片ABCD 沿折痕EF 翻折,使点C 、D 分别落在点M 、N 的位置,发现∠EFM=2∠BFM ,求∠EFC 的度数.25.(10分)数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒······一只到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求1236312222++++⋅⋅⋅+是多少?请同学们阅读以下解答过程就知道答案了.设1236312222S =++++⋅⋅⋅+, 则()123632212222S =++++⋅⋅⋅+ 2346364222222=++++⋅⋅⋅++()()2363236322122212222S S ∴-=+++⋅⋅⋅+-++++⋅⋅⋅+即:6421S =-事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要()12363641222221+++⋅⋅⋅+=-粒米.那么6421-到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:184467440737********,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:()1我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?()2计算: 13927...3.n +++++()3某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋅⋅⋅,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,⋅⋅⋅,以此类推,求满足如下条件的所有正整数:10100N N <<,且这一数列前N 项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N 的值.26.(12分)一辆汽车,新车购买价30万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值为17.34万元,求这辆车第二、三年的年折旧率.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.A 【解析】 【分析】先将抛物线解析式化为顶点式,左加右减的原则即可. 【详解】,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A . 【点睛】本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行; 2.B。

甘肃省白银市2020版中考数学试卷(II)卷

甘肃省白银市2020版中考数学试卷(II)卷

甘肃省白银市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题: (共10题;共20分)1. (2分)一个数的平方等于16,则这个数是()A . +4B . -4C . ±4D . ±82. (2分)(2018·温州模拟) 如图所示的几何体的主视图为()A .B .C .D .3. (2分)(2017·湘潭) 函数y= 中,自变量x的取值范围是()A . x≥﹣2B . x<﹣2C . x≥0D . x≠﹣24. (2分)(2017·蒙自模拟) 2016年9月15日,我国在酒泉卫星发射中心用长征二号FT2火箭将天宫二号空间实验室发射升空.大约经过10分钟后,成功进入远地点350000米的初始轨道.将数据350000用科学记数法可表示为()A . 35×104B . 350×103C . 3.5×105D . 0.35×1065. (2分) (2020七上·丹江口期末) 下列运算正确的是()A .B .C .D .6. (2分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A . m≥B . m<C . m=D . m<﹣7. (2分)如图,A,B,C三点都在⊙O上,∠ACB=30°,AB=2 ,则⊙O的半径为()A . 4B . 2C .D . 28. (2分) (2015七下·广州期中) 如图,数轴上点P表示的数可能是()A .B .C .D . ﹣29. (2分)种植能手李大叔种植了一批新品种黄瓜,为了考察这种黄瓜的生长情况,李大叔抽查了部分黄瓜株上长出的黄瓜根数,得到如图的条形图,则抽查的这部分黄瓜株上所结黄瓜根数的中位数和众数分别是()A . 13.5,20B . 15,5C . 13.5,14D . 13,1410. (2分)在平面直角坐标系中,以点(-3,4)为圆心,4为半径的圆()A . 与x轴相交,与y轴相切B . 与x轴相离,与y轴相交C . 与x轴相切,与y轴相离D . 与x轴相切,与y轴相交二、填空题: (共9题;共10分)11. (2分)填空:x2+10x+________=(x+________)2.12. (1分)(2018·峨眉山模拟) 如图,中,等于,,,、分别是、的中点,连结,则的面积是________13. (1分) (2017八下·禅城期末) 分式方程 = 的解是________.14. (1分)(2016·巴彦) 如图,在Rt△ABC中,∠B=90°,AB=BC=2,将△ABC绕点C顺时针旋转60°,得到△DEC,则AE的长是________.15. (1分) (2016八上·富宁期中) 若点A(﹣2,b)在第三象限,则点B(﹣b,4)在第________象限.16. (1分) (2019八上·靖远月考) 在一次数学测试中,八(2)班第1组(有8人)的平均分为84分,第2组(有7人)的平均分为85分,则这两个组15人的平均分为________分.17. (1分) (2016七下·邻水期末) 已知a,b是正整数,若 + 是不大于2的整数,则满足条件的有序数对(a,b)为________.18. (1分)(2017·河北模拟) 如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm,且tan∠EFC=0.75,则矩形ABCD的周长为________.19. (1分)(2013·桂林) 函数y=x的图象与函数y= 的图象在第一象限内交于点B,点C是函数y= 在第一象限图象上的一个动点,当△OBC的面积为3时,点C的横坐标是________.三、解答题: (共9题;共95分)20. (10分)(2018·秀洲模拟) 计算(1)计算: .(2)化简:.21. (5分)如图,港口B在港口A的西北方向,上午8时,一艘轮船从港口A出发,以15海里∕时的速度向正北方向航行,同时一艘快艇从港口B出发也向正北方向航行,上午10时轮船到达D处,同时快艇到达C处,测得C处在D处得北偏西30°的方向上,且C、D两地相距100海里,求快艇每小时航行多少海里?(结果精确到0.1海里∕时)22. (5分)(2018·牡丹江模拟) 先化简,再求代数式的值,其中23. (10分)(2018·崇仁模拟) 小亮参加中华诗词大赛,还剩最后两题,如果都答对,就可顺利通关.其中第一道单选题有4个选项,第二道单选题有3个选项.小亮这两道题都不会,不过还有一个“求助”没有使用(使用求助可以让主持人去掉其中一题的一个错误选项).(1)如果小亮第一题使用“求助”,那么他答对第一道题的概率是_ _;(2)他的亲友团建议:最后一题使用“求助”,从提高通关的可能性的角度看,你同意亲友团的观点吗?试说明理由.24. (10分)(2017·杭州) 在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?25. (15分) (2017九上·忻城期中) 如图,四边形ABCD中AC平分∠BAD,∠ADC=∠ACB= ,E为AB的中点,AC与DE交于点F.(1)求证:=AB·AD;(2)求证:CE//AD;(3)若AD=6, AB=8.求的值.26. (10分)(2011·绵阳) 如图,在梯形ABCD中,AB∥CD,∠BAD=90°,以AD为直径的半圆O与BC相切.(1)求证:OB⊥OC;(2)若AD=12,∠BCD=60°,⊙O1与半⊙O外切,并与BC、CD相切,求⊙O1的面积.27. (15分) (2020九上·新昌期末) 如图,AB是⊙O的直径,D是⊙O上一点,DE⊥AB于点E,且∠ADE=60°,C是上一点,连结AC,CD.(1)求∠ACD的度数;(2)证明:AD2=AB•AE;(3)如果AB=8,∠ADC=45°,请你编制一个计算题(不标注新的字母),并直接给出答案.(根据编出的问题层次,给不同的得分)28. (15分) (2019九下·义乌期中) 如图①,直线y=与x轴、y轴分别交于点B,C,抛物线y=过B,C两点,且与x轴的另一个交点为点A,连接AC.(1)求抛物线的解析式;(2)在抛物线上是否存在点D(与点A不重合),使得S△DBC=S△ABC,若存在,求出点D的坐标;若不存在,请说明理由;(3)有宽度为2,长度足够长的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P 和点Q,交直线CB于点M和点N,在矩形平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M 的坐标.参考答案一、选择题: (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题: (共9题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、解答题: (共9题;共95分)20-1、20-2、21-1、22-1、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、27-1、27-2、27-3、28-1、28-2、28-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年甘肃省白银市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)(2020•金昌)下列实数是无理数的是( )A .﹣2B .16C .√9D .√112.(3分)(2020•金昌)若α=70°,则α的补角的度数是( )A .130°B .110°C .30°D .20°3.(3分)(2020•金昌)若一个正方形的面积是12,则它的边长是( )A .2√3B .3C .3√2D .44.(3分)(2020•金昌)下列几何体中,其俯视图与主视图完全相同的是( )A .B .C .D .5.(3分)(2020•金昌)下列各式中计算结果为x 6的是( )A .x 2+x 4B .x 8﹣x 2C .x 2•x 4D .x 12÷x 26.(3分)(2020•金昌)生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a 与全身b 的高度比值接近0.618,可以增加视觉美感.若图中b 为2米,则a 约为( )A .1.24米B .1.38米C .1.42米D .1.62米7.(3分)(2020•金昌)已知x =1是一元二次方程(m ﹣2)x 2+4x ﹣m 2=0的一个根,则m的值为( )A .﹣1或2B .﹣1C .2D .08.(3分)(2020•金昌)如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE间的距离.若AE间的距离调节到60cm,菱形的边长AB=20cm,则∠DAB 的度数是()A.90°B.100°C.120°D.150°9.(3分)(2020•金昌)如图,A是⊙O上一点,BC是直径,AC=2,AB=4,点D在⊙Ô,则DC的长为()上且平分BCA.2√2B.√5C.2√5D.√1010.(3分)(2020•金昌)如图①,正方形ABCD中,AC,BD相交于点O,E是OD的中点.动点P从点E出发,沿着E→O→B→A的路径以每秒1个单位长度的速度运动到点A,在此过程中线段AP的长度y随着运动时间x的函数关系如图②所示,则AB的长为()A.4√2B.4C.3√3D.2√2二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)(2020•金昌)如果盈利100元记作+100元,那么亏损50元记作元.12.(3分)(2020•金昌)分解因式:a 2+a = .13.(3分)(2020•金昌)暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如下,请你为广告牌填上原价.原价: 元暑假八折优惠,现价:160元14.(3分)(2020•金昌)要使分式x+2x−1有意义,x 需满足的条件是 .15.(3分)(2020•金昌)在一个不透明的袋中装有若干个材质、大小完全相同的红球,小明在袋中放入3个黑球(每个黑球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,估计袋中红球有 个.16.(3分)(2020•金昌)如图,在平面直角坐标系中,△OAB 的顶点A ,B 的坐标分别为(3,√3),(4,0).把△OAB 沿x 轴向右平移得到△CDE ,如果点D 的坐标为(6,√3),则点E 的坐标为 .17.(3分)(2020•金昌)若一个扇形的圆心角为60°,面积为π6cm 2,则这个扇形的弧长为 cm (结果保留π).18.(3分)(2020•金昌)已知y =√(x −4)2−x +5,当x 分别取1,2,3,…,2020时,所对应y 值的总和是 .三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.19.(4分)(2020•金昌)计算:(2−√3)(2+√3)+tan60°﹣(π﹣2√3)0.20.(4分)(2020•金昌)解不等式组:{3x −5<x +12(2x −1)≥3x −4,并把它的解集在数轴上表示出来.21.(6分)(2020•金昌)如图,在△ABC 中,D 是BC 边上一点,且BD =BA .(1)尺规作图(保留作图痕迹,不写作法):①作∠ABC的角平分线交AD于点E;②作线段DC的垂直平分线交DC于点F.(2)连接EF,直接写出线段EF和AC的数量关系及位置关系.22.(6分)(2020•金昌)图①是甘肃省博物馆的镇馆之宝﹣﹣铜奔马,又称“马踏飞燕”,于1969年10月出土于武威市的雷台汉墓,1983年10月被国家旅游局确定为中国旅游标志.在很多旅游城市的广场上都有“马踏飞燕”雕塑.某学习小组把测量本城市广场的“马踏飞燕”雕塑(图②)最高点离地面的高度作为一次课题活动,同学们制定了测量方案,并完成了实地测量,测得结果如下表:课题测量“马踏飞燕“雕塑最高点离地面的高度测量示意图如图,雕塑的最高点B 到地面的高度为BA,在测点C用仪器测得点B 的仰角为α,前进一段距离到达测点E,再用该仪器测得点B 的仰角为β,且点A,B,C,D,E,F均在同一竖直平面内,点A,C,E在同一条直线上.测量数据α的度数β的度数CE的长度仪器CD(EF)的高度31°42°5米1.5米请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高度(结果保留一位小数).(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)23.(6分)(2020•金昌)2019年甘肃在国际知名旅游指南《孤独星球》亚洲最佳旅游地排名第一.截至2020年1月,甘肃省已有五家国家5A级旅游景区,分别为A:嘉峪关文物景区;B:平凉崆峒山风景名胜区;C:天水麦积山景区;D:敦煌鸣沙山月牙泉景区;E:张掖七彩丹霞景区.张帆同学与父母计划在暑假期间从中选择部分景区游玩.(1)张帆一家选择E:张掖七彩丹霞景区的概率是多少?(2)若张帆一家选择了E:张掖七彩丹霞景区,他们再从A,B,C,D四个景区中任选两个景区去旅游,求选择A,D两个景区的概率(要求画树状图或列表求概率).四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.24.(7分)(2020•金昌)习近平总书记于2019年8月在兰州考察时说“黄河之滨也很美”.兰州是古丝绸之路商贸重镇,也是黄河唯一穿城而过的省会城市,被称为“黄河之都”.近年来,在市政府的积极治理下,兰州的空气质量得到极大改善,“兰州蓝”成为兰州市民引以为豪的城市名片.如图是根据兰州市环境保护局公布的2013~2019年各年的全年空气质量优良天数绘制的折线统计图.请结合统计图解答下列问题:(1)2019年比2013年的全年空气质量优良天数增加了天;(2)这七年的全年空气质量优良天数的中位数是天;(3)求这七年的全年空气质量优良天数的平均天数;(4)《兰州市“十三五”质量发展规划》中指出:2020年,确保兰州市全年空气质量优良天数比率达80%以上.试计算2020年(共366天)兰州市空气质量优良天数至少需要多少天才能达标.25.(7分)(2020•金昌)通过课本上对函数的学习,我们积累了一定的经验.下表是一个函数的自变量x与函数值y的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:x…012345…y…632 1.5 1.21…(1)当x=时,y=1.5;(2)根据表中数值描点(x,y),并画出函数图象;(3)观察画出的图象,写出这个函数的一条性质:.26.(8分)(2020•金昌)如图,⊙O是△ABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AE=AB.(1)求∠ACB的度数;(2)若DE=2,求⊙O的半径.27.(8分)(2020•金昌)如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN =45°.把△ADN绕点A顺时针旋转90°得到△ABE.(1)求证:△AEM≌△ANM.(2)若BM=3,DN=2,求正方形ABCD的边长.28.(10分)(2020•金昌)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)若PC∥AB,求点P的坐标;(3)连接AC,求△P AC面积的最大值及此时点P的坐标.参考答案一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)(2020•金昌)下列实数是无理数的是( )A .﹣2B .16C .√9D .√11【解答】解:√9=3,则由无理数的定义可知,实数是无理数的是√11.故选:D .2.(3分)(2020•金昌)若α=70°,则α的补角的度数是( )A .130°B .110°C .30°D .20°【解答】解:α的补角是:180°﹣∠A =180°﹣70°=110°.故选:B .3.(3分)(2020•金昌)若一个正方形的面积是12,则它的边长是( )A .2√3B .3C .3√2D .4【解答】解:∵正方形的面积是12,∴它的边长是√12=2√3.故选:A .4.(3分)(2020•金昌)下列几何体中,其俯视图与主视图完全相同的是( )A .B .C .D .【解答】解:圆锥的主视图是等腰三角形,俯视图是圆,因此A 不符合题意;圆柱的主视图是矩形,俯视图是圆,因此B 不符合题意;正方体的主视图、俯视图都是正方形,因此选项C 符合题意;三棱柱的主视图是矩形,俯视图是三角形,因此D 不符合题意;故选:C .5.(3分)(2020•金昌)下列各式中计算结果为x 6的是( )A .x 2+x 4B .x 8﹣x 2C .x 2•x 4D .x 12÷x 2【解答】解:x 2与x 4不是同类项,不能合并计算,它是一个多项式,因此A 选项不符合题意;同理选项B 不符合题意;x 2•x 4=x 2+4=x 6,因此选项C 符合题意;x 12÷x 2=x 12﹣2=x 10,因此选项D 不符合题意; 故选:C .6.(3分)(2020•金昌)生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a 与全身b 的高度比值接近0.618,可以增加视觉美感.若图中b 为2米,则a 约为( )A .1.24米B .1.38米C .1.42米D .1.62米【解答】解:∵雕像的腰部以下a 与全身b 的高度比值接近0.618,∴a b ≈0.618, ∵b 为2米,∴a 约为1.24米.故选:A .7.(3分)(2020•金昌)已知x =1是一元二次方程(m ﹣2)x 2+4x ﹣m 2=0的一个根,则m的值为( )A .﹣1或2B .﹣1C .2D .0【解答】解:把x =1代入(m ﹣2)x 2+4x ﹣m 2=0得:m ﹣2+4﹣m 2=0,﹣m 2+m +2=0,解得:m 1=2,m 2=﹣1,∵(m ﹣2)x 2+4x ﹣m 2=0是一元二次方程,∴m ﹣2≠0,∴m≠2,∴m=﹣1,故选:B.8.(3分)(2020•金昌)如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE间的距离.若AE间的距离调节到60cm,菱形的边长AB=20cm,则∠DAB 的度数是()A.90°B.100°C.120°D.150°【解答】解:连结AE,∵AE间的距离调节到60cm,木制活动衣帽架是由三个全等的菱形构成,∴AC=20cm,∵菱形的边长AB=20cm,∴AB=BC=20cm,∴AC=AB=BC,∴△ACB是等边三角形,∴∠B=60°,∴∠DAB=120°.故选:C.9.(3分)(2020•金昌)如图,A是⊙O上一点,BC是直径,AC=2,AB=4,点D在⊙Ô,则DC的长为()上且平分BCA.2√2B.√5C.2√5D.√10̂,【解答】解:∵点D在⊙O上且平分BĈ=CD̂,∴BD∵BC是⊙O的直径,∴∠BAC=∠D=90°,∵AC=2,AB=4,∴BC=√22+42=2√5,Rt△BDC中,DC2+BD2=BC2,∴2DC2=20,∴DC=√10,故选:D.10.(3分)(2020•金昌)如图①,正方形ABCD中,AC,BD相交于点O,E是OD的中点.动点P从点E出发,沿着E→O→B→A的路径以每秒1个单位长度的速度运动到点A,在此过程中线段AP的长度y随着运动时间x的函数关系如图②所示,则AB的长为()A.4√2B.4C.3√3D.2√2【解答】解:如图,连接AE.∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=OD=OB,由题意DE=OE,设DE=OE=x,则OA=OD=2x,∵AE=2√5,∴x2+(2x)2=(2√5)2,解得x=2或﹣2(不合题意舍弃),∴OA=OD=4,∴AB=AD=4√2,故选:A.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)(2020•金昌)如果盈利100元记作+100元,那么亏损50元记作﹣50元.【解答】解:∵盈利100元记作+100元,∴亏损50元记作﹣50元,故答案为:﹣50.12.(3分)(2020•金昌)分解因式:a2+a=a(a+1).【解答】解:a2+a=a(a+1).故答案为:a(a+1).13.(3分)(2020•金昌)暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如下,请你为广告牌填上原价.原价:元暑假八折优惠,现价:160元【解答】解:设广告牌上的原价为x元,依题意,得:0.8x=160,解得:x=200.故答案为:200.14.(3分)(2020•金昌)要使分式x+2x−1有意义,x 需满足的条件是 x ≠1 .【解答】解:当x ﹣1≠0时,分式有意义, ∴x ≠1, 故答案为x ≠1.15.(3分)(2020•金昌)在一个不透明的袋中装有若干个材质、大小完全相同的红球,小明在袋中放入3个黑球(每个黑球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,估计袋中红球有 17 个.【解答】解:通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,口袋中有3个黑球, ∵假设有x 个红球, ∴x x+3=0.85,解得:x =17,经检验x =17是分式方程的解, ∴口袋中红球约有17个. 故答案为:17.16.(3分)(2020•金昌)如图,在平面直角坐标系中,△OAB 的顶点A ,B 的坐标分别为(3,√3),(4,0).把△OAB 沿x 轴向右平移得到△CDE ,如果点D 的坐标为(6,√3),则点E 的坐标为 (7,0) .【解答】解:∵A (3,√3),D (6,√3), ∴点A 向右平移3个单位得到D , ∵B (4,0),∴点B 向右平移3个单位得到E (7,0), 故答案为(7,0).17.(3分)(2020•金昌)若一个扇形的圆心角为60°,面积为π6cm 2,则这个扇形的弧长为π3cm (结果保留π).【解答】解:设扇形的半径为R ,弧长为l , 根据扇形面积公式得;60π⋅R 2360=π6,解得:R =1,∵扇形的面积=12lR =π6, 解得:l =13π. 故答案为:π3.18.(3分)(2020•金昌)已知y =√(x 2−x +5,当x 分别取1,2,3,…,2020时,所对应y 值的总和是 2032 . 【解答】解:当x <4时, 原式=4﹣x ﹣x +5=﹣2x +9, 当x =1时,原式=7; 当x =2时,原式=5; 当x =3时,原式=3;当x ≥4时,原式=x ﹣4﹣x +5=1,∴当x 分别取1,2,3,…,2020时,所对应y 值的总和是: 7+5+3+1+1+…+1 =15+1×2017 =2032. 故答案为:2032.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.19.(4分)(2020•金昌)计算:(2−√3)(2+√3)+tan60°﹣(π﹣2√3)0. 【解答】解:原式=4﹣3+√3−1 =√3.20.(4分)(2020•金昌)解不等式组:{3x −5<x +12(2x −1)≥3x −4,并把它的解集在数轴上表示出来.【解答】解:解不等式3x﹣5<x+1,得:x<3,解不等式2(2x﹣1)≥3x﹣4,得:x≥﹣2,则不等式组的解集为﹣2≤x<3,将不等式组的解集表示在数轴上如下:21.(6分)(2020•金昌)如图,在△ABC中,D是BC边上一点,且BD=BA.(1)尺规作图(保留作图痕迹,不写作法):①作∠ABC的角平分线交AD于点E;②作线段DC的垂直平分线交DC于点F.(2)连接EF,直接写出线段EF和AC的数量关系及位置关系.【解答】解:(1)如图,①BE即为所求;②如图,线段DC的垂直平分线交DC于点F.(2)∵BD=BA,BE平分∠ABD,∴点E是AD的中点,∵点F是CD的中点,∴EF是△ADC的中位线,∴线段EF和AC的数量关系为:EF=12AC,位置关系为:EF∥AC.22.(6分)(2020•金昌)图①是甘肃省博物馆的镇馆之宝﹣﹣铜奔马,又称“马踏飞燕”,于1969年10月出土于武威市的雷台汉墓,1983年10月被国家旅游局确定为中国旅游标志.在很多旅游城市的广场上都有“马踏飞燕”雕塑.某学习小组把测量本城市广场的“马踏飞燕”雕塑(图②)最高点离地面的高度作为一次课题活动,同学们制定了测量方案,并完成了实地测量,测得结果如下表:课题测量“马踏飞燕“雕塑最高点离地面的高度测量示意图如图,雕塑的最高点B 到地面的高度为BA,在测点C用仪器测得点B 的仰角为α,前进一段距离到达测点E,再用该仪器测得点B 的仰角为β,且点A,B,C,D,E,F均在同一竖直平面内,点A,C,E在同一条直线上.测量数据α的度数β的度数CE的长度仪器CD(EF)的高度31°42°5米1.5米请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高度(结果保留一位小数).(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)【解答】解:如图,设BG=x米,在Rt△BFG中,FG=BGtanβ=xtan42°,在Rt△BDG中,DG=BGtanα=xtan31°,由DG﹣FG=DF得,x tan31°−xtan42°=5,解得,x=9,∴AB=AG+BG=1.5+9=10.5(米),答:这座“马踏飞燕”雕塑最高点离地面的高度为10.5米.23.(6分)(2020•金昌)2019年甘肃在国际知名旅游指南《孤独星球》亚洲最佳旅游地排名第一.截至2020年1月,甘肃省已有五家国家5A 级旅游景区,分别为A :嘉峪关文物景区;B :平凉崆峒山风景名胜区;C :天水麦积山景区;D :敦煌鸣沙山月牙泉景区;E :张掖七彩丹霞景区.张帆同学与父母计划在暑假期间从中选择部分景区游玩. (1)张帆一家选择E :张掖七彩丹霞景区的概率是多少?(2)若张帆一家选择了E :张掖七彩丹霞景区,他们再从A ,B ,C ,D 四个景区中任选两个景区去旅游,求选择A ,D 两个景区的概率(要求画树状图或列表求概率). 【解答】解:(1)共有5种可能选择的结果,因此张帆一家选择“E :张掖七彩丹霞景区”的概率是15;(2)从A ,B ,C ,D 四个景区中任选两个景区所有可能出现的结果如下:共有12种可能出现的结果,其中选择A 、D 两个景区的有2种, ∴P (选择A 、D )=212=16. 四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.24.(7分)(2020•金昌)习近平总书记于2019年8月在兰州考察时说“黄河之滨也很美”.兰州是古丝绸之路商贸重镇,也是黄河唯一穿城而过的省会城市,被称为“黄河之都”.近年来,在市政府的积极治理下,兰州的空气质量得到极大改善,“兰州蓝”成为兰州市民引以为豪的城市名片.如图是根据兰州市环境保护局公布的2013~2019年各年的全年空气质量优良天数绘制的折线统计图.请结合统计图解答下列问题:(1)2019年比2013年的全年空气质量优良天数增加了26天;(2)这七年的全年空气质量优良天数的中位数是254天;(3)求这七年的全年空气质量优良天数的平均天数;(4)《兰州市“十三五”质量发展规划》中指出:2020年,确保兰州市全年空气质量优良天数比率达80%以上.试计算2020年(共366天)兰州市空气质量优良天数至少需要多少天才能达标.【解答】解:(1)∵296﹣270=26,∴2019年比2013年的全年空气质量优良天数增加了26天;故答案为:26;(2)∵这七年的全年空气质量优良天数分别为:213,233,250,254,270,296,313,∴这七年的全年空气质量优良天数的中位数是254天;故答案为:254;(3)∵x=17(213+233+250+254+270+296+313)≈261(天),则这七年的全年空气质量优良天数的平均天数为261天;(4)∵全年空气质量优良天数比率达80%以上.∴366×80%=292.8≈293(天),则兰州市空气质量优良天数至少需要293天才能达标.25.(7分)(2020•金昌)通过课本上对函数的学习,我们积累了一定的经验.下表是一个函数的自变量x与函数值y的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:x…012345…y…632 1.5 1.21…(1)当x=3时,y=1.5;(2)根据表中数值描点(x,y),并画出函数图象;(3)观察画出的图象,写出这个函数的一条性质:函数y随x的增大而减小.【解答】解:(1)当x=3时,y=1.5;故答案为:3;(2)函数图象如图所示:(3)观察画出的图象,这个函数的一条性质:函数y随x的增大而减小.故答案为:函数y随x的增大而减小.26.(8分)(2020•金昌)如图,⊙O是△ABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AE=AB.(1)求∠ACB的度数;(2)若DE=2,求⊙O的半径.【解答】解:(1)连接OA,∵AE是⊙O的切线,∴∠OAE=90°,∵AB=AE,∴∠ABE=∠AEB,∵OA=OB,∴∠ABO=∠OAB,∴∠OAB=∠ABE=∠E,∵∠OAB+∠ABE+∠E+∠OAE=180°,∴∠OAB=∠ABE=∠E=30°,∴∠AOB=180°﹣∠OAB﹣∠ABO=120°,∴∠ACB=12∠AOB=60°;(2)设⊙O的半径为r,则OA=OD=r,OE=r+2,∵∠OAE=90°,∠E=30°,∴2OA=OE,即2r=r+2,∴r=2,故⊙O的半径为2.27.(8分)(2020•金昌)如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN =45°.把△ADN绕点A顺时针旋转90°得到△ABE.(1)求证:△AEM≌△ANM.(2)若BM=3,DN=2,求正方形ABCD的边长.【解答】(1)证明:∵△ADN≌△ABE,∴∠DAN=∠BAE,DN=BE,∵∠DAB=90°,∠MAN=45°,∴∠MAE=∠BAE+∠BAM=∠DAN+∠BAM=45°,∴∠MAE=∠MAN,∵MA=MA,∴△AEM≌△ANM(SAS).(2)解:设CD=BC=x,则CM=x﹣3,CN=x﹣2,∵△AEM≌△ANM,∴EM=MN,∵BE=DN,∴MN=BM+DN=5,∵∠C=90°,∴MN2=CM2+CN2,∴25=(x﹣2)2+(x﹣3)2,解得,x=6或﹣1(舍弃),∴正方形ABCD的边长为6.28.(10分)(2020•金昌)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)若PC∥AB,求点P的坐标;(3)连接AC,求△P AC面积的最大值及此时点P的坐标.【解答】解:(1)抛物线y =ax 2+bx ﹣2,则c =﹣2,故OC =2, 而OA =2OC =8OB ,则OA =4,OB =12,故点A 、B 、C 的坐标分别为(﹣4,0)、(12,0)、(0,﹣2); 则y =a (x +4)(x −12)=a (x 2+72x ﹣2)=ax 2+bx ﹣2,故a =1, 故抛物线的表达式为:y =x 2+72x ﹣2;(2)抛物线的对称轴为x =−74,当PC ∥AB 时,点P 、C 的纵坐标相同,根据函数的对称性得点P (−72,﹣2);(3)过点P 作PH ∥y 轴交AC 于点H ,由点A 、C 的坐标得,直线AC 的表达式为:y =−12x ﹣2,则△P AC 的面积S =S △PHA +S △PHC =12PH ×OA =12×4×(−12x ﹣2﹣x 2−72x +2)=﹣2(x +2)2+8,∵﹣2<0,∴S 有最大值,当x =﹣2时,S 的最大值为8,此时点P (﹣2,﹣5).。

相关文档
最新文档