上海九年级数学练习1
沪科版九年级数学上册第二十二章相似性第一节比例线段
C1
C
2
3
A
B
A1
B1
∠A=∠A1,∠B=∠B1,∠C=∠C1,
AB BC CA A1B1 B1C1 C1 A1
一般地,两个边数相同的多边形,如果它
们的对应角相等,对应边长度的比相等,那么
这两个多边形叫做相似多边形。这时,对应边
长度的比叫做相似比,也叫相似系数。
练习1 如图,矩形ABCD和矩形A1B1C1D1相似吗?为什么?
如果一组平行线在一条直线上截得的线段
相等,那么在其它直线上截得的线段也相等。
A B C
D
l1
E F
l2
l3
∵l1∥l2∥l3,AB=BC ∴DE=EF AB DE 1 BC EF
即AB、BC、DE、EF四条线段成比例。
问:若AB≠BC即 AB 1,还有类似比例式成立吗?
BC
新授
如图,l1∥l2∥l3,
bd
b
d
2 a c k(k为常数),
bd
a
c
那么 a b c d 成立吗 ?
b
d
b
d
3如果 a c , 那么a b c d 成立吗? 为什么?
bd
bd
(1) a 3
b
a 1 31 b
a
b b
4
; 同理,c
d
d
4
.
(2)
a c k bd
(3)
a c k bd
a b c d ( k 1) ;
–2 –3
L
–4 –5
M (2)
(2)如果每个点的横坐标、纵坐标都变成原来的2倍,如图(2),
线段CD与HL的比、OA与OF的比、BE与GM的比各是多少?
图形与证明(二)复习(1)练习1
BC九年级数学 作业1、已知:菱形ABCD 中,对角线AC = 16 cm ,BE ⊥BC 于点E ,则BE 的长.为 。
2、直角梯形的一条对角线把梯形分成两个三角形, 其中一个是边长为4的等边三角形,那么梯形的中位线长为 。
3、如图,一张矩形纸片,要折叠出一个最大的正方形,小明把矩 形的一个角沿折痕AE 翻折上去,使AB 和AD 边上的AF 重合,则四边形ABEF 就是一个最大的正方形,他的判定方法是 。
4、下列图形:线段、正三角形、平行四边形、矩形、菱形、正方形、等腰梯形、直角梯形,其中既是中心对称图形,又是轴对称图形的共有 ( )(A )3个 (B )4个 (C )5个 (D ) 6个5、如图,△ABP 与△CDP 是两个全等的等边三角形,且PA ⊥PD.有下列四个结论:①∠PBC =15°;②AD ∥BC ;③直线PC 与AB 垂直;④四边形ABCD 是轴对称图形.其中正确的结论的个数为 ( )(A )1个 (B )2个 (C )3个 (D )4个6、如图,在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,且AC=12,BD=9, 则该梯形两腰中点的连线EF 长是( ) A 、10 B 、221 C 、215 D 、127、如图,等腰梯形ABCD 中,AD ∥BC ,∠DBC=45º。
翻折梯形ABCD ,使点B 重合于点D ,折痕分别交边AB 、BC 于点F 、E 。
若AD=2,BC=8, 求:(1)BE 的长。
(2)CD :DE 的值。
CFBEADCB ADPDBCAEF CDBA EF8、如图是规格为8×8的正方形网格,请在所给网格中......按下列要求操作:⑴请在网格中建立平面直角坐标系, 使A点坐标为(-2,4),B点坐标为(-4,2);⑵在第二象限内的格点上..........画一点C, 使点C与线段AB组成一个以AB为底的等腰三角形, 且腰长是无理数, 则C点坐标是,△ABC的周长是(结果保留根号);⑶画出△ABC以点C为旋转中心、旋转180°后的△A′B′C, 连结AB′和A′B, 试说出四边形ABA′B′是何特殊四边形, 并说明理由.△与R t ABD△中,90=,,ABC BAD∠=∠= ,AD BC AC BD 相交于点G,过点A作AE D B∥交D A的∥交C B的延长线于点E,过点B作B F C A延长线于点F AE BF,,相交于点H.(1)图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)(2)证明四边形A H B G是菱形;(3)若使四边形A H B G是正方形,还需在R t ABC△的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)EF。
九年级数学上册第一章综合练习1新版新人教版
第一章特殊平行四边形总分120分120分钟一.选择题(共8小题,每题3分)1.在四边形ABCD中,∠A=60°,∠ABC=∠ADC=90°,BC=2,CD=11,自D作DH⊥AB于H,则DH的长是()A.7.5 B.7 C.6.5 D.5.52.下列说法:①矩形是轴对称图形,两条对角线所在的直线是它的对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形;⑤两条对角线互相垂直平分的四边形是矩形.其中,正确的有()A.1个B.2个C.3个D.4个3.不能判断四边形ABCD是矩形的是(0为对角线的交点)()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.ABCD,AC=BD D.ABCD,OA=OC,OB=OD4.如图,在四边形ABCD中,AB=CD,AC⊥BD,添加适当的条件使四边形ABCD成为菱形.下列添加的条件不正确的是()A.AB∥CD B.AD=BC C.BD=AC D.BO=DO5.能判定四边形ABCD是菱形的条件是()A.对角线AC平分对角线BD,且AC⊥BDB.对角线AC平分对角线BD,且∠A=∠CC.对角线AC平分对角线BD,且平分∠A和∠CD.对角线AC平分∠A和∠C,且∠A=∠C6.已知如图,在矩形ABCD中有两个一条边长为1的平行四边形.则它们的公共部分(即阴影部分)的面积是()A.大于1 B.等于1 C.小于1 D.小于或等于17.矩形各内角的平分线能围成一个()A.矩形 B.菱形 C.等腰梯形 D.正方形8.如果一个平行四边形要成为正方形,需增加的条件是()A.对角线互相垂直且相等 B.对角线互相垂直C.对角线相等D.对角线互相平分二.填空题(共6小题,每题3分)9.如图,凸五边形ABCDE中,∠A=∠B=120°,EA=AB=BC=2,CD=DE=4,则它的面积为_________ .10.四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,则在下列推理不成立的是_________A、①④⇒⑥;B、①③⇒⑤;C、①②⇒⑥;D、②③⇒④11._________ 的矩形是正方形,_________ 的菱形是正方形.12.若四边形ABCD是矩形,请补充条件_________ (写一个即可),使矩形ABCD是正方形.13.如图,在△ABC中,点D在BC上过点D分别作AB、AC的平行线,分别交AC、AB于点E、F①如果要得到矩形AEDF,那么△ABC应具备条件:_________ ;②如果要得到菱形AEDF,那么△ABC应具备条件:_________ .14.在矩形ABCD中,M为AD边的中点,P为BC上一点,PE⊥MC,PF⊥MB,当AB、BC满足条件_________ 时,四边形PEMF为矩形.三.解答题(共11小题)15.(6分)如图所示,顺次延长正方形ABCD的各边AB,BC,CD,DA至E,F,G,H,且使BE=CF=DG=AH.求证:四边形EFGH是正方形.16.(6分)已知:如图,△ABC中,D是BC上任意一点,DE∥AC,DF∥AB.①试说明四边形AEDF的形状,并说明理由.②连接AD,当AD满足什么条件时,四边形AEDF为菱形,为什么?③在②的条件下,当△ABC满足什么条件时,四边形AEDF为正方形,不说明理由.17.(6分)已知:如图,△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE 于点E,求证:四边形ADCE是矩形.18.(6分)已知:如图,M为▱ABCD的AD边上的中点,且MB=MC,求证:▱ABCD是矩形.19.(6分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠C=45°,BC=4,AD=2.求四边形ABCD的面积.20.(8分)如图,∠CAE是△ABC的外角,AD平分∠EAC,且AD∥BC.过点C作CG⊥AD,垂足为G,AF是BC边上的中线,连接FG.(1)求证:AC=FG.(2)当AC⊥FG时,△ABC应是怎样的三角形?为什么?21.(8分)如图,E是等边△ABC的BC边上一点,以AE为边作等边△AEF,连接CF,在CF延长线取一点D,使∠DAF=∠EFC.试判断四边形ABCD的形状,并证明你的结论.22.(8分)如图,矩形ABCD的对角线AC、BD相交于点0,BE∥AC,EC∥BD,BE、EC相交于点E.试说明:四边形OBEC是菱形.23.(8分)如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,判断四边形CODE 的形状,并计算其周长.24.(8分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接MN,DN.(1)求证:四边形BMDN是菱形;(2)若AB=6,BC=8,求MD的长.25.(8分)如图所示,有四个动点P,Q,E,F分别从正方形ABCD的四个顶点出发,沿着AB,BC,CD,DA以同样速度向B,C,D,A各点移动.(1)试判断四边形PQEF是否是正方形,并证明;(2)PE是否总过某一定点,并说明理由.第十九章矩形,菱形与正方形章末测试(一)参考答案与试题解析一.选择题(共8小题)1.在四边形ABCD中,∠A=60°,∠ABC=∠ADC=90°,BC=2,CD=11,自D作DH⊥AB于H,则DH的长是()A.7.5 B.7 C.6.5 D.5.5考点:矩形的判定与性质;含30度角的直角三角形.专题:几何综合题.分析:过C作DH的垂线CE交DH于E,证明四边形BCEH是矩形.所以求出HE的长;再求出∠DCE=30°,又因为CD=11,所以求出DE,进而求出DH的长.解答:解:过C作DH的垂线CE交DH于E,∵DH⊥AB,CB⊥AB,∴CB∥DH又CE⊥DH,∴四边形BCEH是矩形.∵HE=BC=2,在Rt△AHD中,∠A=60°,∴∠ADH=30°,又∵∠ADC=90°∴∠CDE=60°,∴∠DCE=30°,∴在Rt△CED中,DE=CD=5.5,∴DH=2+5.5=7.5.故选A.点评:本题考查了矩形的判定和性质,直角三角形的一个重要性质:30°的锐角所对的直角边是斜边的一半;以及勾股定理的运用.2.下列说法:①矩形是轴对称图形,两条对角线所在的直线是它的对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形;⑤两条对角线互相垂直平分的四边形是矩形.其中,正确的有()A.1个B.2个C.3个D.4个考点:矩形的判定与性质.分析:直接利用矩形的性质与判定定理求解即可求得答案.解答:解:①矩形是轴对称图形,两组对边的中点的连线所在的直线是它的对称轴,故错误;②两条对角线相等的平行四边形是矩形,故错误;③有两个邻角相等的平行四边形是矩形,故错误;④两条对角线相等且互相平分的四边形是矩形;正确;⑤两条对角线互相垂直平分的四边形是菱形;故错误.故选A.点评:此题考查了矩形的性质与判定定理.此题难度不大,注意熟记定理是解此题的关键.3.不能判断四边形ABCD是矩形的是(0为对角线的交点)()A.AB=CD,AD=BC,∠A=90° B. OA=OB=OC=ODC.ABCD,AC=BD D.ABCD,OA=OC,OB=OD考点:矩形的判定.分析:矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形.据此判断.解答:解:A、由“AB=CD,AD=BC”可以判定四边形ABCD是平行四边形,又∠BAD=90°,则根据“有一个角是直角的平行四边形是矩形”可以判定平行四边形ABCD是矩形,故本选项不符合题意;B、根据“对角线互相平分且相等的四边形是矩形”可以判定平行四边形ABCD是矩形,故本选项不符合题意;C、根据ABCD得到四边形是平行四边形,根据AC=BD,利用对角线相等的平行四边形是矩形,故本选项不符合题意;D、只能得到四边形是平行四边形,故本选项符合题意;故选:D.点评:本题考查的是矩形的判定定理,但考生应注意的是由矩形的判定引申出来的各图形的判定.难度一般.4.如图,在四边形ABCD中,AB=CD,AC⊥BD,添加适当的条件使四边形ABCD成为菱形.下列添加的条件不正确的是()A.AB∥CD B.AD=BC C.BD=AC D.B O=DO考点:菱形的判定.分析:通过菱形的判定定理进行分析解答.解答:解:A项根据对角线互相垂直的平行四边形是菱形这一定理可以推出四边形ABCD为菱形,故本选项错误,B项根据对角线互相垂直的平行四边形是菱形这一定理可以推出四边形ABCD为菱形,故本选项错误,C项根据题意还可以推出四边形ABCD为等腰梯形,故本选项正确,D项根据题意可以推出Rt△AOD≌Rt△COB,即可推出OA=OC,再根据对角线互相垂直且平分的四边形是菱形这一定理推出四边形ABCD为菱形,故本选项错误,故选择C.点评:本题主要考查菱形的判定,关键在于熟练掌握菱形的判定定理.5.能判定四边形ABCD是菱形的条件是()A.对角线AC平分对角线BD,且AC⊥BDB.对角线AC平分对角线BD,且∠A=∠CC.对角线AC平分对角线BD,且平分∠A和∠CD.对角线AC平分∠A和∠C,且∠A=∠C考点:菱形的判定.专题:推理填空题.分析:菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.据此判断即可.解答:解:A、C的反例如图,AC垂直平分BD,但AO≠OC;B只能确定为平行四边形.故选D.点评:主要考查了菱形的判定.菱形的特性:菱形的四条边都相等;菱形的对角线互相垂直平分,且每一条对角线平分一组对角.6.已知如图,在矩形ABCD中有两个一条边长为1的平行四边形.则它们的公共部分(即阴影部分)的面积是()A.大于1 B.等于1 C.小于1 D.小于或等于1考点:菱形的判定与性质.分析:利用割补法得出阴影部分面积为四边形EFMN的面积,进而利用直角三角形的性质得出EG <1,即可得出答案.解答:解:如图所示:作EN∥AB,FM∥CD,过点E作EG⊥MN于点G,可得阴影部分面等于四边形EFMN的面积,则四边形EFMN是平行四边形,且EN=FM=1,∵EN=1,∴EG<1,∴它们的公共部分(即阴影部分)的面积小于1.故选:C.点评:此题主要考查了平行四边形的性质以及平行四边形面积求法,得出阴影部分面等于四边形EFMN的面积是解题关键.7.矩形各内角的平分线能围成一个()A.矩形B.菱形C.等腰梯形D.正方形考点:正方形的判定;矩形的性质.分析:根据矩形的性质及角平分线的性质进行分析即可.解答:解:矩形的四个角平分线将矩形的四个角分成8个45°的角,因此形成的四边形每个角是90°又知两条角平分线与矩形的一边构成等腰直角三角形,所以这个四边形邻边相等,根据有一组邻边相等的矩形是正方形,得到该四边形是正方形.故选:D.点评:此题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角8.如果一个平行四边形要成为正方形,需增加的条件是()A.对角线互相垂直且相等B.对角线互相垂直 C.对角线相等D.对角线互相平分考点:正方形的判定;平行四边形的性质.分析:根据正方形的判定:对角线相等且互相垂直平分的四边形是正方形对各个选项进行分析.解答:解:A、对角线相等的平行四边形是矩形,而对角线互相垂直的平行四边形是菱形,同时具有矩形和菱形的性质的平行四边形是正方形,故本选项正确;B、对角线互相垂直的平行四边形是菱形,而非正方形,故本选项错误;C、对角线相等的平行四边形是矩形,故本选项错误;D、平行四边形的对角线都互相平分,这是平行四边形的性质.故本选项错误;故选A.点评:此题主要考查正方形的判定:对角线相等的菱形是正方形.二.填空题(共6小题)9.如图,凸五边形ABCDE中,∠A=∠B=120°,EA=AB=BC=2,CD=DE=4,则它的面积为7 .考点:菱形的判定与性质;等边三角形的判定与性质.专题:计算题.分析:作辅助线延长EA,BC相交于点F,CG⊥EF于G,BH⊥EF于H,因为∠EAB=∠CBA=120°,可得∠FAB=∠FBA=60°,可得△FAB为等边三角形,容易证明四边形EFCD是菱形,所以S ABCDE=S CDEF﹣S△ABF由此即可求解.解答:解:如图,延长EA,BC相交于点F,CG⊥EF于G,BH⊥EF于H,因为∠EAB=∠CBA=120°,所以∠FAB=∠FBA=60°,所以△FAB为等边三角形,AF=FB=AB=2,所以CD=DE=EF=FC=4,所以四边形EFCD是菱形,所以S ABCDE=S CDEF﹣S△ABF点评:本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.10.四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,则在下列推理不成立的是 CA、①④⇒⑥;B、①③⇒⑤;C、①②⇒⑥;D、②③⇒④考点:正方形的判定与性质;全等三角形的判定与性质;菱形的判定与性质;矩形的判定与性质.专题:证明题.分析:根据矩形、菱形、正方形的判定定理,对角线互相平分的四边形为平行四边形,再由邻边相等,得出是菱形,和一个角为直角得出是正方形,根据已知对各个选项进行分析从而得到最后的答案.解答:解:A、由①④得,一组邻边相等的矩形是正方形,故正确;B、由③得,四边形是平行四边形,再由①,一组邻边相等的平行四边形是菱形,故正确;C、由①②不能判断四边形是正方形;D、由③得,四边形是平行四边形,再由②,一个角是直角的平行四边形是矩形,故正确.故选C.点评:此题用到的知识点是:矩形、菱形、正方形的判定定理,如:一组邻边相等的矩形是正方形;对角线互相平分且一组邻边相等的四边形是菱形;对角线互相平分且一个角是直角的四边形是矩形.灵活掌握这些判定定理是解本题的关键.11.有一组邻边相等的矩形是正方形,有一个角为直角的菱形是正方形.考点:正方形的判定.分析:根据正方形的判定定理(有一组邻边相等的矩形是正方形,有一个角为直角的菱形是正方形)求解即可求得答案.解答:解:有一组邻边相等的矩形是正方形,有一个角为直角的菱形是正方形.故答案为:有一组邻边相等,有一个角为直角.点评:此题考查了正方形的判定.此题比较简单,注意熟记定理是解此题的关键.12.若四边形ABCD是矩形,请补充条件此题答案不唯一,如AC⊥BD或AB=AD等(写一个即可),使矩形ABCD是正方形.考点:正方形的判定.专题:开放型.分析:由四边形ABCD是矩形,根据邻边相等的矩形是正方形或对角线互相垂直的矩形是正方形,即可求得答案.解答:解:∵四边形ABCD是矩形,∴当AC⊥BD或AB=AD时,矩形ABCD是正方形.故答案为:此题答案不唯一,如AC⊥BD或AB=AD等.点评:此题考查了正方形的判定.此题比较简单,注意熟记定理是解此题的关键.13.如图,在△ABC中,点D在BC上过点D分别作AB、AC的平行线,分别交AC、AB于点E、F①如果要得到矩形AEDF,那么△ABC应具备条件:∠BAC=90°;②如果要得到菱形AEDF,那么△ABC应具备条件:AD平分∠BAC.考点:菱形的判定;矩形的判定.分析:已知DE∥AB,DF∥AC,则有四边形AEDF是平行四边形.①因为有一直角的平行四边形是矩形,可添加条件:∠BAC=90°;②邻边相等的平行四边形是菱形,可添加条件:AD平分∠BAC.解答:解:∵DE∥AB,DF∥AC,AF、AE分别在AB、AC上∴DE∥AF,DF∥AE∴四边形AEDF是平行四边形①∵∠BAC=90°∴四边形AEDF是矩形;②∵AD是△ABC的角平分线,∴∠DAE=∠DAF∴∠ADE=∠DAE∴AE=DE∴▱AEDF是菱形.故答案为∠BAC=90°,AD平分∠BAC.点评:本题考查菱形和矩形的判定.本题是开放题,可以针对各种特殊的平行四边形的判定方法,给出条件,再证明结论.答案可以有多种,主要条件明确,说法有理即可.14.在矩形ABCD中,M为AD边的中点,P为BC上一点,PE⊥MC,PF⊥MB,当AB、BC满足条件AB=BC 时,四边形PEMF为矩形.考点:矩形的判定与性质.分析:根据已知条件、矩形的性质和判定,欲证明四边形PEMF为矩形,只需证明∠BMC=90°,易得AB=BC时能满足∠BMC=90°的条件.解答:解:AB=BC时,四边形PEMF是矩形.∵在矩形ABCD中,M为AD边的中点,AB=BC,∴AB=DC=AM=MD,∠A=∠D=90°,∴∠ABM=∠MCD=45°,∴∠BMC=90°,又∵PE⊥MC,PF⊥MB,∴∠PFM=∠PEM=90°,∴四边形PEMF是矩形.点评:此题考查了矩形的判定和性质的综合应用,是一开放型试题,是中考命题的热点.三.解答题(共11小题)15.如图所示,顺次延长正方形ABCD的各边AB,BC,CD,DA至E,F,G,H,且使BE=CF=DG=AH.求证:四边形EFGH是正方形.考点:正方形的判定;全等三角形的判定与性质.专题:证明题.分析:此题先根据正方形ABCD的性质,可证△AEH≌△CGF≌△DHG(SAS),得四边形EFGH为菱形,再求一个角是直角从而证明它是正方形.解答:证明:∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠EBF=∠HAE=∠GDH=∠FC G,又∵BE=CF=DG=AH,∴CG=DH=AE=BF∴△AEH≌△CGF≌△DHG,∴EF=FG=GH=HE,∠EFB=∠HEA,∴四边形EFGH为菱形,∵∠EFB+∠FEB=90°,∠EFB=∠HEA,∴∠FEB+∠HEA=90°,∴四边形EFGH是正方形.点评:本题主要考查了正方形的判定方法:一角是直角的菱形是正方形.16.已知:如图,△ABC中,D是BC上任意一点,DE∥AC,DF∥AB.①试说明四边形AEDF的形状,并说明理由.②连接AD,当AD满足什么条件时,四边形AEDF为菱形,为什么?③在②的条件下,当△ABC满足什么条件时,四边形AEDF为正方形,不说明理由.考点:正方形的判定;平行四边形的判定;菱形的判定.分析:①根据DE∥AC,DF∥AB可判断四边形AEDF为平行四边形;②由四边形AEDF为菱形,能得出AD为∠BAC的平分线即可;③由四边形AEDF为正方形,得∠BAC=90°,即当△ABC是以BC为斜边的直角三角形即可.解答:解:①∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形;②∵四边形AEDF为菱形,∴AD平分∠B AC,则AD平分∠BAC时,四边形AEDF为菱形;③由四边形AEDF为正方形,∴∠BAC=90°,∴△ABC是以BC为斜边的直角三角形即可.点评:本题考查了正方形的性质、菱形的性质、平行四边形的性质以及矩形的性质.17.已知:如图,△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E,求证:四边形ADCE是矩形.考点:矩形的判定.分析:首先利用外角性质得出∠B=∠ACB=∠FAE=∠EAC,进而得到AE∥CD,即可求出四边形AEDB 是平行四边形,再利用平行四边形的性质求出四边形ADCE是平行四边形,即可求出四边形ADCE是矩形.解答:证明:∵AB=AC,∴∠B=∠ACB,∵AE是∠BAC的外角平分线,∴∠FAE=∠EAC,∵∠B+∠ACB=∠FAE+∠EAC,∴∠B=∠ACB=∠FAE=∠EAC,∴AE∥CD,又∵DE∥AB,∴四边形AEDB是平行四边形,∴AE平行且等于BD,又∵BD=DC,∴AE平行且等于DC,故四边形ADCE是平行四边形,又∵∠ADC=90°,∴平行四边形ADCE是矩形.即四边形ADCE是矩形.点评:此题主要考查了平行四边形的判定与性质以及矩形的判定,灵活利用平行四边形的判定得出四边形AEDB是平行四边形是解题关键.18.已知:如图,M为▱ABCD的AD边上的中点,且MB=MC,求证:▱ABCD是矩形.考点:矩形的判定;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:根据平行四边形的两组对边分别相等可知△ABM≌△DCM,可知∠A+∠D=180°,所以是矩形.解答:证明:∵四边形ABCD是平行四边形,∵AM=DM,MB=MC,∴△ABM≌△DCM.∴∠A=∠D.∵AB∥CD,∴∠A+∠D=180°.∴∠A=90°.∴▱ABCD是矩形.点评:此题主要考查了矩形的判定,即有一个角是90度的平行四边形是矩形.19.如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠C=45°,BC=4,AD=2.求四边形ABCD的面积.考点:矩形的判定与性质;等腰直角三角形.分析:如上图所示,延长AB,延长DC,相交于E点.△ADE是等腰直角三角形,AD=DE=2,则可以求出△ADE的面积;∠C=∠AED=45度,所以△CBE是等腰直角三角形,BE=CB=4厘米,则可以求出△CBE 的面积;那么四边形ABCD的面积是两个三角形的面积之差.解答:解:延长AB,延长DC,相交于E点,得到两个等腰直角三角形△ADE和△CBE,由等腰直角三角形的性质得:DE=AD=2,BE=CB=4,那么四边形ABCD的面积是:4×4÷2﹣2×2÷2=8﹣2=6.答:四边形ABCD的面积是6.点评:此题考查了等腰直角三角形的性质以及三角形的面积公式的运用,解题的关键是作延长线,找到交点,组成新图形,是解决此题的关键.20.如图,∠CAE是△ABC的外角,AD平分∠EAC,且AD∥BC.过点C作CG⊥AD,垂足为G,AF是BC边上的中线,连接FG.(1)求证:AC=FG.(2)当AC⊥FG时,△ABC应是怎样的三角形?为什么?考点:矩形的判定与性质;等腰三角形的判定与性质;等腰直角三角形.专题:证明题.分析:先根据题意推理出四边形AFCG是矩形,然后根据矩形的性质得到对角线相等;由第一问的结论和AC⊥FG得到四边形AFCG是正方形,然后即可得到△ABC是等腰直角三角形.解答:(1)证明:∵AD平分∠EAC,且AD∥BC,∴∠ABC=∠EAD=∠CAD=∠ACB,∴AB=AC;AF是BC边上的中线,∴AF⊥BC,∵CG⊥AD,AD∥BC,∴AF∥CG,∴四边形AFCG是平行四边形,∵∠AFC=90°,∴四边形AFCG是矩形;∴AC=FG.(2)解:当AC⊥FG时,△ABC是等腰直角三角形.理由如下:∵四边形AFCG是矩形,∴四边形AFCG是正方形,∠ACB=45°,∵AB=AC,∴△ABC是等腰直角三角形.点评:该题目考查了矩形的判定和性质、正方形的判定和性质、等腰三角形的性质,知识点比较多,注意解答的思路要清晰.21.如图,E是等边△ABC的BC边上一点,以AE为边作等边△AEF,连接CF,在CF延长线取一点D,使∠DAF=∠EFC.试判断四边形ABCD的形状,并证明你的结论.考点:菱形的判定;全等三角形的判定与性质;等边三角形的性质.专题:证明题.分析:在已知条件中求证全等三角形,即△BAE≌△CAF,△AEC≌△AFD,从而得到△ACD和△ABC 都是等边三角形,故可根据四条边都相等的四边形是菱形判定.解答:解:四边形ABCD是菱形.证明:在△ABE、△ACF中∵AB=AC,AE=AF∠BAE=60°﹣∠EAC,∠CAF=60°﹣∠EAC∴∠BAE=∠CAF∴△BAE≌△CAF∵∠CFA=∠CFE+∠EFA=∠CFE+60°∠BEA=∠ECA+∠EAC=∠EAC+60°∴∠EAC=∠CFE∵∠DAF=∠CFE∴∠EAC=∠DAF∵AE=AF,∠AEC=∠AFD∴△AEC≌△AFD∴AC=AD,且∠D=∠ACE=60°∴△ACD和△ABC都是等边三角形∴四边形ABCD是菱形.点评:本题考查了菱形的判定、等边三角形的性质和全等三角形的判定,学会在已知条件中多次证明三角形全等,寻求角边的转化,从而求证结论.22.如图,矩形ABCD的对角线AC、BD相交于点0,BE∥AC,EC∥BD,BE、EC相交于点E.试说明:四边形OBEC是菱形.考点:菱形的判定;矩形的性质.专题:证明题.分析:在矩形ABCD中,可得OB=OC,由BE∥AC,EC∥BD,所以四边形OBEC是平行四边形,两个条件合在一起,可得出其为菱形.解答:证明:在矩形ABCD中,AC=BD,∴OB=OC,∵BE∥AC,EC∥BD,∴四边形OBEC是平行四边形,∴四边形OBEC是菱形.点评:熟练掌握菱形的性质及判定定理.23.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,判断四边形CODE的形状,并计算其周长.考点:菱形的判定与性质;矩形的性质.分析:首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.解答:解:∵CE∥BD,DE∥A C,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=8.故答案为:8.点评:此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.24.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接MN,DN.(1)求证:四边形BMDN是菱形;(2)若AB=6,BC=8,求MD的长.考点:菱形的判定与性质;线段垂直平分线的性质;矩形的性质.分析:(1)根据矩形性质求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,证△DMO≌△BNO,推出OM=ON,得出平行四边形BMDN,推出菱形BMDN;(2)根据菱形性质求出DM=BM,在Rt△AMB中,根据勾股定理得出BM2=AM2+AB2,推出x2=(8﹣x)2+62,求出即可.解答:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,在△DMO和△BNO中,,∴△DMO≌△BNO(ASA),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8﹣x)2+62,解得:x=.答:MD长为.点评:本题考查了矩形性质,平行四边形的判定,菱形的判定和性质,勾股定理等知识点的应用.注意对角线互相平分的四边形是平行四边形,对角线互相垂直的平行四边形是菱形.25.如图所示,有四个动点P,Q,E,F分别从正方形ABCD的四个顶点出发,沿着AB,BC,CD,DA以同样速度向B,C,D,A各点移动.(1)试判断四边形PQEF是否是正方形,并证明;(2)PE是否总过某一定点,并说明理由.考点:正方形的判定与性质;全等三角形的判定与性质.专题:动点型.分析:(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形,故可根据正方形的定义证明四边形PQEF是否使正方形.(2)证PE是否过定点时,可连接AC,证明四边形APCE为平行四边形,即可证明PE过定点.解答:解:(1)在正方形ABCD中,AP=BQ=CE=DF,AB=BC=CD=DA,∴BP=QC=ED=FA.又∵∠BAD=∠B=∠BCD=∠D=90°,∴△AFP≌△BPQ≌△CQE≌△DEF.∴FP=PQ=QE=EF,∠APF=∠PQB.∴四边形PQEF是菱形,∵∠FPQ=90°,∴四边形PQEF为正方形.(2)连接AC交PE于O,∵AP平行且等于EC,∴四边形APCE为平行四边形.∵O为对角线AC的中点,∴对角线PE总过AC的中点.点评:在证明过程中,应了解正方形和平行四边形的判定定理,为使问题简单化,在证明过程中,可适当加入辅助线.。
九年级数学《名校课堂》同步测试题(1)
九年级数学《一元二次方程的解法》同步练习(3)姓名:得分:2.2.1配方法第1课时根据平方根的意义解一元二次方程知识点1一元二次方程的根的定义1.关于x的一元二次方程x2+x+a-1=0的一个根是0,则实数a的值为( ) A.-1 B.0 C.1 D.-1或12.若a是方程2x2-x-3=0的一个解,则2a2-a的值为( )A.3 B.-3 C.9 D.-93.下列是方程3x2+x-2=0的解的是( )A.x=-1 B.x=1 C.x=-2 D.x=24.已知m是方程x2-x-1=0的一个根,求代数式5m2-5m+2 004的值.知识点2根据平方根的意义解一元二次方程5.根据平方根的意义解方程(x-2 015)2=1,得方程的根为( )A.2 018 B.2 014或2 016C.2 017或1 D.2 016或06.(江岸区校级模拟)如果x=-3是一元二次方程ax2=c的一个根,那么该方程的另一个根是( ) A.3 B.-3C.0 D.17.若x+1与x-1互为倒数,则实数x为( )A.0 B. 2C.±1 D.± 28.下面解方程的过程中,正确的是( )A.x2=2,解:x= 2 B.2y2=16,解:2y=±4,∴y1=2,y2=-2C.2(x-1)2=8,解:(x-1)2=4,x-1=±4,x-1=±2,∴x1=3,x2=-1D.x2=-2,解:x1=-2,x2=--29.解下列方程:(1)14x2=9;(2)(x-3)2-9=0.中档题10.若关于x的方程x2=m的解是有理数,则实数m不能取下列四个数中的( ) A.1 B.4 C.14 D.1211.(枣庄中考)x1,x2是一元二次方程3(x-1)2=15的两个解,且x1<x2,下列说法正确的是( ) A.x1小于-1,x2大于3 B.x1小于-2,x2大于3C.x1,x2在-1和3之间D.x1,x2都小于312.若分式x2-9x-3的值为零,则x的值为( )A.3 B.-3 C.±3 D.913.刘谦的魔术表演风靡全国,小王也学起了刘谦,利用电脑设计了一个程序:当输入实数对(x,y)时,会得到一个新的实数x2+y-1,例如输入(2,5)时,就会得到实数22+5-1=8.若输入实数对(m,2)时,得到实数3,则m=________.14.已知方程x2+(m-1)x+m-10=0的一个根是3,求m的值及方程的另一个根.15.解下列方程:(1)36-3x2=0;(2)(2x+3)2-25=0;(3)(x-3)2=(2x+1)2.第2课时用配方法解二次项系数为1的一元二次方程基础题知识点1二次三项式的配方1.下列各式是完全平方式的是( )A.x2+x+1 B.x2+2x-1 C.x2+2x+1 D.x2-2x-12.将二次三项式x2+6x+7进行配方,正确的结果是( )A.(x+3)2+2 B.(x-3)2+2 C.(x+3)2-2 D.(x-3)2-23.填空:(1)x2-2x+________=(x-________)2;(2)x2+6x+________=(x+________)2;(3)x2-5x+________=(x-________)2;(4)x2-3mx+________=(x-________)2. 4.完成下列配方过程:(1)x2+2x+4=x2+2x+________-________+4=(x+________)2+________;(2)x2-6x-3=x2-6x+________-________-3=(x-________)2-________;知识点2用配方法解二次项系数为1的一元二次方程5.(呼伦贝尔中考)用配方法解方程x2-2x-5=0时,原方程应变形为( )A.(x+1)2=6 B.(x-1)2=6 C.(x+2)2=9 D.(x-2)2=96.一元二次方程x(x-4)=-4的根是( )A.-2 B.2 C.2或-2 D.-1或27.(吉林中考)若将方程x2+6x=7化为(x+m)2=16,则m=________.8.解下列方程:(1)x2+4x+2=0;(2)x2+6x-7=0;(3)x2-6x-6=0;中档题9.若方程x2+kx+64=0的左边是完全平方式,则k的值是( )A.±8 B.16 C.-16 D.±1610.下列配方有错误的是( )A.x2-2x-70=0化为(x-1)2=71 B.x2+6x+8=0化为(x+3)2=1C.x2-3x-70=0化为(x-32)2=7112D.x2-2x-99=0化为(x-1)2=10011.(宁夏中考)一元二次方程x2-2x-1=0的解是( )A.x1=x2=1 B.x1=1+2,x2=-1- 2C.x1=1+2,x2=1- 2 D.x1=-1+2,x2=-1- 212.已知一元二次方程x2+mx+3=0配方后为(x+n)2=22,那么一元二次方程x2-mx-3=0配方后为( )A.(x+5)2=28 B.(x+5)2=19或(x-5)2=19C.(x-5)2=19 D.(x+5)2=28或(x-5)2=2813.三角形两边的长是3和4,第三边长是方程x2-12x+35=0的根,则该三角形的周长为________.14.用配方法解下列方程:(1)x2-2x-5=0;(2)x2-4x+2=0;(3)x2-22x-3=0;15.用配方法证明:不论x为何值,代数式x2+4x+5的值恒大于零.(3)x2+3x+4=x2+3x+________-________+4 =(x+________)2+________;(4)x2-5x-3=x2-5x+________-________-3 =(x-________)2-________.第3课时 用配方法解二次项系数不为1的一元二次方程知识点 用配方法解二次项系数不为1的一元二次方程1.用配方法解方程2x 2-4x =3时,先把二次项系数化为1,然后方程的两边都应加上( )A .1B .2C .3D .52.将方程3x 2-12x -1=0进行配方,配方正确的是( )A .3(x -2)2=5B .(3x -2)2=13C .(x -2)2=5D .(x -2)2=1333.用配方法解方程2x 2-3=-6x ,正确的解法是( )A .(x +32)2=154,x =-32±152B .(x -32)2=154,x =32±152C .(x +32)2=-154,原方程无解D .(x +32)2=74,x =-32±724.用配方法解下列方程:(1)2x 2-8x +1=0; (2)2x 2-7x +6=0; (3)3x 2+8x -3=0;(4)2x 2+1=3x ; (5)3x 2-2x -4=0; (6)6x +9=2x 2.中档题5.用配方法解下列方程时,配方有错误的是( )A .2m 2+m -1=0化为(m +14)2=916B .2x 2+1=3x 化为(x -34)2=116C .2t 2-3t -2=0化为(t -32)2=2516D .3y 2-4y +1=0化为(y -23)2=196.方程(2x -5)(x +2)=3x -4的根为( )A .3B .-1C .-1或3D .以上均不对7.把方程2x 2+4x -1=0配方后得(x +m)2=k ,则m =________,k =________. 8.已知y 1=5x 2+7x +1,y 2=x 2-9x -15,则当x =________时,y 1=y 2. 9.用配方法解下列方程:(1)2t 2-6t +3=0; (2)23x 2+13x -2=0; (3)2y 2-4y =4;10.若一个三角形的两边长分别为2和3,第三边长是方程2x 2-3x -5=0的一个根,求这个三角形的周长.拔高题11.用配方法说明:不论x 取何值,代数式3x 2+3x 的值,总比代数式x 2+7x -4的值大,并求出当x 为何值时,两代数式的差最小.小专题(三)配方法的应用一、配方法解方程1.解方程:(1)x2-4x-2=0;(2)3x2-6x-1=0.二、利用配方法求未知项2.若代数式9x2+kxy+y2表示一个完全平方式,则k的值为( )A.6 B.±6 C.±12 D.123.若代数式x2-5x+k是完全平方式,则k=________.三、配方法求最值4.求多项式x2+3x-1的最小值.5.求多项式-2x2+4x+3的最大值.四、配方法求代数式的值6.已知x=3+2,y=3-2,求x2-5xy+y2的值.7.已知x+x1=3,求x4+1x4的值.五、配方法比较大小8.求证:不论x为何值,多项式2x2-4x-1的值总比x2-6x-6的值大.六、配方法与非负数9.已知m2+n2+4m-2n+5=0,求3m2+5n2-4的值.10.已知2z-y+|y-4|+4x2+4x+1=0,求x-y+z的值.。
2021年上海市崇明区九年级数学一模试卷含答案
九年级数学 共6页 第1页崇明区2020学年第一学期教学质量调研测试卷九年级数学(满分150分,完卷时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.已知线段a 、b 、c 、d 的长度满足等式ab cd =,如果某班四位学生分别将该等式改写成了如下四个比例式,那么其中错误..的是( ▲ )(A)a cb d=; (B)a d c b=; (C)b dc a=; (B)b c d a=. 2.已知点G 是△ABC 的重心,如果联结AG ,并延长AG 交边BC 于点D ,那么下列说法中错误..的是( ▲ )(A)BD CD =;(B)AG GD =;(C)2AG GD =;(D)2BC BD =.3.已知a 和b 都是单位向量,那么下列结论中正确的是( ▲ )(A)a b =;(B)2a b +=;(C)0a b -=;(D)2a b +=.4.在△ABC 中,90C =︒∠,如果8AC =,6BC =,那么A ∠的正弦值为( ▲ )(A)35;(B)45; (C)34; (D)43.5.抛物线2()y a x k k =-+的顶点总在( ▲ )(A)第一象限;(B)第二象限;(C)直线y x =上;(D)直线y x =-上.6▲ )(A)3;(B)4;(C)5;(D)无法确定.二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.已知53x y =,那么x yy-= ▲ . 8.已知线段6AB =cm ,点C 是AB 的黄金分割点,且AC BC >,那么线段AC 的长为 ▲ cm . 9.如果两个相似三角形的一组对应边上的高之比为1:4,那么这两个三角形的面积比为 ▲ . 10.计算:2(2)3(2)a b a b -++= ▲ .九年级数学 共6页 第2页11.如果一段斜坡的水平宽度为12米,坡度1:3i =,那么这段斜坡的铅垂高度为 ▲ 米. 12.已知锐角△ABC 中,5AB =,7BC =,4sin 5B =,那么C =∠ ▲ 度. 13.函数2245y x x =+-的图像与y 轴的交点的坐标为 ▲ .14.如果将抛物线2(1)y x =-先向左平移2个单位,再向上平移1个单位,那么所得的新抛物线的解析式为 ▲ .15.如图,在直角坐标系中,以点P 为圆心的弧与x 轴交于A 、B 两点,已知点P 的坐标为(1,)y ,点A 的坐标为()1,0-,那么点B 的坐标为 ▲ .16.如果大小不同的两个圆外切时的圆心距为5厘米,并且它们内切时的圆心距为1厘米,那么其中较大圆的半径为 ▲ 厘米.17.我们约定:如果一个四边形存在一条对角线,使得这条对角线是四边形某两边的比例中项,那么就称这个四边形为“闪亮四边形”,这条对角线为“闪亮对角线”,相关两边为“闪亮边”.例如:图1中的四边形ABCD 中,AB AC AD ==,则2AC AB AD =⋅,所以四边形ABCD 是闪亮四边形,AC 是闪亮对角线,AB 、AD 是对应的闪亮边.如图2,已知闪亮四边形ABCD 中,AC 是闪亮对角线,AD 、CD 是对应的闪亮边,且90ABC ∠=︒,60D ∠=︒,4AB =,2BC =,那么线段AD 的长为 ▲ .18.在△ABC中,AB =,45B ∠=︒,60C ∠=︒.点D 为线段AB 的中点,点E 在边AC上,连结DE ,沿直线DE 将△ADE 折叠得到A DE '△.连结AA ',当A E AC '⊥时,则线段AA '的长为 ▲ .三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算:22cos30cot 45tan60sin 452sin30︒+︒︒+-︒︒.第15题图xy第17题图1CDA第17题图2C DAB九年级数学 共6页 第3页20.(本题满分10分,第(1)小题4分,第(2)小题的6分)如图,已知△ABC 中,DE BC ∥,2AD =,4DB =,8AC =. (1)求线段AE 的长; (2)设BA a =,BC b =.①请直接写出向量AE 关于a 、b 的分解式,AE = ▲ ; ②联结BE ,在图中作出向量BE 分别在a 、b 方向上的分向量.【可以不写作法,但必须写出结论】21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,已知O ⊙O ⊙中,OA 、OB 都是圆的半径,且OA OB ⊥. 点C 在线段AB 的延长线上,且OC AB =. (1)求线段BC 的长; (2)求∠BOC 的正弦值.ACBDE第20题图第21题图22.(本题满分10分,第(1)小题6分,第(2)小题4分)为了维护国家主权和海洋权益,海监部门对我领海实施常态化巡航管理.如图,一艘正在执行巡航任务的海监船接到固定监测点P处的值守人员报告:在P处南偏东30︒方向上,距离P处14海里的Q处有一可疑船只滞留.海监船以每小时28海里的速度向正东方向航行,在A处测得监测点P在其北偏东60︒方向上,继续航行半小时到达了B处,此时测得监测点P在其北偏东30︒方向上.(1)B、P两处间的距离为▲ 海里;如果联结图中的B、Q两点,那么BPQ△是▲ 三角形;如果海监船保持原航向继续航行,那么它▲ 【填“能”或“不能”】到达Q处;(2)如果监测点P处周围12海里内有暗礁,那么海监船继续向正东方向航行是否安全?23.(本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图,D、E分别是△ABC的边AB、AC上的点,且AED ABC∠=∠,联结BE、CD相交于点F.(1)求证:ABE ACD∠=∠;(2)如果ED EC=,求证:22DF EFBD EB=.A B QP60°30°30°第22题图第23题图ACEDBF九年级数学共6页第4页九年级数学 共6页 第5页24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,已知对称轴为直线1x =-的抛物线23y ax bx =++与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(1,0). (1)求点B 的坐标及抛物线的表达式;(2)记抛物线的顶点为P ,对称轴与线段BC 的交点为Q ,将线段PQ 绕点Q ,按顺时针方向旋转120︒,请判断旋转后点P 的对应点P '是否还在抛物线上,并说明理由;(3)在x 轴上是否存在点M ,使△MOC 与△BCP 相似?若不存在,请说明理由;若存在请直接写出点M 的坐标【不必书写求解过程】.xx九年级数学 共6页 第6页25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,Rt △ABC 中,90ACB ∠=︒,6AC =,8BC =.点D 为斜边AB 的中点,ED ⊥AB ,交边BC 于点E .点P 为射线AC 上的动点,点Q 为边BC 上的动点,且运动过程中始终保持PD QD ⊥.(1)求证:△ADP ∽△EDQ ;(2)设AP x =,BQ y =.求y 关于x 的函数解析式,并写出该函数的定义域; (3)联结PQ ,交线段ED 于点F .当△PDF 为等腰三角形时,求线段AP 的长.AD BCP EQ第25题图AD BCP EQ 第25题备用图F九年级数学 共6页 第7页崇明区2020学年第一学期教学质量调研测试九年级数学参考答案一、选择题(本大题共6题,每题4分,满分24分)1. A2. B3. D4. A5. C6. B 二、填空题(本大题共12题,每题4分,满分48分)7.238. 3 9. 1﹕16 10. 8a b - 11. 4 12. 45 13. (0,5)- 14. 2(1)1y x =++15. (3,0) 16. 3 17. 18.三、解答题(本大题共7题,满分78分)19.(本题满分10分)解:原式222(1222-⨯--------------------5分(每个三角比的值各1分)12-----------------------------3分(后3个数据,每个各1分)=12---------------------------------2分(每个数据各1分)20.(本题满分10分,第(1)小题4分,第(2)小题的6分) 解:(1)∵DE ∥BC ,∴AE ADAC AB=------------------------------2分 ∵AD =2,DB =4,AC =8,∴282+4AE =∴AE =83----------------------------------------------2分 (2)①1133b a --------------------------------------------2分 ②图形正确---------------------------------4分(每个分向量各2分) 21.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)过点O 作OH ⊥AB ,垂足为H ---------------------------1分 ∵OA ⊥OB ,OA =OB,∴AB =2----------------------1分 ∵OH ⊥AB ,OH 过圆心O ,∴BH =12OB =1----------------1分∴OH=1,∴CH1分∴BC1-------------------------------------------1分(2)过点B作BD⊥OC,垂足为D----------------------------1分∵Rt△OHC中,OH=12OC,∴∠C=30°-------------------1分∴BD=12BC=12------------------------------------1分∴sin∠BOC=BDOB=1分∴sin∠BOC1分22.(本题满分10分,第(1)小题6分,第(2)小题4分)解:(1)14;等边;能-----------------------------------6分(每个答案各2分)(2)过P作PH垂直于直线AB,垂足为H---------------------1分根据题意得:∠BPH=30°,BP=14,∴PH=14×2=1分∵,-------------------1分所以,海监船继续向正东方向航行是安全的.---------------1分23.(本题满分12分,第(1)小题6分,第(2)小题6分)证明:(1)∵∠AED=∠ABC,∠A=∠A,∴△AED∽△ABC----------2分∴AE ADAB AC=----------------------------------------1分∴AE ABAD AC=----------------------------------------1分又∵∠A=∠A,∴△ABE∽△ACD-----------------------1分∴∠ABE=∠ACD-------------------------------------1分(2)∵ED=EC,∴∠EDC=∠ECD---------------------------1分又∵∠ABE=∠ACD,∴∠EDF=∠DBE------------------1分又∵∠DEF=∠BED,∴△DEF∽△BED -----------------1分九年级数学共6页第8页九年级数学 共6页 第9页∴DF EF BD DE =;DF DEBD BE=---------------------2分(两个比例式各1分) ∴22DF EFBD EB=---------------------------------------1分 24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分) 解:(1)∵对称轴为直线1-=x ,A 的坐标为(1,0)∴点B 的坐标为(3-,0)-----------------------------2分把(1,0)、(3-,0)代入32++=bx ax y ,得:0=30933a b a b ++⎧⎨=-+⎩,解方程组得:12a b =-⎧⎨=-⎩∴抛物线的表达式为:223y x x =--+------------------2分 (2)∵223y x x =--+=2(1)+4x -+∴点P 的坐标为(1-,4)-----------------------------1分记对称轴与x 轴的交点为H , 则223QH OC ==, ∴PQ =2-----------------------------------------------1分 过P '作P G '⊥PQ ,垂足为G 则易求得P G '∴点P '1,1)---------------------------1分把1x =代入223y x x =--+,得:1y =∴点P '还在抛物线上------------------------------------1分 (3)点M 的坐标为(1-,0)或(1,0)或(9-,0)或(9,0)-----------------------------4分(每个坐标各1分)25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分) 解:(1)证明:∵ED ⊥AB ,PD ⊥QD ,∴∠ADP =∠EDQ=90°—∠PDE ------1分 ∵∠ACB= 90°,ED ⊥AB ,∴∠A =∠DEQ=90°—∠B --------------1分∴△ADP ∽△EDQ ----------------------------------------------2分 (2)∵∠ACB= 90°,AC =6,BC =8,∴AB =10,tan B =34∵点D 为AB 的中点,∴AD = DB= 5九年级数学 共6页 第10页∴DE =154,BE =254----------------------------------2分(每个值个1分) ∵△ADP ∽△EDQ ,∴EQ DEAP AD =,即2515445x = ∴32544y x =-+----------------------------------------------2分定义域:0≤x ≤253--------------------------------------------1分(3)∵ED ⊥AB ,PD ⊥QD ,∴∠PDE =∠QDB=90°—∠EDQ ∵tan ∠QPD =34DQ DE PD AD ==,∴∠QPD=∠B ∴△ADP ∽△EDQ -----------------------------------------------1分①当PD=PF 时,BD=BQ∴5y =,即325544x -+=,∴53x =-------------------------1分 ②当FP=FD 时,QD=QB ,∴12BQ BE =∴258y =,即32525448x -+=,∴256x =----------------------1分 ③当DP=DF 时,DQ=DB=DC ,即点Q 在点C 处,∴点P 不在射线AC 上,舍去. --------------------------------1分综上所述,AP 的长为53或256------------------------------------1分。
九年级数学上册实际问题与一元二次方程(1)同步练习1
九年级数学上册实际问题与一元二次方程〖1〗同步练习1用一元二次方程解决传播问题1.列一元二次方程可以解决许多实际问题,解题的一般步骤是:①审题,弄清已知量﹨__未知量___;②设未知数,并用含有__未知数___的代数式表示其他数量关系;③根据题目中的__等量关系___,列一元二次方程;④解方程,求出__未知数___的值;⑤检验解是否符合问题的__实际意义___;⑥写出答案.2.一个两位数,个位数字为a ,十位数字为b ,则这个两位数为__10b +a___,若交换两个数位上的数字,则得到的新两位数为__10a +b___.知识点1:倍数传播问题1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,若主干﹨支干和小分支的总数是91,设每个支干长出小分支的个数为x ,则依题意可列方程为__1+x +x 2=91___.2.某生物实验室需培育一群有益菌.现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后有多少个有益菌?解:(1)设每轮分裂中平均每个有益菌可分裂出x 个有益菌,根据题意得60(1+x)2=24000,解得x 1=19,x 2=-21(不合题意,舍去),则每轮分裂中平均每个有益菌可分裂出19个有益菌(2)60×(1+19)3=60×203=480000(个),则经过三轮培植后共有480000个有益菌知识点2:握手问题3.(2014·天津)要组织一次排球邀请赛,参赛的每两个队都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( B )A .12x(x +1)=28B .12x(x -1)=28 C .x(x +1)=28 D .x(x -1)=284.在某次聚会上,每两人都握了一次手,所有人共握手210次,设有x 人参加这次聚会,则依题意可列出方程为__x (x -1)2=210___. 5.在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束后统计共签订了78份合同,问有多少家公司出席了这次交易会?解:设有x 家公司出席了这次交易会,根据题意得12x(x -1)=78,解得x 1=13,x 2=-12(不合题意,舍去),故有13家公司出席了这次交易会知识点3:数字问题6.两个连续偶数的和为14,积为48,则这两个连续偶数是__6和8___.7.已知一个两位数比它的个位上的数的平方小6,个位上的数与十位上的数的和是13,求这个两位数.解:设这个两位数的个位数字为x ,则十位数字为(13-x),由题意得10(13-x)+x +6=x 2,整理得x 2+9x -136=0,解得x 1=8,x 2=-17(不合题意,舍去),∴13-x=5,则这个两位数是588.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件,如果全组有x名同学,则根据题意列出的方程是( B) A.x(x+1)=132 B.x(x-1)=132C.x(x+1)=132×2 D.x(x-1)=132×29.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了15条航线,则这个航空公司共有飞机场( C)A.4个B.5个C.6个D.7个10.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为( D)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31A.32 B.11.一个直角三角形的三边长恰好是三个连续整数,若设较长的直角边长为x,则根据题意列出的方程为__x2+(x-1)2=(x+1)2___.12.某剧场共有1050个座位,已知每行的座位数都相同,且每行的座位数比总行数少17,求每行的座位数.解:设每行的座位数为x个,由题意得x(x+17)=1050,解得x1=25,x2=-42(不合题意,舍去),则每行的座位数是25个13.有人利用手机发微信,获得信息的人也按他的发送人数发送该条微信,经过两轮微信的发送,共有56人手机上获得同一条微信,则每轮一个人要向几个人发送微信?解:设每轮一个人要向x个人发微信,由题意得x(x+1)=56,解得x1=7,x2=-8(不合题意,舍去),则每轮一个人要向7个人发送微信14.有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?解:(1)设每轮传染中平均一个人传染了x个人,则1+x+x(x+1)=64,解得x1=7,x2=-9(不合题意,舍去),即每轮传染中平均一个人传染7个人(2)64×7=448(人)15.读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解:设周瑜逝世时的年龄的个位数字为x ,则十位数字为x -3,由题意得10(x -3)+x =x 2,解得x 1=5,x 2=6.当x =5时,周瑜的年龄为25岁,非而立之年,不合题意,舍去;当x =6时,周瑜的年龄为36岁,符合题意,则周瑜去世时的年龄为36岁16.(1)n 边形(n >3)其中一个顶点的对角线有__(n -3)___条;(2)一个凸多边形共有14条对角线,它是几边形?(3)是否存在有21条对角线的凸多边形?如果存在,它是几边形?如果不存在,说明理由.解:(2)设这个凸多边形是n 边形,由题意得n (n -3)2=14,解得n 1=7,n 2=-4(舍去),则这个多边形是七边形 (3)不存在.理由:假设存在n 边形有21条对角线,由题意得n (n -3)2=21,解得n =3±1772,因为多边形的边数为正整数,但3±1772不是正整数,故不合题意,所以不存在有21条对角线的凸多边形价为60元7.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?解:设购买了x 件这种服装,根据题意得[80-2(x -10)〗x =1200,解得x 1=20,x 2=30.当x =30时,80-2(30-10)=40<50,不符合题意,舍去,∴x =20,则她购买了20件这种服装。
人教版九年级数学上册课后习题参考答案
第21章第4页练习第1题答案解:(1)5x2-4x-1=0,二次相系数为5,一次项系数为-4,常数项为-1 (2)4x2-81=0,二次项系数为4,一次项系数为0,常数项为-81(3)4x2+8x-25=0,二次项系数为4,一次项系数为8,常数项为-25 (4)3x2-7x+1=0,二次项系数为3,一次项系数为-7,常数项为1【规律方法:化为一般形式即把所有的项都移到方程的左边,右边化为0的行驶,在确定二次项系数,一次项系数和常数项时,要特别注意各项系数及常数项均包含前面的符号。
】第4页练习第2题答案解:(1)4x2=25, 4x2-25=0(2)x(x-2)=100,x2-2x-100=0(3)x∙1=(1-x)2-3x+1=0习题21.1第1题答案(1)3x2-6x+1=0,二次项系数为3,一次项系数-6,常数项为1(2)4x2+5x-81=0,二次项系数为4,一次项系数为5,常数项为-81(3)x2+5x=0,二次项系数为1,一次项系数为5,常数项为0(4)x2-2x+1=0,二次项系数为1,一次项系数为-2,常数项为1(5)x2+10=0,二次项系数为1,一次项系数为0,常数项为10(6)x2+2x-2=0,二次项系数为1,一次项系数为2,常数项为-2习题21.1第2题答案(1)设这个圆的半径为Rm,由圆的面积公式得πR2=6.28,∴πR2-6.28=0(2)设这个直角三角形较长的直角边长为x cm,由直角三角形的面积公式,得1/2x(x-3)=9,∴x2-3x-18=0习题21.1第3题答案方程x2+x-12=0的根是-4,3习题21.1第4题答案设矩形的宽为x cm,则矩形的长为(x+1)cm,由矩形的面积公式,得x∙(x+1)=132,∴x2+x-132=0习题21.1第5题答案解:设矩形的长为x m,则矩形的宽为(0.5-x)m,由矩形的面积公式得:(0.5-x)=0.06∴x2-0.5x+0.06=0习题21.1第6题答案解:设有n人参加聚会,根据题意可知:(n-1)+(n-2)+(n-3)+…+3+2+1=10,即(n(n-1))/2=10,n2-n-20=0习题21.2第1题答案(1)36x2-1=0,移项,得36x2=1,直接开平方,得6x=±1,,6x=1或6x=-1,∴原方程的解是x1=1/6,x2=-1/6(2)4x2=81,直接开平方,得2=±9,,2x=9或2x=-9,∴原方程的解是x1=9/2,x2=-9/2(3)(x+5)2=25,直接开平方,得x+5=±5,∴+5=5或x+5=-5,∴原方程的解是x1=0,x2=-10(4)x2+2x+1=4,原方程化为(x+1)2=4,直接开平方,得x+1=±2,∴x+1=2或x+1=-2,∴原方程的解是x1=1,x2=-3习题21.2第2题答案(1)9;3(2)1/4;1/2(3)1;1(4)1/25;1/5习题21.2第3题答案(1)x2+10x+16=0,移项,得x2+10x=-16,配方,得x2+10x+52=-16+52,即(x+5)2=9,开平方,得x+5=±3,∴+5=3或x+5=-3,∴原方程的解为x1=-2,x2=-8(2)x2-x-3/4=0,移项,得x2-x=3/4,配方,得x2-x=3/4,配方,得x2-x+1/4=3/4+1/4,即(x-1/2)2=1,开平方,得x- 1/2=±1,∴原方程的解为x1=3/2,x2=-1/2(3)3x2+6x-5=0,二次项系数化为1,得x2+2x-5/3=0,移项,得x2+2x=5/3,配方,得x2+2x+1=5/3+1,即(x+1)2=8/3,(4)4x2-x-9=0,二次项系数化为1,得x2-1/4x-9/4=0,移项,得x2-1/4 x= 9/4,配方,得x2-1/4x+1/64=9/4+1/64,即(x-1/8)2=145/64,习题21.2第4题答案(1)因为△=(-3)2-4×2×(-3/2)=21>0,所以原方程有两个不相等的实数根(2)因为△=(-24)2-4×16×9=0,所以与原方程有两个相等的实数根(3)因为△=-4×1×9=-4<0,因为△=(-8)2-4×10=24>0,所以原方程有两个不相等的实数根习题21.2第5题答案(1)x2+x-12=0,∵a=1,b=1,c=-12,∴b2-4ac=1-4×1×(-12)=49>0,∴原方程的根为x1=-4,x2=3.∴b2-4ac=2-4×1×(-1/4)=3>0,(3)x2+4x+8=2x+11,原方程化为x2+2x-3=0,∵a=1,b=2,c=-3,∴b2-4ac=22-4×1×(-3)=16>0,∴原方程的根为x1=-3,x2=1.(4)x(x-4)=2-8x,原方程化为x2+4x-2=0,∵a=1,b=4,c=-2,∴b2-4ac=42-4×1×(-2)=24>0,(5)x2+2x=0,∵a=1,b=2,c=0,∴b2-4ac=22-4×1×0=4>0,∴原方程的根为x1=0,x2=-2.(6) x2+2x+10=0,∵a=1,b=2,c=10,∴b2-4ac=(2)2-4×1×10=-20<0,∴原方程无实数根习题21.2第6题答案(1)3x2-12x=-12,原方程可化为x2-4x+4=0,即(x-2)2=0,∴原方程的根为x1=x2=2(2)4x2-144=0,原方程可化为4(x+6)(x-6),∴x+6=0或x-6=0,∴原方程的根为x1=-6,x2=6.(3)3x(x-1)=2(x-1),原方程可化为(x-1)∙(3x-2)=0∴x-1=0或3x-2=0∴原方程的根为x1=1,x2=2/3(4)(2x-1)2=(3-x)2,原方程可化为[(2x-1)+(3-x)][(2x-1)-(3-x)]=0,即(x+2)(3x-4)=0,∴x+2=0或3x-4=0∴原方程的根为x1=-2,x2=4/3习题21.2第7题答案设原方程的两根分别为x1,x2(1)原方程可化为x2-3x-8=0,所以x1+x2=3,x1·x2=-8(2)x1+x2=-1/5,x1·x2=-1(3)原方程可化为x2-4x-6=0,所以x1+x2=4,x1·x2=-6(4)原方程可化为7x2-x-13=0,所以x1+x2=1/7,x1·x2=-13/7习题21.2第8题答案解:设这个直角三角形的较短直角边长为 x cm,则较长直角边长为(x+5)cm,根据题意得:1/2 x(x+5)=7,所以x2+5x-14=0,解得x1=-7,x2=2,因为直角三角形的边长为:答:这个直角三角形斜边的长为cm习题21.2第9题答案解:设共有x家公司参加商品交易会,由题意可知:(x-1)+(x-2)+(x-3)+…+3+2+1=45,即x(x-1)/2=45,∴x2-x-90=0,即(x-10)(x+9)=0,∴x-10=0或x+9=0,∴x1=10,x2=-9,∵x必须是正整数,∴x=-9不符合题意,舍去∴x=10答:共有10家公司参加商品交易会习题21.2第10题答案解法1:(公式法)原方程可化为3x2-14x+16=0,∵a=3,b=-14,c=16,∴b2-4ac=(-14)2-4×3×16=4>0,∴x=[-(-14)±]/(2×3)=(14±2)/6,∴原方程的根为x1=2,x2=8/3解法2:(因式分解法)原方程可化为[(x-3)+(5-2x)][(x-3)-(5-2x)]=0,即(2-x)(3x-8)=0,∴2-x=0或3x-8=0,∴原方程的根为x1=2,x2=8/3习题21.2第11题答案解:设这个矩形的一边长为x m,则与其相邻的一边长为(20/2-x)m,根据题意得:x(20/2-x)=24,整理,得x2-10x+24=0,解得x1=4,x2=6.当x=4时,20/2-x=10-4=6当x=6时, 20/2-x=10-6=4.故这个矩形相邻两边的长分别为4m和6m,即可围城一个面积为24m2的矩形习题21.2第12题答案解设:这个凸多边形的边数为n,由题意可知:1/2n(n-3)=20解得n=8或n=-5因为凸多边形的变数不能为负数所以n=-5不合题意,舍去所以n=8所以这个凸多边形是八边形假设存在有18条对角线的多边形,设其边数为x,由题意得:1/2 x(x-3)=18解得x=(3±)/2因为x的值必须是正整数所以这个方程不存在符合题意的解故不存在有18条对角线的凸多边形习题21.2第13题答案解:无论p取何值,方程(x-3)(x-2)-p2=0总有两个不相等的实数根,理由如下:原方程可以化为:x2-5x+6-p2=0△=b2-4ac=(-5)2-4×1×(6-p2)=25-24+4p2=1+4p2∵p2≥0,,1+4p2>0∴△=1+4p2>0∴无论P取何值,原方程总有两个不相等的实数根习题21.3第1题答案(1)x2+10x+21=0,原方程化为(x+3)(x+7)=0,或x+7=0,∴x1=-3,x2=-7.(2) x2-x-1=0∵a=1,b=-1,c=-1,b2-4ac=(-1)2-4×1×(-1)=5>0,(3)3x2+6x-4=0,∵a=3,b=6,c=-4,b2-4ac=62-4×4×3×(-4)=84>0,(4)3x(x+1)=3x+3,原方程化为x2=1,直接开平方,得x=±1,∴x1=1,x2=-1(5)4x2-4x+1=x2+6x+9,原方程化为(2x-1)2=(x+3)2,∴[(2x-1)+(x+3)][(2x-1)-(x+3)]=0,即(3x+2)(x-4)=0,,3x+2=0或x-4=0,∴x1=-2/3,x2=4∴a=7,b=-,c=-5,b2-4ac=(-)2-4×7×(-5)=146>0∴x= [-(-)±]/(2×7)=(±)/14,∴x1=(+)/14,x2=(-)/14习题21.3第2题答案解:设相邻两个偶数中较小的一个是x,则另一个是(x+2).根据题意,得x(x+2)=168∴x2+2x-168=0∴x1=-14,x2=12.当x=-14时,x+2=-12当x=12时,x+2=14答:这两个偶数是-14,-12或12,14习题21.3第3题答案解:设直角三角形的一条直角边长为 xcm,由题意可知1/2x(14-x)=24,∴x2-14x+48=0∴x1=6,x2=8当x=6时,14-x=8当x=8时,14-x=6∴这个直角三角形的两条直角边的长分别为6cm,8cm习题21.3第4题答案解:设每个支干长出x个小分支,则1+x+x2=91整理得x2+x-90=0,(x-9)∙(x+10)=0解得x1=9,x2=-10(舍)答:每个支干长出来9个小分支习题21.3第5题答案解:设菱形的一条对角线长为 x cm,则另一条对角线长为(10-x)cm,由菱形的性质可知:1/2 x∙(10-x)=12,整理,的x2-10x+24=0,解得x1=4,x2=6.当x=4时,10-x=6当x=6时,10-x=4所以这个菱形的两条对角线长分别为6cm和4cm.由菱形的性质和勾股定理,得棱长的边长为:所以菱形的周长是4cm习题21.3第6题答案解:设共有x个队参加比赛,由题意可知(x-1)+(x-2)+(x-3)+…+3+2+1=90/2,即1/2x(x-1)=45整理,得x2-x-90=0解得x1=10,x2=-9因为x=-9不符合题意,舍去所以x=10答:共有10个队参加比赛习题21.3第7题答案解:设水稻每公顷产量的年平均增长率为x,则7200(1+x)2=8450解得x1=1/12,x2=-25/12因为x=- 25/12 不符合题意,舍去所以x= 1/12≈0.083=8.3%答:水稻每公顷产量的年平均增长率约为8.3%习题21.3第8题答案解:设镜框边的宽度应是x cm,根据题意得:(29+2x)(22+2x)-22×29=1/4×29×22整理,得8x2+204x-319=0解得x= [-204±]/16所以x1=[-204+)]/16,x2=[-204-)]/16因为x= [-204-)]/16<0不合题意,舍去所以x= [-204+)]/16≈1.5答:镜框边的宽度约 1.5cm习题21.3第9题答案解:设横彩条的宽度为3x cm,则竖彩条的宽为2x cm.根据题意得:30×20×1/4=30×20-(30-4x)(20-6x),整理,得12x2-130x+75=0解得x1=[65+5)]/12,x2=(65-5)/12因为30-4x>0,且20-6x>0所以x<10/3所以x= (65+5)/12不符合题意,舍去所以x=(65-5)/12≈0.6所以3x≈1.8,2x≈1.2答:设计横彩条的宽度约为1.8cm,竖彩条的宽度约为1.2cm习题21.3第10题答案(1)设线段AC的长度为x,则x2=(1-x)×1,解得x1=(-1+)/2,x2=(-1-)/2(舍),∴AC=(-1+)/2(2)设线段AD的长度为x,则x2=((-1+)/2-x)∙(1+)/2,解得x1=(3-)/2,x2=-1(舍),∴ AD=(3-)/2(3)设线段AE的长度为x,则x2=((3-)/2-x)∙(3-)/2,解得x1=-2+,x2=(1-)/2 (舍)∴AE=-2+【规律方法:若C为线段AB上一点,且满足AC2=BC∙AB,则 AC/AB=(-1)/2∙(-1)/2也叫作黄金比,C点为黄金分割点,一条线段上有两个黄金分割点.】第6页练习答案练习题答案复习题21第1题答案(1)196x2-1=0,移项,得196x2=1,直接开平方,得14x=±1,x=± 1/14,∴原方程的解为x1=1/14,x2=-1/14(2)4x2+12x+9=81,原方程化为x2+3x-18=0∵a=1,b=3,c=-18,b2-4ac=32-4×1×(-18)=81>0∴x1=-6,x2=3(3)x2-7x-1=0∵a=1,b=-7,c=-1,b2-4ac=(-7)2-4×1×(-1)=53>0,(4)2x2+3x=3,原方程化为2x2+3x-3=0,∵a=2,b=3,b=-3,b2-4ac=32-4×2×(-3)=33>0,∴x= (-3± )/(2×2)=(-3±)/4,∴x1=(-3+)/4,x2=(-3-)/4(5)x2-2x+1=25,原方程化为x2-2x-24=0,因式分解,得(x-6)(x+4)=0,∴x-6=0或x+4=0,∴x1=6,x2=-4(6)x(2x-5)=4x-10,原方程化为(2x-5)(x-2)=0,,2x-5=0或x-2=0,∴x1=5/2,x2=2(7)x2+5x+7=3x+11,原方程化为x2+2x-4=0,∵a=1,b=2,c=-4,b2-4ac=22-4×1×(-4)=20>0∴x= (-2±)/(2×1)=(-2±2)/2=-1±∴x1=-1+,x2=-1-(8)1-8x+16x2=2-8x,原方程化为(1-4x)(-1-4x)=0,1-4x=0或-1-4x=0,∴x1=1/4,x2=-1/4复习题21第2题答案解:设其中一个数为(8-x),根据题意,得x(8-x)=9.75,整理,得x2-8x+9.75=0,解得x1=6.5,x2=1.5当x=6.5时,8-x=1.5当x=1.5时,8-x=6.5答:这两个数是6.5和1.5复习题21第3题答案解:设矩形的宽为x cm,则长为(x+3)cm由矩形面积公式可得x(x+3)=4整理,得x2+3x-4=0解得x1=-4整理,得x2+3x-4=0解得x1=-4,x2=1因为矩形的边长是正数,所以x=-4不符合题意,舍去所以x=1所以x+3=1+3=4答:矩形的长是4cm,宽是1cm复习题21第4题答案解:设方程的两根分别为x1,x2(1)x1+x2=5,x1∙x2=-10(2) x1+x2=-7/2,x1∙x2=1/2(3)原方程化为3x2-2x-6=0,∴x1+x2=2/3,x1∙x2=-2(4)原方程化为x2-4x-7=0,∴x1+x2=4,x1∙x2=-7复习题21第5题答案解:设梯形的伤低长为x cm ,则下底长为(x+2)cm,高为(x-1)cm,根据题意,得1/2 [x+(x+2)]∙(x-1)=8,整理,得x2=9,解得x1=3,x2=-3.因为梯形的低边长不能为负数,所以x=-3不符合题意,舍去,所以x=3,所以x+2=5,x-1=2.画出这个直角梯形如下图所示:复习题21第6题答案解:设这个长方体的长为5x cm,则宽为2 x cm,根据题意,得2x2+7-4=0,解得x1=1/2,x2=-4.因为长方体的棱长不能为负数,所以x=-4不合题意,舍去,所以x= 1/2.所以这个长方体的长为5x=1/2×5=2.5(cm),宽为2x=1(cm).画这个长方体的一个展开图如下图所示.(注意:长方体的展开图不唯一)复习题21第7题答案解:设应邀请x个球队参加比赛,由题意可知:(x-1)+(x-2)+…+3+2+1=15,即1/2 x(x-1)=15解得x1=6,x2=-5因为球队的个数不能为负数所以x=-5不符合题意,应舍去所以x=6答:应邀请6个球队参加比赛复习题21第8题答案解:设与墙垂直的篱笆长为x m,则与墙平行的篱笆为(20-2x)m根据题意,得x(20-2x)=50整理,得x2-10x+25=0解得x1=x2=5所以20-2x=10(m)答:用20m长的篱笆围城一个长为10m,宽为5m的矩形场地.(其中一边长为10m,另两边均为5m)复习题21第9题答案解:设平均每次降息的百分率变为x,根据题意得:2.25%(1-x)2=1.98%整理,得(1-x)2=0.88解得x1=1 -x2=1+因为降息的百分率不能大于1所以x=1+不合题意,舍去所以x=1-≈0.0619=6.19%答:平均每次降息的百分率约是6.19%复习题21第10题答案解:设人均收入的年平均增长率为x,由题意可知:12000(x+1)2=14520,解这个方程,得x+1=±x=-1或x=--1又∵x=--1不合题意,舍去∴x=(-1)×100%=10%答:人均收入的年平均增长率是10%复习题21第11题答案解:设矩形的一边长为x cm,则与其相邻的一边长为(20-x)cm,由题意得:x(20-x)=75整理,得x2-20x+75=0解得x1=5,x2=15,从而可知矩形的一边长15cm,与其相邻的一边长为5cm当面积为101cm2时,可列方程x(20-x)=101,即x2-20x+101=0∵△=-4<0∴次方程无解∴不能围成面积为101cm2的矩形复习题21第12题答案解:设花坛中甬道的宽为x m.梯形的中位线长为1/2 (100+180)=140(m),根据题意得:1/2(100+180)×80×1/6=80∙x∙2+140x-2x2整理,得3x2-450x+2800=0解得x1=(450+)/6=75+5/3,x2=(450-)/6=75-5/3因为x=75+5/3不符合题意,舍去所以x=75-5/3≈6.50(m)故甬道的宽度约为6.50m复习题21第13题答案(1)5/4=1.25(m/s),所以平均每秒小球的滚动速度减少1.25m/s (2)设小球滚动5m用了x s·(5+(5-1.25x))/2x=5,即x2-8x+8=0解得x1=4+2(舍),x2=4-2≈1.2答:小球滚动5 m 约用了1.2s第9页练习答案练习第1题答案练习第2题答案第14页练习答案练习第1题答案练习第2题答案第16页练习答案练习题答案第22章习题22.1第1题答案解:设宽为x,面积为y,则y=2x2习题22.1第2题答案y=2(1-x)2习题22.1第3题答案列表:x ... -2 -1 0 1 2 ...y=4x2... 16 4 0 4 16 ...y=-4x2... -16 -4 0 -4 -16 ...y=(1/4)x2... 1 1/4 0 1/4 1 ... 描点、连线,如下图所示:习题22.1第4题答案解:抛物线y=5x2的开口向上,对称轴是y轴,顶点坐标是(0,0)抛物线y= -1/5x2的开口向下,对称轴是y轴,顶点坐标是(0,0)习题22.1第5题答案提示:图像略(1)对称轴都是y轴,顶点依次是(0,3)(0, -2)(2)对称轴依次是x=-2,x=1,顶点依次是(-2,-2)(1,2)习题22.1第6题答案(1)∵a=-3,b=12,c=-3∴-b/2a=-12/(2×(-3))=2,(4ac-b2)/4a=(4×(-3)×(-3)-122)/(4×(-3))=9∴抛物线y=-3x2+12x-3的开口向下,对称轴为直线x=2,顶点坐标是(2,9)(2)∵a=4,b=-24,c=26∴- b/2a=-(-24)/(2×4)=3, (4ac-b2)/4a=(4×4×26-(-24)2)/(4×4)=-10∴抛物线y=4x2 - 24x+26的开口向上,对称轴为直线x=3,顶点坐标是(3, -10)(3)∵a=2,b=8,c=-6∴- b/2a=-8/(2×2)=-2, (4ac-b2)/4a= (4×2×(-6)-82)/(4×2)= -14∴抛物线y=2x2 +8x-6的开口向上,对称轴是x=-2,顶点坐标为(-2,-14)(4)∵a=1/2,b =-2,c=-1∴- b/2a=-(-2)/(2×1/2)=2, (4ac-b2)/4a=(4×1/2×(-1)- (-2)2)/(4×1/2)=-3 ∴抛物线y=1/2x2-2x-1的开口向上,对称轴是x=2,顶点坐标是(2, -3).图略习题22.1第7题答案(1)-1;-1(2)1/4;1/4习题22.1第8题答案解:由题意,可知S=1/2×(12-2t)×4t=4t(6-t)∴S=-4t2+24t,即△PBQ的面积S与出发时间t之间的关系式是S=-4t2+24t 又∵线段的长度只能为正数∴∴0<t<6,即自变量t的取值范围是0<t<6习题22.1第9题答案解:∵s=9t+1/2t2∴当t=12时,s=9×12+1/2×122=180,即经过12s汽车行驶了180m当s=380时,380=9t+1/2t2∴t1=20,t2=-38(不合题意,舍去),即行驶380m需要20s习题22.1第10题答案(1)抛物线的对称轴为(-1+1)/2=0,设该抛物线的解析式为y=ax2+k(a≠0)将点(1,3)(2,6)代入得∴函数解析式为y=x2+2(2)设函数解析式为y=a x2+bx+c(a≠0),将点(-1,-1)(0,-2)(1,1)代入得∴函数解析式为y=2x2+x-2(3)设函数解析式为y=a(x+1)(x-3) (a≠0),将点(1,-5)代入,得-5=a(1+1)(1-3)解得a=5/4∴函数解析式为y=5/4(x+1)(x-3),即y=5/4x2-5/2x-15/4(4)设函数解析式为y=a x2+ bx+c(a≠0),将点(1,2)(3,0)(-2,20)代入得∴函数解析式为y=x2-5x+6习题22.1第11题答案解:把(-1,-22)(0,-8)(2,8)分别代入y=a x2+bx+c,得a=-2,b=12, c=-8所以抛物线的解析式为y=-2x2+12x-8将解析式配方,得y=-2(x-3)2+10又a=-2<0所以抛物线的开口向下,对称轴为直线x=3,顶点坐标为(3,10)习题22.1第12题答案(1)由已知vt=v0+at=0+1.5t=1.5t,s=vt=(v0+vt)/2t=1.5t/2t=3/4t2,即s=3/4t2(2)把s=3代入s=3/4t2中,得t=2(t=-2舍去),即钢球从斜面顶端滚到底端用2s第29页练习答案练习第1题答案练习第2题答案习题22.2第1题答案(1)图像如下图所示:(2)有图像可知,当x=1或x=3时,函数值为0 习题22.2第2题答案(1)如下图(1)所示:方程x2-3x+2=0的解是x1=1,x2=2(2)如下图所示:方程-x2-6x-9=0的解是x1=x2=-3习题22.2第3题答案(1)如下图所示:(2)由图像可知,铅球推出的距离是10m习题22.2第4题答案解法1:由抛物线的轴对称性可知抛物线的对称轴是直线x=(-1+3)/2=1 解法2:设抛物线的解析式为y=a(x+1)(x-3),即y=ax2-2ax-3a,∴x=-(-2a)/2a=1,即这条抛物线的对称轴是直线x=1习题22.2第5题答案提示:图像略(1)x1=3,x2=-1(2)x<-1或x>3(3)-1<x<3习题22.2第6题答案提示:(1)第三或第四象限或y轴负半轴上(2)x轴上(3)第一或第二象限或y轴正半轴上,当a<0时(1)第一或第二象限或y轴正半轴上(2)x轴上(3)第三或第四象限或y轴负半轴上第32页练习答案练习题答案习题22.3第1题答案(1)∵a=-4<0∴抛物线有最高点∵x=-3/[2×(-4)]=3/8,y=[4×(-4)×0-32]/[2×(-4)]=9/16∴抛物线最高点的坐标为(3/8,9/16)(2)∵a=3>0∴抛物线有最低点∵x=-1/(2×3)=-1/6,y=(4×3×6-12)/(4×3)=71/12∴抛物线最低点的坐标为(-1/6,71/12)习题22.3第2题答案解:设所获总利润为y元.由题意,可知y=(x-30)(100-x),即y=-x2+130x-3000 =-(x-65)2+1225∴当x=65时,y有最大值,最大值是1225,即以每件65元定价才能使所获利润最大习题22.3第3题答案解:s=60t-1.5t2=-1.5(t2-40t+400)+1.5×400=-1.5(t-20)2+600∴当t=20时,s取最大值,且最大值是600,即飞行着陆后滑行600m才能停下来习题22.3第4题答案解:设一条直角边长是x,那么另一条直角边长是8-x设面积为y,则y=1/2x•(8-x),即y=-(1/2)x2+4x对称轴为直线x=-b/2a=-4/(2×(-1/2))=4当x=4时,8-x=4,ymax=8∴当两条直角边长都为4时,面积有最大值8习题22.3第5题答案解:设AC的长为x,四边形ABCD 的面积为y.由题意,可知y=1/2AC•BD ∴y= 1/2 x(10-x), 即y=-1/2x2+5x=-1/2(x-5)2+25/2∴当x=5时,y有最大值,y最大值=25/2此时,10-x=10-5=5,故当AC=BD=5时,四边形ABCD的面积最大,最大面积为25/2习题22.3第6题答案解:∵∠A=30°,∠C=90°,且四边形CDEF是矩形∴FE//BC,ED//AC∴∠DEB=30°在Rt△AFE中,FE=1/2AE在Rt△EDB中,BD=1/2EB,设AE=x,则FE=1/2x令矩形CDEF的面积为S,则S=FE•ED= 1/2 x •/2(12-x)=/4(12x-x2)∴当x=6时,S最大值=9,此时AE=6,EB=12-x=6∴AE=EB,即点E是AB的中点时,剪出的矩形CDEF面积最大习题22.3第7题答案解:设AE=x,AB=a,正方形EFGH的面积为S,由正方形的性质可知AE=DH,即AH=a-x在Rt△AEH中:HE2=AH2+AE2=(a-x)2+x2=2x2-2ax+a2=2(x-1/2 a) 2+1/2a2∴当x=1/2a时,S有最小值,且S最小值=1/2a2,此时AE=1/2a,EB=1/2a,即点E是AB边的中点∴当点E是AB边的中点时,正方形EFGH的面积最小习题22.3第8题答案解:设房价定为每间每天增加x元,宾馆利润为y元由题意可知,y=(180+x-20)(50-x/10)=-1/10x2+34x+8000=-1/10(x-170)2+10890∴当x=170时,y取最大值,且y最大值=10890,此时180+x=350(元)∴房间每天每间定价为350元时,宾馆利润最大习题22.3第9题答案解:用定长为L的线段围成矩形时,设矩形的一边长为x则S矩形=x•(1/2L-x)=-x2+1/2 Lx=-(x-1/4L)2+1/16L2,当x=1/4 L时,S最大值=1/16L2用定长为L的线段围成圆时,设圆的半径为R,则2R=L,S圆=R2=(L/2)2=L2/4ᅲ∵1/16L2=/16L2,L2/4=4/16L2,且π<4∴1/16L2<L2/4∴S矩形<S圆∴用定长为L的线段围成圆的面积大第33页练习答案练习题答案复习题第1题答案解:由题意可知,y=(4+x)(4-x)= -x2+16,即y与x之间的关系式是y=-x2+16 复习题第2题答案解:由题意可知,y=5000(1+x)2=5000x2+10000x+5000,即y与x之间的函数关系式为:y=5000x2+10000x+5000复习题第3题答案D复习题第4题答案(1)∵a=1>0∴抛物线开口向上又∵x=-2/(2×1)=-1,y=(4×1×(-3)-22)/(4×1)=-4∴抛物线的对称轴是直线x=-1,顶点坐标是(-1,-4).图略(2)∵a=-1<0∴抛物线开口向下又∵x=-6/(2×(-1))=3,y=(4×(-1)×1-62)/(4×(-1))=10∴抛物线的对称轴是直线x=3,顶点坐标是(3,10).图略(3)∵a=1/2>0∴抛物线开口向上又∵x=-2/(2×1/2)=-2, y= (4×1/2×1-22)/(4×1/2)=-1∴抛物线的对称轴是直线x=-2,顶点坐标是(-2,-1).图略(4)∵a=-1/4<0∴抛物线开口向下又∵x=-1/(2×(-1/4))=2,y=(4×(-1/4)×(-4)-12)/(4×(-1/4))=-3∴抛物线的对称轴是直线x=2,顶点坐标是(2, -3).图略复习题第5题答案解:∵s=15t-6t2∴当t=-15/(2×(-6))=5/4时,s最大值=(4×(-6)×0-152)/(4×(-6))=75/8,即汽车刹车后到停下来前进了75/8m复习题第6题答案(1)分别把(-3,2),(-1,-1),(1,3)代入y=ax2+bx+c得a=7/8,b=2,c=1/8所以二次函数的解析式为y=7/8x2+2x+1/8(2)设二次函数的解析式为y=a(x+1/2)(x-3/2)把(0, -5)代入,得a=20/3所以二次函数的解析式为y=20/3x2-20/3 x-5复习题第7题答案解:设垂直于墙的矩形一边长为xm,则平行于墙的矩形的另一边长为(30-2x)m设矩形的面积为ym2,则y=x(30-2x)=-2x2+30x=-2(x-15/2)2+112.5∴当x=15/2时,y有最大值,最大值为112.5,此时30-2x=15∴当菜园垂直于墙的一边长为15/2m,平行于墙的另一边长为15m时,面积最大,最大面积为112.5m2复习题第8题答案解:设矩形的长为x cm,则宽为(18-x)cm,S侧=2x•(18-x)=-2x2+36x=-2(x-9)2+162当x=9时,圆柱的侧面积最大,此时18-x=18-9=9当矩形的长与宽都为9cm时旋转形成的圆柱的侧面积最大复习题第9题答案(1)证明:∵四边形ABCD是菱形∴AB=BC=CD=AD又∵BE=BF=DG=DH∴AH=AE=CG=CF∴∠AHE∠AEH,∠A+∠AEH+∠AHE=180,∠A+2∠AHE=180〬又∵∠A+∠D=180〬∴∠D=2∠AHE,同理可得∠A=2∠DHG∴2∠AHE+2∠DHG=180〬∴∠AHE+∠DHG=90〬∴∠EHG=90〬,同理可得∠HGF=∠GFE=90〬∴四边形EFGH是矩形(2)解:连接BD交EF于点K,如图7所示,设BE的长为x,BD=AB=a∴四边形ABCD为菱形,∠A=60〬∴∠EBK=60〬,∠KEB=30〬在Rt△BKE中,BE=x,则BK=1/2x,EK=/2xS矩形EFGH=EF•FG=2EK•(BD-2BK)=2×/2 x(a-2×1/2x)=x(a-x)=-(x2-ax)=-(x2-ax+a2/4-a2/4)=-(x-a/2)2+/4a2当x=a/2时,即BE=a/2时,矩形EFGH的面积最大第35页练习答案第37页练习答案第39页练习答案第40页练习答案练习第1题答案练习第2题答案第23章习题23.1第1题答案(1)如下图所示:(2)如下图所示:(3)如下图所示:(4)如下图所示:习题23.1第2题答案解:如下图所示,旋转中心为O点,旋转角为OA所转的角度习题23.1第3题答案解:如下图所示:习题23.1第4题答案解:旋转图形分别为△A₁B₁C₁,△A₂B₂C₂,如下图所示:习题23.1第5题答案(1)旋转中心为O₁点,旋转角为60〬,如下图所示:(2)旋转中心为O₂点,旋转角为90〬,如下图所示:习题23.1第6题答案提示:旋转角就是以旋转中心为顶点的周角被均匀地等分问题(360〬÷5=72〬 ,360〬÷3=120〬)解:(1)旋转角为72°,114°,216°,288°,360°时,旋转后的五角星与自身重合(2)等边三角形绕中心点O旋转120〬,240〬,360〬时与自身重合习题23.1第7题答案风车图案由四个全等的基本图形构成,可由其中一个基本图形绕中心旋转90〬,180〬,270〬得到习题23.1第8题答案提示:旋转中心在等腰三角形的外部解:五角星中间的点为旋转中心,旋转角为72〬,114〬,216〬,288〬习题23.1第9题答案(1)如下图所示:(2)∵BC=3,AC=4,∠C=90〬习题23.1第10题答案提示:线段BE与DC在形状完全相同的两个三角形中,可考虑旋转变换,点A是两个三角形的公共点,因此点A是旋转中心解:BE=DC,理由如下:因为△ABD与△ACE都是等边三角形所以AE=AC, AB=AD,∠DAB=∠CAE=60〬所以∠DAB+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE所以△BAE绕点A顺时针旋转60〬时,BA与DA重合,AE与AC重合,则△BAE与△DAC完全重合所以BE=DC第59页练习答案练习第1题答案练习第2题答案练习第3题答案习题23.2第1题答案如下图所示:习题23.2第2题答案解:依题可知,是中心对称图形的有:禁止标志、风轮叶片、正方形、正六边形它们的对称中心分别是圆心,叶片的轴心,正方形对角线的交点,正六边形任意两条最长的对角线的交点习题23.2第3题答案如下图所示,四边形ABCD关于原点O对称的四边形为A\\\\\\\'B\\\\\\\'C\\\\\\\'D\\\\\\\'习题23.2第4题答案解:∵A(a,1)与A\\\\\\\'(5,b)关于原点O对称习题23.2第5题答案解:依题意可知此图形时中心对称图形,对称中心是O₁O₂的中点习题23.2第6题答案解:如下图所示,做出△ABC以BC的中点O为旋转中心旋转180〬°后的图形△DCB,则四边形ABCD即为以AC,AB为一组邻边的平行四边形习题23.2第7题答案解:如下图(1)中的△DCE是由△ACB以C为旋转中心,顺时针旋转90〬得到的.在下图(2)中,先以AC为对称轴作△ABC的轴对称图形△AFC,再把△AFC以C为旋转中心,逆时针旋转90〬,即可得到△DCE习题23.2第8题答案解:依题意知这两个梯形是全等的因为菱形是以它的对角线的交点为对称中心的中心对称图形根据中心对称的性质过对称中心的任意一条直线都将图形分成两个全等的图形所以它们全等习题23.2第9题答案不一定当两个全等的梯形的上底与下底之和等于它的一条腰长的时候,这两个全等的梯形可以拼成一个菱形,其他情况不行习题23.2第10题答案解:如下图所示:连接BE,DF,EF,BD,AC,BD与EF交于点O∵四边形ABCD是平行四边形∴AD//BC,AD=BC∴∠1=∠2∵△ADE是等边三角形∴DE=AD,∠3=60〬∵△BCF为等边三角形∴BC=BF,∠4=60〬∴DE=BF∴∠1+∠3=∠2+∠4,即∠BDE=∠DBF∴DE//BF∴四边形BEDF为平行四边形∴BD与EF互相平分于点O又∵四边形BEDF为平行四边形∴BD与AC互相平分于点O,即OD=OB,OE=OF,OA=OC ∴△ADE和△BCF成中心对称第61页练习答案练习第1题答案练习第2题答案练习第3题答案。
九年级数学上册第一次月考【压轴大题】练习
九年级数学上册 | 第一次月考【压轴大题】练习【一】如图,用一段长30米的篱笆围成一个一边靠墙(墙的长度为20米)的矩形鸡场ABCD,设BC边长为x米,鸡场的面积为y平方米.(1)求y与x的函数关系式;解:∵在矩形ABCD中,BC=x,∴CD=30-x/2=15-1/2x,∴y=x(15-1/2x)=-1/2x2+15x(2)写出其二次项、一次项、常数项;【解析】二次项为-1/2x2,一次项为15x,常数项为0(3)写出自变量x的取值范围.【解析】自变量的取值范围为:0<x≤20.【二】如图,已知抛物线y=x2+bx+c经过A(-1,0),B(3,0)两点.(1)求抛物线的表达式和顶点坐标;解:把A(﹣1,0)、B(3,0)分别代入y=x2+bx+c中,得:,解得:,∴抛物线的解析式为y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4)(2)当0<x<3时,求y的取值范围;【解析】由图可得当0<x<3时,﹣4≤y<0;(3)点P为抛物线上一点,若S△PAB=10,求出此时点P的坐标.解:∵A(﹣1,0)、B(3,0),∴AB=4,设P(x,y),则S△PAB=1/2AB•|y|=2|y|=10,∴|y|=5,∴y=±5;①当y=5时,x2﹣2x﹣3=5,解得:x1=﹣2,x2=4,此时P点坐标为(﹣2,5)或(4,5);②当y=﹣5时,x2﹣2x﹣3=﹣5,方程无解;综上所述,P点坐标为(﹣2,5)或(4,5)【三】已知二次函数y=a(x−2)2+3的图象经过点(−1,0).(1)求这个二次函数的解析式;解:把(−1,0)代入二次函数解析式得:9a+3=0,即a=−1/3,则函数解析式为y=−1/3 (x−2)2+3(2)分别指出这个二次函数图象的开口方向、对称轴和顶点坐标.解:∵a=−1/3<0,∴抛物线开口向下,顶点坐标为(2,3),对称轴为直线x=2(3) 写出把此抛物线向右平移1个单位长度,再向上平移2个单位长度后的抛物线解析式.解:抛物线y=−1/3 (x−2)2+3向右平移1个单位长度所得解析式为:y=−1/3 (x−3)2+3,再向上平移2个单位长度后,所得函数的表达式为:y=−1/3 (x−3)2+3+2=−1/3 (x−3)2+5.故答案为y= −1/3 (x−3)2+5【四】在平面直角坐标系xOy中,点A(t,0),B(t+2,0),C(n,1),若射线OC上存在点P,使得ABP是以AB为腰的等腰三角形,就称点P为线段AB关于射线OC的等腰点.(1)如图,t=0,①若n=0,则线段AB关于射线OC的等腰点的坐标是(0,2);解:如图1中,由题意A(0,0),B(2,0),C(0,1),∵点P是线段AB关于射线OC的等腰点,∴OP=AB=2,∴P(0,2)②若n<0,且线段AB关于射线OC的等腰点的纵坐标小于1,求n的取值范围;解:如图2中,当OP=AB时,作PH⊥x轴于H.在Rt△POH中,∵PH=OC=1,OP=AB=2∴OH=√OP²-PH²=√2²-1²=√3,观察图象可知:若n<0,且线段AB关于射线OC的等腰点的纵坐标小于1时,n<﹣√3.(2)若n=√3,且射线OC上只存在一个线段AB关于射线OC的等腰点,则t的取值范围是﹣4<t≤﹣2或t=0或2<t ≤4.解:如图3﹣1中,作CH⊥y轴于H.分别以A,B为圆心,AB为半径作⊙A,⊙B.由题意C(√3,1),∴CH=√3,OH=1,∴tan∠COH=CH/EH=√3,∴∠COH=60°,当⊙B经过原点时,B(﹣2,0),此时t=﹣4,∵射线OC上只存在一个线段AB关于射线OC的等腰点,∴射线OC与⊙A,⊙B只有一个交点,观察图象可知当﹣4<t≤﹣2时,满足条件,如图3﹣2中,当点A在原点时,∵∠POB=30°,此时两圆的交点P在射线OC上,满足条件,此时t=0,如图3﹣3中,当⊙B与OC相切于P时,连接BP.∴OC是⊙B的切线,∴OP⊥BP,∴∠OPB=90°,∵BP=2,∠POB=30°,∴OB=BP/cos60°=2/(1/2)=4,此时t=4﹣2=2,如图3﹣4中,当⊙A与OC相切时,同法可得OA=4,此时t=4,此时符合题意.如图3﹣5中,当⊙A经过原点时,A(2,0),此时t=2,观察图形可知,满足条件的t的值为:2<t≤4,综上所述,满足条件t的值为﹣4<t≤﹣2或t=0或2<t≤4.【五】在ABC中,∠C=90°,AC>BC,D是AB的中点,E为直线AC上一动点,连接DE,过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当点E是线段AC的中点时,AE=2,BF=1,求EF的长;解:∵D是AB的中点,E是线段AC的中点,∴DE∥BC,DE=1/2BC,∵∠ACB=90°∴∠DEC=90°∵DF⊥DE,∴∠EDF=90°∴四边形CEDF是矩形,∴DE=CF=1/2BC,∴CF=BF=1,∵CE=AE=2,∴EF==√CF²+CE²=√1²+2²=√5(2)当点E在线段CA的延长线上时,依题意补全图形2,用等式表示AE,EF,BF之间的数量关系,并证明.解:AE2+BF2=EF2.证明:过点B作BM∥AC,与ED的延长线交于点M,连接MF,则∠AED=∠BMD,∠CBM=∠ACB=90°,∵D点是AB的中点,∴AD=BD,在△ADE和△BDM中,∠AED=∠BMD,∠ADE=∠BDM,AD=BD,∴△ADE≌△BDM(AAS),∴AE=BM,DE=DM,∵DF⊥DE,∴EF=MF,∵BM2+BF2=MF2,∴AE2+BF2=EF2.。
2019-2020学年九年级(华师大版)数学上册期末综合练习卷(含答案) (1)
九年级上册期末综合练习卷一.选择题1.下列各式①;②;③;④;⑤;其中一定是最简二次根式的有()A.4个B.3个C.2个D.1个2.在Rt△ABC中,∠C=90°,AB=5,AC=4,则cos B的值是()A.B.C.D.3.四边形ABCD在平面直角坐标系中的位置如图3所示,若AD⊥CD,AB∥CD,AB=5,A点坐标为(﹣2,7),则点B坐标为()A.(﹣2,2)B.(﹣2,12)C.(3,7)D.(﹣7,7)4.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1B.C.D.5.已知方程x2﹣4x+2=0的两根是x1,x2,则代数式的值是()A.2011B.2012C.2013D.20146.如图,在△ABC中,点D在边AB上,则下列条件中不能判断△ABC∽△ACD的是()A.∠ABC=∠ACD B.∠ADC=∠ACB C.D.AC2=AD•AE 7.若分式的值是正整数,则m可取的整数有()A.4个B.5个C.6个D.10个8.一枚均匀的正方体骰子,六个面上分别刻有1,2,3,4,5,6个点.甲乙两人各掷一次,如果朝上一面的两个点数之和为奇数,则甲胜;若为偶数,则乙胜,下列说法正确的是()A.甲获胜的可能性大B.乙获胜的可能性大C.甲乙获胜的可能性一样大D.乙一定获胜9.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D.x(x﹣1)=210二.填空题10.已知==,且a+b﹣2c=6,则a的值为.11.如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是.12.把二次函数y=(x﹣1)2+2的图象向左平移3个单位,再向下平移2个单位,所得函数的表达式是.13.如图,ED为△ABC的中位线,点G是AD和CE的交点,过点G作GF∥BC交AC于点F,如果GF=4,那么线段BC的长是.14.如图,矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE 折叠,点A落在A′处,如果A′恰在矩形的对称轴上,则AE的长为.三.解答题(共8小题,满分75分)15.计算下列各题(1)(2)(3)(4)16.如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.17.已知关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)若x12+x22﹣x1x2≤30,且a为整数,求a的值.18.在歌唱比赛中,一位歌手分别转动如下的两个转盘(每个转盘都被分成3等份)一次,根据指针指向的歌曲名演唱两首曲目.(1)转动转盘①时,该转盘指针指向歌曲“3”的概率是;(2)若允许该歌手替换他最不擅长的歌曲“3”,即指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,求他演唱歌曲“1”和“4”的概率.19.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C 港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?20.如图,在△ABC中,∠BAC=90°,AB=AC,点D、E分别在BC、AC上,且∠ADE =45°.(1)求证:△ABD∽△DCE;(2)若AB=2,BD=1,求CE的长.参考答案一.选择题1.C.2.B.3.C.4.B.5.D.6.C.7.A.8.C.9.B.二.填空题10.解:∵==,∴设a=6x,b=5x,c=4x,∵a+b﹣2c=6,∴6x+5x﹣8x=6,解得:x=2,故a=12.故答案为:12.11.解:如图,tanα==故答案为:.12.解:根据“上加下减,左加右减”的原则可知,把二次函数y=(x﹣1)2+2的图象向左平移3个单位,再向下平移2个单位,所得函数的表达式是y=(x﹣1+3)2+2﹣2,即y=(x+2)2,故答案为y=(x+2)2.13.解:∵ED为△ABC的中位线,∴AD、CE为△ABC的中线,∴点G为△ABC的重心,∴AG=2GD,∵GF∥BC,∴△AGF∽△ADC,∴==,∴CD=GF=×4=6,∴BC=2CD=12.故答案为12.14.解:分两种情况:①如图1,过A′作MN∥CD交AD于M,交BC于N,则直线MN是矩形ABCD的对称轴,∴AM=BN=AD=1,∵△ABE沿BE折叠得到△A′BE,∴A′E=AE,A′B=AB=1,∴A′N==0,即A′与N重合,∴A′M=1,∴A′E2=EM2+A′M2,∴A′E2=(1﹣A′E)2+12,解得:A′E=1,∴AE=1;②如图2,过A′作PQ∥AD交AB于P,交CD于Q,则直线PQ是矩形ABCD的对称轴,∴PQ⊥AB,AP=PB,AD∥PQ∥BC,∴A′B=2PB,∴∠P A′B=30°,∴∠A′BC=30°,∴∠EBA′=30°,∴AE=A′E=A′B×tan30°=1×=;综上所述:AE的长为1或;故答案为:1或.三.解答题15.解:(1)原式=﹣1+4﹣2=+1;(2)原式=2﹣3﹣(3﹣2)+3=2﹣;(3)原式=10+3+2=15;(4)原式=3+4+4﹣4+2=9.16.解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+,答:AB的长是3+.17.解:(1)∵关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2,∴△>0,即(﹣6)2﹣4(2a+5)>0,解得a<2;(2)由根与系数的关系知:x1+x2=6,x1x2=2a+5,∵x1,x2满足x12+x22﹣x1x2≤30,∴(x1+x2)2﹣3x1x2≤30,∴36﹣3(2a+5)≤30,∴a≥﹣,∵a为整数,∴a的值为﹣1,0,1.18.解:(1)∵转动转盘①一共有3种可能,∴转盘指针指向歌曲“3”的概率是:;故答案为:;(2)分别转动两个转盘一次,列表:(画树状图也可以)45 6BA11,41,51,622,42,52,633,43,53,6共有9种,它们出现的可能性相同.由于指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,所以所有的结果中,该歌手演唱歌曲“1”和“4”(记为事件A)的结果有2种,所以P(A )=.(说明:通过枚举、画树状图或列表得出全部正确情况得(4分);没有说明等可能性扣(1分).)19.解:(1)过点B作BD⊥AE于D在Rt△BCD中,∠BCD=60°,设CD=x,则BD =,BC=2x在Rt△ABD中,∠BAD=45°则AD=BD=,AB=BD=由AC+CD=AD得20+x=x解得:x=10+10故AB=30+10答:港口A到海岛B的距离为海里.(2)甲船看见灯塔所用时间:小时乙船看见灯塔所用时间:小时所以乙船先看见灯塔.20.解:(1)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,又因为∠DEC=∠ADE+∠CAD=45°+∠CAD(三角形的外角等于不相邻的两个内角之和),同理∠ADB=∠C+∠CAD=45°+∠CAD,∴∠DEC=∠ADB,又∠ABD=∠DCE=45°,∴△ABD∽△DCE;(2)∵AB=2,∴BC=2,∵△ABD∽△DCE,∴=,即=,=,CE=﹣.。
人教版 九年级数学(上)二次函数 专项练习1 【含答案】
人教版 九年级数学(上)二次函数 专项练习1一、选择题(本大题共10道小题)1. 抛物线2321y x x =-+-的图象与坐标轴交点的个数是()A.没有交点B.只有一个交点C.有且只有两个交点D.有且只有三个交点2. 关于抛物线y =x 2﹣(a+1)x+a﹣2,下列说法错误的是( )A .开口向上B .当a =2时,经过坐标原点OC .不论a 为何值,都过定点(1,﹣2)D .a >0时,对称轴在y 轴的左侧3. 二次函数y =x 2-2x +4化为y =a(x -h)2+k 的形式,下列正确的是( )A. y =(x -1)2+2B. y =(x -1)2+3C. y =(x -2)2+2D. y =(x -2)2+44. 对称轴是直线的抛物线是( )2-=x A. B. C. D. 22+-=x y 22+=x y 2)2(21+=x y 2)2(3-=x y 5.二次函数y =ax 2+bx +c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b ;④b 2-4ac>0,其中正确的个数是( )A. 1 B. 2 C. 3 D. 46.函数2y ax bx c =++的图象如图所示,那么关于x 的一元二次方程230ax bx c ++-=的根的情况是()A.有两个不相等的实数根B.有两个异号的实数根C.有两个相等的实数根D.没有实数根7. 若二次函数y =ax 2-2ax +c 的图象经过点(-1,0),则方程ax 2-2ax +c =0的解为( )A. x 1=-3,x 2=-1B. x 1=1,x 2=3C. x 1=-1,x 2=3D. x 1=-3,x 2=18.已知二次函数y =ax 2﹣2ax+3(a >0),当0≤x≤m时,3﹣a≤y≤3,则m 的取值范围为( )A .0≤m≤1B .0≤m≤2C .1≤m≤2D .m≥29.已知二次函数y =(x -h)2+1(h 为常数),在自变量x 的值满足1≤x≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A .1或-5B .-1或5C .1或-3D .1或310. 如图,正方形ABCD 中,AB =8cm ,对角线AC ,BD 相交于点O ,点E ,F 分别从B ,C 两点同时出发,以1cm/s 的速度沿BC ,CD 运动,到点C ,D 时停止运动,设运动时间为t(s),△OEF的面积S(cm 2),则S(cm 2)与t(s)的函数关系可用图象表示为( )二、填空题(本大题共10道小题)11. 二次函数的图象关于原点O (0,322--=x x y 0)对称的图象的解析式是_________________。
2021年上海市松江区九年级中考一模数学试卷(含解析)
2020-2021学年上海市松江区九年级中考一模数学试卷一、选择题(共6小题).1.如果两个相似三角形对应边的比为1:4,那么它们的周长比是()A.1:2B.1:4C.1:8D.1:162.在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AC的长为()A.2sinαB.2cosαC.2tanαD.2cotα3.将抛物线y=2x2向右平移3个单位,能得到的抛物线是()A.y=2x2+3 B.y=2x2﹣3 C.y=2(x+3)2 D.y=2(x﹣3)2 4.已知=2,下列说法中不正确的是()A.﹣2=0B.与方向相同C.∥D.||=2||5.如图,一艘船从A处向北偏东30°的方向行驶10千米到B处,再从B处向正西方向行驶20千米到C处,这时这艘船与A的距离()A.15千米B.10千米C.10千米D.5千米6.如图,已知在Rt△ABC中,∠C=90°,点G是△ABC的重心,GE⊥AC,垂足为E,如果CB=8,则线段GE的长为()A.B.C.D.二、填空题(共12小题).7.已知,则=.8.已知线段MN的长是4cm,点P是线段MN的黄金分割点,则较长线段MP的长是cm.9.计算:sin30°•cot60°=.10.在Rt△ABC中,∠C=90°,AC=6,cos A=,那么AB的长为.11.一个边长为2厘米的正方形,如果它的边长增加x(x>0)厘米,则面积随之增加y平方厘米,那么y关于x的函数解析式为.12.已知点A(2,y1)、B(3,y2)在抛物线y=x2﹣2x+c(c为常数)上,则y1y2(填“>”、“=”或“<”).13.如图,已知直线l1、l2、l3分别交直线l4于点A、B、C,交直线l5于点D、E、F,且l1∥l2∥l3,AB=4,AC=6,DF=10,则DE=.14.如图,△ABC在边长为1个单位的方格纸中,△ABC的顶点在小正方形顶点位置,那么∠ABC的正弦值为.15.如图,已知点D、E分别在△ABC的边AB和AC上,DE∥BC,=,四边形DBCE 的面积等于7,则△ADE的面积为.16.如图,在梯形ABCD中,AD∥BC,BC=2AD,设向量=,=,用向量、表示为.17.如图,正方形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上.已知△ABC的边BC=16cm,高AH为10cm,则正方形DEFG的边长为cm.18.如图,已知矩形纸片ABCD,点E在边AB上,且BE=1,将△CBE沿直线CE翻折,使点B落在对角线AC上的点F处,联结DF,如果点D、F、E在同一直线上,则线段AE的长为.三、解答题(共7题,满分78分)19.(10分)用配方法把二次函数y=3x2﹣6x+5化为y=a(x+m)2+k的形式,并指出这个函数图象的开口方向、对称轴和顶点坐标.20.(10分)如图,已知AB∥CD,AD、BC相交于点E,AB=6,BE=4,BC=9,联结AC.(1)求线段CD的长;(2)如果AE=3,求线段AC的长.21.(10分)如图,已知在Rt△ABC中,∠C=90°,sin∠ABC=,点D在边BC上,BD=4,联结AD,tan∠DAC=.(1)求边AC的长;(2)求cot∠BAD的值.22.(10分)如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处(点A、B、C在同一直线上).某测量员从悬崖底C点出发沿水平方向前行60米到D点,再沿斜坡DE方向前行65米到E点(点A、B、C、D、E在同一平面内),在点E处测得5G信号塔顶端A的仰角为37°,悬崖BC的高为92米,斜坡DE的坡度i=1:2.4.(1)求斜坡DE的高EH的长;(2)求信号塔AB的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)23.(12分)如图,已知在▱ABCD中,E是边AD上一点,联结BE、CE,延长BA、CE 相交于点F,CE2=DE•BC.(1)求证:∠EBC=∠DCE;(2)求证:BE•EF=BF•AE.24.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣2经过点A(2,0)和B(﹣1,﹣1),与y轴交于点C.(1)求这个抛物线的表达式;(2)如果点P是抛物线位于第二象限上一点,PC交x轴于点D,.①求P点坐标;②点Q在x轴上,如果∠QCA=∠PCB,求点Q的坐标.25.(14分)如图,已知在等腰△ABC中,AB=AC=5,tan∠ABC=2,BF⊥AC,垂足为F,点D是边AB上一点(不与A,B重合).(1)求边BC的长;(2)如图2,延长DF交BC的延长线于点G,如果CG=4,求线段AD的长;(3)过点D作DE⊥BC,垂足为E,DE交BF于点Q,联结DF,如果△DQF和△ABC 相似,求线段BD的长.参考答案一、选择题(共6小题).1.如果两个相似三角形对应边的比为1:4,那么它们的周长比是()A.1:2B.1:4C.1:8D.1:16解:∵两个相似三角形对应边的比为1:4,∴它们的周长比是:1:4.故选:B.2.在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AC的长为()A.2sinαB.2cosαC.2tanαD.2cotα【分析】根据锐角三角函数的意义求解后,再做出判断即可.解:∵cot A=,BC=2,∴AC=BC•cotα=2cotα,故选:D.3.将抛物线y=2x2向右平移3个单位,能得到的抛物线是()A.y=2x2+3B.y=2x2﹣3C.y=2(x+3)2 D.y=2(x﹣3)2解:由“左加右减”的原则可知,抛物线y=2x2向右平移3个单位,能得到的抛物线是y=2(x﹣3)2.故选:D.4.已知=2,下列说法中不正确的是()A.﹣2=0B.与方向相同C.∥D.||=2||解:A、由=2得到:﹣2=,故本选项说法不正确.B、由=2知,与方向相同,故本选项说法正确.C、由=2知,与方向相同,则∥,故本选项说法正确.D、由=2知,||=2||,故本选项说法正确.故选:A.5.如图,一艘船从A处向北偏东30°的方向行驶10千米到B处,再从B处向正西方向行驶20千米到C处,这时这艘船与A的距离()A.15千米B.10千米C.10千米D.5千米解:如图,∵BC⊥AE,∴∠AEB=90°,∵∠EAB=30°,AB=10米,∴BE=5米,AE=5米,∴CE=BC﹣CE=20﹣5=15(米),∴AC=(米),故选:C.6.如图,已知在Rt△ABC中,∠C=90°,点G是△ABC的重心,GE⊥AC,垂足为E,如果CB=8,则线段GE的长为()A.B.C.D.解:延长AG交BC于D,如图,∵点G是△ABC的重心,∴CD=BD=BC=4,AG=2GD,∵GE⊥AC,∴∠AEG=90°,而∠C=90°,∴GE∥CD,∴△AEG∽△ACD,∴===,∴EG=CD=×4=.故选:C.二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.已知,则=.解:由题意,设x=5k,y=3k,∴==.故答案为:.8.已知线段MN的长是4cm,点P是线段MN的黄金分割点,则较长线段MP的长是(2﹣2)cm.解:∵P是线段MN的黄金分割点,∴MP=MN,而MN=4cm,∴MP=4×=(2﹣2)cm.故答案为(2﹣2).9.计算:sin30°•cot60°=.解:原式=×=.故答案为:.10.在Rt△ABC中,∠C=90°,AC=6,cos A=,那么AB的长为8.解:∵cos A==,AC=6,∴AB==8,故答案为:8.11.一个边长为2厘米的正方形,如果它的边长增加x(x>0)厘米,则面积随之增加y平方厘米,那么y关于x的函数解析式为y=x2+4x.解:由题意得,y=(2+x)2﹣22=x2+4x,故答案为:y=x2+4x.12.已知点A(2,y1)、B(3,y2)在抛物线y=x2﹣2x+c(c为常数)上,则y1<y2(填“>”、“=”或“<”).解:∵y=x2﹣2x+c,∴抛物线的开口向上,对称轴是直线x=﹣=1,∴在对称轴的右侧,y随x的增大而增大,∵1<2<3,∴y1<y2,故答案为:<.13.如图,已知直线l1、l2、l3分别交直线l4于点A、B、C,交直线l5于点D、E、F,且l1∥l2∥l3,AB=4,AC=6,DF=10,则DE=.解:∵l1∥l2∥l3,∴=,即=,∴DE=.故答案为.14.如图,△ABC在边长为1个单位的方格纸中,△ABC的顶点在小正方形顶点位置,那么∠ABC的正弦值为.解:由图可得,AC==,AB==,BC==2,∴AC2+BC2=AB2,∴△ACB是直角三角形,∴sin∠ABC==,故答案为:.15.如图,已知点D、E分别在△ABC的边AB和AC上,DE∥BC,=,四边形DBCE 的面积等于7,则△ADE的面积为9.解:∵DE∥BC,∴△ADE∽△ABC,∴=()2=,∴=,∵四边形DBCE的面积等于7,∴S△ADE=9.故答案为:9.16.如图,在梯形ABCD中,AD∥BC,BC=2AD,设向量=,=,用向量、表示为+2.解:如图,在梯形ABCD中,∵AD∥BC,BC=2AD,=,∴=2=2,∴=+=+2,故答案是:+2.17.如图,正方形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上.已知△ABC的边BC=16cm,高AH为10cm,则正方形DEFG的边长为cm.解:如图,设正方形DEFG的边长为xcm,则DE=PH=xcm,∴AP=AH﹣PH=(10﹣x)cm,∵DG∥BC,∴△ADG∽△ABC,∴=,即=,∴x=(cm),故答案为.18.如图,已知矩形纸片ABCD,点E在边AB上,且BE=1,将△CBE沿直线CE翻折,使点B落在对角线AC上的点F处,联结DF,如果点D、F、E在同一直线上,则线段AE的长为.解:∵四边形ABCD是矩形,∴AD=BC,AB=CD,∠ADC=∠B=∠DAE=90°,∵把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,∴CF=BC,∠CFE=∠B=90°,EF=BE=1,∠CEB=∠CEF,∵矩形ABCD中,DC∥AB,∴∠DCE=∠CEB,∴∠CEF=∠DCE,∴DC=DE,设AE=x,则AB=CD=DE=x+1,∵∠AFE=∠CFD=90°,∴∠AFE=∠DAE=90°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴,∴,解得x=或x=(舍去),∴AE=.故答案为:.三、解答题(本大题共7题,满分78分)19.(10分)用配方法把二次函数y=3x2﹣6x+5化为y=a(x+m)2+k的形式,并指出这个函数图象的开口方向、对称轴和顶点坐标.解:y=3x2﹣6x+5=3(x2﹣2x)+5=3(x2﹣2x+1﹣1)+5=3(x﹣1)2+2,开口向上,对称轴为直线x=1,顶点(1,2).20.(10分)如图,已知AB∥CD,AD、BC相交于点E,AB=6,BE=4,BC=9,联结AC.(1)求线段CD的长;(2)如果AE=3,求线段AC的长.解:(1)∵AB∥CD,∴△ABE∽△DCE,∴,∵AB=6,BE=4,BC=9,∴,∴CD=;(2)∵AE=3,△ABE∽△DCE,∴,∴,∴DE=,∵,=,∴,∵AB∥DC,∴∠ECD=∠ABC,∴△ABC∽△ECD,∴,∴,∴AC=.21.(10分)如图,已知在Rt△ABC中,∠C=90°,sin∠ABC=,点D在边BC上,BD=4,联结AD,tan∠DAC=.(1)求边AC的长;(2)求cot∠BAD的值.【分析】(1)根据题意和锐角三角函数,可以求得AC的长;(2)根据(1)中的结果,可以得到AC、CD的长,然后根据勾股定理可以得到AD的长,再根据等面积法可以求得DE的长,从而可以求得AE的长,然后即可得到cot∠BAD 的值.解:(1)设AC=3x,∵∠C=90°,sin∠ABC=,∴AB=5x,BC=4x,∵tan∠DAC=,∴CD=2x,∵BD=4,BC=CD+BD,∴4x=2x+4,解得x=2,∴AC=3x=6;(2)作DE⊥AB于点E,由(1)知,AB=5x=10,AC=6,BD=4,∵,∴,解得DE=,∵AC=6,CD=2x=4,∠C=90°,∴AD==2,∴AE===,∴cot∠BAD===,即cot∠BAD的值是.22.(10分)如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处(点A、B、C在同一直线上).某测量员从悬崖底C点出发沿水平方向前行60米到D点,再沿斜坡DE方向前行65米到E点(点A、B、C、D、E在同一平面内),在点E处测得5G信号塔顶端A的仰角为37°,悬崖BC的高为92米,斜坡DE的坡度i=1:2.4.(1)求斜坡DE的高EH的长;(2)求信号塔AB的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)【分析】(1)过点E作EM⊥DC交DC的延长线于点M,根据斜坡DE的坡度(或坡比)i=1:2.4可设EH=x,则DH=2.4x,利用勾股定理求出x的值,进而可得出EH;(2)结合(1)得DH的长,故可得出CH的长.由矩形的判定定理得出四边形EHCM 是矩形,故可得出EM=HC,CM=EH,再由锐角三角函数的定义求出AM的长,进而可得出答案.解:(1)过点E作EM⊥AC于点M,∵斜坡DE的坡度(或坡比)i=1:2.4,DE=65米,CD=60米,∴设EH=x,则DH=2.4x.在Rt△DEH中,∵EH2+DH2=DE2,即x2+(2.4x)2=652,解得,x=25(米)(负值舍去),∴EH=25米;答:斜坡DE的高EH的长为25米;(2)∵DH=2.4x=60(米),∴CH=DH+DC=60+60=120(米).∵EM⊥AC,AC⊥CD,EH⊥CD,∴四边形EHCM是矩形,∴EM=CH=120米,CM=EH=25米.在Rt△AEM中,∵∠AEM=37°,∴AM=EM•tan37°≈120×0.75=90(米),∴AC=AM+CM=90+25=115(米).∴AB=AC﹣BC=115﹣92=23(米).答:信号塔AB的高度为23米.23.(12分)如图,已知在▱ABCD中,E是边AD上一点,联结BE、CE,延长BA、CE 相交于点F,CE2=DE•BC.(1)求证:∠EBC=∠DCE;(2)求证:BE•EF=BF•AE.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DEC=∠BCE,∵CE2=DE•BC,∴,∴△DEC∽△ECB,∴∠EBC=∠DCE;(2)∵AD∥BC,AB∥CD,∴∠AEB=∠EBC,∠F=∠ECD,∴∠AEB=∠F,又∵∠ABE=∠EBF,∴△ABE∽△EBF,∴,∴BE•EF=BE•AE.24.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣2经过点A(2,0)和B(﹣1,﹣1),与y轴交于点C.(1)求这个抛物线的表达式;(2)如果点P是抛物线位于第二象限上一点,PC交x轴于点D,.①求P点坐标;②点Q在x轴上,如果∠QCA=∠PCB,求点Q的坐标.解:(1)∵抛物线y=ax2+bx﹣2经过点A(2,0)和B(﹣1,﹣1),∴,解得:,∴抛物线解析式为:y=x2﹣x﹣2;(2)①如图1,过点P作PE⊥x轴于E,∵抛物线y=ax2+bx﹣2与y轴交于点C,∴点C(0,﹣2),∴OC=2,∵PE∥OC,∴=,∴PE=,∴=x2﹣x﹣2,∴x=﹣2或x=(不合题意舍去),∴点P(﹣2,);②如图2,过点B作BH⊥CO于H,由①可知DO==,∵B(﹣1,﹣1),点C(0,﹣2),A(2,0)∴OA=OC=2,BH=CH=1,∴∠BCH=45°=∠OCA,∴∠BCA=90°,当点Q在线段AO上时,∵∠QCA=∠PCB,∴∠DCO=∠QCO,又∵CO=CO,∠DOC=∠QOC=90°,∴△DOC≌△QOC(ASA),∴DO=QO=,∴点Q坐标为(,0),当点Q'在射线OA上时,∵∠Q'CA=∠PCB,∴∠DCQ'=90°,∴∠CDO+∠DQ'C=90°,∠DCO+∠CDO=90°,∴∠DQ'C=∠DCO,又∵∠DOC=∠Q'OC=90°,∴△DOC∽△COQ',∴,∴4=×Q'O,∴Q'O=,∴点Q'(,0),综上所述:点Q坐标为(,0)或(,0).25.(14分)如图,已知在等腰△ABC中,AB=AC=5,tan∠ABC=2,BF⊥AC,垂足为F,点D是边AB上一点(不与A,B重合).(1)求边BC的长;(2)如图2,延长DF交BC的延长线于点G,如果CG=4,求线段AD的长;(3)过点D作DE⊥BC,垂足为E,DE交BF于点Q,联结DF,如果△DQF和△ABC 相似,求线段BD的长.【解答】解(1)如图1,过点A作DH⊥BC于H,∴∠AHB=90°,∵AB=AC=5,∴BC=2BH,在Rt△AHB中,tan∠ABC==2,∴AH=2BH,根据勾股定理得,AH2+BH2=AB2,∴(2BH)2+BH2=(5)2,∴BH=5,∴BC=2BH=10;(2)∵AB=AC,∴∠ABC=∠ACB,∵tan∠ABC=2,∴tan∠ACB=2,由(1)知,BC=10,∵BF⊥AC,∴∠BFC=90°,在Rt△BFC中,tan∠ACB==2,∴BF=2CF,根据勾股定理得,BF2+CF2=BC2,∴(2CF)2+CF2=102,∴CF=2,∴AF=AC﹣CF=5﹣2=3,如图2,过点C作CK∥AB交FG于K,∴△CFK∽△AFD,∴,∴=,∴△CGK∽△BGD,∴,∴CG=4,∴=,∴,∴,∴AD=AB=×5=;(3)如备用图,在Rt△BFC中,根据勾股定理得,BF===4,∵DE⊥BC,∴∠BEQ=90°=∠BFC,∵∠EBQ=∠FBC,∴△BEQ∽△BFC,∴,∵CF=2,BC=10,∴,∴,∴设EQ=m,则BQ=5m,根据勾股定理得,BE=2m,在Rt△BEQ中,tan∠ABC==2,∴DE=2BE=4m,根据勾股定理得,BD=10m,∴DQ=DE﹣EQ=3m,∵DE⊥BC,∴∠BEQ=90°,∴∠CBF+∠BQE=90°,∵∠BQE=∠DQF,∴∠CBF+∠DQF=90°,∵∠BFC=90°,∴∠CBF+∠C=90°,∴∠DQF=∠C,∵AB=AC,∴∠ABC=∠C=∠DQF,∵△DQF和△ABC相似,∴①当△DQF∽△ACB时,∴,∴,∴QF=6m,∵BF=4,∴5m+6m=4,∴m=,∴BD=10m=,②当△DQF∽△BCA时,,∴,∴FQ=m,∴m+5m=4,∴m=,∴BD=10m=,即BD的长为或.。
九年级数学第一章测试题
九年级数学第一章测试题章节测试是一门学科开展学习工作很关键的一步,根据各个时段反馈回来的信息,进行调整和改进,进而改良后面的学习成效。
下面就是小编为大家梳理归纳的内容,希望能够帮助到大家。
九年级数学第一章测试题一、选择题(每小题5分,共25分)1.反比例函数的图象大致是()2.如果函数y=kx-2(k0)的图象不经过第一象限,那么函数的图象一定在A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限3.如图,某个反比例函数的图像经过点P,则它的解析式为()A.B.C.D.4.某村的粮食总产量为a(a为常数)吨,设该村的人均粮食产量为y吨,人口数为x,则y与x之间的函数关系式的大致图像应为()5.如果反比例函数的图像经过点(2,3),那么次函数的图像经过点()A.(-2,3)B.(3,2)C.(3,-2)D.(-3,2)二、填空题6.已知点(1,-2)在反比例函数的图象上,则k=.7.一个图象不经过第二、四象限的反比例函数的解析式为.8.已知反比例函数,补充一个条件:后,使得在该函数的图象所在象限内,y随x值的增大而减小.9.近视眼镜的度数y与镜片焦距x(米)成反比例.已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y与镜片焦距x之间的函数关系式是.10.如图,函数y=-kx(k0)与y=-的图像交于A、B两点.过点A作AC垂直于y轴,垂足为C,则△BOC的面积为.三、解答题(共50分)11.(8分)一定质量的氧气,其密度(kg/m,)是它的体积v(m,)的反比例函数.当V=10m3时甲=1.43kg/m.(1)求与v的函数关系式;(2)求当V=2m3时,氧气的密度.12.(8分)已知圆柱的侧面积是6m2,若圆柱的底面半径为x(cm),高为ycm).(1)写出y关于x的函数解析式;(2)完成下列表格:(3)在所给的平面直角坐标系中画出y关于x的函数图像.13.(l0分)在某一电路中,保持电压不变,电流I(安培)与电阻R(欧姆)成反比例.当电阻R=5欧姆时,电流I=2安培.(l)求I与R之间的函数关系式;(2)当电流I=0.5安培时,求电阻R的值;(3)如果电路中用电器的可变电阻逐渐增大,那么电路中的电流将如何变化?(4)如果电路中用电器限制电流不得超过10安培,那么用电器的可变电阻应控制在什么范围内?14.(12分)某蓄水池的排水管每小时排水飞12m3,8h可将满池水全部排空.(1)蓄水池的容积是多少?(2)如果增加排水管,使每小时的排水量达到x(m3),那么将满池水排空所需的时间y(h)将如何变化?(3)写出y与x之间的关系式;(4)如果准备在6h内将满池水排空,那么每小时的排水量至少为多少?(5)已知排水管每小时的排水量为24m3,那么最少多长时间可将满池水全部排空?15.(12分)反比例函数和一次函数y=mx+n的图象的一个交点A(-3,4),且一次函数的图像与x轴的交点到原点的距离为5.(1)分别确定反比例函数与一次函数的解析式;(2)设一次函数与反比例函数图像的另一个交点为B,试判断AOB(点O为平面直角坐标系原点)是锐角、直角还是钝角?并简单说明理由.九年级数学第一章测试题一、选择题(每小题3分,共30分)1、两个直角三角形全等的条件是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条边对应相等2、如图,由∠1=∠2,BC=DC,AC=EC,得△ABC≌△EDC的根据是()A、SASB、ASAC、AASD、SSS3、等腰三角形底边长为7,一腰上的中线把其周长分成两部分的差为3,则腰长是()A、4B、10C、4或10D、以上答案都不对4、如图,EA⊥AB,BC⊥AB,EA=AB=2BC,D为AB中点,有以下结论:(1)DE=AC;(2)DE⊥AC;(3)∠CAB=30°;(4)∠EAF=∠ADE。
沪科版九年级数学下24.1.1旋转课后练习(含答案)
24.1.1旋转课后练习(含答案)一、选择题1.下列运动属于旋转的是()A.运动员掷出标枪B.钟表上钟摆的摆动C.气球升空的运动D.一个图形沿某直线对折的过程2.某校在暑假放假之前举办了交通安全教育图片展活动.下列四个交通标志图中,是旋转对称图形的是()图13.如图2,小聪坐在秋千上,秋千旋转了80°,小聪的位置也从点P运动到了点P'处,则∠P'OP的度数为()图2A.40°B.50°C.70°D.80°4.如图3所示,在△ABC中,∠BAC=32°,将△ABC绕点A按顺时针方向旋转55°,得到△AB'C',则∠B'AC的度数为()图3A.22°B.23°C.24°D.25°5.如图4,将矩形ABCD绕点A顺时针旋转到矩形AB'C'D'的位置,旋转角为α,若∠DAB'=5α,则旋转角α的度数为()图4A.25°B.22.5°C.20°D.30°6.如图5,在正方形ABCD中,△ABE经旋转可与△CBF重合,AE的延长线交FC于点M,以下结论正确的是()图5A.BE=CEB.FM=MCC.AM⊥FCD.BF⊥CF7.如图6,在正方形网格中,△MPN绕某一点旋转某一角度得到△M'P'N',则旋转中心可能是 ()图6A.点AB.点BC.点CD.点D8.如图7,E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()图7A.5B.C.7D.二、填空题9.图8可以看作是一个等腰直角三角形旋转若干次而生成的,则每次旋转的度数是.图810.如图9,将△ABC绕点C按顺时针方向旋转至△A'B'C的位置,使点A'落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB'=度.图911.如图10,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C,此时点A'恰好在AB边上,则点B'与点B之间的距离为.图1012.如图11,正方形ABCD的边长为4,E是CD的中点,AF平分∠BAE交BC于点F,将△ADE绕点A顺时针旋转90°得到△ABG,则CF的长为.图11三、解答题13.在如图12所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).(1)画出△ABC绕点O顺时针旋转90°后得到的△A1B1C1;(2)求△OAA1的面积.图1214.如图13,点A,B的坐标分别为(4,0),(0,3),将线段BA绕点A顺时针旋转90°,设点B旋转后的对应点是点B1,求点B1的坐标.图13附加题如图14,点O在直线AB上,OC⊥AB.在Rt△ODE中,∠ODE=90°,∠DOE=30°,先将△ODE的一边OE与OC重合(如图①),然后将△ODE绕点O按顺时针方向旋转(如图②),当OE与OB重合时停止旋转.图14(1)当∠AOD=80°时,旋转角∠COE的大小为;(2)当OD在OC与OB之间时,求∠AOD-∠COE;(3)在△ODE的旋转过程中,当∠AOE=4∠COD时,求旋转角∠COE的大小.参考答案1.[解析] B A项,掷出的标枪不是绕着某一个固定的点转动,故不属于旋转;B项,钟表的钟摆的摆动,符合旋转变换的定义,属于旋转;C项,气球升空的运动不是绕着某一个固定的点转动,故不属于旋转;D项,一个图形沿某直线对折的过程是轴对称,不属于旋转.故选B.2.[答案] D3.[解析] D∵小聪的位置从点P运动到了点P'处,∴点P和点P'是对应点,∴∠P'OP=80°.故选D.4.[解析] B根据旋转的性质可知∠B'AB=55°,则∠B'AC=∠B'AB-∠BAC=55°-32°=23°.5.[解析] B∵矩形ABCD绕点A顺时针旋转到矩形AB'C'D'的位置,∴∠B'AD'=∠BAD=90°,∠DAD'=α.∵∠DAB'=5α,∴5α=90°+α,解得α=22.5°.故选B.6.[答案] C7.[解析] B连接PP',NN',MM',分别作PP',NN',MM'的垂直平分线,因为三条线段的垂直平分线正好都过点B,所以旋转中心是点B.故选B.8.[解析] D∵把△ADE顺时针旋转90°到△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积,等于25,∴AD=5.又∵DE=2,∴在Rt△ADE中,AE==.故选D.9.[答案] 45°[解析] 旋转对称图形中有8块完全相同的部分,故该旋转对称图形的最小旋转角度数为×360°=45°.10.[答案] 46[解析] ∵∠A=27°,∠B=40°,∴∠ACA'=∠A+∠B=27°+40°=67°.∵△ABC绕点C按顺时针方向旋转至△A'B'C的位置,∴△ABC≌△A'B'C,∴∠ACB=∠A'CB',∴∠ACB-∠ACB'=∠A'CB'-∠ACB',即∠BCB'=∠ACA',∴∠BCB'=67°,∴∠ACB'=180°-∠ACA'-∠BCB'=180°-67°-67°=46°.故答案为46.11.[答案] 612.[答案] 6-2[解析] 作FM⊥AD于点M,FN⊥AG于点N,如图所示,易得四边形CFMD为矩形,则FM=4.∵正方形ABCD的边长为4,E是CD的中点,∴DE=2,∴AE==2.∵△ADE绕点A顺时针旋转90°得到△ABG,∴AG=AE=2,BG=DE=2,∠3=∠4,∠GAE=90°,∠ABG=∠D=90°.而∠ABC=90°,∴点G在CB的延长线上.∵AF平分∠BAE交BC于点F,∴∠1=∠2,∴∠2+∠4=∠1+∠3,即AF平分∠GAD,∴FN=FM=4.∵AB·GF=FN·AG,∴GF==2,∴CF=CG-GF=4+2-2=6-2.故答案为6-2.13.解:(1)如图,△A1B1C1即为所画图形.(2)如图,连接AA1.∵△ABC绕点O顺时针旋转90°后得△A1B1C1,∴OA=OA1,∠AOA1=90°,∴△OAA1为等腰直角三角形.又∵OA==,∴=××=6.5.14.解:如图,作B1C⊥x轴于点C.∵A(4,0),B(0,3),∴OA=4,OB=3.∵线段BA绕点A顺时针旋转90°得线段AB1,∴BA=AB1,且∠BAB1=90°,∴∠BAO+∠B1AC=90°.而∠BAO+∠ABO=90°,∴∠ABO=∠B1AC.又∵∠AOB=∠B1CA=90°,∴△ABO≌△B1AC,∴AC=OB=3,B1C=OA=4,∴OC=OA+AC=7,∴点B1的坐标为(7,4).附加题解:(1)∵∠AOE=∠AOD+∠DOE=80°+30°=110°,∴∠COE=∠AOE-∠AOC=110°-90°=20°.故答案为:20°.(2)∠AOD-∠COE=(∠AOC+∠COD)-(∠COD+∠DOE)=∠AOC+∠COD-∠COD-∠DOE=∠AOC-∠DOE=90°-30°=60°.(3)设∠COE=x.当OD在OA与OC之间时,∠AOE=∠AOC+∠COE=90°+x,∠COD=∠DOE-∠COE=30°-x.由题意,得90°+x=4(30°-x),解得x=6°.当OD在OC与OB之间时,∠AOE=∠AOC+∠COE=90°+x,∠COD=∠COE-∠DOE=x-30°.由题意,得90°+x=4(x-30°),解得x=70°.综上所述,当∠AOE=4∠COD时,旋转角∠COE的大小为6°或70°.。
沪科版九年级数学上册21.4.1利用二次函数模型解决最值问题同步练习题
21.4.1利用二次函数模型解决最值问题一、选择题1.某汽车出租公司一天的租车总收入y (元)与每辆出租车的日租金x (元)满足函数表达式y =-35(x -120)2+19440(0≤x ≤200),则该公司一天的租车总收入最多为( )A .120元B .200元C .1200元D .19440元2.]某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图1所示的三处各留1m 宽的门,已知计划中的材料可建墙体(不包括门)总长为27m ,则能建成的两间饲养室总面积最大为 ( )图1A .75m2B. 752m 2 C .48m2D. 2252m 23.某超市的小王对该超市苹果的销售情况进行了统计,某种进价为2元/千克的苹果每天的销售量y (千克)和当天的售价x (元/千克)之间满足y =-20x +200(3≤x ≤5),若要使该种苹果当天的利润W 达到最高,则其售价应为( )A .5元/千克B .6元/千克C .3.5元/千克D .3元/千克4.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y (单位:万元)与销售量x (单位:辆)之间分别满足:y 1=-x 2+10x ,y 2=2x .若该公司在甲、乙两地共销售15辆该品牌的汽车,则能获得的最大利润为( )A .30万元B .40万元C .45万元D .46万元二、填空题5.某商品的利润y (元)与单价x (元/件)之间的函数表达式为y =-5x 2+10x ,当0.5≤x ≤2时,该商品的最大利润是________.6.某市新建成的一批楼房都是8层,房子的价格y (元/平方米)是楼层数x (楼)的二次函数.其中一楼价格为4930元/平方米,二楼和六楼均为5080元/平方米,则________楼房子最贵,且价格为________元/平方米.7.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是________cm2.8.一件工艺品的进价为100元,标价135元售出,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价________元.三、解答题9.直线l过点A(a,0)和点B(0,b),其中a>0,b>0,若a+b=12,点O为原点,△AOB的面积为S,则当b为何值时,S取得最大值?并求出这个最大值.10.某种商品每天的销售利润y(元)与每个商品的售价x(元)之间满足关系y=ax2+bx -75,其图象如图2所示.(1)当每个商品的售价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)每个商品的售价在什么范围时,该种商品每天的销售利润不低于16元.图211.某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数表达式为y=⎩⎨⎧-2x +140()40≤x <60,-x +80()60≤x ≤70. (1)若企业销售该产品获得的年利润为W (万元),请直接写出年利润W (万元)关于售价x (元/件)的函数表达式;(2)当该产品的售价为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?12.如图3,有长为24m 的篱笆,一面利用墙(墙的最大可用长度a 为10m),围成中间隔有一道篱笆的长方形花圃(由两个小矩形花圃组成).设花圃的一边AB 为x m ,面积为S m 2.(1)求S 与x 之间的函数表达式(写出自变量的取值范围). (2)如果要围成面积为45m 2的花圃,那么AB 的长是多少米?(3)能围成面积比45m 2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.图313 为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m 的围网在水库中围成了如图4所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度为x m ,矩形区域ABCD 的面积为y m 2.(1)求y与x之间的函数表达式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?图4答案1.D2.[解析]A 设垂直于现有墙的一边长为x m ,则平行于现有墙的一边长为27+3-3x =(30-3x)m ,则饲养室的总面积S =x(30-3x)=-3x 2+30x =-3(x -5)2+75,故能建成的饲养室的最大面积为75m 2.3.[解析]A W =(x -2)(-20x +200)=-20(x -6)2+320,因为3≤x ≤5,当x ≤6时,W 随x 的增大而增大,故当x =5时,W 取最大值.故选A .4.[解析]D 设在甲地销售x 辆,则在乙地销售(15-x)辆.根据题意,得总利润W = y 1+y 2=-x 2+10x +2(15-x)=-x 2+8x +30=-(x -4)2+46,故能获得的最大利润为46万元.5.[答案]5元[解析]当x =1时,函数有最大值5,且1在0.5≤x ≤2的范围内,所以当0.5≤x ≤2时,该商品的最大利润为5元.6.[答案]四 5200[解析]设y =ax 2+bx +c ,代入(1,4930),(2,5080),(6,5080), 解得y =-30(x -4)2+5200. 当x =4时,y =5200. 7.[答案]12.5[解析]设这两个正方形的边长分别为x cm 和y cm ,它们的面积之和为S cm 2.根据题意,得4x +4y =20,S =x 2+y 2,所以y =5-x ,S =x 2+(5-x)2=2x 2-10x +25=2(x 2-5x)+25=2(x -52)2+252.所以当x =2.5时,这两个正方形的面积之和最小,最小是12.5cm 2.8.59.解:∵a +b =12,∴a =12-b.又∵S =12ab ,∴S =12(12-b)b =-12b 2+6b =-12(b -6)2+18.又∵-12<0,∴当b =6时,S 取得最大值,最大值为18.10.解:(1)函数y =ax 2+bx -75的图象过点(5,0),(7,16),则⎩⎪⎨⎪⎧25a +5b -75=0,49a +7b -75=16,解得⎩⎪⎨⎪⎧a =-1,b =20, 则y =-x 2+20x -75=-(x -10)2+25,故函数图象的顶点坐标是(10,25). ∵a =-1<0,∴当x =10时,y 最大值=25.故当每个商品的售价为10元时,该种商品每天的销售利润最大,最大利润为25元. (2)∵函数y =-x 2+20x -75的图象的对称轴为直线x =10, ∴点(7,16)关于对称轴的对称点是(13,16). 又∵函数y =-x 2+20x -75的图象开口向下, ∴当7≤x ≤13时,y ≥16.即每个商品的售价不少于7元且不超过13元时,该种商品每天的销售利润不低于16元. 11.解:(1)当40≤x <60时,W =(x -30)(-2x +140)=-2x 2+200x -4200, 当60≤x ≤70时,W =(x -30)(-x +80)=-x 2+110x -2400. (2)当40≤x <60时,W =-2x 2+200x -4200=-2(x -50)2+800, ∴当x =50时,W 取得最大值,最大值为800;当60≤x ≤70时,W =-x 2+110x -2400=-(x -55)2+625, ∴当x >55时,W 随x 的增大而减小,∴当x =60时,W 取得最大值,最大值为-(60-55)2+625=600. ∵800>600,∴当x =50时,W 取得最大值800.答:该产品的售价为50元/件时,企业销售该产品获得的年利润最大,最大年利润是800万元.12.解:(1)S =x(24-3x)=-3x 2+24x(143≤x<8).(2)当S =45时,有-3x 2+24x =45. 解得x 1=3,x 2=5. ∵143≤x<8, ∴x =5, 即AB 的长为5m .(3)能围成面积比45m 2更大的花圃.∵S =-3x 2+24x =-3(x -4)2+48,其函数图象开口向下,对称轴为直线x =4,当x >4时,y 随x 的增大而减小,∴在143≤x<8的范围内,当x =143时,S 取得最大值,S 最大值=1403.即最大面积为1403m 2,此时AB =143m ,BC =10m .13 解:(1)方法一:设AE =a m .由题意,得AE ·AD =2BE ·BC ,AD =BC ,所以BE =12a ,AB =32a.由题意,得2x +3a +a =80,所以a =20-12x ,所以y =AB ·BC =32a ·x =32⎝ ⎛⎭⎪⎫20-12x x ,即y =-34x 2+30x ,其中0<x<40.方法二:根据题意,得CF ·x =y 3,CF =y 3x ,DF ·x =2y 3,DF =2y 3x ,所以2x +2×y 3x +3×2y3x =80,整理得y =-34x 2+30x ,其中0<x <40.(2)y =-34x 2+30x =-34(x -20)2+300,因为-34<0,所以抛物线开口向下.又因为0<x <40,所以当x =20时,y 取得最大值,最大值为300.。
2022年上海市静安区九年级上学期期末中考数学一模试卷带讲解
∴ ,
∴ ,
故答案为: .
【点睛】本题考查了平面向量的知识.此题难度不大,注意掌握相似三角形判定的应用,注意掌握数形结合思想的应用.
18.如图,正方形ABCD中,将边BC绕着点C旋转,当点B落在边AD的垂直平分线上的点E处时,∠AEC的度数为_______
【答案】 或
【分析】分两种情况分析:当点E在BC下方时记点E为点 ,点E在BC上方时记点E为点 ,连接 , ,根据垂直平分线的性质得 , ,由正方形的性质得 , ,由旋转得 , ,故 , 是等边三角形, , 是等腰三角形,由等边三角形和等腰三角形的求角即可.
【答案】
【分析】由AD、BE分别是边BC、AC上的中线,可求得AE=EC,BD=DC,然后利用△DEG∽△∽ABG,求得结果.
【详解】解:连接DE
∵AD、BE分别是边BC、AC上 中线,
∴AE=EC,BD=DC,
∴DE是△ABC的中位线,
∴DE= AB,
∴△DEG∽△∽ABG,
∴ ,
∴AG=2DG,BG=2EG,
6.下列说法错误的是()
A. 任意一个直角三角形都可以被分割成两个等腰三角形
B. 任意一个等腰三角形都可以被分割成两个等腰三角形
C. 任意一个直角三角形都可以被分割成两个直角三角形
D. 任意一个等腰三角形都可以被分割成两个直角三角形
【答案】B
【分析】根据等腰三角形和直角三角形的性质判断各选项即可得出答案.
【答案】低
【分析】根据抛物线 的形状开口方向向上即可得出结果.
【详解】解:∵抛物线开口方向与抛物线 的开口方向相同,抛物线 中,a= >0开口方向向上,
∴该抛物线有最低点,
故答案为:低.
沪教版数学九年级上学期一课一练及单元测试卷和参考答案
沪教版数学九年级上学期一课一练、单元测试卷和参考答案目录第二十四章相似三角形24.1放缩与相似形(1) 324.2 比例线段(1) 624.3 三角形一边的平行线第一课时(1)1024.3 三角形一边的平行线第二课时(1)1424.3 三角形一边的平行线第三课时(1)1924.3 三角形一边的平行线第四课时(1)2224.4 相似三角形的判定第一课时(1)2524.4 相似三角形的判定第二课时(1)2924.4 相似三角形的判定第三课时(1)3324.4 相似三角形的判定第四课时(1)3724.5 相似三角形的性质第一课时(1)4324.5 相似三角形的性质第二课时(1)4724.5 相似三角形的性质第三课时(1)5224.6 实数与向量相乘第一课时(1)5724.7向量的线性运算第一课时(1)62九年级(上)数学第二十四章相似三角形单元测试卷一67第二十五章锐角三角比25.1 锐角三角比的意义(1)7225.2 求锐角的三角比的值(1)7525.3 解直角三角形(1)7925.4 解直角三角形的应用(1)84九年级(上)数学第二十五章锐角的三角比单元测试卷一90第二十六章二次函数26.1 二次函数的概念(1)9426.2 特殊二次函数的图像第一课时(1)9826.2 特殊二次函数的图像第二课时(1)10226.2 特殊二次函数的图像第三课时(1)10626.3二次函数y=ax2+bx+c的图像第一课时(1)11126.3二次函数y=ax2+bx+c的图像第二课时(1)11626.3二次函数y=ax2+bx+c的图像第三课时(1)121九年级(上)数学第二十六章二次函数单元测试卷一126参考答案132数学九年级上第二十四章相似三角形24.1放缩与相似形(1)一、选择题1下列各组图形中一定是相似三角形的是()A. 两个等腰三角形B. 两个直角三角形C. 一个角为30 的等腰三角形D. 两个等边三角形2下列各组图形中一定是相似多边形的是()A. 两个平行四边形B. 两个正方形C. 两个矩形D. 两个菱形3某两地的实际距离为3000米,画在地图上的距离是15厘米,则在地图上的距离与实际的距离之比是()A 1:200B 1:2000C 1:20 000D 1:200 0004. 下列不一定是相似形的是()A. 边数相同的正多边形B. 两个等腰直角三角形C. 两个圆D. 两个等腰三角形5. 下列给出的图形中,是相似形的是 ( )A. 三角板的内、外三角形B. 两张孪生兄弟的照片C. 行书中的“中”楷书中的“中”D. 同一棵树上摘下的两片树叶6. 下列各组图形中,一定是相似多边形的是 ( )A. 两个直角三角形B. 两个平行四边形C. 两个矩形D. 两个等边三角形7下列图形中,相似的有 ( ) ①放大镜下的图片与原来图片; ②幻灯的底片与投影在屏幕上的图像③天空中两朵白云的照片 ④用同一张底片洗出的两张大小不同的照片A. 4组B. 3组C. 2组D. 1组8. 对一个图形进行放缩时,下列说法正确的是 ( )A. 图形中线段的长度与角的大小都保持不变B. 图形中线段的长度与角的大小都会改变C. 图形中线段的长度保持不变,角的大小可以改变D. 图形中线段的长度可以改变,角的大小都保持不变二、填空题9. ABC ∆与'''A B C ∆相似,则它们的对应角 ,对应边 。
初三数学上册一元二次方程练习题及答案
初三数学上册一元二次方程练习题及答案初三数学上册一元二次方程练习题及答案九年级数学上册一元二次方程练习题一一、选择题:〔每题3分,共24分〕1.以下方程中,常数项为零的是〔〕A.x2+x=1B.2x2-x-12=12;C.2〔x2-1〕=3〔x-1〕D.2〔x2+1〕=x+22.以下方程:①x2=0,②-2=0,③2 +3x=〔1+2x〕〔2+x〕,④3 - =0,⑤-8x+ 1=0中,一元二次方程的个数是〔〕A.1个B2个C.3个D.4个3.把方程〔x- 〕〔x+ 〕+〔2x-1〕2=0化为一元二次方程的一般形式是〔〕A.5x2-4x-4=0B.x2-5=0C.5x2-2x+1=0D.5x2-4x+6=04.方程x2=6x的根是〔〕A.x1=0,x2=-6B.x1=0,x2=6C.x=6D.x=05.方2x2-3x+1=0经为〔x+a〕2=b的形式,正确的选项是〔〕A. ;B. ;C. ;D.以上都不对6.若两个连续整数的积是56,则它们的和是〔〕A.11B.15C.-15D.157.不解方程推断以下方程中无实数根的是〔〕A.-x2=2x-1B.4x2+4x+ =0;C.D.〔x+2〕〔x-3〕==-58.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,假如平均每月增长率为x,则由题意列方程应为〔〕A.200〔1+x〕2=1000B.200+2021x=1000C.200+2021x=1000D.200[1+〔1+x〕+〔1+x〕2]=1000二、填空题:〔每题3分,共24分〕9.方程化为一元二次方程的一般形式是________,它的一次项系数是______.10.关于x的一元二次方程x2+bx+c=0有实数解的条件是__________.11.用______法解方程3〔x-2〕2=2x-4比较简便.12.假如2x2+1与4x2-2x-5互为相反数,则x的值为________.13.假如关于x的一元二次方程2x〔kx-4〕-x2+6=0没有实数根,那么k 的最小整数值是__________.14.假如关于x的方程4mx2-mx+1=0有两个相等实数根,那么它的根是_______.15.若一元二次方程〔k-1〕x2-4x-5=0 有两个不相等实数根,则k 的取值范围是_______.16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________.三、解答题〔2分〕17.用适当的方法解以下一元二次方程.〔每题5分,共15分〕〔1〕5x〔x-3〕=6-2x;〔2〕3y2+1= ;〔3〕〔x-a〕2=1-2a+a2〔a是常数〕18.〔7分〕已知关于x的一元二次方程x2+mx+n=0的一个解是2,另一个解是正数,而且也是方程〔x+4〕2-52=3x 的解,你能求出m和n的值吗?19.〔10分〕已知关于x的一元二次方程x2-2kx+ k2-2=0.〔1〕求证:不管k为何值,方程总有两不相等实数根.〔2〕设x1,x2是方程的根,且x12-2kx1+2x1x2=5,求k的值.四、列方程解应用题〔每题10分,共20分〕20.某电视机厂打算用两年的时间把某种型号的电视机的本钱降低36%,若每年下降的百分数相同,求这个百分数.21.某商场今年1月份销售额为100万元,2月份销售额下降了10%,该商场马上实行措施,改良经营管理,使月销售额大幅上升,4月份的销售额到达129.6万元,求3,4月份平均每月销售额增长的百分率.九年级数学上册一元二次方程练习题一答案一、DAABC,DBD二、9.x2+4x-4=0,410.11.因式分解法12.1或13.214.15.16.30%三、17.〔1〕3,;〔2〕;〔3〕1,2a-118.m=-6,n=819.〔1〕=2k2+80,不管k为何值,方程总有两不相等实数根.〔2〕四、20.20%21.20%九年级数学上册一元二次方程练习题二一、选择题〔共8题,每题有四个选项,其中只有一项符合题意。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学预测卷
一、选择题:(本大题共6题,每题4分,满分24分) 1.计算23)()(a a -⋅-的正确结果是 (A )5a ;
(B )5a -;
(C )6a ;
(D )6a -.
2.如果二次根式5+x 有意义,那么x 的取值范围是 (A )x >0;
(B )x ≥0;
(C )x >-5;
(D )x ≥-5.
3.用配方法解方程0142=+-x x 时,配方后所得的方程是
(A )1)2(2=-x ; (B )1)2(2-=-x ; (C )3)2(2=-x ; (D )3)2(2=+x . 4.木盒里有1个红球和1个黑球,这两个球除颜色外其他都相同,从盒子里先摸出一个球,放回去摇匀后,再摸出一个球,两次都摸到红球的概率是 (A )2
1
; (B )
3
1
; (C )
4
1
; (D )
3
2.
5.如图,平行四边形ABCD 的对角线交于点O ,a AB =,
b AD =,那么b a 2
1
21+等于
(A )AO ;
(B )AC ; (C )BO ; (D )CA .
6.在长方体ABCD -EFGH 中,与面ABCD 平行的棱共有 (A )1条; (B )2条; (C )3条; (D )4条.
二、填空题:(本大题共12题,每题4分,满分48分) 7.-4的绝对值等于 ▲ . 8.分解因式:822-x = ▲ . 9.方程23=-x 的根是 ▲ . 10.如果函数1
1
)(+=
x x f ,那么)2(f = ▲ . 11.如果方程0)12(22=+--m x m x 有两个实数根,那么m 的取值范围是 ▲ . 12.如果正比例函数的图像经过点(2,4)和(a ,-3),那么a 的值等于 ▲ .
C
(第5题图)
C G (第6题图)
13.一台组装电脑的成本价是4000元,如果商家以5200元的价格卖给顾客,那么商家的盈利率为 ▲ .
14.已知梯形的上底长为a ,中位线长为m ,那么这个梯形的下底长为 ▲ . 15.已知正六边形的边长为6,那么边心距等于 ▲ .
16.在Rt △ABC 中,∠B =90°,AD 平分∠BAC ,交边BC 于点D ,如果BD =2,AC =6,那么△ADC 的面积等于 ▲ . 17.已知在△ABC 中,AB =AC =10,5
4
cos =
C ,中线BM 与CN 相交于点G ,那么点A 与点G 之间的距离等于 ▲ .
18.已知在△AOB 中,∠B =90°,AB =OB ,点O 的坐标为(0,0),点A 的坐标为(0,4),点B 在第一象限内,将这个三角形绕原点O 逆时针旋转75°后,那么旋转后点B 的坐标 为 ▲ .
三、解答题:(本大题共7题,满分78分)
19.计算:2012327
223)
()()(-+---.
20.解方程:2322x x x x --=-.
22.小明不小心敲坏了一块圆形玻璃,于是他拿了其中的一小块到玻璃店去配同样大小的圆形玻璃(如图),店里的师傅说不知圆形玻璃的大小不能配,小明就借了一把尺,先量得其中的一条弦AB 的长度为60厘米,然后再量得这个弓形高CD 的长度为10厘米,由此就可求得半径解决问题.请你帮小明算一下这个圆的半径是多少厘米.
23.已知:如图,在平行四边形ABCD 中,AM =DM .
求证:(1)AE =AB ;
(2)如果BM 平分∠ABC ,求证:BM ⊥CE .
A
B
C
D
E
M
(第23题图)
A B
C
D
(第22题图)
24.如图,已知在平面直角坐标系中,点A 的坐标为(-2,0),点B 是点A 关于原点的对
称点,P 是函数)0(2
>=
x x
y 图像上的一点,且△ABP 是直角三角形. (1)求点P 的坐标;
(2)如果二次函数的图像经过A 、B 、P 三点,求这个二次函数的解析式;
(3)如果第(2)小题中求得的二次函数图像与y 轴交于点C ,过该函数图像上的点C 、点P 的直线与x 轴交于点D ,试比较∠BPD 与∠BAP 的大小,并说明理由.
25.如图,已知在矩形ABCD 中,AB =3,BC =4,P 是边BC 延长线上的一点,联接AP 交边CD 于点E ,把射线AP 沿直线AD 翻折,交射线CD 于点Q ,设CP =x ,DQ =y . (1)求y 关于x 的函数解析式,并写出定义域.
(2)当点P 运动时,△APQ 的面积是否会发生变化?如果
发生变化,请求出△APQ 的面积S 关于x 的函数解析式,并
写出定义域;如果不发生变化,请说明理由. (3)当以4为半径的⊙Q 与直线AP 相切,且⊙A 与⊙Q 也相切时,求⊙A 的半径.
A B C Q D (第25题图)
P E (第24题图)。