用于连续函数优化的改进蚁群算法
多目标优化算法综述
多目标优化算法综述随着科技的发展和社会进步,人们不断地提出更高的科学技术要求,其中许多问题都可以用多目标优化算法得到解决。
多目标优化算法的发展非常迅速,当前已经有各种综合性比较全面的算法,如:遗传算法、粒子群算法、蚁群算法、模拟退火算法等。
本文将进一步介绍这些算法及其应用情况。
一、遗传算法遗传算法(Genetic Algorithm,简称GA)是一种源于生物学进化思想的优化算法,它通过自然选择、交叉和变异等方法来产生新的解,并逐步优化最终的解。
过程中,解又称为个体,个体又组成种群,种群中的个体通过遗传操作产生新的个体。
遗传算法的主要应用领域为工程优化问题,如:智能控制、机器学习、数据分类等。
在实际应用上,遗传算法具有较好的鲁棒性和可靠性,能够为人们解决实际问题提供很好的帮助。
二、粒子群算法粒子群算法(Particle Swarm Optimization,简称PSO)是一种基于群体智能的优化算法,其核心思想是通过群体中的个体相互协作,不断搜索目标函数的最优解。
粒子群算法适用于连续和离散函数优化问题。
和遗传算法不同,粒子群算法在每次迭代中对整个种群进行更新,通过粒子间的信息交流,误差及速度的修改,产生更好的解。
因此粒子群算法收敛速度快,对于动态环境的优化问题有着比较突出的优势。
三、蚁群算法蚁群算法(Ant Colony Optimization,简称ACO)是一种仿生学启发式算法,采用“蚂蚁寻路”策略,模仿蚂蚁寻找食物的行为,通过“信息素”的引导和更新,粗略地搜索解空间。
在实际问题中,这些target可以是要寻找的最优解(minimum或maximum)。
蚁群算法通常用于组合优化问题,如:旅行商问题、资源分配问题、调度问题等。
和其他优化算法相比,蚁群算法在处理组合优化问题时得到的结果更为准确,已经被广泛应用于各个领域。
四、模拟退火算法模拟退火算法(Simulated Annealing,简称SA)是一种启发式优化算法,通过随机搜索来寻找最优解。
蚁群算法在最优路径选择中的改进及应用
c law enforcement. Therefore, c congestion was ciency of the improved algorithm with the Dijkstra algorithm. Thus, it could simulate the optimal driving path with better performance, which was targeted and innovative.关键词:蚁群算法;实际路况;最优路径Key words :ant colony optimization; actual road conditions; optimal path文/张俊豪蚁群算法在最优路径选择中的改进及应用0 引言在国务院发布的《国家中长期科学和技术发展规划纲要(2006-2020年)》中,将交通拥堵问题列为发展现代综合交通体系亟待解决的“三大热点问题”之一。
智能交通系统作为“互联网+交通”的产物,利用先进的科学技术对车、路、人、物进行统一的管控、调配,成为了当下各国缓解交通拥堵的一个重要途径。
路径寻优是智能交通系统的一个核心研究内容,可以有效的提升交通运输效率,减少事故发生频率,降低对城市空气的污染以及提升交通警察的执法效率等。
最著名的路径规划算法是Dijkstra算法和Floyd算法,Dijkstra算法能够在有向加权网络中计算得到某一节点到其他任何节点的最短路径;Floyd算法也称查点法,该算法和Dijkstra算法相似,主要利用的是动态规划思想,寻找加权图中多源节点的最短路径。
近些年,最优路径的研究主要集中以下几个方面:(1)基于A*算法的路径寻优。
A*算法作为一种重要的路径寻优算法,其在诸多领域内都得到了应用。
随着科技的发展,A*算法主要运用于人工智能领域,特别是游戏行业,在游戏中,A*算法旨在找到一条代价(燃料、时间、距离、装备、金钱等)最小化的路径,A*算法通过启发式函数引导自己,具体的搜索过程由函数值来决定。
13基于蚁群算法的连续函数优化通用MATLAB源代码
基于蚁群算法的连续函数优化通用MATLAB源代码此源码是对人工蚁群算法的一种实现,用于无约束连续函数的优化求解,对于含有约束的情况,可以先使用罚函数等方法,把问题处理成无约束的模型,再使用本源码进行求解.function [BESTX,BESTY,ALLX,ALLY]=ACOUCP(K,N,Rho,Q,Lambda,LB,UB)%% Ant Colony Optimization for Unconstrained Continuous Problem%% ACOUCP。
m%% 无约束连续函数的蚁群优化算法%% 此函数实现蚁群算法,用于求解无约束连续函数最小化问题%% 对于最大化问题,请先将其加负号转化为最小化问题% GreenSim团队——专业级算法设计&代写程序% 欢迎访问GreenSim团队主页→http://blog。
/greensim%% 输入参数列表% K 迭代次数% N 蚁群规模% Rho 信息素蒸发系数,取值0~1之间,推荐取值0.7~0。
95% Q 信息素增加强度,大于0,推荐取值1左右% Lambda 蚂蚁爬行速度,取值0~1之间,推荐取值0.1~0.5% LB 决策变量的下界,M×1的向量% UB 决策变量的上界,M×1的向量%%输出参数列表% BESTX K×1细胞结构,每一个元素是M×1向量,记录每一代的最优蚂蚁% BESTY K×1矩阵,记录每一代的最优蚂蚁的评价函数值% ALLX K×1细胞结构,每一个元素是M×N矩阵,记录每一代蚂蚁的位置% ALLY K×N矩阵,记录每一代蚂蚁的评价函数值%% 测试函数设置% 测试函数用单独的子函数编写好,在子函数FIT。
m中修改要调用的测试函数名即可%注意:决策变量的下界LB和上界UB,要与测试函数保持一致%% 参考设置% [BESTX,BESTY,ALLX,ALLY]=ACOUCP(50,30,0.95,1,0.5,LB,UB)%% 第一步:初始化M=length(LB);%决策变量的个数%蚁群位置初始化X=zeros(M,N);for i=1:Mx=unifrnd(LB(i),UB(i),1,N);X(i,:)=x;end%输出变量初始化ALLX=cell(K,1);%细胞结构,每一个元素是M×N矩阵,记录每一代的个体ALLY=zeros(K,N);%K×N矩阵,记录每一代评价函数值BESTX=cell(K,1);%细胞结构,每一个元素是M×1向量,记录每一代的最优个体BESTY=zeros(K,1);%K×1矩阵,记录每一代的最优个体的评价函数值k=1;%迭代计数器初始化Tau=ones(1,N);%信息素初始化Y=zeros(1,N);%适应值初始化%% 第二步:迭代过程while k<=KYY=zeros(1,N);for n=1:Nx=X(:,n);YY(n)=FIT(x);endmaxYY=max(YY);temppos=find(YY==maxYY);POS=temppos(1);%蚂蚁随机探路for n=1:Nif n~=POSx=X(:,n);Fx=FIT(x);mx=GaussMutation(x,LB,UB);if Fmx<FxX(:,n)=mx;Y(n)=Fmx;elseif rand〉1-(1/(sqrt(k)))X(:,n)=mx;Y(n)=Fmx;elseX(:,n)=x;Y(n)=Fx;endendendfor n=1:Nif n~=POSx=X(:,n);Fx=FIT(x);mx=GaussMutation(x,LB,UB);Fmx=FIT(mx);if Fmx〈FxY(n)=Fmx;elseif rand〉1-(1/(sqrt(k)))X(:,n)=mx;Y(n)=Fmx;elseX(:,n)=x;Y(n)=Fx;endendend%朝信息素最大的地方移动for n=1:Nif n~=POSx=X(:,n);r=(K+k)/(K+K);p=randperm(N);t=ceil(r*N);pos=p(1:t);TempTau=Tau(pos);maxTempTau=max(TempTau);pos3=pos(pos2(1));x2=X(:,pos3(1));x3=(1—Lambda)*x+Lambda*x2;Fx=FIT(x);Fx3=FIT(mx);if Fx3〈FxX(:,n)=x3;Y(n)=Fx3;elseif rand〉1—(1/(sqrt(k))) X(:,n)=x3;Y(n)=Fx3;elseX(:,n)=x;Y(n)=Fx;endendend%更新信息素并记录Tau=Tau*(1-Rho);maxY=max(Y);minY=min(Y);DeltaTau=(maxY—Y)/(maxY—minY);Tau=Tau+Q*DeltaTau;ALLX{k}=X;ALLY(k,:)=Y;minY=min(Y);pos4=find(Y==minY);BESTX{k}=X(:,pos4(1));BESTY(k)=minY;disp(k);k=k+1;end%% 绘图BESTY2=BESTY;BESTX2=BESTX;for k=1:KTempY=BESTY(1:k);minTempY=min(TempY);posY=find(TempY==minTempY);BESTY2(k)=minTempY;BESTX2{k}=BESTX{posY(1)};endBESTY=BESTY2;BESTX=BESTX2;plot(BESTY,’—ko','MarkerEdgeColor’,’k’,’MarkerFaceColor','k’,'MarkerSize’,2) ylabel('函数值')xlabel(’迭代次数’)grid on。
遗传算法,粒子群算法和蚁群算法的异同点
遗传算法,粒子群算法和蚁群算法的异同点
遗传算法、粒子群算法和蚁群算法是三种不同的优化算法,它们的异同点如下:
1. 原理不同:
遗传算法是一种模拟自然进化过程的优化算法,主要利用遗传和交叉等运算来产生下一代候选解,通过适应度函数来评价每个候选解的好坏,最终选出最优解。
粒子群算法基于对群体智能的理解和研究,模拟了鸟群或鱼群等动物群体的行为,将每个解看作一个粒子,粒子通过跟踪历史最佳解的方式来更新自己的位置与速度,直到达到最佳解。
蚁群算法是基于模拟蚂蚁在食物和家之间寻找最短路径的行为,将每个解看作一只蚂蚁,通过随机选择路径并留下信息素来搜索最优解。
2. 适用场景不同:
遗传算法适用于具有较大搜索空间、多个可行解且无法枚举的问题,如旅行商问题、无序机器调度问题等。
粒子群算法适用于具有连续参数、寻求全局最优解的问题,如函数优化、神经网络训练等。
蚁群算法适用于具有连续、离散或混合型参数的优化问题,如
路径规划、图像分割等。
3. 参数设置不同:
遗传算法的参数包括个体数、交叉概率、变异概率等。
粒子群算法的参数包括粒子数、权重因子、学习因子等。
蚁群算法的参数包括蚂蚁数量、信息素挥发率、信息素初始值等。
4. 收敛速度不同:
遗传算法需要较多的迭代次数才能得到较优解,但一旦找到最优解,一般能够较好地保持其稳定性,不太容易陷入局部最优。
粒子群算法的收敛速度较快,但对参数设置较为敏感,可能会陷入局部最优。
蚁群算法的收敛速度中等,能够较好地避免局部最优,但也容易出现算法早熟和陷入局部最优的情况。
智能优化算法综述
智能优化算法综述智能优化算法(Intelligent Optimization Algorithms)是一类基于智能计算的优化算法,它们通过模拟生物进化、群体行为等自然现象,在空间中寻找最优解。
智能优化算法被广泛应用于工程优化、机器学习、数据挖掘等领域,具有全局能力、适应性强、鲁棒性好等特点。
目前,智能优化算法主要分为传统数值优化算法和进化算法两大类。
传统数值优化算法包括梯度法、牛顿法等,它们适用于连续可导的优化问题,但在处理非线性、非光滑、多模态等复杂问题时表现不佳。
而进化算法则通过模拟生物进化过程,以群体中个体之间的竞争、合作、适应度等概念来进行。
常见的进化算法包括遗传算法(GA)、粒子群优化(PSO)、人工蜂群算法(ABC)等。
下面将分别介绍这些算法的特点和应用领域。
遗传算法(Genetic Algorithm,GA)是模拟自然进化过程的一种优化算法。
它通过定义适应度函数,以染色体编码候选解,通过选择、交叉、变异等操作来最优解。
GA适用于空间巨大、多峰问题,如参数优化、组合优化等。
它具有全局能力、适应性强、并行计算等优点,但收敛速度较慢。
粒子群优化(Particle Swarm Optimization,PSO)是受鸟群觅食行为启发的优化算法。
它通过模拟成群的鸟或鱼在空间中的相互合作和个体局部来找到最优解。
PSO具有全局能力强、适应性强、收敛速度快等特点,适用于连续优化问题,如函数拟合、机器学习模型参数优化等。
人工蜂群算法(Artificial Bee Colony,ABC)是模拟蜜蜂觅食行为的一种优化算法。
ABC通过模拟蜜蜂在资源的与做决策过程,包括采蜜、跳舞等行为,以找到最优解。
ABC具有全局能力强、适应性强、收敛速度快等特点,适用于连续优化问题,如函数优化、机器学习模型参数优化等。
除了上述三种算法,还有模拟退火算法(Simulated Annealing,SA)、蚁群算法(Ant Colony Optimization,ACO)、混沌优化算法等等。
常见的群体智能算法
引言:随着技术的发展,群体智能算法正在成为解决复杂问题的有效方法之一。
群体智能算法是一类借鉴自然界群体行为的启发式优化算法,通过多个个体的相互协作与竞争,来求解复杂问题。
本文将介绍常见的群体智能算法,并对其原理、应用、优缺点进行详细阐述,以期帮助读者更好地理解和应用这些算法。
概述:群体智能算法的主要特点是通过模拟群体中个体的行为进行求解。
这种算法中个体之间通过信息交流、竞争和合作等方式实现问题的优化。
常见的群体智能算法包括遗传算法、粒子群优化算法、蚁群算法、人工鱼群算法和蜂群算法等。
下面将对这些算法的原理、应用以及优缺点进行详细介绍。
正文:一、遗传算法1.原理:遗传算法是一种通过模拟自然界的生物进化过程来优化问题的方法。
它通过染色体编码个体,利用交叉、变异等操作新的个体,并通过适应度函数评估个体的适应度。
然后,根据适应度选择优秀个体进行下一代的繁衍。
2.应用:遗传算法广泛应用于优化问题的求解,如函数优化、机器学习、图像处理等领域。
3.优缺点:优点:全局搜索能力强,易于并行化实现。
缺点:对问题的描述要求高,需要预先设定好适应度函数和编码方式。
二、粒子群优化算法1.原理:粒子群优化算法模拟鸟群或鱼群中的群体协作行为。
每个粒子代表一个潜在解,通过追随当前最优个体和个体之间的信息交流,来寻找最优解。
2.应用:粒子群优化算法广泛应用于连续优化问题的求解,例如参数优化、神经网络训练等。
3.优缺点:优点:收敛速度快,易于实现。
缺点:容易陷入局部最优。
三、蚁群算法1.原理:蚁群算法模拟蚂蚁在寻找食物时的行为。
蚂蚁通过信息素的释放和感知,选择路径并与其他蚂蚁相互交流,最终找到最短路径。
2.应用:蚁群算法广泛应用于路径规划、调度问题等领域。
3.优缺点:优点:适用于离散问题,具有较好的全局搜索能力。
缺点:参数设置较为复杂,易于陷入局部最优。
四、人工鱼群算法1.原理:人工鱼群算法模拟鱼群觅食的行为。
每个鱼代表一个潜在解,通过觅食、追随和扩散等行为寻找最优解。
蚁群算法的改进与实现
蚁群算法的改进与实现作者:何巧亮指导老师:吴超云摘要近年来蚁群算法的研究有了很大的进展,本文介绍了一种基于信息素更新的蚁群算法—最优-最差蚂蚁系统.该算法通过对局部信息素、全局信息素更新的改进,以及对最优解进行更大限度的增强和对最差解的削弱,使得属于最优路径的边与属于最差路径的边之间的信息素量差异进一步增大,从而使得蚁群的搜索行为更集中于最优解的附近.最后通过仿真实验,证明了改进算法可以得到最优解,且收敛速度比一般的蚁群算法更快.关键词蚁群算法TSP信息素1 引言蚁群算法(Ant Colony Algorithm)是通过对自然界中真实的蚁群集体行为的研究而提出的一种基于种群的模拟进化算法.该算法属于随机搜索算法,由意大利学者M.Dorigo等[1]首先提出.该算法充分利用了蚁群搜索食物的过程来求解TSP,为了区别于真实蚂蚁群体系统,称该算法为“人工蚁群算法”.用蚁群方法求解NP-complete问题如TSP问题[2]、分配问题以及job-shop调度问题等,取得了较好的试验结果.蚁群算法的近10年来的研究表明:蚁群算法用于解决组合优化问题时具有很强的发现解的能力,且具有分布式计算、易于与其它方法结合、鲁棒性强等优点,在动态环境下表现出高度的灵活性和健壮性.除了业已得到公认的遗传算法、模拟退火算法、禁忌搜索算法、神经网络算法等热门进化类方法,新加入的蚁群算法也开始崭露头角,为复杂困难的系统优化问题提供了新的求解方法.尽管一些思想尚处于萌芽时期,但人们已隐隐约约认识到,人类诞生于大自然,解决问题的灵感似乎也应该来自于大自然.这种由欧洲学者提出并加以改进的新颖系统优化思想,正在吸引着越来越多的学者的关注和研究,应用范围也开始遍及到许多科学技术和工程领域.蚁群算法在运算过程中,蚁群的转移是由各条路径上留下的信息量强度和城市之间的距离来引导的.蚁群运动的路径总是趋近于信息量最大的路径.通过对蚁群以及蚁群算法的研究表明,不论是真实蚁群还是人工蚁群系统,通常情况下,信息量最强的路径与所需要的最优路径比较接近.然而,信息量最强的路径不是所需要最优路径的情况仍然存在,而且在人工蚁群系统中,这种现象经常出现.这是由于在人工蚁群系统中,路径上的初始信息量是相同的,蚁群创建的第一条路径所获得的信息主要是城市之间的距离信息,这时蚁群算法等价于贪婪算法.第一次循环中蚁群在所经过的路径上留下的信息不一定能反映出最优路径的方向,特别是蚁群中个体数目较少或者所计算的路径组合较多时,就更不能保证蚁群创建的第一条路径能引导蚁群走向全局最优路径.第一次循环后,蚁群留下的信息会因为正反馈作用使得这条路径不是最优的路径,而且可能使离最优路径相差很远的路径上的信息得到不应有的增强,从而阻碍以后的蚂蚁发现更好的全局最优路径.不仅是第一次循环所建立的路径可能对蚁群产生误导,任何一次循环,只要这次循环所利用的信息较平均地分布在各个方向上,这次循环所释放的信息素就可能会对以后蚁群的决策产生误导.因此蚁群所找出的解需要通过一定的方法来增强,使蚁群所释放的信息素尽可能地不对以后的蚁群产生误导.同时,蚁群算法存在搜索时间长、易于停滞的缺点.近年来的研究表明,在解的质量和最优解的距离之间存在着一定的关系.因此将搜索集中于搜索过程中所找出的最优解的周围,是这些改进算法提高算法性能的基本着重点.2 基本蚁群算法系统模型基本蚁群算法系统是我们研究改进的蚁群算法的基础,在近年的研究中起着极其重要的作用,下面我们将引入其模型以及相关改进算法的说明.2.1 TSP 问题下的基本蚁群算法]3[Ant System 最先用于求解旅行商问题(TSP),下面就以TSP 问题为例来说明Ant System.设m 为蚁群数量;ij d 为城市i ,j 之间的距离;)(t τ为t 时刻连接城市i 和j 的路径(i,j)上的残留信息量,初始时刻各路径上信息量相等,设C =)0(τ(C 为常数);η表示城市i 转移到城市j 的期望程度,可根据某种启发式算法具体确定,在TSP 问题中一般取ij ij d l /=η.蚂蚁k(k=1,2,…,m)根据各条路径上的信息量决定转移方向,t 时刻蚂蚁k 从城市i 向城市j转移的概率)(t P kij 计算式为()()()0ij ij k ijis is t t P t otherwiseαβαβτητη⎧⨯⎪=⨯⎨⎪⎩∑ (2.1) 式中,j ∈allowed k ,s ∈allowed k ,allowed k ={0,1,…,n-1}-tabu k 表示蚂蚁k 下一步允许选择的城市.与自然蚁群系统不同之处在于人工蚁群系统具有一定的记忆力, tabu k(k=1,2,…,m )用于记录蚂蚁k 所走过的城市,集合tabu k 随着进化过程进行动态调整.人工蚁群保留了自然蚁群信息素挥发特点,随着时间的推移,以前留下的信息逐渐消逝,参数ρ (10<≤ρ)表示信息素的持久性,1-ρ则表示信息素的衰减度.在每只蚂蚁完成对所有城市(n 个)的访问后(即一次循环结束) ,各路径的信息素量根据式(2.2) ,式(2.3) 进行调整.ij ij ij t n t τρτρτ∆-+=+)1()(.)( (2.2)∑=∆=∆mk kijij 1ττ (2.3) 在(2.3)式中,kij τ∆表示第k 只蚂蚁在本次循环中留在路径(i ,j)上的信息素量,ij τ∆表示本次循环中路径(i ,j)上的信息素增量. 否则 )时刻经过路径(只蚂蚁在若第⎪⎩⎪⎨⎧+=∆ 0,1 j i t k L Qk kij τ (2.4) 在(2.4)式中, Q 是1 个常数, 表示蚂蚁所留的信息素量,k L 表示第k 只蚂蚁在本次循环中所走路径的长度.在初始时刻,。
一种求解连续空间约束优化问题的蚁群算法
一种求解连续空间约束优化问题的蚁群算法蚁群算法是一种用于求解连续空间约束优化问题的智能算法,它可以在搜索过程中考虑对连续空间中的约束。
它以蚂蚁的协作行为为模型,通过交互式迭代学习的方法来搜索优化的最优点。
蚁群算法首先将被优化的多变量函数想象为一个虚拟蚁群运行的空间,然后引入一种启发式规则来促进蚁群在这个空间里收敛。
这样,每只蚂蚁会在该空间中寻找最优点。
1、关于蚁群算法(1)概念:蚁群算法是一种以蚂蚁群集体智能行为为基础,用于求解连续空间约束优化问题的计算方法,它采取交互式迭代学习的方法,通过不断迭代的过程来获取局部最优解的全局最优解。
(2)运行机制:蚁群算法通过不断派生更新后的解来寻找全局最优解,它以有限集合中的粒子为搜索基础,通过分布式迭代迭代式搜索获取高效可用的解决方案。
(3)优点:蚁群算法搜索过程中可以很好地考虑约束,计算复杂度较低,可以很好地并行计算,具有自适应性,可以抗局部局势影响,对解的准确度更高,计算效率高2、蚁群算法的应用(1)服务排队:蚁群算法可用于排队管理,求解系统的服务时间最优策略。
(2)复杂工程设计:可以用于建筑、机械等复杂工程设计优化,通过模拟蚁群大量行为来搜寻对目标值的最佳取值,以此计算出最佳设计方案。
(3)优化投资组合:可以应用于投资组合优化,通过蚁群智能技术,找出投资组合可以得到更优的风险收益指标。
(4)飞行路径规划:蚁群算法可用于航空航迹规划,通过迭代寻优,解决航班活动的最优路径问题。
3、蚁群算法的缺陷(1)结果可能不稳定:蚁群算法运行的结果可能不稳定,算法的收敛性、局部搜索特性决定算法的收敛性,如果初始参数不合理,可能导致收敛至错误的最优值。
(2)调整参数对结果影响大:参与蚁群算法运行的参数会对算法运行结果造成极大的影响,需要谨慎审查才能得到可靠的结果。
(3)计算复杂度高:蚁群算法需要大量的计算,耗时可能较长,因此针对特定临界问题,其计算度可能较大。
(4)算法初值依赖性强:蚁群算法对初值依赖性很强,如果初值设置不当,结果有可能会出错,而且需要大量试验才能获得正确的结论。
蚁群算法及案例分析
群在选择下一条路径的时
候并不是完全盲目的,而是
按一定的算法规律有意识
地寻找最短路径
自然界蚁群不具有记忆的
能力,它们的选路凭借外
激素,或者道路的残留信
息来选择,更多地体现正
反馈的过程
人工蚁群和自然界蚁群的相似之处在于,两者优先选择的都
是含“外激素”浓度较大的路径; 两者的工作单元(蚂蚁)都
Eta=1./D;
%Eta为启发因子,这里设为距离的倒数
Tau=ones(n,n);
%Tau为信息素矩阵
Tabu=zeros(m,n);
%存储并记录路径的生成
NC=1;
%迭代计数器
R_best=zeros(NC_max,n); %各代最佳路线
L_best=inf.*ones(NC_max,1);%各代最佳路线的长度
for ii=2:N
R_best(NC,:)=Tabu(pos(1),:);
plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)])
L_ave(NC)=mean(L);
hold on
NC=NC+1;
end
%第五步:更新信息素
Delta_Tau=zeros(n,n);
, 表示可根据由城市i到城市j的期望程度,可根据启发式算法具体确定,
一般为 。
= 0,算法演变成传统的随机贪婪算法最邻近城市被选中概率最大
= 0,蚂蚁完全只根据信息度浓度确定路径,算法将快速收敛,这样构出
的路径与实际目标有着较大的差距,实验表明在AS中设置α=1~2,β=2~5比较合
DrawRoute(C,Shortest_Route)
蚁群优化算法及其理论进展
蚁群优化算法及其理论进展摘要:蚁群优化算法作为一种新的智能计算模式,近年来在理论研究上取得了丰硕成果。
本文主要阐述蚁群优化算法的研究成果,论述了算法在离散域、连续域问题上的理论进展,然后对收敛性研究做了介绍。
最后,阐述了蚁群优化算法的发展趋势。
关键词:蚁群算法离散域连续域收敛性中图分类号:tp301.6 文献标识码:a 文章编号:1674-098x(2012)04(a)-0032-021 引言意大利学者dorigo[1]等人根据真实蚂蚁觅食行为,提出了蚁群优化算法的(aco)最早形式—蚂蚁系统(as),并应用在tsp旅行商问题中。
该算法采用分布式并行计算机制,易与其他方法结合,具有较强的鲁棒性。
as算法提出之后,其应用范围逐渐广泛,已经由单一的tsp领域渗透到了多个应用领域[2],算法本身也不断完善和改进,形成了一系列改进aco算法。
2 蚁群算法理论研究2.1 基本蚂蚁算法与真实蚂蚁觅食行为类似,基本蚁群算法主要包括路径选择和信息素更新两个步骤。
以蚁群算法求解tsp问题为例[1]:tsp问题可表述成,旅行商走完n个城市有多种走法,每周游完所有城市可得长度为i的路径,它们构成解的集合。
而每个解是依次走过n个城市的路径距离构成的集合,可表示设是在第g次周游中城市i上的蚂蚁数。
在算法周游过程中,每只蚂蚁根据概率转换规则生成一个有n步过程的行动路线,整个算法的周游过程以g为刻度,。
其中是预先设定的算法最大周游次数,当所有蚂蚁移动一次后,周游次数计数器加1。
经过次周游,基本可找到一条最短路径。
设,np为算法中总蚂蚁数。
基本步骤为:算法开始时,每条路径上初始信息素设置为常数,并对每只蚂蚁设置随机起始城市。
蚂蚁移动过程中,从城市i选择移动到城市j主要是根据概率启发公式(1)来完成,每次选择的城市都是从可选城市列表中取出。
(1)其中为启发优先系数且。
可以改变信息素与启发优先系数的相对重要性。
如果则最近的城市容易被选择,这类似经典的随机贪婪算法。
蚁群算法基于网格化分策略的连续域改进分析
蚁群算法基于网格化分策略的连续域改进分析空间函数优化是蚁群算法中常遇到的问题,针对这一问题基于网格划分策略提出了一种改进方式。
该算法通过利用特殊的信息更新策略,使得信息素在更新时无需使用具体的目标函数值,在这种状态下目标函数差异化就不会令结果出现问题,既不会带来不利影响。
并且在计算中网格点可以直接将信息素作为转移概率使用。
标签:蚁群算法;网格法;信息素引言近年来,面向连续空间优化问题求解的蚁群优化(ACO)算法吸引了广大研究者的研究兴趣,在算法模型及应用方面,有了长远的进展。
连续蚁群算法模型最早由Bilchev等人提出,它先使用GA对参数空间进行全局搜索以得到一个较好解,然后利用蚁群算法对该解进行局部优化。
然而,在目前连续域蚁群算法模型中,大多要根据被优化系统的目标函数来进行信息素的更新和转移概率的计算。
当解对应的目标函数值之间数量相差大时,显然会使某些局优路径上的信息素累积过快;而当局部最优解与全局最优解的目标函数值相差不大时,又会造成对应路径上的信息素难以区分,从而使算法陷入局部最优的可能性极大增加。
本文借鉴Kong模型的信息素更新方法,并使用网格划分策略,提出一种面向连续域优化问题求解的连续域改进蚁群算法(IACA)。
1 设计分析1.1 IACA模型依照算法模型的改进可以将连续域改进法进行以下描述:首先将连续优化问题解x的分量取值范围予以确定,即xit≤x≤xiu(i=1,2,……,n)。
并将变量平均分为N分。
那么在n维空间中变回形成构成网格的(N+1)n个点,从而对参数空间完成具体的划分,具体如图1所示。
图1 参数空间网格划分示意图在IACA中,问题的求解需要通过m只蚂蚁相互协作予以完成,每只蚂蚁都会选择一个点从网格的第一列爬行到n列构建解。
当蚂蚁选择第i列点时,需要根据N+1点上对信息素分布状态随机予以选择。
在计算中,选择概率的确定需要以算法的运行时刻作为基础,蚂蚁在构建解的过程中,一个时刻为一个完整解的构建。
人工蜂群算法和蚁群算法
人工蜂群算法和蚁群算法人工蜂群算法(Artificial Bee Colony Algorithm,简称ABC 算法)和蚁群算法(Ant Colony Algorithm,简称ACA)都是基于自然界中生物行为的启发式搜索算法。
它们在解决优化问题方面具有较强的通用性,被广泛应用于工程、自然科学和社会科学等多个领域。
一、人工蜂群算法(ABC算法)人工蜂群算法是由土耳其学者Karaboga于2005年首次提出,灵感来源于蜜蜂寻找花蜜的过程。
该算法通过模拟蜜蜂的搜索行为来寻找最优解。
算法步骤:1. 初始化一群蜜蜂,每个蜜蜂代表一个潜在的解决方案。
2. 蜜蜂根据蜂王释放的信息素和自己的飞行经验,选择下一个搜索位置。
3. 评估每个位置的花蜜量(即解的质量)。
4. 根据花蜜量和蜜罐位置更新信息素。
5. 经过多次迭代,直至满足终止条件,如达到最大迭代次数或找到满足要求的解。
二、蚁群算法(ACA)蚁群算法是由意大利学者Dorigo、Maniezzo和Colorni于1992年提出的,灵感来源于蚂蚁在寻找食物过程中释放信息素并利用这种信息素找到最优路径的行为。
算法步骤:1. 初始化一群蚂蚁,每个蚂蚁随机选择一个节点开始搜索。
2. 蚂蚁在选择下一个节点时,会根据当前节点的信息素浓度和启发函数(如距离的倒数)来计算转移概率。
3. 每只蚂蚁遍历整个问题空间,留下路径上的信息素。
4. 信息素随时间蒸发,蚂蚁的路径越短,信息素蒸发得越慢。
5. 经过多次迭代,直至满足终止条件,如达到最大迭代次数或找到满足要求的解。
三、比较原理不同:ABC算法基于蜜蜂的搜索行为,而ACA基于蚂蚁的信息素觅食行为。
应用领域:ABC算法适用于连续优化问题,而ACA在组合优化问题中应用更为广泛。
参数调整:ABC算法的参数较少,调整相对容易;ACA的参数较多,调整和优化难度较大。
局部搜索能力:ABC算法具有较强的局部搜索能力;ACA通过信息素的蒸发和更新,能够避免早熟收敛。
连续函数优化的一种新方法_蚁群算法
计算 机 测 量 与 控 制 . 2 0 0 5 . 1 3 ( 3 )Computer M easurement & Control〃 270 〃文章编号 :1671 - 4598 ( 2005) 03 - 0270 - 03中图分类号 : T P 301 . 6文献标识码 : A连续函数优化的一种新方法 - 蚁群算法潘 丰 , 李海波(江南大学 通信与控制工程学院 , 江苏 无锡 214036)摘要 : 针对连续函数优化问题 , 给出了一种基于蚂蚁群体智能搜索的随机搜索算法 , 对目标函数没有可微的要求 , 可有效克服经典算法易于陷入局部最优解的常见弊病 。
对基本的蚁群算法做了一定的改进 , 通过几个函数寻优的结果表明 , 算法具有良好的效果 。
同 时 , 运用遗传算法对蚁群算法中的一些重要参数进行了寻优 , 提高了蚁群算法的收敛速度 。
关键词 : 全局优化 ; 蚁群算法 ; 遗传算法N e w Method of Cont i nuous Funct i on Opt i mizat i on - A nt Col ony A l gorit h mPa n Fe n g , L i Hai b o( School of Co mmunicat io n and Co nt rol Engi neeri ng , So ut her n Y a ngt ze U ni ver sit y , Wuxi 214036 , Chi na )A bstr act : To sol ve co nti nuo us f unctio n op ti mizatio n p ro ble ms , a new stocha stic sea rch al go rit h m ba sed o n a nt swa r m i nt elli g e nc e i s i n 2t ro duced . Thi s al go rit h m needn ’t co nti nuo u s eval uatio n of deri vat i ves f o r t he o bject f unct io n a nd it ca n co nquer t he sho rt co mi ngs w hich c la s 2 sic al go r i t hms a re ap t to f all i nto t he local op ti mum . At t he sa me ti me , i n o r der to reduce t he nu mber of f unct io n eval uatio n s r e qui re d f o r co nver gence , t he ba sic CA CO al go rit h m i s i mp ro ved. The i m p ro ved al go rit h m ha s been t est ed f o r va riet y of diff erent bench ma r k t e st f unc 2 tio n s , a nd i t ca n ha ndle t he se op ti mizatio n p ro ble ms ver y well . Furt her mo re , genet ic al go rit h m i s ill u st rat ed to op ti mize t he p a r a m e t er s r e 2 lat ed to t he a nt colo ny al g o rit h m , so t hat t he co n ver gence sp eed of t he ant colo n y al go rit hm i s i mp ro ved .K ey words : glo bal op t i mizat io n ; a n t colo n y al go rit h m ; genetic al go r it h m于全局搜索 , L 个蚂蚁用作局部搜索 ( A = G + L ) 。
改进的蚁群算法求解连续性空间优化问题
引 言
蚁 群 算法 ( tS s m, AS 是 由意 大 利 学 者 An y t e )
蚁群 信 息素 更新 规则 。为 了克服蚁 群算 法搜 索 时间 过长 ,易 陷入 局部 最优 等缺 点 ,在 搜索 过程 中引入 了随机算 法 ,并用 以求 解连 续 函数优 化 问题 中 。
运 算 结 果 表 明新 的蚁 群 算 法 对 求 解 连 续 函数 优 化 问题 有 较 好 的 改进 效 果 。 关 键 词 :连 续 函 数 优 化 ;随 机 算 法 ;蚁 群 算 法 中 图分 类号 :T 0 . P3 1 6 文献标识码:A
A a d m i e n o o y ag rt m o o t u u u c i n o t i a i n r n o z da t ln l o i c h f rc n i o sf n t p i z to n o m
模 式 调 整 信 息 素 的改 进 蚁 群 算 法 R A ( a d mie A t ooyAloi m) AC R n o z d n C ln g rh 。采 用 随 机 地 计 算 部 分 点 的 函数 值 , t
并对 当前最优 、次优解 的部分解启用新 的信 息素调整 规则。该算法 保持了解 的多样性 ,增强了全局搜索的能力。
n m b r T e ag r h c n e h n e t e a i t fg o a e r h b n r a i g t e d v r i f s l t n . u e . h l o i m a n a c h b l y o l b ls a c y i c e sn h i e st o u i s A t i y o o smu a i n d mo sr t st a h r p s d ag r h c n e ce t n u h n mu v l e a d h sa i lt e n tae t e p o o e l o i m a f i n l f d o tt e mi i m au , n a o h t t i yi
蚁群算法在连续空间寻优问题求解中的应用
蚁群算法在连续空间寻优问题求解中的应用蚁群算法是一种启发式优化算法,经常用于解决连续空间寻优问题。
蚁群算法的基本思想是模拟蚂蚁在寻找食物时的行为,通过不断的搜索和信息交流来寻找最优解。
具体地,蚁群算法将搜索空间看作是一个地图,将每个搜索点看作是一座城市。
蚂蚁在搜索过程中通过信息素量来指导搜索方向,同时不断更新信息素,以便更好地指导后续的搜索。
在连续空间寻优问题中,蚁群算法可以通过以下步骤进行求解: 1. 确定目标函数:需要明确需要优化的目标函数,以便判断算
法是否收敛。
目标函数可以是连续的,也可以是离散的。
2. 初始化参数:需要确定蚂蚁个数、信息素初始值、挥发系数、启发式函数等参数。
3. 蚂蚁搜索:每个蚂蚁从随机的起始点开始,按照信息素量和
启发式函数确定搜索方向,直到达到终止条件。
在搜索过程中,每个蚂蚁通过更新信息素来指导搜索方向。
4. 更新信息素:在所有蚂蚁完成搜索后,更新每个搜索点的信
息素量。
一般情况下,信息素量会随着时间的推移而挥发,以便搜索能够更好地探索新的搜索空间。
5. 判断是否收敛:当目标函数的变化小于预定的阈值时,算法
可以认为已经收敛,可以结束搜索过程。
否则,需要重复步骤 3-5 直到满足条件。
总的来说,蚁群算法在解决连续空间寻优问题时具有很好的效果。
它可以快速地搜索整个搜索空间,同时具有很好的全局搜索能力和局部搜索能力。
当问题具有多个局部最优解时,蚁群算法可以通过信息素量的作用,避免落入局部最优解而无法跳出。
基于改进蚁群算法求解连续空间寻优问题
2 0 1 3年 6月
J u n . 2 0 1 3
基 于 改进 蚁群 算 法 求解 连 续 空 间寻 优 问题
黄 敏 , 靳 婷 , 钟 声 , 马玉 春。
( 1 . 海南大学 信息科学技术 学院 , 海南 海 口 5 7 0 2 2 8 , 2 。 复旦大学 计算机科学与技术 学院, 上海 2 0 0 4 3 8 ;
算法 , 具 有较 强 的鲁棒性 , 优 良的全局 优化 能力 , 并且 易 于与其 他方 法相 结合 等优 点 [ 4 ] , 目前 已在 许多 领域 得 到 了很 好 的应用 。近 些年公 开 发表 的研 究成果 已显示 出蚁群 算法 在求 解离 散 空间优 化 问题 方 面 的强大 优 越性 。 但蚁 群算 法在 求解连 续 空 间优 化 问题方 面 的研 究相对 较少 , 主要 有 汪镭等 将离 散域 蚁群 算法 中的
出的用 于连 续优 化的 蚁群算 法 ; 陈烨等 提 出的用 于连 续优 化 的蚁群 算法 [ 7 ] ; 王君 等提 出用 于求 解 连续 函数
约 束优 化 的改进 蚁群算 法 [ 8 ; 赵海 英等 提 出用于 求解 函数 优化 的正 态分 布的 蚁群算 法 等[ 9 ] 。 本文 对应 用蚁
群 算法 求解 连续 空 间寻优 问题 作一些 探索性 研 究 , 基 于文 献 E s ] 的研 究 成果提 出改 进 的蚁群 算法 。
1 用于 连 续 空 间寻 优 的蚁 群 算 法
在 连续 空 间的寻 优 问题 求解 中 , 解 空 间是一 种 区域性 的表 示方 式 。文献 [ 5 ] 定义 了用于 求解 连续 函数 寻 优 问题 的蚁群 算法 , 其算 法的 主要 思想是 : 每 一步 求解过 程 中的 蚁群 信息 量 留存方式 不应 是针 对离 散 的 点集分 量 , 而 应在 对 当前蚁 群所 处点 集作 出影 响的 同时 , 对这 些点 的周 围 区域 也 有相应 的影响 。 这样 , 对蚁
蚁群算法ppt课件
,则以概率
pij
ij (k 1) , j T ij (k 1)
, pij 0, j T
lT
到达j,L(s) L(s) { j},i : j;若L(s) N且T {l | (i,l) A,l L(s)}{i0}
则到达 i0, L(s) L(s) {i0},i : i0; 重复STEP 2。 16
在STEP 3中,蚁群永远记忆到目前为止的最优解。
19
图的蚁群系统(GBAS)
四个城市的非对称TSP问题,距离矩阵和城市图示如下:
0 1 0.5 1
D
(dij
)
1
1.5
0 5
1 0
1
1
1 1 1 0
20
5 初始的蚁群优化算法—基于图的蚁群 系统(GBAS)
假设共4只蚂蚁,所有蚂蚁都从城市A出发,挥发因子
出 蚂计 蚁s算行得走到的的城最市好集解合。,否初则始使L蚂(s蚁) 为s从空起集点,1i0出s发,m用。L(s) 表示
STEP 2 (内循环) 按蚂蚁1 s m的顺序分别计算。当蚂 蚁在城市i,若 L(s) N或{l | (i,l) A,l L(s)}
完成第s只蚂蚁的计算。否则,若
L(s) N且T {l | (i,l) A,l L(s)} {i0}
31 168
1 24
0
这是第一次外循环结束的状态。
为了说明蚁群算法的原理,先简要介绍一下蚂蚁搜寻食物的具 体过程。在蚁群寻找食物时,它们总能找到一条从食物到巢穴之间 的最优路径。这是因为蚂蚁在寻找路径时会在路径上释放出一种特 殊的信息素。当它们碰到一个还没有走过的路口时.就随机地挑选 一条路径前行。与此同时释放出与路径长度有关的信息素。路径越 长,释放的激索浓度越低.当后来的蚂蚁再次碰到这个路口的时 候.选择激素浓度较高路径概率就会相对较大。这样形成一个正反 馈。最优路径上的激索浓度越来越大.而其它的路径上激素浓度却 会随着时间的流逝而消减。最终整个蚁群会找出最优路径。
相位编码量子蚁群算法及在连续优化中的应用
在 空间 [ ,叮 进 行 , 02T ] 而与具 体 问题 无关 , 对不 同尺度 空 间的优 化 问题 具 有 良好 的适应 性 。以 函数极 值优 化
和控制器参数优化为例 , 仿真结果表明该方法的搜 索能力和优化效率明显优于连续量子蚁群算法和标 准遗传
算 法。
关键词 :量子计 算 ; 群算 法 ; 位编码 ; 续优化 ; 蚁 相 连 优化 算 法
李 盼池 , 杨 雨 张巧翠 ,
( 东北石 油大 学 a石 油与天 然气工程博 -g科研 流动 站 ; . . L : - b 计算机 与信 息技 术 学院 , 黑龙江 大庆 13 1 ) 638 摘 要 :针 对蚁 群算 法只适 用于 离散优 化 问题 的局 限性 和收敛 速度慢 的 问题 , 出一种适合 连 续优 化 的 量子蚁 提
a p ia i n t o tn o s o tmiai n p l to o c n i u u p i z t c o
L a—h ,Y N u , H N i — i I nci P A GY Z A G Qa c ou
( . ot otrl e ac et i& G sE gnei bSho o p t a P s dc a R s r C n ro l — o e h e fO a nier g, .colfC m ue I omai ehooy N a e eo u U ir t, n o r& n r tnTcnl , o h ̄t t  ̄ m nv sy f o g Pr ei
D H i nj n 13 1 C ia 哪i eogi g 63 8, hn ) l a
Ab t a t sr c :Ai n t h h rc mi g o n oo y o t zt n w ih w s o l ut be fr te ds r t p i ia in a d t e mig a e s o to n fa tc ln p i ai h c a ny s i l o h ice e o t z t n h t mi o a m o p o lm fs w c n e g n e h sp p rp o o e u tb e q a tm n oo y o t z t n ag r h f rc n iu u p i ・ r be o l o v r e c ,t i a e r p s d a s i l u n u a t ln pi ai l oi m o o t o so t o a c mi o t n mi zt n ai .T e lc t n f n r ie t n o e yt e p a eo u i ep o o e lo i m.F rt d tr i e ed s o h ai so t o o a we ed r cl e c d d b h s f bt i t rp s d ag rt y h q sn h h is , ee m n d t e - h t ain t v c o dn o t e s lc r b b l y c n tu td b h h r mo e i fr t n a d h u si n o main,a d i t o mo e a c r i g t h ee tp o a i t o sr ce y t e p e o n n oma i n e r t if r t n o i o i c o n te p ae h u i fa t y q a t m oa in g tst c iv n vn ,a d mua e y q a tm a l Z g t st - h n u d t d t eq b t o n u n u r tt ae o a h e e a t s b o mo i g n tt d b u n u P u i ae i - on ce s ie st f n s i al u d td t e p eo n no main a d t eh u i i o ain i h e lc t n o n s r a e d v ri o t.F n y, p a e h h rmo e i fr t n e r t i r t n t e n w ai fa t. y a l o h sc n m f o o o
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i 建 立变 量 的子 空 间 . 2 随 机确 定每 一 只蚂 蚁在 各 个变 量空 间 中 的初始 子 空 间 . 3 初 始化 子空 间 信息 素 . 4 根 据约 束条 件 赋予 蚂蚁 适应 度 .
了较 好 的 效 果 。
的可能值 组成 一个 动 态候 选 组 , 对候 选 组 中 的值 并 进 行交叉 变异操 作 的思想 , 算法 进行 改进 , 对 增强 遗
传 算法参 数 的 自适应性 , 添加 差异演 化算 法等 。
1 连 续 域 蚁 群 算 法 的 流 程
在连 续 域优 化 问题 的求 解 中 , 目标 函数 中包含
1所 示 。
文 章 编 号 :0 1 2 7 2 0 ) 2 0 7 3 1 0 —2 5 (0 8 0 —0 1 —0
Ab ta t Thi a rm anl nt g a e n ol sr c : s p pe i y i e r t d a tc — o y a g rt m , e e i e a i n a if r nta — n l o ih g n tc op r to nd d fe e ile v l to l o ih ’ dv n a e . n t e c ntnu s o u i n a g rt m Sa a t g s I h o i ou s a e,a ng a t c l ny a g ihm s t e man o p c t ki n o o l ort a h i p— tmia i n wa t he r s o e a o n u a— i z to y wih t c o s p r t r a d m t to pe a o f t e ge tc op r to nd t e mu— i n o r t r o h ne i e a i n a h t to o e a or f h d fe e il v l in l o a i n p r t o t e if r nta e o uto a g — rt m o i c e s hegr up ’po ul i n d v r iy ih t n r a e t o s p ato i e st . I l o u e e a o。a ptv r s e a orp ob— ta s s s h ut — da i e c o sop r t r — a iiy a d t b lt n he mut ton op r t ob bi t o i — a i e a orpr a l y t n i
维普资讯
用于连续 函数优化的改进蚁群算法
许 文稼 赵 英凯 向峥 蝾。 , ,
(. 1 南京工业 大 学 自动化 学院 , 江苏 南京 2 0 0 ; . 10 9 2 南京理 工大 学 自动化 学院 , 江苏 南京 2 0 0 ) 1 0 0
An I p o e m r v d AntCo o y Al rt m l n go ih App i d i h ntnu u n to l n t e Co i o s Fu c i n Optmia in e i z to
关 键词 : 续 函数 ; 连 蚁群算 法 ; 叉 ; 异 交 变
中 图 分 类 号 : 节点 的信 息 以及系统 当前 的 性 能指标信 息 。在 寻 优 的行 进 方 式 上 , 群 不 同于 蚁 在离 散解空 间点集 之 间 跳变 , 是 在 连续 解 空 间 中 而 以微调 的方式行 进 。搜索最 优解 的程序 框架 如图
X n— i Z AO Y n — a , I NG Z e g r n 2 U We j , H ig k i X A h n — o g a
( . c o l fAu o t n, nig Unv riyo c n lg Na j g 2 0 0 , i a 2 S h o fAuo t n, 1 S h o tmai Na j iest f o o n Te h oo y, ni 1 0 9 Chn ; . c o lo tmai n o
●
l迭代次数 = [1 Ⅳ+ l
‘
l 蚂蚁 I f ,
f 应度中占的百分数 } 计算该蚂蚁的适应度在总适 I ea gQ I h ne
●
1 分量f 1 l =
1 根据e a g Q 不 同的方 法选 择 第i . h ne 用 个分 量 的子 区 2 局部 更新 . 子区 间信 息量 3 在 该 子 区间 里随 机选 择值 , . 经交 叉 变 异后 生成 第i 个分 量 的新 值
Na j gUnv riyo ce c n c n lg Najn 0 0 , hn ) ni ie st fS in ea dTe h oo y, nig 2 0 0 C ia n i
摘要 : 主要 综合 了蚁群 算 法、 遗传 算 法、 异 演 差
化 算法三 者优 点。在 连 续 空 间 中, 以蚁 群算 法 为主 要 寻优思路 , 用遗传算 法 中的交叉 、 采 变异及 差异演 化 算法的 变异方 式增 加 群体 多样 性 ; 用 自适 应 的 采 交叉、 变异概 率 以增 强算 法的智 能性 , 真 实验 获得 仿