第六章 插值与拟合
插值与拟合实验
x x x x
j 1 j 1 j + 1 j + 1
, x , x 其
j 1
≤ x
x ≤
≤ x
x
j
j
≤ 它
j + 1
1 , 6≤ x≤6 【例 2】 g ( x ) = 】 2 1+ x
用分段线性插值法求插值,并观察插值误差 用分段线性插值法求插值 并观察插值误差. 并观察插值误差 1.在[-6,6]中平均选取 个点作插值 在 中平均选取5个点作插值 中平均选取 个点作插值(xch11) 2.在[-6,6]中平均选取 个点作插值 在 中平均选取11个点作插值 中平均选取 个点作插值(xch12) 3.在[-6,6]中平均选取 个点作插值 在 中平均选取21个点作插值 中平均选取 个点作插值(xch13) 4.在[-6,6]中平均选取 个点作插值 在 中平均选取41个点作插值 中平均选取 个点作插值(xch14)
Matlab程序: 程序: 程序 ch607.m
【例 5】 】 已知飞机下轮廓线上数据如下, 已知飞机下轮廓线上数据如下,求x每改变0.1时的y值。 每改变0.1时的y 0.1时的
X Y
0 0
3 5 7 9 11 12 13 14 15 12 17 20 21 20 18 12 10 16
机翼下 轮廓线
【例 6】 】 测得平板表面3*5网格点处的温度分别为: 3*5网格点处的温度分别为 测得平板表面3*5网格点处的温度分别为: 82 81 80 82 84 79 63 61 65 81 84 84 82 85 86 试作出平板表面的温度分布曲面z=f(x,y)的图形。 试作出平板表面的温度分布曲面z=f(x,y)的图形。 z=f(x,y)的图形 1.先在三维坐标画出原始数据,画出粗糙的温度分布曲图. 1.先在三维坐标画出原始数据,画出粗糙的温度分布曲图. 先在三维坐标画出原始数据 输入以下命令: 输入以下命令: x=1:5; y=1:3; temps=[82 81 80 82 84;79 63 61 65 81;84 84 82 85 86]; mesh(x,y,temps) 2.以平滑数据,在x、y方向上每隔0.2个单位的地方进行插值. 以平滑数据, 方向上每隔0.2个单位的地方进行插值. 0.2个单位的地方进行插值
插值与拟合
插值与拟合大多数数学建模问题都是从实际工程或生活中提炼出来的,往往带有大量的离散的实验观测数据,要对这类问题进行建模求解,就必须对这些数据进行处理。
其目的是为了从大量的数据中寻找它们反映出来的规律。
用数学语言来讲,就是要找出与这些数据相应的变量之间的近似关系。
对于非确定性关系,一般用统计分析的方法来研究,如回归分析的方法。
对于确定性的关系,即变量间的函数关系,一般可用数据插值与拟合的方法来研究。
插值与拟合就是要通过已知的数据去确定某一类已知函数的参数或寻找某个近似函数,使所得到的近似函数对已知数据有较高的拟合进度。
如果要求这个近似函数经过所有已知的数据点,则称此类问题为插值问题。
当所给的数据较多时,用插值方法所得到的插值函数会很复杂,所以,通常插值方法用于数据较少的情况。
其实,通常情况下数据都是由观测或试验得到的,往往会带有一定的随机误差,因而,要求近似函数通过 所有的数据点也是没有必要的。
如果不要求近似函数通过所有的数据点,而是要求他能较好地反映数据的整体变化趋势,则解决这类问题的方法称为数据拟合。
虽然插值与拟合都是要构造已有数据的近似函数,但因对近似要求的准则不同,因此二者在数学方法上有很大的差异。
一、引例简单地讲,插值是对于给定的n 组离散数据,寻找一个函数,使该函数的图象能严格通过这些数据对应的点。
拟合并不要求函数图象通过这些点,但要求在某种准则下,该函数在这些点处的函数值与给定的这些值能最接近。
例1:对于下面给定的4组数据,求在110=x 处y 的值。
这就是一个插值问题。
我们可以先确定插值函数,再利用所得的函数来求110=x 处y 的近似值。
需要说明的是这4组数据事实上已经反映出x 与y 的函数关系为:x y =,当数据量较大时,这种函数关系是不明显的。
也就是说,插值方法在处理数据时,不论数据本身对应的被插值函数)(x f y =是否已知,它都要找到一个通过这些点的插值函数,此函数是被插值函数的一个近似,从而通过插值函数来计算被插值函数在未知点处的近似值。
数值计算方法插值与拟合
数值计算方法插值与拟合数值计算方法在科学计算和工程应用中起着重要的作用,其中插值和拟合是其中两个常用的技术。
插值是指通过已知的离散数据点来构造出连续函数或曲线的过程,拟合则是找到逼近已知数据的函数或曲线。
本文将介绍插值和拟合的基本概念和常见的方法。
一、插值和拟合的基本概念插值和拟合都是通过已知数据点来近似表达未知数据的方法,主要区别在于插值要求通过已知数据点的函数必须经过这些数据点,而拟合则只要求逼近这些数据点。
插值更加精确,但是可能会导致过度拟合;拟合则更加灵活,能够通过调整参数来平衡拟合精度和模型复杂度。
二、插值方法1. 线性插值线性插值是一种简单的插值方法,通过已知数据点构造出线段,然后根据插值点在线段上进行线性插值得到插值结果。
2. 拉格朗日插值拉格朗日插值是一种基于多项式插值的方法,通过已知数据点构造出一个多项式,并根据插值点求解插值多项式来得到插值结果。
3. 分段线性插值分段线性插值是一种更加灵活的插值方法,通过将插值区间分成若干小段,然后在每个小段上进行线性插值。
三、拟合方法1. 最小二乘法拟合最小二乘法是一种常用的拟合方法,通过最小化实际观测点和拟合函数之间的残差平方和来确定拟合函数的参数。
2. 多项式拟合多项式拟合是一种基于多项式函数的拟合方法,通过选择合适的多项式次数来逼近已知数据点。
3. 曲线拟合曲线拟合是一种更加灵活的方法,通过选择合适的曲线函数来逼近已知数据点,常见的曲线包括指数曲线、对数曲线和正弦曲线等。
四、插值与拟合的应用场景插值和拟合在实际应用中具有广泛的应用场景,比如图像处理中的图像重建、信号处理中的滤波器设计、金融中的风险评估等。
五、插值与拟合的性能评价插值和拟合的性能可以通过多种指标进行评价,常见的评价指标包括均方根误差、相关系数和拟合优度等。
六、总结插值和拟合是数值计算方法中常用的技术,通过已知数据点来近似表达未知数据。
插值通过已知数据点构造出连续函数或曲线,拟合则找到逼近已知数据的函数或曲线。
插值与拟合
且 f(1.5) ≈L1(1.5) = 0.885。
Lagrange插值法的缺点
• 多数情况下,Lagrange插值法效果是不错的, 但随着节点数n的增大,Lagrange多项式的次 (Runge)现象。
• 例:在[-5,5]上用n+1个等距节点作插值多项 式Ln(x),使得它在节点处的值与函数y = 1/(1+25x2)在对应节点的值相等,当n增大时, 插值多项式在区间的中间部分趋于y(x),但 对于满足条件0.728<|x|<1的x, Ln(x)并不趋 于y(x)在对应点的值,而是发生突变,产生 剧烈震荡,即Runge现象。
总结
• 拉格朗日插值:其插值函数在整个区间 上是一个解析表达式;曲线光滑;收敛 性不能保证,用于理论分析,实际意义 不大。
• 分段线性插值和三次样条插值:曲线不 光滑(三次样条已有很大改进);收敛 性有保证;简单实用,应用广泛。
1.2 二维插值
• 二维插值是基于一维插值同样的思想, 但是它是对两个变量的函数Z=f(x,y)进 行插值。
• n=5; • x0=-1:1/(n-1):1;y0=1./(1+25*x0.^2);y1=lagr(x0,y0,x); • subplot(2,2,2), • plot(x,z,'r-',x,y,'m-'),hold on %原曲线 • plot(x,y1,'b'),gtext('L8(x)','FontSize',12),pause %Lagrange曲线
基函数为
l0 (x)
x x1 x0 x1
x2 1 2
2
x
l1(x)
线性插值函数为
插值与拟合应用举例
插值与拟合1. 插值与拟合的基本概念插值与插值函数:已知由()g x (可能未知或非常复杂)产生的一批离散数据(,),0,1,,i i x y i n = ,且n+1个互异插值节点011n n a x x x x b -=<<<<= ,在插值区间内寻找一个相对简单的函数 ()f x ,使其满足下列插值条件:再利用已求得的 ()f x 计算任一非插值节点的近似值,这就是插值。
其中()f x 称为插值函数, ()g x 称为被插函数。
最小二乘拟合: 已知一批离散的数据 (,),0,1,,i i x y i n = ,i x 互不相同,寻求一个拟合函数 ()f x ,使()i f x 与i y 的误差平方和在最小二乘意义下最小。
在最小二乘意义下确定的 ()f x 称为最小二乘拟合函数。
温度问题在12小时内,每隔1小时测量一次温度。
温度依次为:5,8,9,15,25,29,31,30,22,25,27,24。
(单位:℃)(1) 试估计在3.2h ,6.5h ,7.1h ,11.7h 的温度值,并画出其图形。
(2) 每隔1/10h 估计一次温度值,并画出其图形。
请你找出跟上述12个数据拟合的最好的一条曲线,请分别用分段线性插值、三次样条插值方法(至少用两条不同的曲线,并比较它们拟合好坏的程度)hours=1:12;temps=[5,8,9,15,25,29,31,30,22,25,27,24];t=interp1(hours,temps,[3.2,6.5,7.1,11.7]) %线性插值 T=interp1(hours,temps,[3.2,6.5,7.1,11.7],'spline') %三次样条插值 计算结果为 t =10.2000 30.0000 30.9000 24.9000 T =9.6734 30.0427 31.1755 25.3820每隔1/10h 估计一次温度值并画出其图形: hours=1:12;temps=[5,8,9,15,25,29,31,30,22,25,27,24]; h=1:0.1:12;t=interp1(hours,temps,h,'spline');plot(hours,temps,'+',h,t,hours,temps,'r:') xlabel('时间'),ylabel('温度')三次多项式拟合: hours=1:12;temps=[5,8,9,15,25,29,31,30,22,25,27,24]; a=polyfit(hours,temps,3) temps1=polyval(a,hours);plot(hours,temps,'ro',hours,temps1,'b.')得到320.00650.32837.1281 4.4343y x x x =--+-,图形如下:四次多项式拟合:得到4320.02730.7158 5.770712.225112.5884y x x x x =-+-+比较拟合的好坏:设ˆi y为拟合函数的值,i y 为测量值,则残差2ˆ()iiie y y=-∑ 。
插值与拟合
常用方法——最小二乘法拟合
令: f (x) a1r1(x) a2r2 (x) .... amrm (x)
其中:rk(x)为事先选定的一组关于x的函数,ak为系数,
即求解ak,使下式最小
m
2
J (a1, a2 ,...,am ) min [ f ( xi ) yi ]
i 1
即使:
J 0, k (0, k ) ak
拉格朗日插值法
已知x0、x1、x2、x3、、、xn和y0、y1、y2、y3、、、yn 则可以构造一个经过这n+1个点的次数不超过n的多 项式y=Ln(x),使其满足:
Ln(xk)=yk,k=0、1、2、、、n •这样的Ln(x)就是通过拉格朗日插值得到的函数关系 •这样的方法叫做拉格朗日插值
注: 通过上述方法可得到一个次数不超过n的多项
2
1 n1
m1 1 (1 1)m1
m2
2 (1 2 )m2
n2
2
..
mn
1
n1
(1
n 1 )mn 1
3.代入原式
用matlab解插值
基本格式:Interp1(x,y,cx,'methed')
其中:x,y为已知的坐标 cx为待插值的点的横坐标 methed为插值方法,有如下:
10
11
12
13
14
15
16
10.20 10.32 10.42 10.50 10.55 10.58 10.60
解 :数据点描绘
11
10
9
8
7
6
5
4
0
2
4
6
8
10
12
14
插值与拟合
x[ a ,b ]
即:有界区间上的连续函数被多项式一致逼近。
§ 7.1.4 实际应用中两种方法的选择
在实际应用中,究竟选择哪种方法比较恰 当?总的原则是根据实际问题的特点来决定采 用哪一种方法。具体说来,可从以下两方面来 考虑:
1.如果给定的数据是少量的且被认为是严 格精确的,那么宜选择插值方法。采用插值方 法可以保证插值函数与被插函数在插值节点处 完全相等。
2.如果给定的数据是大量的测试或统计的 结果,并不是必须严格遵守的,而是起定性地 控制作用的,那么宜选用数据拟合的方法。这 是因为,一方面测试或统计数据本身往往带有 测量误差,如果要求所得的函数与所给数据完 全吻合,就会使所求函数保留着原有的测量误 差;另一方面,测试或统计数据通常很多,如 果采用插值方法,不仅计算麻烦,而且逼近效 果往往较差。
0
(
x)
1
2
x x1
x0 x0
x x0
x1 x1
2
1(x)
1
2
x x1 x0 x1
x x0 x1 x0
2
2
0
(
x)
(
x
x0
)
(7.2.3)
下 面 的 (7.2.9) 、 (7.2.10) 两 式 构 成 了 三 次 Hermite 插值基本提法二的插值公式
P3(x) = 0(x)y0 1(x)y1 0(x)m0 1(x)m1 (7.2.9)
0 ( x)
(x ( x0
《插值与拟合》课件
拟合的方法
1
最小二乘法
通过最小化残差平方和,找到与数据最匹配的函数。
2
局部加权回归
给予附近数据点更高的权重,拟合接近局部数据点的函数。
3
多项式拟合
用多项式函数逼近数据,通过选择合适的次数实现拟合。
插值与拟合的误差分析
插值和拟合都会引入近似误差,需要评估误差范围和影响因素。
插值与拟合在数据处理与分析中的应用
数据分析
通过插值和拟合方法对数据进 行探索和分析。
数据处理
在数据处理过程中使用插值和 拟合技术来填充缺失值和平滑 数据。
数据建模
利用插值和拟合模型对数据特 征进行捕捉和预测分析。
插值与拟合的推广和发展前景
随着数据科学和人工智能的不断发展,插值和拟合在各个领域的应用前景越 来越广阔。
插值与拟合的应用范围
科学研究
用于数据分析、信号优化设计、近似计算和 效能提升。
经济金融
用于市场分析、预测模型和 风险评估。
插值的方法
1
拉格朗日插值
基于多项式插值公式,用拉格朗日多项式逼近函数。
2
牛顿插值
基于差商的概念,用多项式逼近函数的值。
3
分段插值
将插值区间划分为多个子区间,并在每个子区间上进行插值。
《插值与拟合》PPT课件
插值与拟合是数值计算和数据分析中重要的概念。
插值与拟合的概念
插值
通过已知值的推算,计算在未知点的近似值。
拟合
通过曲线或曲面拟合已知数据,以描述和预 测未知数据。
插值与拟合的区别与联系
1 区别
2 联系
插值重点关注已知点的准确性,而拟合则 着重于整体形状的拟合。
插值和拟合都通过数学模型逼近离散数据, 以实现数据的补全和预测。
插值与拟合
一 维 插 值 matlab 求 解
一维插值函数:
yi=interp1(x,y,xi,'method')
xi处的插值 结果
插值节点
被插值点
插值方法
‘nearest’ :最邻近插值‘linear’ : 线性插值; ‘spline’ : 三次样条插值; ‘cubic’ : 立方插值。 缺省时: 分段线性插值。
数据插值与拟合
在工程实践与科学实验中,常常需要从一组试 验数据之中找到自变量与因变量之间的关系, 一般可用一个近似函数表示。函数产生的办法 因观测数据的要求不同而异,数据插值与拟合 是两种常用的方法。
一维插 值
在离散数据的基础上补插连续函数,使得 这条连续曲线通过全部给定的离散数据点。 插值是离散函数逼近的重要方法,利用它 可通过函数在有限个点处的取值状况,估 算出函数在其他点处的近似值。插值:用 来填充图像变换时像素之间的空隙。
X Y
1200 1600 2000 2400 2800 3200 3600
1200
1130 1320 1390 1500 1500 1500 1480
1600
1250 1450 1500 1200 1200 1550 1500
2000
1280 1420 1500 1100 1100 1600 1550
x=0:.5:5;
y=0:.5:6;
z=[89 90 87 85 92 91 96 93 90 87 82
92 96 98 99 95 91 89 86 84 82 84
96 98 95 92 90 88 85 84 83 81 85
80 81 82 89 95 96 93 92 89 86 86
插值与拟合问题
插值与拟合问题插值与拟合是数学和计算机科学领域中常见的问题,涉及到通过已知数据点来估计未知点的值或者通过一组数据点来逼近一个函数的过程。
在现实生活中,这两个问题经常用于数据分析、图像处理、物理模拟等领域。
本文将介绍插值与拟合的基本概念、方法和应用。
一、插值问题插值是通过已知的数据点来推断出未知点的值。
在插值问题中,我们假设已知数据点是来自于一个未知函数的取值,在这个函数的定义域内,我们需要找到一个函数或者曲线,使得它经过已知的数据点,并且可以通过这个函数或者曲线来估计未知点的值。
常见的插值方法包括线性插值、拉格朗日插值和牛顿插值。
线性插值是通过已知的两个数据点之间的直线来估计未知点的值,它简单而直观。
拉格朗日插值则通过构造一个关于已知数据点的多项式来估计未知点的值,这个多项式经过每一个已知数据点。
牛顿插值和拉格朗日插值类似,也是通过构造一个多项式来估计未知点的值,但是它使用了差商的概念,能够更高效地处理数据点的添加和删除。
不仅仅局限于一维数据点的插值问题,对于二维或者更高维的数据点,我们也可以使用类似的插值方法。
例如,对于二维数据点,我们可以使用双线性插值来估计未知点的值,它利用了四个已知数据点之间的线性关系。
插值问题在实际应用中非常常见。
一个例子是天气预报中的气温插值问题,根据已知的气温观测站的数据点,我们可以估计出其他地点的气温。
另一个例子是图像处理中的像素插值问题,当我们对图像进行放大或者缩小操作时,需要通过已知像素点来估计未知像素点的值。
二、拟合问题拟合是通过一组数据点来逼近一个函数的过程。
在拟合问题中,我们假设已知的数据点是来自于一个未知函数的取值,我们需要找到一个函数或者曲线,使得它能够与已知的数据点尽可能地接近。
常见的拟合方法包括多项式拟合、最小二乘拟合和样条拟合。
多项式拟合是通过一个多项式函数来逼近已知的数据点,它的优点是简单易用,但是对于复杂的函数形态拟合效果可能不好。
最小二乘拟合则是寻找一个函数,使得它与已知数据点之间的误差最小,这个方法在实际应用中非常广泛。
插值与拟合算法分析
插值与拟合算法分析在数学与计算机科学领域,插值与拟合算法是两种常用的数据处理技术。
插值算法通过已知数据点之间的内插来估算未知数据点的值,而拟合算法则通过求取最佳拟合曲线或函数来逼近已知数据点。
本文将对插值与拟合算法进行详细分析,并比较它们在不同应用中的优缺点。
一、插值算法插值算法主要用于通过已知数据点之间的内插来估算未知数据点的值。
常用的插值算法包括拉格朗日插值、牛顿插值、样条插值等。
这些算法根据插值函数的不同特点,适用于不同类型的数据处理。
1. 拉格朗日插值拉格朗日插值是一种基于代数多项式的插值方法。
它通过构造一个全局多项式函数来拟合已知数据点,并推导出未知数据点的估算值。
拉格朗日插值算法具有简单易懂、计算效率高等优点,但在处理大量数据点时可能会出现龙格现象,导致插值结果有一定误差。
2. 牛顿插值牛顿插值是一种基于差商的插值方法。
它通过计算差商的递推关系,构造一个分段多项式函数来拟合已知数据点。
相比于拉格朗日插值,牛顿插值算法具有更高的数值稳定性和精度,并且可以方便地进行动态插值。
3. 样条插值样条插值是一种基于分段函数的插值方法。
它将整个数据区间划分为若干小段,并使用不同的插值函数对每一段进行插值。
样条插值算法通过要求插值函数的高阶导数连续,能够更好地逼近原始数据的曲线特征,因此在光滑性较强的数据处理中常被使用。
二、拟合算法拟合算法主要用于通过最佳拟合曲线或函数来逼近已知数据点。
常用的拟合算法包括最小二乘拟合、多项式拟合、非线性拟合等。
这些算法可以使拟合曲线与已知数据点尽可能地接近,从而进行更精确的数据分析和预测。
1. 最小二乘拟合最小二乘拟合是一种通过最小化残差平方和来求取最佳拟合曲线的方法。
它利用数据点与拟合曲线的差异来评估拟合效果,并通过求取最小残差平方和的参数值来确定拟合曲线的形状。
最小二乘拟合算法广泛应用于线性回归和曲线拟合等领域。
2. 多项式拟合多项式拟合是一种通过多项式函数来逼近已知数据点的方法。
插值与拟合原理范文
插值与拟合原理范文一、插值的原理插值是指根据已知数据的取值,在给定的数据区间内推测未知数据的取值。
插值的原理是基于一个假设,即在给定的区间内,数据的取值变化是连续而平滑的。
常见的插值方法包括线性插值、多项式插值和样条插值。
其中,线性插值是最简单的一种方法。
线性插值假设给定的两个点(x1,y1)和(x2,y2),两个点之间段的取值变化是线性的,可以通过直线的方程来计算中间点的值。
例如,在区间[1,3]上已知两个点(1,2)和(3,4),可以通过线性插值方法计算出点(2,?)的值。
根据线性插值的原理,点(2,?)的值应该等于直线y=2x的值,在这个例子中,点(2,?)的值为2×2=4多项式插值是一种更精确的插值方法。
多项式插值的原理是基于一个假设,即给定的n个点(x1, y1), (x2, y2), ..., (xn, yn)可以被一个n-1次多项式唯一地表示。
通过这个假设,可以根据已知数据点构造一个多项式函数,并通过求解多项式的系数来计算任意点的取值。
例如,在区间[1,3]上已知两个点(1,2)和(3,4),可以通过多项式插值方法构造一个二次多项式函数y=ax^2+bx+c,并通过求解a, b, c的值来计算任意点的值。
样条插值是一种更加平滑的插值方法。
样条插值的原理是将插值区间划分为若干小的子区间,在每个子区间内通过一个较低次数的多项式来拟合数据。
通过连接每个子区间内的多项式函数,可以获得整个插值区间内的光滑曲线。
通过样条插值方法,可以更好地拟合非线性数据,提高插值结果的准确性。
二、拟合的原理拟合是指根据已知的数据样本,确定一个数学模型来描述数据的变化趋势。
拟合的原理是基于一个假设,即给定的数据点可以通过选定的数学模型进行近似表示。
常见的拟合方法包括线性回归、多项式拟合和非线性拟合。
其中,线性回归是最简单的一种拟合方法。
线性回归的原理是假设给定的数据点符合一个线性函数模型y=ax+b,通过最小化实际数据点与拟合直线之间的距离,可以求解出最优的拟合直线的斜率a和截距b。
插值和拟合
插值和拟合都是函数逼近或者数值逼近的重要组成部分他们的共同点都是通过已知一些离散点集M上的约束,求取一个定义在连续集合S(M包含于S)的未知连续函数,从而达到获取整体规律的目的,即通过"窥几斑"来达到"知全豹"。
简单的讲,所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn},通过调整该函数中若干待定系数f(λ1, λ2,…,λ3), 使得该函数与已知点集的差别(最小二乘意义)最小。
如果待定函数是线性,就叫线性拟合或者线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。
表达式也可以是分段函数,这种情况下叫作样条拟合。
而插值是指已知某函数的在若干离散点上的函数值或者导数信息,通过求解该函数中待定形式的插值函数以及待定系数,使得该函数在给定离散点上满足约束。
插值函数又叫作基函数,如果该基函数定义在整个定义域上,叫作全域基,否则叫作分域基。
如果约束条件中只有函数值的约束,叫作Lagrange插值,否则叫作Hermite插值。
从几何意义上将,拟合是给定了空间中的一些点,找到一个已知形式未知参数的连续曲面来最大限度地逼近这些点;而插值是找到一个(或几个分片光滑的)连续曲面来穿过这些点。
一、概念的引入1. 插值与拟合在现实生活中的应用l 机械制造:汽车外观设计l 采样数据的重新建构:电脑游戏中场景的显示,地质勘探,医学领域(CT)2.概念的定义l 插值:基于[a,b]区间上的n个互异点,给定函数f(x),寻找某个函数去逼近f(x)。
若要求φ(x)在xi处与f(xi)相等,这类的函数逼近问题称为插值问题,xi即是插值点l 逼近:当取值点过多时,构造通过所有点的难度非常大。
此时选择一个次数较低的函数最佳逼近这些点,一般采用最小二乘法l 光顾:曲线的拐点不能太多,条件:①二阶几何连续②不存在多余拐点③曲率变化较小l 拟合:曲线设计过程中用插值或通过逼近方法是生成的曲线光滑(切变量连续)光顾二、插值理论设函数y=f(x)在区间[a,b]上连续,在[a,b]上有互异点x0,x1,…,xn处取值y 0,y1,…,yn。
插值与拟合
y2=interp1(x0,y0,x); y3=interp1(x0,y0,x,'spline'); pp1=csape(x0,y0); y4=ppval(pp1,x); pp2=csape(x0,y0,'second'); y5=ppval(pp2,x); fprintf('比较一下不同插值方法和边界条件的结果:\n') fprintf('x y1 y2 y3 y4 y5\n') xianshi=[x',y1',y2',y3',y4',y5']; fprintf('%f\t%f\t%f\t%f\t%f\t%f\n',xianshi') subplot(2,2,1), plot(x0,y0,'+',x,y1), title('Lagrange') subplot(2,2,2), plot(x0,y0,'+',x,y2), title('Piecewise linear') subplot(2,2,3), plot(x0,y0,'+',x,y3), title('Spline1') subplot(2,2,4), plot(x0,y0,'+',x,y4), title('Spline2') dyx0=ppval(fnder(pp1),x0(1)) %求x=0处的导数 ytemp=y3(131:151); index=find(ytemp==min(ytemp)); xymin=[x(130+index),ytemp(index)]
数值分析实验插值与拟合
数值分析实验插值与拟合插值是指根据已知的数据点,通过其中一种数学方法来构造一个函数,使得该函数在已知的数据点上与被插值函数相等。
插值方法可以分为两类:基于多项式的插值和非多项式插值。
基于多项式的插值方法中,最常用的是拉格朗日插值和牛顿插值。
拉格朗日插值方法通过一个n次多项式来逼近被插值函数,该多项式通过n个已知数据点中的所有点。
牛顿插值方法则通过一个n次多项式来逼近被插值函数,该多项式通过n个已知数据点中的前m+1个点。
非多项式插值方法中,最常用的是分段线性插值和样条插值。
分段线性插值方法将插值区间划分为多个小段,在每一段内使用线性函数来逼近被插值函数。
样条插值方法则使用分段低阶多项式来逼近被插值函数,保证了插值函数和原函数在插值区间内的连续性、光滑性。
拟合是指在给定的离散数据点集合上,通过选取一个函数,使得该函数与数据点之间的误差最小化。
拟合方法可以分为两类:线性拟合和非线性拟合。
线性拟合方法中,最简单的是最小二乘法。
最小二乘法拟合是通过最小化观测数据与拟合函数的残差平方和来选择最佳函数参数。
在实验中,最小二乘法常用于线性回归问题,例如估计一个直线或者平面来拟合数据。
非线性拟合方法中,最常用的是非线性最小二乘法和局部加权回归。
非线性最小二乘法通过将非线性拟合问题转化为线性问题,使用最小二乘法来寻找最佳参数。
局部加权回归方法则通过给予不同数据点不同的权重,以更好地逼近数据点。
在数值分析实验中,插值与拟合可以应用于各种实际问题。
例如,在地理信息系统中,通过已知的地理坐标点来插值出未知点的地理信息。
在气象学中,通过已知的气象数据点来插值出未知点的气象信息。
在工程学中,通过已知的测量数据点来拟合出一个最佳的拟合函数来预测未来的测量值。
需要注意的是,插值和拟合的精度在很大程度上取决于数据的分布和拟合函数的选择。
如果数据点过于稀疏或者数据点中存在异常值,可能导致插值和拟合结果不准确。
因此,在进行插值和拟合之前,需要对数据进行预处理,例如去除异常值、平滑数据等。
插值与拟合
插值 节点
被插值点
插值方法
‘nearest’ 最邻近插值 ‘linear’ 双线性插值 ‘cubic’ 双三次插值 'v4'- Matlab提供的插值方法
缺省时, 双线性插值
要求cx取行向量,cy取为列向量。
例 在某海域测得一些点(x,y)处的水深z由下 表给出,船的吃水深度为5英尺,在矩形区域(75, 200)*(-50,150)里的哪些地方船要避免进入。
其中 a1,a2, …am 为待定系数。
(1)
第二步: 确定a1,a2, …am 的准则(最小二乘准则): 使n个点(xi,yi) 与曲线 y=f(x) 的距离i 的平方和最小 。
To MATLAB (wendu)
通过此例对最近邻点插值、双线性插值方法和双三次插值方法的插 值效果进行比较。
To MATLAB (moutain)
返回
用MATLAB作散点数据的插值计算
插值函数griddata格式为:
cz =griddata(x,y,z,cx,cy,‘method’)
被插值点 的函数值
1.先在三维坐标画出原始数据,画出粗糙的温度分布曲图.
输入以下命令: x=1:5; y=1:3; temps=[82 81 80 82 84;79 63 61 65 81;84 84 82 85 86]; mesh(x,y,temps)
2.以平滑数据,在x、y方向上每隔0.2个单位的地方进行插值.
再输入以下命令: xi=1:0.2:5; yi=1:0.2:3; zi=interp2(x,y,temps,xi',yi,'cubic'); mesh(xi,yi,zi) 画出插值后的温度分布曲面图.
对于给定 n+1 个不同节点 x0,x1,…,xn 及函数值 y0,y1,…,yn,其中 a=x0<x1<…<xn=b。构 造三次样条插值函数 S(x)。S(x)称为三次样条函数时需满足:
数值分析中的插值与拟合
数值分析中的插值与拟合插值和拟合是数值分析中常用的技术,用于估计或预测数据集中缺失或未知部分的数值。
在本文中,我们将讨论插值和拟合的概念、方法和应用。
一、插值插值是通过已知数据点之间的连续函数来估计中间数据点的数值。
插值方法可以根据不同的数据和需求选择合适的插值函数,常用的插值方法包括拉格朗日插值、牛顿插值和埃尔米特插值。
1.1 拉格朗日插值拉格朗日插值是一种基于多项式的插值方法。
通过已知的n个数据点,可以构建一个n-1次的插值多项式。
这个多项式通过已知数据点上的函数值来准确地经过每一个点。
1.2 牛顿插值牛顿插值方法也是一种多项式插值方法,通过差商的概念来构建插值多项式。
差商是一个递归定义的系数,通过已知数据点的函数值计算得出。
牛顿插值可以通过递推的方式计算出插值多项式。
1.3 埃尔米特插值埃尔米特插值是一种插值方法,适用于已知数据点和导数值的情况。
它基于拉格朗日插值的思想,通过引入导数信息来逼近数据的真实分布。
埃尔米特插值可以更准确地估计数据点之间的值,并且可以保持导数的连续性。
二、拟合拟合是通过一个模型函数来逼近已知数据点的数值。
拟合方法旨在找到最适合数据集的函数形式,并通过最小化误差来确定函数的参数。
常见的拟合方法包括最小二乘法、多项式拟合和曲线拟合。
2.1 最小二乘法最小二乘法是一种常用的拟合方法,通过最小化数据点到拟合函数的误差平方和来确定最佳拟合曲线或曲面。
最小二乘法适用于线性和非线性拟合问题,可以用于拟合各种类型的非线性函数。
2.2 多项式拟合多项式拟合是一种基于多项式函数的拟合方法。
通过多项式的线性组合来近似已知数据集的数值。
多项式拟合可以通过最小二乘法或其他优化算法来确定拟合函数的系数。
2.3 曲线拟合曲线拟合是一种用曲线函数来逼近已知数据点的拟合方法。
曲线函数可以是非线性的,并且可以根据数据的特点进行选择。
曲线拟合可以通过优化算法来确定拟合函数的参数。
三、应用插值和拟合在数值分析中有广泛的应用。
插值与拟合方法
插值与拟合方法插值和拟合是数学中常用的方法,用于根据已知数据点的信息,推断出未知数据点的数值或函数的形式。
插值和拟合方法是经典的数学问题,应用广泛,特别是在数据分析、函数逼近和图像处理等领域。
1.插值方法:插值方法是通过已知数据点的信息,推断出两个已知数据点之间的未知数据点的数值。
插值方法的目的是保证插值函数在已知数据点处与实际数据值一致,并且两个已知数据点之间的连续性良好。
最常用的插值方法是拉格朗日插值法和牛顿插值法。
拉格朗日插值法根据已知数据点的横纵坐标,构造一个多项式函数,满足通过这些数据点。
拉格朗日插值法可以用于任意次数的插值。
牛顿插值法是使用差商的概念进行插值。
差商是指一个多项式在两个数据点之间的斜率。
牛顿插值法通过迭代计算得到与已知数据点一致的多项式。
插值方法的优点是可以精确地经过已知数据点,但是在两个已知数据点之间的插值部分可能会出现震荡现象,从而导致插值结果不准确。
2.拟合方法:拟合方法是通过已知数据点的信息,找出一个函数或曲线,使其能够最好地拟合已知数据点。
拟合方法的目标是寻找一个函数或曲线,尽可能地逼近已知数据点,并且能够在未知数据点处进行预测。
最常用的拟合方法是最小二乘法。
最小二乘法是通过求解最小化残差平方和的问题来进行拟合。
残差是指已知数据点与拟合函数的差异。
最小二乘法的目标是找到一个函数,使得所有数据点的残差平方和最小。
拟合方法的优点是可以得到一个光滑的函数或曲线,从而可以预测未知数据点的数值。
但是拟合方法可能会导致过拟合问题,即过度拟合数据点,导致在未知数据点处的预测结果不准确。
除了最小二乘法,还有其他的拟合方法,如局部加权回归和样条插值等。
局部加权回归是一种基于最小二乘法的拟合方法,它通过赋予不同的数据点不同的权重,来实现对未知数据点的预测。
样条插值是一种基于多项式插值的拟合方法,它将整个数据集分段拟合,并且在分段部分保持连续性和光滑性。
总结:插值和拟合方法是数学中的经典方法,用于根据已知数据点的信息,推断出未知数据点的数值或函数的形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h [( x
i i 1
n
i
x )( 2 a i y i y i ) y i ]
其中
n
2.MATLAB实现
function y=hermite(x0,y0,y1,x) %hermite interpolation n=length(x0);m=length(x); for k=1:m yy=0.0; for i=1:n h=1.0; a=0.0; for j=1:n if j~=i h=h*((x(k)-x0(j))/(x0(i)-x0(j)))^2; a=1/(x0(i)-x0(j))+a; end end yy=yy+h*((x0(i)-x(k))*(2*a*y0(i)-y1(i))+y0(i)); end y(k)=yy; end
1.方法介绍 在科学实验的统计方法研究中,往往要从一组实验 数据 ( x i , y i )中寻找出自变量x和因变量y之间的函数关 系y=f(x)。由于观测数据往往不够准确,因此并不要 ) 求y=f(x)经过所有的点 ( x i , y i ,而只要求在给定点 x i 上误差 i f ( x i ) y i 。按照某种标准达到最小,通常 采其欧氏范数 作为误差量度的标准。这就是所 谓的最小二乘法。
1.方法介绍 不少实际问题中不但要求在节点上函数值相等,而 且要求导数值也相等,甚至要求高阶导数值也相等, 满足这一要求的插值多项式就是Hermite插值多项 式。下面只讨论函数值与一阶导数值个数相等且已 知的情况。 已知n个插值节点 x 1 , x 2 , , x n 及其对应的函数 值 y 1 , y 2 , , y n 。和一阶导数值 y 1 , y 2 , , y n 。 y 即: ( x i ) y i , y ( x i ) y i , i 1, 2 , , n 。则计算插值 区域内任意x的函数值y的Hermite插值公式为:
y(x)
n
k 1
yk
n
x xj xk x j
j 1 jk
2.MATLAB实现
%lagrange interpolation function y=lagrange(x0,y0,x) n=length(x0);m=length(x); for i=1:m z=x(i); s=0.0; for k=1:n p=1.0; for j=1:n if j~=k p=p*(z-x0(j))/(x0(k)-x0(j)); end end s=p*y0(k)+s; end y(i)=s; end
所有的插值方法要求x0是单调的。x0也可能并非连续 等距的。当x0为等距且连续时可以用快速插值法。 使用这些方法的格式分别为'*1inear'、'*cubic'、 '*nearest'或'*spline'。x0为非连续的快速线性插值的 情况interplq。
【例6.1.3】正弦曲线的插值示例。
>>x0=0:1:10; y0=sin(x0); x1=0:0.25:10; y1=interp1(x0,y0,x1); plot(x0,y0,'o',x1,y1)
0.6
同类的函数 还有 Interplq interpfl spline interp2 interpn。
0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1
0
1
2
3
4
5
6
7
8
9
10
>> x0=[-5:1:5]; >> y0=1./(1+x0.^2); >> x=[-5:0.1:5]; >> y=interp1(x0,y0,x); >> y1=1./(1+x.^2); >> plot(x,y,'--r',x,y1, '-b') >> legend('插值曲线', '原曲线')
x0=[-5:1:5]; y0=1./(1+x0.^2); x=[-5:0.1:5]; y=interp1(x0,y0,x,'spline'); y1=1./(1+x.^2); plot(x,y,'--r',x,y1, '-b') legend('插值曲线', '原曲线')
6.1.3 Hermite插值
3.习题举例
【例6.2.1】设 下表所示的数据。
y a b x cx ,用最小二乘法拟合如
2
x 0.5 1.0 1.5 2.0 2.5 3.0 y 1.75 2.45 3.81 4.80 8.00 8.60 此例用polyfit功能函数进行拟合。 在MATLAB 命令窗中输入
x0=[0.5 1.0 1.5 2.0 2.5 3.0]; y0=[1.75 2.45 3.81 4.80 8.00 8.60]; a=polyfit(x0,y0,2); x1=[0.5:0.05:3.0]; y1=a(1)*x1.^2+a(2)*x1+a(3); plot(x0,y0,'*') hold on plot(x1,y1,'-r')
10 9 8 7 6 5 4 3 2 1 0.5
1
1.5
2
2.5
3
【例6.2.2】用最小二乘法求一个形如 y a bx 2 的经 验公式,使它与下表所示的数据相拟合。
xi yi 19 25 31 38 44
19.0 32.3 49.0 73.3 98.8
下面用另一种方法来求解此拟合问题。用求解矩 阵的方法来解,把a,b看成是未知量。已知xi,yi求 解一超定方程。在MATLAB中实现为: x0=[19 25 31 38 44]; y0=[19.0 32.3 49.0 73.3 98.8]; x1=x0.^2; x1=[ones(5,1),x1']; ab=x1\y0'; x=[19:0.2:44]; y=ab(1)+ab(2)*x.^2; plot(x0,y0,'o') hold on plot(x,y,'-r')
100
90
80
70
60
50
40
30
20
10 15
20
25
30
35
40
45
除了polyfit命令实现拟合外,matlab还可以通过 basic—fitting完成拟合的功能。在basic—fitting 中首先画出历史数据的散点图,分析其所呈现的规 律,再进行拟合。 例如: >> Year=[1625,1830,1930,1960,1974,1987,1999]; >> Population=[5,10,20,30,40,50,60]; >> plot(Year,Population,'X'); >> xlabel('年份') >> ylabel('人口数量(亿人)')
1 0.8 0.6
0.4
0.2
0
-0.2
-0.4
-0.6
-0.8
-1
0
1
2
3
4
5
6
7
8
9
10
x0=0:1:10; y0=sin(x0); x1=0:0.005:10; y1=interp1(x0,y0,x1,'nearest'); figure(2) 1 plot(x0,y0,'o',x1,y1) 0.8
>>x0=[-5:1:5]; y0=1./(1+x0.^2); x=[-5:0.1:5]; y=lagrange(x0,y0,x); y1=1./(1+x.^2); plot(x,y,'--r',x,y1, '-b') legend('插值曲线', '原曲线')
插值曲线 原曲线
为了解决Runge问题,引入分段线性插值。
hi
(
x xj xi x j
)
2
j 1 ji
ai
n
1 xi x j
j 1 i j
3.习题举例 x0=[0.3 0.32 0.35]; y0=[0.29552 0.31457 0.34290]; y1=[0.95534 0.94924 0.93937]; x=[0.3:0.005:0.35]; y=hermite(x0,y0,y1,x); plot(x,y) y=hermite(x0,y0,y1,0.34) y2=sin(x); hold on plot (x,y2,'--r')
来拟合这些数据点,解决步骤如下:
来拟合这些数据点,解决步骤如下:
1.分别输入数据矩阵和函数值向量。
x 11 x 21 ... xm1 x 12 x 22 ... xm 2 ... ... ... ... x1n x2n ... xmn Y0 y1 y2 ... ym
yl=interp1(y0,x) 此格式默认x0=l:n,n为向量y0的元素 个数值,或等于矩阵y0的size(y,1)。 yl=interp1(x0,y0,x,'Method')
method用来指定插值的算法。默认为线性算法,其值可 以是如下的字符串。 · nearest 线性最近项插值。 · linear 线性插值。 · spline 三次样条插值。 · cubic 三次插值