相遇与追及问题

合集下载

追及与相遇问题

追及与相遇问题
相撞?
见全品练习册,20页的13题
方法一:设:经过时间t,人与车速度相等,

人追不上车。人车间的最小距离为
方法二:设:经过时间t,人与车相距S,
则S= S0+S车 - S人=25 + 0.5 t2 - 6 t 令S=0,既假设人能追上车,0.5 t2 - 6 t+25=0 因b2-4ac = (-6)2 -4×0.5×25=-14<0,方程无 解,故人追不上车 当t=人车间的最小距离为 s =25 + 0.5×62 - 6× 6=7m 时,s有最小值
追及与相遇问题
一、追及问题:二者速度相等时相距最远 (或者最近) 1、后面加速,前面匀速,二者相距x 。一定 能追上,二者速度相等时相距最远 。
2、后面匀速,前面从静止加速,二者相距x 。 不一定能追上,二者速度相等时相距最远近。
2 例6、车从静止开始以1m/s 的加
速度前进,车后相距s0为25m处, 某人同时开始以6m/s的速度匀速 追车,能否追上?若追不上,求 人、车间的最小距离。

相遇与追及问题

相遇与追及问题
⑴ 两个运动物体一般同地不同时(或同时不同地)出发作同向运动,在后面的,行进速度要快些,在前面的,行进速度要慢些.
⑵ 在一定时间内,后面的追上前面的.
共同点:⑴ 是否同时出发
⑵ 是否同地出发
⑶ 方向:同向、背向、相向
⑷ 方法:画图
3.简单的相遇与追及问题各自解题时的入手点及需要注意的地方
1.相遇问题:与速度和、路程和有关
【巩固】甲、乙两车同时从A,B两地相向而行,它们相遇时距A,B两地中心处8千米,已知甲车速度是乙车的1.2倍,求A,B两地的距离。
【巩固】甲乙二人同时分别自A、B两地出发相向而行,相遇之地距A、B中点300米,已知甲每分钟行100米,乙每分钟行70米,求A地至B地的距离.
4.行程间的倍比关系
【例 8】甲、乙两车分别同时从 、 两地相对开出,第一次在离 地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离 地25千米处相遇.求 、 两地间的距离.
5.王新从教室去图书馆还书,如果每分钟走70米,能在图书馆闭馆前2分钟到达,如果每分钟走50米,就要超过闭馆时间2分钟,求教室到图书馆的路程有多远?
6.甲、乙两车分别同时从 、 两地相对开出,第一次在离 地 千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离 地 千米处相遇.求 、 两地间的距离?
⑴ 是否同时出发
⑵ 是否有返回条件
⑶ 是否和中点有关:判断相遇点位置
⑷ 是否是多次返回:按倍数关系走。
⑸ 一般条件下,入手点从"和"入手,但当条件与"差"有关时,就从差入手,再分析出时间,由此再得所需结果
2.追及问题:与速度差、路程差有关
⑴ 速度差与路程差的本质含义
⑵ 是否同时出发,是否同地出发。

高中物理相遇和追及问题(完整版)

高中物理相遇和追及问题(完整版)

高中物理相遇和追及问题(完整版)相遇追及问题一、考点、热点回顾追及问题分为速度小者追速度大者和速度大者追速度小者两种情况。

1.速度小者追速度大者类型:匀加速追匀速图象说明:① t=t 以前,后面物体与前面物体间距离增大② t=t 时,两物体相距最远为x+Δx匀速追匀减速③ t=t 以后,后面物体与前面物体间距离减小④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者类型:匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即 t=t0 时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件②若Δx<x0,则不能追及,此时两物体最小距离为 x0-Δx③若Δx>x0,则相遇两次,设 t1 时刻Δx1=x0,两物体第一次相遇,则 t2 时刻两物体第二次相遇匀减速追匀加速注意:① Δx 是开始追及以后,后面物体因速度大而比前面物体多运动的位移;② x 是开始追及以前两物体之间的距离;③ t2-t1=t-t2;④ v1 是前面物体的速度,v2 是后面物体的速度。

二、相遇问题相遇问题分为同向运动的两物体的相遇问题和相向运动的物体的相遇问题。

解此类问题的思路:1.根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系。

2.通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式。

追及的主要条件是两个物体在追上时位置坐标相同。

3.寻找问题中隐含的临界条件。

例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等。

利用这些临界条件常能简化解题过程。

4.求解此类问题的方法,除了根据追及的主要条件和临界条件解联立方程外,还可以利用二次函数求极值,应用图象法和相对运动知识求解。

相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同。

追及和相遇问题

追及和相遇问题

例3:一辆轿车违章超车,以108km/h的速度驶入 左侧逆行道时,猛然发现正前方80m处一辆卡车 正以72km/h的速度迎面驶来,两车司机同时刹 车,刹车加速度大小都是10m/s2,两司机的的反 应时间(即司机发现险情到实施刹车所经历的时 间)都是△t,试问△t是何数值 ,才能保证两车不相 撞?
例 4:一辆轿车的最大速度为30m/s,要想从静止开 始用4分钟追上前面1000m处以25m/s匀速同向 行驶的货车,轿车至少要以多大的加速度起速运动的物体甲追 赶同方向匀加速运动的物体乙。(v甲﹥ v0乙)
v甲 S0 v0乙 a
A、当v乙= v甲时:S甲=S0+S乙,甲恰好追上乙 B、当v乙= v甲时: S甲<S0+S乙,甲永远追不上乙, 此时两者有最小间距⊿Smin C、当v乙< v甲时: S甲>S0+S乙,甲追上了乙,由 乙作匀加速运动,以后v乙> v甲,则乙还有一次 追 上甲的机会,其间两者速度相等时两者距离 v 有一个较大值。 v
追及和相遇问题
追及问题:追和被追的两物体同向运动,往 往当两者速度相等是能否追上或者两者距离有最 大值、最小值的临界条件。追及问题常见情形有 三种: ①同时同地出发:初速为零的匀加速直线运动物体 甲追匀速运动的物体乙:一定能追上,当v甲= v乙 时,两者之间有△xmax v(m/s) v0甲=0 v0乙 a o 甲
(2)相遇问题:相遇问题分为追及相遇和相向相 遇问题,上面三种常见问题属于追及相遇问题, 至于相向相遇问题,我们通过例题来进行说明, 本节课重点解决追及相遇问题。 对于追及相遇问题我们解题过程中要弄清 物体的运动过程,挖掘题中隐含的临界条件,在 解题方法上常常用到解析法、数学法、图象法、 相对运动法等等。
例1:火车以速度v1匀速行驶,司机发现前方同轨 道上相距S处有另一火车沿同方向以速度v2(对 地,且v1> v2)做匀速运动,司机立即以加速度 大小为a紧急刹车,要使两车不相撞, a应满足 什么条件?

相遇追及问题

相遇追及问题

相遇、追及问题一、相遇问题两个物体从不同地点做面对面的运动,即相向运动,相向运动能使两运动物体在途中相遇,它是研究速度和、相遇时间、总距离(总路程)之间的关系,解答相遇问题的关键是要求出两物体在同一时间的速度之和,又称速度和。

例题1:两辆汽车从A、B两地相向开出,甲车每小时行55千米,乙车每小时行45千米,经过3小时两车相遇,A、B两地相距多少千米?EX1:两列火车同时从两地相对开出,甲列火车每小时行86千米,乙列火车每小时行102千米,经过5小时两车在途中相遇,求两地相距多少千米?EX2:甲乙两列火车分别从A、B两地同时出发相向而行,甲车每小时行驶75千米,乙车每小时行驶69千米,经过18小时两车途中相遇,两地间的铁路长多少千米?相遇问题中存在的数量关系:速度和× 相遇时间= 路程和路程和÷相遇时间= 速度和路程和÷速度和= 相遇时间例题2:北京到沈阳的铁路长830千米,两辆火车同时相向开出10小时相遇,已知甲车每小时行41千米,乙车每小时行多少千米?EX1:甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,经过2小时后两人相遇,问乙每小时行多少千米?例题3:姐妹两人在周长为30米的圆形水池边玩,她们约好从同一地点同时背向绕水池行走,姐姐每秒走1.3米,妹妹每秒走1.2米。

多长时间她们能相遇?例题4:甲、乙两辆汽车同时从两地相向而行,甲车每小时行60千米,乙车每小时行48千米,两车离两地中点30千米处相遇,求这两地间的距离是多少?EX1:甲地到乙地快车每小时行32千米,慢车每小时行18千米,如果两车同时从甲乙两地相对开出,可在距中点35千米的地方相遇,甲乙两地相距是多少千米??★例题5:明明和亮亮同时从相距3000米的家里相向出发,明明每分钟行70米,一只狗与他同时出发,每分钟跑320米,亮亮每分钟走80米,狗遇到亮亮后立即朝明明跑去,遇到明明后又朝亮亮跑去,直到两人相遇,这只狗一共跑了多少米?EX1:王明和妹妹两人从相距2000米的两地相向而行,王明每分钟行110米,妹妹每分钟行90米,如果一只狗与王明同时同向而行,每分钟行500米,遇到妹妹后,立即回头向王明跑去,遇到王明再向妹妹跑去,这样不断来回,直到王明和妹妹相遇为止。

追及相遇问题

追及相遇问题
追及和相遇问题
1.追及问题 “追及”的主要条件是两个物体在追 赶过程中处在同一位置,常见的情形有 三种: (1)初速度为零的匀加速直线运动的 物体甲追赶同方向的匀速运动的物体乙 时,一定能追上,在追上之前两者有最 大距离的条件是两物体的速度相等,即 v甲=v乙.
(2)匀速运动的物体甲追赶同方向做匀
3.相遇问题 (1)相遇的特点:在同一时刻两物 体处于同一位置. (2)相遇的条件:同向运动的物体 追及即相遇;相向运动的物体,各自 发生的位移的绝对值之和等于开始时 两物体之间的距离时即相遇.
类型一 追及相遇问题的求解方法
例1 一小汽车从静止开始以3 m/s2的 加速度行驶,恰有一自行车以6 m/s的 速度从车边匀速驶过.
加速运动的物体乙时,恰好追上或恰好
追不上的临界条件是两物体速度相等,
即v甲=v乙. 判断此种追赶情形能否追上的方法是:
假定在追赶过程中两者在同一位置,比
较此时的速度大小,若v甲>v乙,则能追上; v甲<v乙,则追不上,如果始终追不上,当 两物体速度相等即v甲=v乙时,两物体的 间距最小.
(3)速度大者减速(如匀减速直线运动)追速 度小者(如匀速运动)
(1)汽车从开动后在追上自行车之 前,要经多长时间两者相距最远?最 远距离是多少?
(2)什么时候追上自行车,此时汽 车的速度是多少?
(2)由图知,t=2 s以后,若两车位移相等, 即v-t图象与时间轴所夹的“面积”相等.
由几何关系知,相遇时间为t′=4 s,此 时v汽=2v自=12 m/s.
解析:汽车和自行车运动草图如下:
六、追及和相遇问题 1.追及问题 “追及”的主要条件是两个物体在追 赶过程中处在同一位置,常见的情形有 三种: (1)初速度为零的匀加速直线运动的 物体甲追赶同方向的匀速运动的物体乙 时,一定能追上,在追上之前两者有最 大距离的条件是两物体的速度相等,即 v甲=v乙.

相遇问题、追及问题

相遇问题、追及问题

【解题思路和方法】 简单的题目直接利用公 式,复杂的题目变通后利用公式。
例1 好马每天走120千米,劣马每天走75千米, 劣马先走12天,好马几天能追上劣马? 解 (1)劣马先走12天能走多少千米? 75×12=900(千米) (2)好马几天追上劣马? 900÷(120- 75)=20(天) 列成综合算式 75×12÷(120-75)= 900÷45=20(天) 答:好马20天能追上劣马。
追及问题
【含义】两个运动物体在不同地点同时出发 (或者在同一地点而不是同时出发,或者 在不同地点又不是同时出发)作同向运动, 在后面的,行进速度要快些,在前面的, 行进速度较慢些,在一定时间之内,后面 的追上前面的物体。这类应用题就叫做追 及问题。 【数量关系】 追及时间=追及路程÷(快速 -慢速) 追及路程=(快速-慢速)×追及时间

例5 兄妹二人同时由家上学,哥哥每分钟走90米,妹 妹每分钟走60米。哥哥到校门口时发现忘记带课本, 立即沿原路回家去取,行至离校180米处和妹妹相遇。 问他们家离学校有多远? 解要求距离,速度已知,所以关键是求出相遇时间。 从题中可知,在相同时间(从出发到相遇)内哥 哥比妹妹多走(180×2)米,这是因为哥哥比妹 妹每分钟多走(90-60)米, 那么,二人从家出走到相遇所用时间为 180×2÷(90-60)=12(分钟) 家离学校的距离为 90×12-180=900(米) 答:家离学校有900米远。
例3 甲乙二人同时从两地骑自行车相向而行, 甲每小时行15千米,乙每小时行13千米,两 人在距中点3千米处相遇,求两地的距离。
解 “两人在距中点3千米处相遇”是正确理解本题 题意的关键。从题中可知甲骑得快,乙骑得慢, 甲过了中点3千米,乙距中点3千米,就是说甲比 乙多走的路程是(3×2)千米,因此, 相遇时间=(3×2)÷(15-13)=3(小时) 两地距离=(15+13)×3=84(千米) 答:两地距离是84千米。

追及和相遇问题

追及和相遇问题

追击和相遇问题两物体在同一直线上追及、相遇或避免碰撞问题中的条件是:两物体能否同时到达空间某位置。

因此应分别对两物体研究,列出位移方程,然后利用时间关系、速度关系、位移关系而解出。

一、追及问题1、追及问题中两者速度大小与两者距离变化的关系。

若甲2⑴⑵⑶3⑴⑴⑵例1以5m s的速度匀速驶过停车线与汽车同方向行驶,求:(1)什么时候它们相距最远?最远距离是多少?(2)在什么地方汽车追上自行车?追到时汽车的速度是多大?分析:分析过程,合理分段,画出示意图,并找出各段之间的连接点解题过程:例2、在某市区内,一辆小汽车在公路上以速度v 1向东行驶,一位观光游客正由南向北从斑马线上横过马路。

汽车司机发现游客途经经14.01.甲乙两个质点同时同地向同一方向做直线运动,它们的v —t 图象如图所示,则 ( )A.乙比甲运动的快B.2 s乙追上甲C.甲的平均速度大于乙的平均速度D.乙追上甲时距出发点40 m远2.汽车A在红绿灯前停住,绿灯亮起时起动,以0.4 m/s2的加速度做匀加速运动,经过30 s 后以该时刻的速度做匀速直线运动.设在绿灯亮的同时,汽车B以8 m/s的速度从A车旁边驶过,且一直以相同速度做匀速直线运动,运动方向与A车相同,则从绿灯亮时开始()A.A车在加速过程中与B车相遇B.A、B相遇时速度相同C.相遇时A车做匀速运动D.两车不可能再次相遇3.两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度均为V0,若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车.已知前车在刹车过程中所行的距离为s,若要保证两辆车在上述情况中不相撞,则两车在匀速行驶时保持的距离至少应为:()A.s B.2s C.3s D.4s4.A与B两个质点向同一方向运动,A做初速为零的匀加速直线运动,B做匀速直线运动.开始计时时,A、B位于同一位置,则当它们再次位于同位置时:A.两质点速度相等.B.A与B在这段时间内的平均速度相等.C.A的即时速度是B的2倍.D.A与B的位移相等.5.汽车甲沿平直公路以速度V做匀速直线运动,当它经过某处的另一辆静止的汽车乙时,乙开始做初速度为零的匀加速直线运动去追甲。

四年级相遇与追及问题

四年级相遇与追及问题

四年级相遇与追及问题相遇和追及是初中数学中比较基础的运动问题。

相遇问题是指两个人从两个不同的地点出发,在途中相遇的情况。

追及问题是指一个人从后面赶上另一个人的情况。

在解决这些问题时,需要用到速度、时间和路程的关系。

具体来说,对于相遇问题,假设甲从A地到B地,乙从B地到A地。

如果两人同时出发,他们在途中相遇,实质上是甲和乙一起走了A、B之间这段路程。

如果甲的速度为v甲,乙的速度为v乙,相遇的时间为t,则相遇路程为S和=V和t,其中V和=v甲+v乙。

对于追及问题,假设甲走得快,乙走得慢。

在相同的时间(追及时间)内,甲比乙多走了一段路程,也就是追及路程。

如果甲的速度为v甲,乙的速度为v乙,速度差为V差=v甲-v乙,则追及路程为S差=V差t。

需要注意的是,在研究这些问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,两个物体所运行的时间相同;(2)在整个运行过程中,两个物体所走的是同一路径。

举个例子,假设XXX和明明同时从各自的家相对出发,明明每分钟走20米,XXX骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇。

那么,聪聪家和明明家的距离为S和=(20+42)×20=1640米。

在解决这些问题时,可以选择直接利用公式计算,也可以画图帮助理解。

对于刚刚研究奥数的孩子,需要引导他们认识、理解及应用公式。

已经行驶了82千米(41千米/小时×2小时),此时甲、乙两车相距770-82=688千米。

接下来,甲、乙两车相向而行,速度之和为45+41=86千米/小时。

根据“相遇时间=路程和/速度和”的公式,甲车行驶的时间为688/86=8小时。

因此,甲车行驶8小时后与乙车相遇。

答案】甲车行驶8小时后与乙车相遇。

考点】行程问题【难度】☆☆【题型】解答【解析】先求出XXX出发后,XXX所行的路程:70×5=350(米);再求出XXX返回学校和取运动服所需的时间:2×2=4(分钟);因为XXX比XXX每分钟多走40米,所以追上XXX的时间为350÷40=8.75(分钟),即约9分钟后追上XXX.答案】9分钟已知XXX和XXX同时从学校出发,XXX的速度是XXX的1.6倍,他们向同一个方向走,5分钟后XXX返回学校取运动服,这样用去了5分钟,在学校又耽误了2分钟,XXX一共耽误了12分钟。

追及和相遇问题

追及和相遇问题

(4)求解此类问题的方法,除了以上所述根据 追及的主要条件和临界条件解联立方程外,还 有利用二次函数求极值,及应用图象法和相对 运动知识求解.
1、《走向高考》:P15—例证3 2、备考P9例6
3、备考P12例9
4、如图所示,A、B两物体相距 S=7米,A正以VA=4米/秒的速度向 右做匀速直线运动,而物体B此时 A 速度VB=10米/秒,方向向右做匀减 速直线运动,加速度大小a=2米/秒, 从图示位置开始,问经多少时间A 追上B?
3、匀速物体追赶匀加速物体:当追者速 度等于被追赶者速度时恰好追上,只有一 次相遇机会。当第一次追上时追者速度大 于被追者速度,有两次相遇机会。 4、匀速物体追匀减速物体:必能追上且 只有一次相遇机会,注意分析匀减速物体 何时停下来。
二、相遇问题
相遇问题分为追及相遇和相向运动相遇两种情 形,其主要条件是两物体在相遇处的位置坐标 相同.
提醒:遇到匀速运动物体追赶匀减速运动物体的 问题时,特别要注意匀减速的物体何时停下来!
追及问题小结: 1、初速为零的匀加速物体追赶同向匀速物体 时,追上前两者具有最大距离的条件:追赶者 的速度等于被追赶者的速度。 2、匀减速物体追赶同向匀速物体时,恰能追 上或恰好追不上的临界条件是:即将靠近时追 赶者的速度等于被追赶者的速度。
VA
B S
VB
解:设经时间t ,A追上B,由运动学公式列方 程得:
VA t=S+VB t-a t2/2
即:t2-6t-7=0
对吗?
解得 t=7s
正确解法:根据Vt=V0+at得 B停下来的时间tB=VB/a=10/2=5(s), 这段时间B的位移 SB=VtB=VBtB/2=10×5/2=25(m) 由 VAtA=S+SB 得: tA=(S+SB)/VA=(7+25)/4=8(s)

相遇与追及问题

相遇与追及问题

相遇问题相遇问题一般是指两个物体从两地出发,相向而行,共同行一段路程,直至相遇,这类应用题的基本数量关系是:总路程=速度和×相遇时间这里的“速度和”是指两个物体在单位时间内共同行的路程。

例1.甲、乙两辆汽车同时从东村、西村之间公路的中点向相反方向行驶,6小时后,甲车到达东村,乙车离西村还有42千米。

已知甲车的速度是乙车的2倍。

东、西两村之间的公路长多少千米?42×2×2=168例2.一支1800米长的队伍以每分90米的速度行进,队伍前端的联系员用9分的时间跑到队伍末尾传达命令。

联络员每分跑多少米?1800÷9-90=110例3.甲、乙两车相距516千米,两车同时从两地出发相向而行,乙车行驶6小时后停下修理车子,这时两车相距72千米。

甲车保持原速继续前进,经过2小时与乙车相遇。

求乙车的速度。

72÷2=36【 516-36×(6+2)】÷6=38例4.甲、乙两列车同时从A、B两地相对开出,第一次在离A地75千米处相遇。

相遇后两列车继续前进,到达目的地后又立刻返回,第二次相遇在离B地55千米处。

求A、B两会间的路程。

75×3-55=170练习题5.甲、乙两车同时从东、西两地相向开出,甲车每小时行40千米,经过3小时已驶过中点25千米,这时乙车与甲车还相距7千米。

求乙车的速度。

(40×3-25×2-7) ÷3=216.甲、乙两车同时同地同向行进,甲车每小时行30千米,乙车每小时行的路程是甲车的1.5倍。

当乙车行到90千米 的地方时立即按原路返回,又行了几小时和甲车相遇?[90-90÷(30×1.5) ×30] ÷(30+30×1.5)=0.47.两辆汽车从同一地点向相反方向开出,第一辆汽车每小时行48千米,第二辆汽车每小进行52千米。

如果第一辆车先行1.2小时,那么,两辆汽车同时行驶几小时后,它们之间的距离为557.6千米?(557.6-48×1.2) ÷(48+52)=58.一架运输机和一架客机同时从某地起飞相背飞行,2.5小时后两机相距3650千米。

追及与相遇问题

追及与相遇问题
追及与相遇问题 1.相遇:若同一时刻,两物体处于同一位置,则说两物
体在该时刻相遇。
2.追及:(1)若追及过程中,前者速度小于后者速度,
两物体距离越来越近; (2)若追及过程中,前者速度大于后者速度, 两物体距离越来越近。 (3)若后者能追上前者,则速度一定不小于前 者。
3.临界:速度相等时是物体距离极大值或极小值的时
例2、A火车以v1=20m/s速度匀速行驶,司机发现
前方同轨道上相距100m处有另一列火车B正以 v2=10m/s速度匀速行驶,A车立即做加速度大小为 a的匀减速直线运动。要使两车不相撞,a应满足 什么条件?
例3、A、B两车在平直的公路上分别以v1=10 m/s和v2=20 m/s的速度匀速行驶,两车相距 10m处,从该时刻起,前方的B车以2m/s2的 恒定加速度开始刹车,求A车何时追上B车?
例4、甲、乙两汽车在一条平直的单行道上乙前甲
后同向匀速行驶.甲、乙两车的速度分别为v1=40 m/s和v2=20 m/s ,当两车距离接近到250 m时两车 同时刹车,已知两车刹车时的加速度大小分别为 a1=1 m/s2和a2=1/3 m/s2问甲车是 Nhomakorabea会撞上乙车?
刻———速度相等往往是追及过程中两物体能 否相遇的临界条件。
追及与相遇问题
解题思路 1.分析相互追及的两物体运动情况,画出运动示意图;
2.由运动示意图找出两物体位移关系;
3.根据位移关系由位移公式列方程求解或利用速度时间图 像求解。
例1、一辆汽车在十字路口等候绿灯,当绿灯亮时
汽车以3m/s2的加速度开始加速行驶,恰在这时一 辆自行车以6m/s的速度匀速驶来,从后边超过汽 车。试求:汽车从路口开动后,在追上自行车之前 经过多长时间两车相距最远?此时距离是多少?汽 车在第几秒追上自行车?

初一数学相遇和追及问题解析

初一数学相遇和追及问题解析

初一数学相遇和追及问题解析一、相遇问题的基本概念相遇问题是指在两个或多个物体或人在同一直线上运动,并在某个时间点相遇的问题。

在数学中,我们通常用速度、时间、距离等变量来描述相遇问题。

二、追及问题的基本概念追及问题是指两个或多个物体或人在同一直线上运动,其中一人或物体追赶另一个物体或人,并最终追上的问题。

在数学中,我们通常用速度、时间、距离等变量来描述追及问题。

三、相遇问题的解决方法解决相遇问题的关键是找到相遇时各个物体或人行驶的距离总和等于两物体或人的初始距离。

具体解决方法如下:1. 找到两物体或人的初始距离。

2. 计算两物体或人相遇时各自行驶的距离。

3. 计算两物体或人相遇时的总距离。

4. 根据总距离和初始距离的关系,确定相遇时各个物体或人的速度、时间等变量。

四、追及问题的解决方法解决追及问题的关键是找到追及时各个物体或人行驶的距离差等于两物体或人的初始距离。

具体解决方法如下:1. 找到两物体或人的初始距离。

2. 计算追及时各个物体或人行驶的距离差。

3. 根据初始距离和行驶的距离差的关系,确定追及时各个物体或人的速度、时间等变量。

五、相遇和追及问题的应用实例相遇和追及问题在现实生活中很常见,比如两个人同时从两地出发相向而行,或者一个人从后面追赶另一个人等。

这些问题的解决方法都可以从初一数学的角度来解析。

六、相遇和追及问题的常见陷阱在解决相遇和追及问题时,学生容易犯的错误主要有以下几个方面:1. 没有考虑到相遇或追及的时刻是否已经过去,导致计算错误。

2. 没有考虑到物体的速度是否相同或相等,导致计算错误。

3. 没有考虑到物体的初始位置是否相同,导致计算错误。

4. 没有考虑到物体的行驶方向是否相同或相反,导致计算错误。

七、如何提高解决相遇和追及问题的能力为了提高解决相遇和追及问题的能力,学生可以采取以下措施:1. 熟悉相遇和追及问题的基本概念和解决方法,掌握相关的数学知识和技能。

2. 多做练习题,通过反复练习加深对知识的理解和掌握程度。

追及和相遇问题

追及和相遇问题

追及和相遇问题
追及和相遇问题是一个经典的数学问题。

问题描述如下:
假设有两个物体,分别以不同的速度从不同的起点出发。

一方称为“追逐者”,另一方称为“被追者”。

追逐者希望能够追上被
追者并与其相遇。

问题的关键是要确定两个物体相遇的时间和地点。

解决这个问题的一种常见方法是使用相对速度概念。

相对速度是指两个物体之间的相对运动速度。

假设追逐者速度为v1,
被追者速度为v2,它们之间的相对速度为v=v1-v2。

假设两个物体分别从起点A和起点B出发,相遇的地点为C,则AC的距离为A和B之间的距离,AC的时间为相遇时间t。

根据相对速度的定义,相遇时间可以用公式t=d/v表示,其中
d为A和B之间的距离。

通过求解这个方程,可以确定相遇时间t。

有时候,题目可能要求求解相遇位置。

这时需要将已知的速度代入相对速度公式,并根据相遇时间t计算相遇位置C的坐标。

追及和相遇问题

追及和相遇问题
在这段时间里,人、车的位移分别为:
x人=v人t=6×6=36m
x车=at′2/2=1×62/2=18m
△x=x0+x车-x人=25+18-36=7m
结论:速度大者减速追赶速度小者,追上前在两 个物体速度相等时,有最小距离.即必须在此之前
追上,否则就不能追上.
解析:作汽车与人的运动草图如下图甲和v-t图象如下图乙所 示.因v-t图象不能看出物体运动的初位置,故在图乙中标上两 物体的前、后.由图乙可知:在0~6 s时间内后面的人速度大, 运动得快;前面的汽车运动得慢.即0~6 s内两者间距越来越 近.因而速度相等时两者的位置关系,是判断人能否追上汽车
临界条件。
若无解,则不能追上。
代入数据并整理得:t2-12t+50=0 △=b2-4ac=122-4×50×1=-56<0
所以,人追不上车。
在刚开始追车时,由于人的速度大于车的速度, 因此人车间的距离逐渐减小;当车速大于人的 速度时,人车间的距离逐渐增大。因此,当人 车速度相等时,两者间距离最小。
at′= v人 t′=6s
的两个关系:
1.两个物体运动的时间关系; 2.两个物体相遇时必须处于同一位置。
即:两个物体的位移关系
③匀减速直线运动的物体追赶同向匀速(或匀加速)直线运动的 物体时,恰好追上(或恰好追不上)的临界条件为:即追尾时, 追及者速度等于被追及者速度.当追及者速度大于被追及者速度,
例题3:经检测汽车A的制动性能:以标准速度20m/s 在平直公路上行使时,制动后40s停下来。现A在平直 公路上以20m/s的速度行使发现前方180m处有一货车 B以6m/s的速度同向匀速行使,司机立即制动,能否
∵△x=x1-x2=v自t - at(2/2位移关系)

追及和相遇问题

追及和相遇问题

△x
x
v自t
1 2
at 2
6t
3 2
t2
x自
当t
6 2 (
3)
2s时
xm
62 4( 3)
6m
2
2
那么,汽车经过多少时间能追上自行车?此时汽车的速度是多
大?汽车运动的位移又是多大?
x
6T
3 2
T
2
0 x汽
T 4s
1 aT 2=24m 2
v汽
aT
12m /
s
方法四:相对运动法
选自行车为参照物,则从开始运动到两车相距最远这段过程中,
v自T
1 2
aT 2
T 2v自 4s a
v汽 aT 12m / s
x汽
1 2
aT 2=24m
方法二:图象法
解:画出自行车和汽车的速度-时间图线,自行车的位移x自等于 其图线与时间轴围成的矩形的面积,而汽车的位移x汽则等于其 图线与时间轴围成的三角形的面积。两车之间的距离则等于图
中矩形的面积与三角形面积的差,不难看出,当t=t0时矩形与三 角形的面积之差最大。
x汽
△x
x自
方法一:公式法
当汽车的速度与自行车的速度
x汽
相等时,两车之间的距离最大。设
经时间t两车之间的距离最大。则
△x
v汽 at v自
t v自 6 s 2s
x自
xm
x自
a
x汽
3
v自t
1 2
at 2
6 2m
1 2
3 22 m
6m
那么,汽车经过多少时间能追上自行车?此时汽车的速度是
多大?汽车运动的位移又是多大?

相遇与追及问题

相遇与追及问题

相遇与追及知识框架一、相遇甲从A地到B地,乙从B地到A地,然后两人在途中相遇,实质上是甲和乙一起走了儿8之间这段路程,如果两人同时出发,那么甲乙甲乙・・・・・A 3 A B0时刻唯每出发时向t后相遇相遇路程=甲走的路程+乙走的路程=甲的速度X相遇时间+乙的速度X相遇时间=(甲的速度+乙的速度)X相遇时间=速度和X相遇时间.一般地,相遇问题的关系式为:速度和X相遇时间二路程和,即S和二v n t二、追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他. 这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度X追及时间-乙的速度X追及时间=(甲的速度-乙的速度)X追及时间=速度差X追及时间.一般地,追击问题有这样的数量关系:追及路程二速度差X追及时间,即S差=Qt例如:假设甲乙两人站在100米的跑道上,甲位于起点(0米)处,乙位于中间5米处,经过时间t后甲乙同时到达终点,甲乙的速度分别为、和y乙,那么我们可以看到经过时间t后,甲比乙多跑了5米,或者可以说,在时间t内甲的路程比乙的路程多5米,甲用了时间1追了乙5米甲甲乙乙«--- •----------------------- » ・・。

米 5米10。

米100三、相遇和追及在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同(2)在整个运行过程中,2个物体所走的是同一路径。

Page 1 of 11例题精讲【例1】一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。

3.5小时两车相遇。

甲、乙两个城市的路程是多少千米?【考点】行程问题 【难度】☆☆ 【题型】解答【解析】本题是简单的相遇问题,根据相遇路程等于速度和乘以相遇时间得到甲乙两地路程为:(46+48)X3.5=94X3.5=329 (千米).【答案】329千米【巩固】聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇,你知道聪聪家和明明家的距离吗?【考点】行程问题 【难度】☆☆ 【题型】解答【解析】方法一:由题意知聪聪的速度是:20 + 42 = 62 (米/分),两家的距离=明明走过的路程+聪聪走 过的路程=20x 20 + 62x 20 = 400 +1240 = 1640 (米),请教师画图帮助学生理解分析.注意利用乘法分配律的反向应用就可以得到公式:S 和=v 和t .对于刚刚学习奥数的孩子, 注意引导他们认识、理解及应用公式.方法二:直接利用公式:S 和=v 和t =(20 + 62)x 20 = 1640 (米). 【答案】1640米【例2】A 、B 两地相距90米,包子从A 地到B 地需要30秒,菠萝从B 地到A 地需要15秒,现在包子和菠萝从A 、B 两地同时相对而行,相遇时包子与B 地的距离是多少米?【考点】行程问题 【难度】☆☆ 【题型】解答【解析】包子的速度:90 ・ 30 = 3 (米/秒),菠萝的速度:90 ・15 = 6 (米/秒),相遇的时间: 90 + (3 + 6) =10 (秒),包子距B 地的距离:90 — 3x 10 = 60 (米).【答案】包子距B 地的距离是60米【巩固】两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时 行40千米。

相遇问题和追及问题的公式

相遇问题和追及问题的公式

相遇问题和追及问题可以使用以下公式来解决:
1. 相遇问题:
设A和B两地之间的距离为D,A和B同时从各自的地点出发,速度分别为Va和Vb。

假设A和B相遇的时间为t,则相遇时两者所走的路程分别为Va*t和Vb*t,根据题所给条件,有Va*t+Vb*t=D,可以解得t=D/(Va+Vb)。

2. 追及问题:
设A和B相距D,A是追赶者,B是被追赶者。

A的速度为Va,B的速度为Vb。

假设A能在t时间内追上B,即追及时间为t,则据题目所给条件,有Va*t=D+Vb*t,可以解得t=D/(Va-Vb)。

需要注意的是,在相遇问题中,两者速度的和应该使用Va+Vb,而在追及问题中,两者速度的差应该使用Va-Vb。

追及与相遇问题

追及与相遇问题

第 1 页 共 1 页 追及与相遇问题
1.概述
当两个物体在同一条直线上运动时,由于两物体的运动情况不同,所以两物体之间的距离会不断发生变化,就会涉及追及、相遇或避免碰撞等问题.
2.两类情况
(1)若后者能追上前者,则追上时,两者处于同一位置,后者的速度一定不小于前者的速度.
(2)若后者追不上前者,则当后者的速度与前者的速度相等时,两者相距最近.
3.相遇问题的常见情况
(1)同向运动的两物体追及并相遇:两物体位移大小之差等于开始时两物体间的距离.
(2)相向运动的两物体相遇:各自发生的位移大小之和等于开始时两物体间的距离.
自测3 平直公路上的甲车以10 m /s 的速度做匀速直线运动,乙车静止在路面上,当甲车经过乙车旁边时,乙车立即以大小为1 m/s 2的加速度沿相同方向做匀加速运动,从乙车加速开始计时,则( )
A.乙车追上甲车所用的时间为10 s
B.乙车追上甲车所用的时间为20 s
C.乙追上甲时,乙的速度是15 m/s
D.乙追上甲时,乙的速度是10 m/s
答案 B
解析 设乙车追上甲车所用的时间为t ,则有v 甲t =12
at 2,解得t =20 s ,选项A 错误,B 正确;由v =at 得,乙车追上甲车时,乙车速度v 乙=20 m/s ,选项C 、D 错误.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习2:某段笔直公路与铁路平行,一列火车正以 20m/s的速度匀速行驶,火车长96m;公路上一 停着的汽车,在货车尾部与自己相平时,开始以 2m/s2加速度和火车同向加速运动。 求:汽车何时超过火车?此时汽车运动多远? (汽车长度忽略不计)
一:物理极值法 思考:汽车车速小于自行车车速时,间距怎么变化? 大于自行车车速时,间距又怎么变化? 结论:当汽车速度与自行车速相等时,间距最大
例二.一辆汽车在十字路口等候绿灯,当绿灯亮时汽车 以3m/s2的加速度开始加速行驶,恰在这时一辆自行车 以6m/s的速度匀速驶来,从后边超过汽车。试求:汽车 从路口开动后,在追上自行车之前经过多长时间两车相 距最远?此时距离是多少?
二:数学极值法 写出两车的间距随时间的变化关系,讨论极值 . 注意数学结果的物理意义。 两车的间距随时间的变化关系讨论极值方法 二次函数配方法求极值、 Δ判别式法求极值、 二次函数顶点公式求极值等
例三 在一条直公路上的匀速行驶的自行车,车速为 V1=5m/s。某时刻起,自行车前方x0=18.75m处停 着的小汽车以a=0.5m/s2的加速度开始加速行驶, 问:自行车追上小汽车时间是多少? 所求出的时间,代表的物理意义是什么? 汽车与自行车两次相遇之间,二者间距最大是多少?
例四:以20m/s匀速运动的汽车突然发现前方 同车道上150m处有一辆以5m/s匀速行驶的自行车, 为避免相撞,汽车立即开始减速,若汽车恰好与自 行车不相撞,汽车减速的加速度多大?
物理极值法 恰不与自行车相撞的条件是什么?
练习1:一条直公路上的A、B两地相距200m, 甲车从A地由静止开始以2m/s2加速度向B地 加速运动,恰在此时,乙车从B地以1m/s2加 速度由静止开始与甲同向加速行驶,若两车 一直保持加速度不变做匀加速运动, 则:甲车何时何地追上乙车?(忽略车的长度) A B
相遇与追及问题
多物体运动分析 1、分析每个物体的相对大地的运动 2、找出两个物体间的位移、时间的练习, 建立位移公式。 找出物体间的速度的联系, 建立速度公式。 3、解方程组,讨论结果。
一辆汽车在十字路口等候绿灯,当绿灯亮时 例一: 汽车以3m/s2的加速度开始加速行驶,恰在这时一辆 自行车以6m/s的速度匀速驶来,从后边超过汽车。 试求:汽车从路口开动后,何时、何处追上自行车?
例三变式一
在一条直公路上的匀速行驶的自行车,车速为 V1=5m/s。某时刻起,自行车前方x0=25m处停 着的小汽车以a=0.5m/s2的加速度开始加速行驶, 问:自行车能否追上小汽车?
数学结果代表的物理意义是什么? 例三变式二 若x0=30m,自行车能否追上小汽车?若不能追上ቤተ መጻሕፍቲ ባይዱ 最小间距是多少?
物理规律应用公式法
物理规律应用图像法
总结
• 分析每个物体相对地的运动,建立位移公 式 • 找出两个物体的位移关系、时间关系 • 解方程讨论结果
例二.一辆汽车在十字路口等候绿灯,当绿灯亮时汽 车以3m/s2的加速度开始加速行驶,恰在这时一辆自 行车以6m/s的速度匀速驶来,从后边超过汽车。试 求:汽车从路口开动后,在追上自行车之前经过多 长时间两车相距最远?此时距离是多少?
相关文档
最新文档