第九章 压杆稳定
第九章 压杆稳定wxg
材料力学 第九章 压杆稳定
令
Fcr 2 =k EI
令
EIw′′ = M ( x) = Fcr w
则导出二阶常系数线性微分方程
w"+k w = 0
2
通解
w = Asin kx+ Bcos kx
A,B,k 三个待定常数。 , , 三个待定常数。
材料力学 第九章 压杆稳定
w = Asin kx+ Bcos kx
材料力学 第九章 压杆稳定
讨论
λ=
l
i
集中地反映了压杆的杆端约束、长度、 长细比 λ 集中地反映了压杆的杆端约束 、 长度 、 截面尺寸和形状对临界应力的影响 临界应力的影响。 截面尺寸和形状对临界应力的影响。
若压杆在不同平面内失稳时的支承约束条件不 同 ( , I) , 应分别计算在各平面内失稳时的 ) 柔度λ,并按较大者计算压杆的临界应力σcr 。 并按较大者计算压杆的临界应力 较大者
材料力学 第九章 压杆稳定
(2) 欧拉公式的应用范围 只有在线弹性范围内, 只有在线弹性范围内,即σcr ≤ σP 时,才可用欧 拉公式计算压杆的临界力 拉公式计算压杆的临界力 Fcr(临界应力 σcr )。
或
π E σcr = 2 ≤ σ p λ
2
λp = π
E
π 2E E λ≥ =π = λp σp σp
平衡只有
最小解为 n = 1 的解
cos (kl 2) = 0
kl =
F cr l =π EI
kl nπ = (n =1 3,5 ) , 2 2
F = cr
π 2EI
l2
欧拉公式
材料力学 第九章 压杆稳定
w = Asin kx+ Bcos kx
第九章 压杆稳定
李田军材料力学课件 15 第九章 压杆稳定
解:1. 在推导临界力公式时需要注意,在符合 杆端约束条件的微弯状态下,支座处除轴向约 束力外还有无横向约束力和约束力偶矩. 在推导临界力公式时这是很重要的一步, 如果在这一步中发生错误,那么得到的结果 将必定是错误的. 2. 杆的任意x截面上的弯矩为
以两端铰支为例 在线弹性,小变形下,近似地, EIy′′ = M(x) = py 压杆的微弯必定发生在抗弯能力最小的纵向截面内, 压杆的微弯必定发生在抗弯能力最小的纵向截面内, 所以惯性I应为截面最小的惯性矩 所以惯性 应为截面最小的惯性矩Imin. 应为截面最小的惯性矩 P 2 2 引入记号: k = ,改写为 y′′ + k y = 0 EI 通解为: y = Asin kx + B cos kx
M(x) = Fcrw Fy (l x)
从而有挠曲线近似微分方程:
(b)
李田军材料力学课件
EIw′′ = [ Fcr w Fy (l x)]
16 第九章 压杆稳定
令 k2=Fcr /EI,将上式改写为 亦即
2
w′′ + k w =
2
2
Fy EI
(l x)
w′′ + k w = k
Fy Fcr
李田军材料力学课件 11 第九章 压杆稳定
Asin 0 + Bcos 0 = 0 边界条件: y(0)=0 , y(l)=0 (两端绞支), 即 Asin kl + Bcos kl = 0
齐次方程有非零解的条件
n2π 2EI 由此可得 P = l2
nπ = 0 sin kl = 0 k = sin kl cos kl l 0 1
为了保证压杆安全可靠的工作,必须使压杆处于直线 必须使压杆处于直线 平衡形式,因而压杆是以临界力作为其极限承载能力. 平衡形式 临界力的确定是非常重要的. 可见,临界力的确定 临界力的确定
材料力学第九章压杆稳定
明显的弯曲变形,丧失了承载能力.
(Buckling of Columns)
构件的承载能力
① 强度 ② 刚度 ③ 稳定性
工程中有些构件 具有足够的强度、刚 度,却不一定能安全可 靠地工作.
(Buckling of Columns) 二、工程实例(Example problem)
(Buckling of Columns)
w
x
sin kl 0 y
B
讨论: 若
A 0, w 0
则必须 sin kl 0 kl nπ(n 0,1,2,)
(Buckling of Columns)
k2 F kl nπ(n 0,1,2,) EI
F
n2π l
2 2
EI
(n 0,1,2,)
令 n = 1, 得
Fcr
2 EI l2
E π σp
206109 100 200 106
当 <1 但大于某一数值 2的压杆不能应用欧拉公式,此
时需用经验公式.
(Buckling of Columns) 三. 常用的经验公式 ( The experimental formula)
直线公式 或 令
σcr a b s
a s
b
σmax
FN max A
[σ]
例如:一长为300mm的钢板尺,横截面尺寸为 20mm 1
mm.钢的许用应力为[]=196MPa.按强度条件计算得钢板尺所
能承受的轴向压力为 [F] = A[] = 3.92 kN
实际上,其承载能力并不取决于轴向压缩的抗压强度,而是
与受压时变弯有关.当加的轴向压力达到40N时,钢板尺就突然发
支承情况 两端铰支 一端固定,另一端铰支 两端固定 一端固定,另一端自由
第九章--压杆的稳定
Pcr
cr
A
a
b
d
4
2
380133N
丝杠的工作稳定安全系数为:
nst
Pcr P
380133 80000
4.75
4 [nst ]
校核结果可知,此千斤顶丝杠是稳定的
例9-5 简易起重机起重臂OA长l=2.7m,由外径D=8cm,内 径d=7cm的无缝钢管制成,材料Q235钢,规定的稳定安全 系数[nst]=3,试确定起重臂的安全载荷。
对于柱屈曲(压杆稳定):
y M ( y) EI
力学上 ——载荷在横向干扰力产生的变形上引起 了弯矩
数学上 ——是一个求解微分方程的问题
3、杆端约束情况的简化 (1)柱形铰约束 (2)焊接或铆接
(3)螺母和丝杠连接
l0 / d0 1.5时,可简化为铰支座;l0 / d0 3时,简化为固定端;
cr
S
cr ab
③临界应力总图
P
2E
cr
2
s s a
b
P 2E
P
L
i
2.抛物线型经验公式
①P < < s 时: cr a1b12
我国建筑业常用:
cr
s
1
c
2
对于A3钢、A5钢和16锰钢: 0.43,c
c 时,由此式求临界应力
2E 0.56 S
②s < 时: cr s
(2)计算最小刚度平面内的临界力和临界应力。 截面的惯性矩为:
Iy
20 123 12
2880cm4
相应惯性半径:
iy
Iz 3.46cm A
其柔度为:
l
iy
0.5 400 3.46
材料力学第9章 压杆稳定
第9章 压杆稳定 图9-6
第9章 压杆稳定
9.2.3 两端非铰支细长压杆的临界载荷 1.一端固定一端自由的细长压杆的临界载荷 图9-7所示为一端固定、一端自由的长为l的细长压杆。
当轴向压力F=Fcr时,该杆的挠曲轴与长为2l的两端铰支细 长压杆的挠曲轴的一半完全相同。因此,如果二杆各截面的 弯曲刚度相同,则临界载荷也相同。所以,一端固定一端自 由、长为l的细长压杆的临界载荷为
第9章 压杆稳定
9.2.2 大挠度理论与实际压杆 式(9-1)与式(9-2)是对于理想压杆根据小挠度挠
曲轴近似微分方程得到的。如果采用大挠度挠曲轴的微分方
程 ddx1xM ExI进行理论分析,则轴向压力F与压杆最
大挠度wmax之间存在着如图9-6中的曲线AB所示的确定关 系,其中A点为曲线的极值点,相应之载荷Fcr即为上述欧拉 临界载荷。
Fcr
2 EI
2l 2
(9-3)
第9章 压杆稳定
图9-7
第9章 压杆稳定
2.两端固定的细长压杆的临界载荷 图9-8所示为两端固定的长为l的细长压杆,当轴向压 力F=Fcr时,该杆的挠曲轴如图9-8(a)所示,在离两固定端 各l/4处的截面A、B存在拐点,A、B截面的弯矩均为零。因 此,长为l/2的AB段的两端仅承受轴向压力Fcr(见图9-8 (b)),受力情况与长为l/2的两端铰支压杆相同。所以,两 端固定的压杆的临界载荷为
Fcr
2EI
0.5l 2
(9-4)
第9章 压杆稳定
图9-8
第9章 压杆稳定
3.一端固定一端铰支的细长压杆的临界载荷 图9-9所示为一端固定一端铰支的长为l的细长压杆, 在微弯临界状态,其拐点与铰支端之间的正弦半波曲线长为
材料力学-第9章压杆的稳定问题
0 1 0 sinkl coskl
sinkl 0
第9章 压杆的稳定问题
两端铰支压杆的临界载荷欧拉公式
sinkl 0
FP k EI 由此得到临界载荷
2
kl nπ, n 1, 2 ,,
FPcr
π 2 n 2 EI l2
最小临界载荷
FPcr π 2 EI 2 l
第9章 压杆的稳定问题
FPcr
π 2 EI
l
2
这一表达式称为欧拉公式。其中l为不同压杆屈曲后挠曲线上 正弦半波的长度,称为有效长度(effective length); 为反映不同 支承影响的系数,称为长度系数(coefficient of 1ength),可由屈 曲后的正弦半波长度与两端铰支压杆初始屈曲时的正弦半波长度 的比值确定。
d2w M ( x) - EI 2 dx
d2w 2 k w0 2 dx
k2 FP EI
第9章 压杆的稳定问题
两端铰支压杆的临界载荷欧拉公式
d2w 2 k w0 2 dx
k2
FP EI
微分方程的解
w =Asinkx + Bcoskx
边界条件
w ( 0 ) = 0 , w( l ) = 0
第9章 压杆的稳定问题
临界应力与临界应力总图
对于某一压杆,当分叉载荷 FP 尚未算出时,不 能判断压杆横截面上的应力是否处于弹性范围;当 分叉载荷算出后,如果压杆横截面上的应力超过弹 性范围,则还需采用超过比例极限的分叉载荷计算 公式。这些都会给计算带来不便。 能否在计算分叉载荷之前,预先判断哪一类压 杆将发生弹性屈曲?哪一类压杆将发生超过比例极 限的非弹性屈曲?哪一类不发生屈曲而只有强度问 题?回答当然是肯定的。为了说明这一问题,需要 引进长细比(slenderness)的概念。
《建筑力学》第九章压杆稳定
cr 为临界应力的许用值,其值为:
(9-13)
cr
cr
K
(9-14)
式中 K 称为稳定安全系数。稳定安全系数一般都大于强度计算时的安全系数,这是因为在
确定稳定安全系数时,除了应遵循确定安全系数的一般原则以外,还必须考虑实际压杆并 非理想的轴向压杆这一情况。比如,在制造过程中杆件不可避免地存在微小的弯曲(即存在 初曲率);外力的作用线也不可能绝对准确地与杆件的轴线相重合(即存在初偏心);还必需 考虑杆件的细长程度等等,这些都应在稳定安全系数中加以考虑。
d=20mm,材料的许用应力 =170MPa,已知 h=0.4m,作用力 F=15kN。试在计算平面内校核
二杆的稳定。
图 9-3
解:(1)计算各杆承受的压力 取结点 A 为研究对象,根据平衡条件列方程
x 0 FAB cos 450 FAC cos 300 0 Y 0 FAB sin 450 FAC sin 300 F 0
压杆的临界应力。
5、临界应力总图 综上所述,压杆按照其柔度的不同,可以分为三类,计算各自临界应力的方法也不相
同。当 ≥ p 时,压杆为细长杆(大柔度杆),其临界应力用欧拉公式来计算;当 s < < p 时,压杆为中长杆(中柔度杆),其临界应力用直线经验公式来计算; s 时,压杆为短
4 1 0.566 103 20
113
4
AC
lAC i
4 1 0.8 103 20
160
(3)由表 9-3 查得折减系数为:
AC 0.272
AB
0.536
(0.536
材料力学 第九章 压杆稳定
cr s cr a b
cr
小柔度杆 中柔度杆
O
π2 E
2
大柔度杆
2
1
l
i
大柔度杆—发生弹性失稳 中柔度杆—发生非弹性失稳 小柔度杆—不发生失稳,而发生强度失效
Fuzhou University
杆类型
大柔度杆
定义
1
临界力
π EI Fcr ( l ) 2
n 0,1, 2
取
n 1
π 2 EI Fcr 2 l
细长压杆的临界载荷的欧 拉公式 (两端铰支)
Fuzhou University
材料力学课件
w A sin kx B co s kx
kl n , n 0,1, 2
F x l w F x
取 n 1
π 2 EI Fcr 2 l
2
临界应力
cr π2E性质Fra bibliotek2
稳定 稳定 强度
中柔度杆 2 1 Fcr A(a b ) 小柔度杆
cr a b
2
Fcr A s
cr s
l
i
1 π
i
E
I A
1.0, 0.5, 0.7, 2.0
a s 2 b
Fcr
Fcr
π 2 EI
2l
2
π 2 EI
0.7l
2
π 2 EI Fcr 2 (l )
欧拉公式的普遍形式
Fuzhou University
材料力学课件 讨论:
π 2 EI Fcr ( l )2
材料力学第九章 压杆稳定
02
创新研究方法与手段
积极探索新的实验技术和数值模拟方法,提高压杆稳定研究的精度和可
靠性。
03
拓展应用领域
将压杆稳定研究成果应用于更多领域,解决实际工程问题,推动科学技
术进步。
THANKS
感谢观看
稳定性取决于压杆的初始弯曲程度、压力的大小 和杆件的材料特性。
当压杆受到微小扰动时,如果能够恢复到原来的 平衡状态,则称其为稳定;反之,则为不稳定。
压杆的临界载荷
临界载荷是指使压杆由稳定平衡 状态转变为不稳定平衡状态的载
荷。
当压杆所受压力小于临界载荷时, 压杆保持稳定平衡状态;当压力 大于临界载荷时,压杆将失去稳
相应措施进行解决。
建筑结构中的压杆问题
02
高层建筑、大跨度结构等建筑中的梁、柱等部件可能发生失稳,
需要加强设计和施工控制。
压力容器中的压杆问题
03
压力容器中的管道、支撑部件等可能发生失稳,需要采取相应
的预防和应对措施。
05
压杆稳定的未来发展与展望
压杆稳定研究的新趋势
跨学科交叉研究
压杆稳定与材料科学、计算科学、工程结构等领域相互渗透,形 成多学科交叉的研究趋势。
工程中常见的压杆问题
1 2
细长杆失稳
细长杆在压力作用下容易发生弯曲,导致失稳。
短粗杆失稳
短粗杆在压力作用下可能发生局部屈曲,导致失 稳。
3
弹性失稳
材料在压力作用下发生弹性变形,当压力超过某 一临界值时,杆件发生失稳。
解决压杆失稳的方法与措施
加强材料质量
选择优质材料,提高材料的弹 性模量和抗拉强度,以增强压
材料力学第九章 压杆稳 定
• 引言 • 压杆稳定的基本理论 • 压杆稳定的实验研究 • 压杆稳定的工程应用 • 压杆稳定的未来发展与展望
材料力学 第九章 压杆稳定分析
我国建筑业常用:
cr
s
1
c
2
对于A3钢、A5钢和16锰钢: 0.43,c
2E 0.56 S
c 时,由此式求临界应力 。
②s< 时:
cr s
几点重要说明:
1. 所有稳定问题(包括后续内容)均需首先计算λ以界定压 杆的属性。
2. 对一般金属材料,作如下约定:
A. λp≈100;λs≈60。故:
i
二、压杆的分类
1、大柔度杆:
cr
2E 2
P
2E P
P
100
满足 P 的杆称为大柔度杆(或 细长杆),其临界力用 欧拉公式求。
P 的杆为中小柔度杆,其 临界力不能用欧拉公式 求。
2、中柔度杆─λP>λ≥λS,即: P<≤S
直线型经验公式: cr ab
crab s
a s
b
s
60
支承情况
两端铰支
一端固定 另端铰支
两端固定
一端固定 另端自由
两端固定但可沿 横向相对移动
Pcr
Pcr
Pcr
Pcr
Pcr
失
l l 0.7l l 0.5l
l 2l l 0.5l
稳 时
B
B
B
挠
D
曲
线 形
C
C
状
A
A
A
C— 挠曲 C、D— 挠
线拐点 曲线拐点
C— 挠曲线拐点
临界力Pcr 欧拉公式
Pc
r
2
l
EI
工程实例
目录
一、稳定平衡与不稳定平衡 : 1. 不稳定平衡
2. 稳定平衡
3. 稳定平衡和不稳定平衡
第9章 压杆稳定
第九章压杆稳定§9.1 压杆稳定的概念§9.2 两端铰支细长压杆的临界压力§9.3 其它支座条件下细长压杆的临界压力§9.4 欧拉公式的适用范围,经验公式§9.5 压杆的稳定校核§9.6 提高压杆稳定性的措施1. 引言强度——构件抵抗破坏(塑性变形或断裂)之能力2.实例crcr①受均匀外压作用的圆筒形薄壳——由圆形平衡变成椭圆形平衡。
②受均匀压力作用的拱形薄板——由拱形平衡变成翘曲平衡。
③窄高梁或薄腹梁的侧向弯曲——由平面弯曲变成侧向弯曲。
④圆筒形薄壳在轴向压力或扭转作用下引起局部皱折。
⑤细长压杆由直线平衡变成曲线平衡。
3.稳定研究发展简史早在18世纪中叶,欧拉就提出《关于稳定的理论》但是这一理论当时没有受到人们的重视,没有在工程中得到应用。
原因是当时常用的工程材料是铸铁、砖石等脆性材料。
这些材料不易制细细长压杆,金属薄板、薄壳。
随着冶金工业和钢铁工业的发展,压延的细长杆和薄板开始得到应用。
19世纪末20世纪初,欧美各国相继兴建一些大型工程,由于工程师们在设计时,忽略杆件体系或杆件本身的稳定问题向造许多严重的工程事故。
例如:19世纪末,瑞士的《孟希太因》大桥的桁架结构,由于双机车牵引列车超载导致受压弦杆失稳使桥梁破坏,造成200人受难。
弦杆失稳往往使整个工程或结构突然坍蹋,危害严重,由于工程事故不断发生,才使工程师们回想起欧拉在一百多年前所提出的稳定理论。
从此稳定问题才在工程中得到高度重视。
§9.1 压杆稳定的概念 1.工程实例(1当推动摇臂打开气阀时就受压力作用。
(2)磨床液压装置的活塞杆,当驱动工作台移动时受到压力作用。
(3)空气压缩机,蒸汽机的连杆。
(4)桁架结构的某些杆件。
(5)建筑物中的柱。
2.压杆分类⎪⎩⎪⎨⎧⎭⎬⎫--.,,.3.2.1曲线平衡而发生失稳杆件会由直线平衡变成比例极限甚至低于或者强度极限当应力低于屈服极限稳定问题细长杆中长杆强度问题短杆b b s σσσ 3.压杆失稳:压杆由直线形状的稳定平衡而过渡到曲线平衡称为失稳或者屈曲。
第九章 压杆稳定
301106 478MPa
Fcr 478 nst 11.5 [nst ] Fmax 41.6
所以满足稳定要求。
[例5] 某液压油缸活塞直径 D 65mm ,油压 p 1.2MPa 。活塞 P 220MPa, 杆长度 l 1250 mm ,材料为35钢, E 210 GPa ,
长度系数μ
Fcr
2 EI
l2
μ=1
μ0.7
μ=0.5
μ=1
0.5l
[例2] 求下列细长压杆的临界力, 解:图(a) F
E 200GPa ,l 0.5m 。
F
10
50103 12 I min 10 4.1710 9 m 4 12
2 I min E 24.17200 Fcr 67.14kN 2 2 ( 1l ) (0.70.5)
AB杆满足稳定性要求
P 280MPa, [例4] 空气压缩机的活塞由35钢制成, s 350MPa ,
E 210 GPa 。长度 l 703mm,直径 d 45 mm ,最大压力
Fmax 41.6kN ,规定安全系数为 [nst ] 8 ~ 10 。试校核其稳定性。
9.3 9.8 9.14
2E 2 210 109 97 对所用材料35钢来说: 1 6 P 220 10
由于 1 ,所以前面用欧拉公式进行的试算是正确的。
l
§9-5 提高压杆稳定性的措施
EI Fcr 2 ( l )
2
欧拉公式
Fcr
越大越稳定
减小压杆长度 l
减小长度系数μ(增强约束) 增大截面惯性矩 I(合理选择截面形状) 增大弹性模量 E(合理选择材料)
建筑力学第9章压杆稳定
• 为了说明压杆平衡状态的稳定性,我们取一根细长的直杆进行压缩试 验,如图9-1所示。
上一页 下一页 返回
第一节 压杆稳定的概念
• 压杆的平衡状态可以分为三种。图9-1(a)中,当压力P不太大时, 用一微小的横向力干扰它,压杆微弯,当横向力撤去后,压杆能自动 恢复原有的直线形状,这时压杆处于稳定的平衡状态。图9-1(b) 中,当压力P增大到某一特定值Pcr时,微小的横向干扰力撤去后, 压杆在微弯状态下维持新的平衡,这时压杆处于临界平衡状态,这个 特定值Pcr叫作临界力。图9-1(c)中,当压力P超过临界力Pcr 后,干扰力作用下的微弯会越来越大直至压杆弯断,此时压杆丧失了 稳定性。
• σcr=π2E/λ2≤σP
• ■四、中长杆的临界应力计算———经验公式
• 当压杆的柔度小于λP时,称为中长杆或中柔度杆。中长杆的临界应 力σcr大于材料的比例极限σP,此时欧拉公式不再适用。工程中对 这类压杆一般采用经验公式计算临界力或临界应力。常用的经验公式 有两种:直线公式和抛物线公式。
上一页
• Pcr=π2EI/(μl)2(9-1) • 式中 • E———材料的弹性模量; • I———压杆横截面的最小惯性矩; • EI———压杆的抗弯刚度;
下一页 返回
第二节 临界力和临界应力
• l———压杆的实际长度; • μ———压杆的长度系数,见表9-1; • μl———压杆的计算长度。 • ■二、临界应力 • 在临界力作用下,细长压杆横截面上的平均压应力叫作压杆的临界应
• 从前面几节内容可知,影响压杆稳定性的主要因素有:压杆的截面形 状、长度、两端的约束条件以及材料的性质等。要提高压杆的稳定性 ,可采取以下四个措施。
材料力学:第九章 压杆稳定问题
实际临界力
若杆端在不同方向的约束情况不同, I 应取挠 曲时横截面对其中性轴的惯性矩。即,此时要 综合分析杆在各个方向发生失稳时的临界压力, 得到直杆的实际临界力(最小值)。
求解临界压力的方法:
1. 假设直梁在外载荷作用下有一个初始的弯曲变形
2. 通过受力分析得到梁截面处的弯矩,并带入挠曲线 的微分方程
P
采用挠曲线近似微分方程得
B
到的d —P曲线。
Pcr A
B'
可见,采用挠曲线近
似微分方程得到的d —P曲
线在压杆微弯的平衡形态
d
下,呈现随遇平衡的假象。
大挠度理论、小挠度理论、实际压杆
欧拉公式
在两端绞支等截面细长中心受压直杆
的临界压力公式中
2EI
Pcr l 2
形心主惯矩I的选取准则为
若杆端在各个方向的约束情况相同(如球形
P
压杆稳定性的概念
当P较小时,P
Q
P
当P较大时,
P Q
稳定的平衡态
P
撤去横向力Q 稳定的
小
稳
P定
的
P P
临界压力
Pcr
不
稳
撤去横向力Q 不稳定的
定 的
P
大
不稳定的平衡态
压杆稳定性的概念
压杆稳定性的工程实例
细长中心受压直杆临界 力的欧拉公式
细长中心受压直杆临界力的欧拉公式
压杆的线(性)弹性稳定性问题
利用边界条件
得 w D,
xl
Dcos kl 0
若解1
D0
表明压杆未发生失稳
w(x) Asin kx B cos kx D
09 第9章 压杆稳定
An
4 稳定性校核步骤:
•计算柔度 •判断压杆类型并计算临界应力或临界压力 •稳定性校核
【例9.3】 千斤顶如图9.6所示,丝杠长度,螺纹内径,材料为
45钢,最大起重重量为F=80kN,规定的稳定安全因数[nst]=4,
试校核丝杠的稳定性。 解:(1) 计算柔度。
丝杠可以简化为下端固定,上端自由的压 杆,因此长度因数取μ=2。
稳定失效:压杆丧失稳定性而破坏,具有突发性
逐渐成为构件或结构安全工作的控制条件
称为临界压力
稳定 平衡
Pcr
不稳定 平衡
§9.2 细长压杆的临界载荷的计算及欧拉公式
9.2.1 两端铰支细长压杆的临界载荷的计算
Pcr
y
Pcr
x
M (x) Pcr w M M (x) EIw''
EIw'' Pcr w 0
解: (1) 计算截面的极惯性矩
I min
0.05 0.033 12
m4
11.25 108 m 4
(2) 两端为铰支约束,则代入欧拉公式得
Pcr
2EI l2
2
9 109
11.25 108 1
N
10kN
所以,当杆的轴向压力达到10kN时, 此杆就会丧失稳定。
9.3 欧拉公式的适用范围·经验公式
记:2
a
s
b
a s
b
2 1 ——直线公式的适用范围
——这种压杆称为中柔度杆或中长杆
2 的压杆 ——小柔度杆或短粗杆
不存在失稳问题,应考虑强度问题
cr s
经验公式中,抛物线公式的表达式为
第九章_压杆稳定
第 1 页/共 2 页9-5 未失稳失,轴向压缩 T F L L ∆=∆TEA F TL L EAFL L l l T F αα=⇒=∆=∆, 临界状态 kN 3.109)5.0(22cr ==L EIF π由cr F F =得,温升C EALEI T l ︒==2.29422απ 9-8 由铰B 平衡,22BC AB F F F +=,ABBC F F =θtan F 最大时,AB F 与BC F 均达到临界值2222)sin ()cos (βπβπAC EI F AC EI F BC AB ==, )arctan(cot cot tan 22βθβθ==⇒, 9-10 柔度临界值 p2p σπλE = (1)5.72p =λ,(2)8.65p =λ,(3)6.73p =λ 9-12 AB 与BC 均为两力杆,由铰B 平衡可得 F F BC 75=(压) 柔度 m m 320m 5.215.216=====i l i l,,,其中μμλ 稳定因素 06.028002==λϕ稳定许用应力 MPa 6.0][][st ==σϕσ st ][MPa 58.0σσ<==AF BC ,满意稳定性条件。
9-15 组合压杆的临界力cr F 为杆BC 与AB 临界力的最小值柔度临界值 1002==PP E σπλ P ACAC P BC BC i AC i BC λλλλ>=====1047.0100,大柔度杆,由欧拉公式N 1094.0)7.0(N 1004.1622622⨯==⨯==AC EIF BC EIF AC BC ππ,N 1094.06cr ⨯==⇒AC F F许用压力 kN 376][stcr ==n F F ⎪⎪⎭⎫ ⎝⎛======kN 416MPa 8.82][MPa 1.207BC kN 376MPa 6.76][MPa 4.191AC st cr st cr F F ,,:,,:σσσσ 9-17 杆AC ,强度许用应力 MPa 118][st ==n σσ 最大弯矩 26132bh W F M B ==, 最大应力 kN 6.95][41][2max =≤⇒≤=bh F W M B σσσ 杆CD ,柔度P iCD λλ>==200,大柔度杆 由欧拉公式 MPa 3.4922cr ==λπσE 稳定许用应力 MPa 4.16][st cr st ==n σσ 压力 F F CD 31=应力 kN 5.15][3][st st =≤⇒≤=A F AF CD σσσ 结构的许可荷载 kN 5.15][=F。
第9章-压杆稳定
压杆稳定
§9-1
§9-2 §9-3 §9-4 §9-5 §9-6
压杆稳定的概念
两端铰支细长压杆的临界压力 其他支座条件下压杆的临界压力 压杆的临界应力 压杆的稳定校核 提高压杆稳定性的措施
压杆稳定
§9-1 压杆稳定的概念 1、杆件在轴向拉力的作用下:
塑性材料:工作应力达到屈服极限时出现屈服失效; 脆性材料: 工作应力达到强度极限时断裂;
B 0.7 1
F
C 1 2
F
D 2
题1图
题2图
压杆稳定
压杆稳定
例
如图所示一细长的矩形截面 压杆,一端固定,一端自由。材 料为钢,弹性模量E = 200GPa, 几何尺寸为:l=2.5m , b =40mm , h=90mm 。试计算此压杆的临界 压力。若b=h=60mm ,长度相等, 则此压杆的临界压力又为多少? (压杆满足欧拉公式计算条件*)
半波正弦曲线的一段长度。 长为L的一端固定一端自由的压杆的挠曲线与长为2L的两 端铰支的细长杆相当。 长为L的一端固定、另端铰支的压杆,约与长为0.7L的 两端铰支压杆相当。 长为L的两端固定压杆与长为0.5L的两端铰支压杆相当;
压杆稳定
讨论:
(2)横截面对某一形心主惯性轴的惯性矩 I
若杆端在各个方向的约束情况相同(球形铰等),则 I 应取最小的形心主惯性矩。 若杆端在各个方向的约束情况不同(柱形铰),应分 别计算杆在不同方向失稳时的临界力。I 为其相应的对 中性轴的惯性矩。
这类杆又称中柔度杆。 中柔度压杆失稳时,横截面上的应力已超过比例极限, 故属于弹塑性稳定问题。
压杆稳定
类比法: 根据力学性质将某些点类比为支座点。 其它约束——折算成两端铰支。
材料力学 第9章 压杆稳定
第9章 压杆稳定
第9章 压杆稳定
材料力学
第9章 压杆稳定
第9章 压杆稳定
9.1 概述 9.2 细长压杆的临界力 9.3 压杆的临界应力 9.4 压杆的稳定计算 9.5 提高压杆稳定性的措施
小结
材料力学
9.1 概述
第9章 压杆稳定
在绪论中曾经指出,当作用在细长杆上的轴向压力达到或超过一定 限度时,杆件可能突然变弯,即产生失稳现象。杆件失稳往往产生很 大的变形甚至导致系统破坏。因此,对于轴向受压杆件,除应考虑其 强度与刚度问题外,还应考虑其稳定性问题。
(4)临界状态的压力恰好等于临界力,而所处的微弯状态称为屈曲模态, 临界力的大小与屈曲模态有关。
(5)n=2、3所对应的屈曲模态事实上是不能存在的,除非在拐点处增加 支座。这些结论对后面讨论的不同约束情况一样成立。
材料力学
第9章 压杆稳定
9.2 细长压杆的临界力
9.2.2 一端固定、一端自由细长压杆的临界力
w xl
coskl 0
材料力学
9.2 细长压杆的临界力
9.2.2 一端固定、一端自由细长压杆的临界力
coskl 0
kl nπ k nπ
2
2l
Fcr
n 2 π 2EI (2l ) 2
n 1,3,5,
取最小值,可得该压杆临界力Fcr的欧拉公式为:
Fcr
π2EI (2l ) 2
第9章 压杆稳定
材料力学
第9章 压杆稳定
9.2 细长压杆的临界力
计算临界力归结为计算压杆处于微弯状态临界平衡时的平衡方程 及荷载值。 用静力法计算临界力时应按以下的思路来考虑: (1)细长压杆失稳模态是弯曲,所以弯曲变形必须考虑; (2)假设压杆处在线弹性状态; (3)临界平衡时压杆处于微弯状态,即挠度远小于杆长,于是, 梁近似挠曲线的微分方程仍然适用。 (4)压杆存在纵向对称面,且在纵向对称面内弯曲变形。
材料力学第09章(压杆稳定)
[例3] 已知:压杆为Q235钢,l=0.5m,E=200GPa,求细长 压杆的临界压力。 F 解:I min I y 3.89cm 4 3.89104 mm 4
y0 x x1 x0 z 0 x0 x x1 y0
2 EImin Fcr ( l )2
0
1
三、压杆的临界应力总图
cr
S
P
s a b2
a s 2 b
cr a b
2E cr 2
L
i
2
1
临界应力总图
四、小结
≥ 1,大柔度杆
2 ≤ ≤ 1,中柔度杆
2E cr 2
cr a b
一端固定 一端铰支
两端固定
=1
=2
= 0.7
=0.5
[例1]求细长压杆的临界压力 F
0.5l
π 2 EI Fcr ( 0.5l ) 2
π 2 EI Fcr (0.5 0.7 l ) 2
l
[例2] 试由挠曲线近似微分方程,导出下述细长压杆的临界 力公式。
解:变形如图,其挠曲线近似微分方程为:
可靠地工作。
一、稳定性的概念 稳定性:保持原有平衡状态的能力 1、稳定平衡
影片:14-1
2、随遇平衡
3、不稳定平衡
影片:14-2
稳定性:保持原有平衡状态的能力
二、压杆失稳与临界压力 F<Fcr
稳 定 平 衡
F=Fcr
随 遇 平 衡
F>Fcr
F
F
F
不 稳 定 平 衡
影片:14-3
稳 定 平 衡
=2,试校核其稳定性。(一个角钢A1=8.367cm2,Ix=23.63cm4, Ix1=47.24cm4 ,z0=1.68cm ) z
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活塞杆
D
p d 活塞
32
活塞杆
D
p d 活塞
解:活塞杆承受的轴向压力应为
F=
πD2
4
⋅ p = 3980N
活塞杆承受的临界压力应为
I i= A
µl λ= i
33
Fcr = nst ⋅ F = 23900N
把活塞的两端简化为铰支座。 把活塞的两端简化为铰支座。
用试算法求直径 (1)先由 欧拉公式 求直径
π 2E Fcr π 2EI π 2E 2 σcr = = = 2 2 ⋅i = 2 A (µl ) A (µl ) (µl / i)
令
λ=
µl
i
20
λ 称为压杆的柔度(长细比),集中地反应了压杆的长度、 称为压杆的柔度 长细比),集中地反应了压杆的长度、 压杆的柔度( ),集中地反 杆端约束条件、截面尺寸和形状等因素 临界应力的影响。 杆端约束条件、截面尺寸和形状等因素对临界应力的影响。 等因素对 条件
2)中柔度杆
λ2 ≤ λ < λ1
σcr = a − bλ
3)小柔度杆 (λ < λ 2)
25
σcr = σs
2、临界应力总图
σcr
σS
σP
σcr =σ s
σcr =a−bλ
π 2E σcr = 2 λ
λ2
λ1
λ=
µL
i
26
例题1 图示各杆均为圆形截面细长压杆。 例题1 图示各杆均为圆形截面细长压杆。已知各杆的材 料及直径相等。问哪个杆先失稳。 料及直径相等。问哪个杆先失稳。
研究压杆稳定性问题尤为重要
8
三、压杆稳定的基本概念
F < Fcr F = Fcr
F > Fcr
关键
确定压杆的临界力 确定压杆的临界力 Fcr
F=Fcr F=Fcr
F
压杆丧失直 压杆丧失直 线状态的平衡, 线状态的平衡, 过渡到曲线状态 过渡到曲线状态 的平衡。 的平衡。 失稳(屈曲) 失稳(屈曲)
17
(2)横截面对某一形心主惯性轴的惯性矩 I
杆端各个方向的约束情况相同(如球形铰等),则 杆端各个方向的约束情况相同(如球形铰等),则 I 应取最小 ), 的形心主惯性矩。 的形心主惯性矩。 x y 若杆端在各个方向的约束情况不同(如柱形铰), 若杆端在各个方向的约束情况不同(如柱形铰), 应分别计算杆在不同方向失稳时的临界压力。 应分别计算杆在不同方向失稳时的临界压力。 I 为其相应中性轴的惯性矩。 为其相应中性轴的惯性矩。 z
1、两端铰支
F = cr
π 2EI
l2
Fcr
2、一端固定,另一端铰支 一端固定, C 为拐点
C
0.7l l
0.3l
Fcr =
π 2EI
(0.7l )
2
Fcr =
π 2EI
(0.7l )2
14
3、两端固定 C,D 为拐点
4、一端固定 一端自由
Fcr =
π EI
2
F = cr
Fcr
l/4 l/2 l l l/4
5、讨论 (1)相当长度 µ l 的物理意义 压杆失稳时,挠曲线上两拐点间的长度就是压杆的相当 压杆失稳时,挠曲线上两拐点间的长度就是压杆的相当 长度µ 长度µ l 。 µ l是各种支承条件下,细长压杆失稳时,挠曲线中相当于 是各种支承条件下,细长压杆失稳时 挠曲线中相当于 失稳时, 半波正弦曲线的一段长度。 半波正弦曲线的一段长度。 长度
2
Fcr
B x
m
(b)式的通解为 式的通解为
w = Asinkx + Bcos kx
为积分常数) (A、B为积分常数) 、 为积分常数
(c)
11
边界条件
x = 0, w = 0 x = L, w = 0
Fcr
B
y m w x m l
由公式(c) 由公式(c)
Fcr
x
Asin0 + Bcos 0 = 0 A∗ 0 + B ∗1 = 0 → B = 0
π 2E σcr = 2 λ
Fcr = A⋅ σcr
λ 越大,相应的 σcr 越小,压杆越容易失稳。 越大, 越小,压杆越容易失稳。 若压杆在不同平面内失稳时的支承约束条件不同,应 压杆在不同平面内失稳时的支承约束条件不同, 分别计算在各平面内失稳时的柔度λ 分别计算在各平面内失稳时的柔度λ,并按较大者计算 压杆的临界应力 σcr
7
案例2 1995年 案例2 1995年6月29日下午,韩国汉城三丰百货大楼,由于 29日下午 韩国汉城三丰百货大楼, 日下午, 盲目扩建,加层, 盲目扩建,加层,致使大楼四五层立柱不堪重负而产生失稳破 大楼倒塌, 502人 930人 失踪113人 坏,大楼倒塌,死502人,伤930人,失踪113人.
。
21
二、 欧拉公式的应用范围
只有在
σcr ≤ σP 的范围内,才可以用欧拉公式计算压杆的 范围内,才可以用欧拉公式计算压杆的
临界压力 Fcr(临界应力 σcr )。
π E σcr = 2 ≤ σP λ
2
或
π 2E λ≥ σP
令λ1 = π E
σP
22
λ ≥ λ1(大柔度压杆或细长压杆),为欧拉公式的适用范围。 大柔度压杆或细长压杆),为欧拉公式的适用范围。 ),为欧拉公式的适用范围 λ1 的大小取决于压杆材料的力学性能。例如,对于Q235钢, 的大小取决于压杆材料的力学性能。例如,对于Q235钢
2.计算步骤 2.计算步骤 (1) 计算λ1 计算λ
cr
st
F n= ≥n F
cr
st
(2) 根据λ 选择公式计算临界应力 根据λ (3) 根据稳定性条件,判断压杆的稳定性 根据稳定性条件,
29
例题2 活塞杆由45号钢制成, 例题2 活塞杆由45号钢制成,σS = 350MPa , σP = 280MPa 号钢制成 E=210GPa 。长度 l = 703mm ,直径 d=45mm 。最大压力 Fmax = 41.6kN 。规定稳定安全系数为 nSt = 8—10 。试校核 8— 其稳定性。(活塞杆两端简化成铰支) 其稳定性。(活塞杆两端简化成铰支) 。(活塞杆两端简化成铰支 解: E
F F
F
a
A
1.3 a B
1. 6 a
C
d
27
F
F
F
a
A
1.3 a B
1. 6 a
C
d
解: 杆A 杆B 杆C
µ = 2 µl = 2a
µ = 1 µl = 1.3a µ = 0.7 µl = 0.7×1.6a = 1.12a
A杆先失稳 杆先失稳
28
§9-5 压杆的稳定校核
1. 稳定性条件
F F≤ n
令 n = 1, 得
F = cr
π 2EI
l
2
Fcr
w B x m l
Fcr
x
两端铰支细长受压直杆临界力的计算公式(欧拉公式) 两端铰支细长受压直杆临界力的计算公式(欧拉公式) 当 kl =π 时,挠曲线方程为
w = Asin
πx
l
13
挠曲线为半波正弦曲线。 挠曲线为半波正弦曲线。
§9-3 其它支座条件下细长压杆的临界压力
18
欧拉公式的应用范围• §9-4 欧拉公式的应用范围•经验公式
一、临界应力
1. 欧拉公式临界应力 压杆受临界力Fcr作用而仍在直线平衡形态下维持不稳定 平衡时,横截面上的压应力可按 σ = F/A 计算。 平衡时, 计算。
19
不同支承下压杆横截面上的应力为
Fcr π 2EI σcr = = A (µl )2 A I 为压杆横截面对中性轴的惯性半径 i= A
λ1 = π
σP
= 86
µ=1
截面为圆形
λ=
µ⋅l
i
I d i= = A 4
= 62.5 < λ1 不能用欧拉公式计算临界压力。 不能用欧拉公式计算临界压力。 30
如用直线公式,需查表得: 如用直线公式,需查表得: a= 461MPa
s
b= 2.568 MPa
a −σ λ= = 43.2 < λ b
36
11-6
•减小压杆长度 l 减小压杆长度
37Βιβλιοθήκη •减小长度系数 (增强约束) 减小长度系数µ(增强约束) 减小长度系数
1
§9-1 压杆稳定的概念 §9-2 两端铰支细长压杆的临界压力 §9-3 其它支座条件下细长压杆的临界压力 欧拉公式的应用范围• §9-4 欧拉公式的应用范围•经验公式 §9-5 压杆的稳定校核 §9-6 提高压杆稳定性的措施
2
§9-1 压杆稳定的概念
①强度 构件的承载能力 ②刚度 ③稳定性
工程中有些构件具有足够的强度、刚度, 工程中有些构件具有足够的强度、刚度, 却不一定能安全可靠地工作。 却不一定能安全可靠地工作。
F
F
F
9
§9-2 两端铰支细长压杆的临界压力
y m
y
Fcr
w B x m l
Fcr
x
m
M F
Fcr
B x
m
10
压杆任一 x 截面沿 y 方向的位移 该截面的弯矩 M( x) = −Fw 杆的挠曲线近似微分方程
w
y
m
M F
EIw'' = M( x) = −Fw(a)
F '' 2 令k = 得 w + k w = 0 (b) EI
π 2EI F = cr 2 (µl )
π EI 64 F = = cr (µl )2 (µl )2