贴片钽电容失效机理和分析

合集下载

钽电容器的失效原因分析

钽电容器的失效原因分析

钽电容器的失效原因分析对于钽电容器,使用者对它有两种截然不同的评价,一;可靠性很高,温频性能优良.二,容易失效,失效后容易爆炸燃烧,非常危险.为什么对于一种产品同时在使用者中间有两种评价呢?我们首先得清楚钽电容器的优点和缺点.实际上,上述的评价是针对钽电容器的优点和缺点进行的基本准确的描述.并无错误.1.温度性能优良;在-55-+125度内,容量变化率在-5-+12%之间,这是其他电容器难望其项背的一项非常重要的指标,此特点使它成为宽温性能要求较高的电路的首选电容器.2.体积容量比最高;目前为止,尽管铝电容器的小型化进步非常快,叠层陶瓷电容器[MLCC]的容量也可以越做越大,但钽电容器仍然具有最高的容量体积比.加之很宽的温度范围内性能出色的稳定性,它仍然是一些性能要求高,安装空间和面积有限电路的最佳选择.钽电容器的缺点-失效模式的危险性钽电容器一般使用在滤波电路和脉冲充放电电路.此类电路的特点是电路中不光存在功率很高的浪涌电压和电流,而且存在信号强度很高的交流纹波.由于钽电容器是一种极性产品,因此,交流纹波会导致它严重发热,超过散热的热平衡后,产品会出现热击穿现象.由于滤波电路基本都属于低阻抗电路,因此,开关的瞬间产生的远远超过稳态工作电压的浪涌电压也经常导致电路设计者忽略了浪涌的存在,在选择产品额定值时没有为确实存在的浪涌留出余量,因此,经常出现的过压击穿就被简单的认定为钽电容器的质量不够,掩盖了电路设计者对基本的低阻抗电路特征的无知.另外,由于不同规格的钽电容器的自有阻抗ESR不同,因此,不同规格产品的抗直流浪涌电流的能力也不相同,而使用者对此了解不够非常容易导致选择的产品型号不对.上述问题是导致钽电容器出现失效的基本原因.尽管是失效,不同品种的电容器的失效模式很不一样,而钽电容器的失效模式最为危险;如果击穿后电路通过的电流很大,击穿的产品会瞬间燃烧或爆炸,甚至能引发二次效应.这就是许多使用者对它诟病的根本原因.而造成此严重问题的原因不外呼两点; 设计选型不合适;产品质量本身存在问题.当产品的型号和电路特点及需求一致时,钽电容器的优点非常明显,可靠性更不存在问题. 此时使用者很容易忽略钽电容器的缺点.当产品使用出现问题时,一味地指责钽电容器的性能不好.上述原因一方面说明钽电容器存在抗浪涌能力和耐纹波差的弱点,同时也说明使用者对钽电容器的基本性能特点了解不够.因此,就出现上文所述的两种观点相反的评价.从根本上说评价都是对的,但有失全面.钽电容器的高可靠性和优点必须在正确使用的基础上才可以得以体现.而钽电容器的缺点也必须在认识到它的局限性时才可以避免. 从许多故障分析可得出以上结论.但钽电容器危险的缺点的确存在;不能失效,一失效就会出现灭顶之灾.钽电容器缺点的避免钽电容器的优点很多人都了解,缺点认识不够是普遍现象,因为它的失效机理较复杂,即使在生产钽电容器的工厂目前都存在不同甚至根本不清晰的认识,因此,使用者不可能对它的失效原理了解的更多.而此点非常危险,往往都是出现了严重的使用问题才发现使用方法有问题或钽电容器质量有问题.有时候,原因好象很难讲清楚.从根本上说,钽电容器的缺点无法避免,它只能靠使用者在设计时的电压选型上采取尽可能保守的方法才可以消除.失效时的模式是它的危险性的根本所在. 如果想消除钽电容器危险的失效模式,与改变一个成人的遗传一样是不可能的.氧化铌电容器铌电容器在紧缺的钽资源导致的钽电容器价格过高时被科技人员盯住,因为铌也是一种可以形成单向导电介质层的阀金属.因此,自钽电容器诞生不久,无数的技术人员为开发出与钽电容器性能基本相同的铌电容器费尽心血.但是,铌氧化物介质层的热稳定性一直无法从根本上得到解决;铌电容器的性能一直无法达到接近钽电容器的程度,特别是它的稳定性差,随时间延长,容量和阻抗及漏电流一直都在变化,而且高温性能根本不能和钽电容器相提并论.进入21实际,在此浪费了无数金钱和经历的科学家终于承认; 纯铌电容器的性能不能从生产技术的改变上得到根本性进步.实际上从1965-2000年的无数研究以不可避免的失败告终.导致铌电容器开发最终失败的根本原因仍然是铌电容器的生产延续了钽电容器的思路,在工艺原理上就存在致命的缺陷;因为铌介质层内的基材仍然是非常容易氧化的高纯度铌金属.因此,铌电容器就无法避免在击穿时类似于钽的燃烧和爆炸现象.同时,在高温时铌介质膜的氧迁移现象仍然是产品性能不稳定的根本原因.而这一点暂时没有得到解决.铌电容器的开发相当于50年绕回原点,形成了一个可笑的圆圈.氧化铌电容器的出现在21世纪初,在此费尽心血的一个美国人电容器专家和一个德国制造钽粉的工程师提出一种新的电容器工艺理论;使用氧化物而不是纯金属也可以生成单向导电的介质层作电容器.此理论看似简单,实际上却是革命性的,它打破了人们遵守了几十年的电容器介质形成理论;只有纯金属才能生成介质层.而且生成的介质层质量甚至更好.在钽电容器的制造过程中,单质态的钽金属粒子中含有其它元素对介质层质量的均一性影响重大.特别是氧含量高低对钽电容器的漏电流影响是致命的.因此, 使用高氧含量的铌粉会出现的问题似乎早已经决定.但是,陶瓷电容器的介质层特性引起了钽电容器专家的注意;使用氧化物一样可以形成具有单向导电性的介质层.而且,在电容器介质层电化学形成理论上我们显然过于墨守成规.我们总认为制造电容器的纯钽元素中氧含量高会导致漏电流大这一判断也适用于铌电容器.实际上只对了一半;当使用纯铌来生产铌电容器时,这一;理论正确,而对于铌氧化物,我们对其在电化学状态下的变化理论显然了解的很不够; 实际上,使用低价的铌氧化物一样可以通过简单的电化学方法生产出性能优良的五氧化二铌介质层,这样,一种新的电解电容器就问世了,它使用的基材根本不是杂质含量约低越好的钽或者铌,而是一种氧含量必须在14.5-15.5%的富含氧的一氧化铌.一氧化铌一直是玻璃及光学器材上大量使用的一种材料,使用它来生产电解电容器,完全是一种理论上的创新,因此使用它生产出的氧化铌电容器也就必然和钽电容器完全割断了血缘关系;它完全是一种具有许多新奇特性的电解电容器.氧化铌电容器与钽和铌电容器的区别;1.失效模式不一样;钽或铌电容器的失效模式基本相同;当击穿时容量丧失,当通过电流不加限制时会迅速燃烧或爆炸形成短路.氧化铌产品在即使是经受了十倍电压击穿时,仍然可以保持容量和损耗不变.即使是施加的电流很高,通过的电流仍然能够在10MA以内,产品的滤波特性仍然能够保持.使用在充放电电路,只是输出的功率密度下降.根本不燃烧不爆炸,不会形成短路.氧化铌产品的抗浪涌能力由于使用基材具有阻燃性,相同的电压下生成的介质层比钽介质层厚30%,因此具有更高的抗浪涌能力.同条件下抗浪涌能力高30%.氧化铌产品的耐纹波能力由于产品通过大电流时不会发热燃烧,因此耐纹波能力比钽高一倍.可以使用在存在较高纹波的开关电源电路.使用电压和额定电压钽和铌电容器由于通过电流大时会导致发热击穿,因此使用低阻抗电路时必须降额到额定电压的1/3才可以保证安全使用.氧化铌电容器的使用电压可以接近额定电压下使用.在室温时几乎不需要降额就可以保持高可靠性.可靠性以1000小时,60%的置信度算;钽电容器可靠性;1%氧化铌电容器可靠性;0.2%可靠性比钽电容器高5倍体积容量比与钽电容器基本相同,只是在一部分小容量上不能与钽相比.温度特性由于氧化铌电容器不容易燃烧和爆炸,因此可安全使用的漏电流标准比钽电容器大一倍.负温特性和正温特性基本相同耐焊接热性能可经受260度/10秒波峰焊或再流焊接性能不出现异常.频率特性与相同容量和电压的同壳号钽电容器相同价格由于使用了新材料和新技术,但价格与钽电容器相同或稍低.氧化铌电容器的缺点最高额定电压只能达到16V,无高压产品.结论从性能和安全性上比较,氧化铌电容器完全可以达到更高的可靠性.在安全性上完全避免了钽电容器的致命缺点,可以达到任何电路的安全性要求. 完全符合ROhS标准.在存在浪涌的开关电源电路上可以代替25V以下钽电容器.是25V以下的钽电容器的换代产品.图解:片式氧化铌。

钽电容爆炸、烧毁原因分析

钽电容爆炸、烧毁原因分析

钽电容爆炸、烧毁原因分析经常碰到很多客户讨论钽电容爆炸问题,特别在开关电源、LED电源等行业,钽电容烧毁或爆炸是令研发技术人员最头痛的,让他们百思不得其解。

正因为钽电容失效模式的危险性,让很多研发技术人员都不敢再使用钽电容了,其实如果我们能够全面的了解钽电容的特性,找到钽电容失效(表现形式为烧毁或爆炸)的原因,钽电容并没有那么可怕。

毕竟钽电容的好处是显而易见的。

钽电容失效的原因总的来说可以分为钽电容本身的质量问题和电路设计问题两大类:电路设计和产品选型要求钽电容的产品性能参数可以满足电路信号特点,但是,往往我们不能保证上述两项工作都做的很到位,因此,在使用过程中就必然会出现这样那样的失效问题,现简单总结如下:1. 低阻抗电路使用电压过高导致的失效对于钽电容器使用的电路,只有两种;有电阻保护的电路和没有电阻保护的低阻抗电路. 对于有电阻保护的电路,由于电阻会起到降压和抑制大电流通过的效果,因此,使用电压可以达到钽电容器额定电压的60%. 没有电阻保护的电路有两种:a.前级输入已经经过整流和滤波,输出稳定的充放电电路.在此类电路,电容器被当作放电电源来使用,由于输入参数稳定没有浪涌,因此,尽管是低阻抗电路,可安全使用的电压仍然可以达到额定电压的50%都可以保证相当高的可靠性.b.电子整机的电源部分; 电容器并联使用在此类电路, 除了要求对输入的信号进行滤波外,往往同时还兼有按照一定频率和功率进行放电的要求. 因为是电源电路,因此,此类电路的回路阻抗非常低,以保证电源的输出功率密度足够. 在此类开关电源电路中[也叫DC-DC电路], 在每次开机和关机的瞬间,电路中会产生一个持续时间小于1微秒的高强度尖峰脉冲,其脉冲电压值至少可以达到稳定的输入值的3倍以上,电流可以达到稳态值的10倍以上,由于持续时间极短,因此,其单位时间内的能量密度非常高, 如果电容器的使用电压偏高,此时实际加在产品上的脉冲电压就会远远超过产品的额定值而被击穿. 因此,使用在此类电路中的钽电解电容器容许的使用电压不能超过额定值的1/3. 如果不分电路的回路阻抗类型,一概降额50%, 在回路阻抗最低的DC-DC电路,一开机就有可能瞬间出现击穿短路或爆炸现象.在此类电路中使用的电容器应该降额多少,一定要考虑到电路阻抗值的高低和输入输出功率的大小和电路中存在的交流纹波值的高低.因为电路阻抗高低可以决定开关瞬间浪涌幅度的大小。

钽电容失效机理

钽电容失效机理

钽电容失效机理简单一点说是这样的。

1)钽电容的失效模式是短路形式。

故而在可靠性要求高的场合,如军品,宇航,汽车级电路中一般限制使用。

如星上就不用。

NASA好像也是规定不能用。

2)铝电解质电容其ESR可以做的很小的,如果我没有记错的话,可以到毫欧级。

文摘1:ESR(等效串联电阻),应该注意的问题前两天我负责的一个LDO测试工程师上电后发现输出振荡了。

我做的时候没有振荡,对照下来,输出电容不一样,我用的是10u的铝电解,他用的是钽电容。

因为我以前对这两种电容有过测试,所以,把他用的电容拿过来在Fluke,RCL测量仪上测试,ESR高达13欧姆(10kHz),而我以前的测试的10u钽电容一般只有0.5欧姆左右。

所以换成ESR=0.5欧姆的电容就没有振荡了。

在很多的电容介绍中,只是偶尔提到ESR这个概念,而没有具体说明数值,也许是种类繁多不好概括吧。

ESR与制作材料,频率,温度和电容值都有关。

一般来说,对同一种工艺、同一厂家生产的同一种电容,电容值与ESR 的乘积接近常数。

上面说的13欧姆的电容显然是有问题的(但没标准,只能按照经验判断了).,由于没做过系统,对各种电容的ESR不了解,最好请哪位大侠能公布各种电容的ESR作参考。

不过最好的办法是使用前量一下。

文摘2:关于使用固钽和液体钽电容的浅释彭宝霞(航天511所)摘要:本文对液体钽电容和固体钽电容的失效原因作了具体分析。

对这两种产品的使用提出自己的看法和建议。

关键词:液钽固钽可靠性钽电容器分为固体钽电容器和液体钽电容器。

它们在军用整机中大量使用。

例如:液体钽电容器在84年只有529厂和502所两个单位使用,用量不到2000只。

而95年五院各厂所的液体钽订货量将近1万只。

固体钽电容器更是大量使用。

随着固体钽电容器和液体钽的大量使用。

先后暴露的质量问题也不少。

我们了解到早期有单位禁止使用液钽,而近期的单位禁止使用固钽,这是怎么回事?一、早期某些单位禁用液钽,禁用的理由:1.液体钽电容器的漏液问题液体钽电容器工作电解质为酸性液体,如果产品密封不好,出现漏液。

钽电容器失效分析概述

钽电容器失效分析概述

钽电容器失效分析概述1、前言要对电容器进行严谨的失效分析,有必要全面了解电容器的结构。

电容器因其使用的材料及其结构不同分为不同的类型:钽电容器、陶瓷电容器、铝电容器等(见表1)。

每种电容器因其提供独有的特性而具有特殊的应用。

如同三明治一样,简单的电容器是把一个绝缘体材料夹在两个导体之间,通过导体施加偏置电压。

电容器容量(C)由如下等式给出,其中e,A和t分别表示介电常数,表面积以及厚度。

C = e A/t (等式1)表1 不同类型的电容器方式是增加等式1中的“A”表面积。

不同类型电容器获得的方式是不同的。

比如钽电容器,可通过使用多孔钽阳极来获得(高比表面积),通常阳极块是由钽粉连同钽丝一起压制并烧结后制成的。

然后用电化学的方式在高比表面积多孔钽阳极块上生成无定形Ta2O5电介质。

一般Ta2O5电介质层只有几十个纳米厚。

然后使用阴极材料浸渍多孔阳极块(MnO2 或是导电层),在小的容积中生成高容量(见图1)。

一般固体钽电容器使用在100V以下,其中多数情况下是使用在50V以下。

湿式钽电容器(阴极是液体)工作电压可以高一些,可以达到几百伏。

图1 (a)钽电容器结构示意图(b)所示的是钽阳极块内部的钽/电介质/MnO2阴极(c)所示的是阳极块内部的钽/电介质/导电聚合物阴极对于陶瓷和薄膜电容器来说,其电介质层和电极材料是分别交互堆积的,这种交互堆积的电极可以避免极性相对的电极接触。

图2所示的是陶瓷电容器的典型结构。

几十到上百(陶瓷电容器中)甚至上千(薄膜电容器)电极层堆积起来,已获得需要的容量。

图2 陶瓷电容器的典型结构因为不同类型电容器的材料和结构有明显的差异(见表1,图1和图2),所以引起电容器失效的原因也有所不同。

因此,每一种条件都需有特定的失效分析方法。

需要注意的是失效电容器的失效分析是一种全面的因果分析,包括对电路和应用条件的分析。

本文所论述的是片式钽电容器的失效分析概述。

钽电容器的电失效模式可以分成三种类型:高漏电流/短路、高等效串联电阻以及开路/低容量,多数的失效集中在高漏电流/短路上。

钽电容器失效分析概述

钽电容器失效分析概述

钽电容器失效分析概述1、前言要对电容器进行严谨的失效分析,有必要全面了解电容器的结构。

电容器因其使用的材料及其结构不同分为不同的类型:钽电容器、陶瓷电容器、铝电容器等(见表1)。

每种电容器因其提供独有的特性而具有特殊的应用。

如同三明治一样,简单的电容器是把一个绝缘体材料夹在两个导体之间,通过导体施加偏置电压。

电容器容量(C)由如下等式给出,其中e,A和t分别表示介电常数,表面积以及厚度。

C = e A/t (等式1)表1 不同类型的电容器方式是增加等式1中的“A”表面积。

不同类型电容器获得的方式是不同的。

比如钽电容器,可通过使用多孔钽阳极来获得(高比表面积),通常阳极块是由钽粉连同钽丝一起压制并烧结后制成的。

然后用电化学的方式在高比表面积多孔钽阳极块上生成无定形Ta2O5电介质。

一般Ta2O5电介质层只有几十个纳米厚。

然后使用阴极材料浸渍多孔阳极块(MnO2 或是导电层),在小的容积中生成高容量(见图1)。

一般固体钽电容器使用在100V以下,其中多数情况下是使用在50V以下。

湿式钽电容器(阴极是液体)工作电压可以高一些,可以达到几百伏。

图1 (a)钽电容器结构示意图(b)所示的是钽阳极块内部的钽/电介质/MnO2阴极(c)所示的是阳极块内部的钽/电介质/导电聚合物阴极对于陶瓷和薄膜电容器来说,其电介质层和电极材料是分别交互堆积的,这种交互堆积的电极可以避免极性相对的电极接触。

图2所示的是陶瓷电容器的典型结构。

几十到上百(陶瓷电容器中)甚至上千(薄膜电容器)电极层堆积起来,已获得需要的容量。

图2 陶瓷电容器的典型结构因为不同类型电容器的材料和结构有明显的差异(见表1,图1和图2),所以引起电容器失效的原因也有所不同。

因此,每一种条件都需有特定的失效分析方法。

需要注意的是失效电容器的失效分析是一种全面的因果分析,包括对电路和应用条件的分析。

本文所论述的是片式钽电容器的失效分析概述。

钽电容器的电失效模式可以分成三种类型:高漏电流/短路、高等效串联电阻以及开路/低容量,多数的失效集中在高漏电流/短路上。

贴片电容失效分析

贴片电容失效分析

由于贴片电容的材质是高密度、硬质、易碎和研磨的MLCC,所以在使用过程中,需要十分谨慎。

经有关工程师分析,以下几种情况容易造成贴片电容的断裂及失效:1、贴片电容在贴装过程中,若贴片机吸嘴头压力过大发生弯曲,容易产生变形导致裂纹产生;2、如该颗料的位置在边缘部份或靠近边源部份,在分板时会受到分板的牵引力而导致电容产生裂纹最终而失效.建议在设计时尽可能将贴片电容与分割线平行排放.当我们处理线路板时,建议采用简单的分割器械处理,如我们在生产过程中,因生产条件的限制或习惯用手工分板时,建议其分割槽的深度控制在线路板本身厚度的1/3~1/2之间,当超过1/2时,强烈建议采用分割器械处理,否则,手工分板将会大大增加线路板的挠曲,从而会对相关器件产生较大的应力,损害其可靠性.3、焊盘布局上与金属框架焊接端部焊接过量的焊锡在焊接时受到热膨胀作用力,使其产生推力将电容举起,容易产生裂纹.4、在焊接过程中的热冲击以及焊接完后的基板变形容易导致裂纹产生:电容在进行波峰焊过程中,预热温度,时间不足或者焊接温度过高容易导致裂纹产生,5、在手工补焊过程中.烙铁头直接与电容器陶瓷体直接接触,容量导致裂纹产生。

焊接完成后的基板变型(如分板,安装等)也容易导致裂纹产生。

多层陶瓷电容(MLCC)应用注意事项一、储存为了保持MLCC的性能,防止对MLCC的不良影响储存时注意以下事项:1.室内温度5~40℃,温度20%~70%RH;2.无损害气体:含硫酸、氨、氢硫化合物或氢氯化合物的气体;3.如果MLCC不使用,请不要拆开包装。

如果包装已经打开,请尽可能地重新封上。

缩带装产品请避免太阳光直射,因为太阳光直射会使MLCC老化并造成其性能的下降。

请尽量在6个月内使用,使用之前请注意检查其可焊性。

二、物工操作MLCC是高密度、硬质、易碎和研磨的材质,使用过程中,它易被机械损伤,比如开裂和碎裂(内部开裂需要超声设备检测)。

MLCC在手持过程中,请注意避免污染和损伤。

贴片陶瓷电容失效机理分析

贴片陶瓷电容失效机理分析

多层贴片陶瓷电容(MLCC)失效机理分析一.MLCC的应用及发展方向MLCC,广泛用于消费、通讯、信息类电子整机设备中,主要起到滤波、隔直、耦合、振荡等作用。

随着电子信息产业不断的发展,电子设备向薄、小、轻、便携式发展,MLCC也逐步向小型化、大容量化、高频率方向发展,MLCC在我们的HID及高端平板电视里有着极为广阔的应用,片状电容是增长速度最快的无源电子元器件之一,具有广阔的发展前景。

二.MLCC的基本结构MLCC有三大部分组成:1. 陶瓷介质 2.内部电极 3.外部电极其中电极一般为Ag或AgPd(钯),陶瓷介质一般为(SrBa)TiO3,多层陶瓷结构通过高温烧结而成。

器件端头镀层一般为烧结Ag/AgPd,然后制备一层Ni阻挡层(以阻挡内部Ag/AgPd材料,防止其和外部Sn发生反应),再在Ni层上制备Sn或SnPb层用以焊接。

近年来,也出现了端头使用Cu的MLCC产品。

三.MLCC的失效模式多层陶瓷电容器本身的内在可靠性十分优良,可以长时间稳定使用。

但如果器件本身存在缺陷或在组装过程中引入缺陷,则会对其可靠性产生严重影响。

陶瓷多层电容器失效的原因分为外部因素和内在因素。

内在因素主要包括以下三个方面: 1.陶瓷介质内空洞导致空洞产生的主要因素为陶瓷粉料内的有机或无机污染,烧结过程控制不当等。

空洞的产生极易导致漏电,而漏电又导致器件内部局部发热,进一步降低陶瓷介质的绝缘性能从而导致漏电增加。

该过程循环发生,不断恶化,严重时导致多层陶瓷电容器开裂、爆炸,甚至燃烧等严重后果。

2. 烧结裂纹烧结裂纹常起源于一端电极,沿垂直方向扩展。

主要原因与烧结过程中的冷却速度有关,裂纹和危害与空洞相仿。

3.分层多层陶瓷电容器的烧结为多层材料堆叠共烧。

烧结温度可以高达1000℃以上。

层间结合力不强,烧结过程中内部污染物挥发,烧结工艺控制不当都可能导致分层的发生。

分层和空洞、裂纹的危害相仿,为重要的多层陶瓷电容器内在缺陷。

片式钽电容器加电测试时的失效之谜

片式钽电容器加电测试时的失效之谜

片式钽电容器加电测试时的失效之谜凡大量使用过片式钽电容器的电子工程人员,可能都碰到过这样的现象;使用的片式钽电容器在测试和筛选时性能合格,但是,安装上板后进行加电测试时却不断出现击穿短路的产品.出现此现象的原因简单分析有二;1.使用的片式钽电容器性能存在严重的质量缺陷;由于片式钽电容器是一个通用园器件,它可以使用到XX种电子电路中作为滤波或瞬时放电电源,对于用途不同的电路,整机供电功率差别非常大,电路中的号强度差别甚至可以达到百倍以上,例如手机上使用的片式钽电容器和大功率电源上使用滤波电容器和放电电容器.由于它们的使用条件不同,因此,XX 标准必须覆盖所有的使用条件要求,因此,对电容器可靠性起决定作用的漏电流指标就放的很宽;漏电流只要满足K≤0.01CR×UR[CR是额定容量,UR是额定电压],一般情况下,在使用电池供电的功率较低的个人用电子产品上就不会出现问题,而在功率较大的电子整机上使用,满足上述指标又根本不能保证可靠性。

因此,根据电路供电功率和可靠性使用条件不同,必须选择可靠性不同的片式钽电容器.特别是军用电子电路,甚至必须考虑到电容器的鲁棒性如何.本文分析的前提是你必须选择正确的,质量不存在问题的片式钽电容器。

对于因为选用质量不高的片式钽电容器引起的故障不再进行分析。

2.质量不存在问题的片失钽电容器为什么在加电测试时仍然有可能出现击穿短路的问题?造成此问题的原因如下;2。

1.外接电源进行加电测试时的回路电阻过低,导致测试加电的瞬间浪涌电压和浪涌电流过大,电容器上实际承受了远远超过容许值的过压冲击和过流冲击。

必须重视的是,在加电测试时,由于回路电阻过低而导致浪涌过高与电路单独实际工作时,电容器的工作条件完全不同.此类电路基本上是开关电源电路[也叫DC-DC电路].我们的很多用户对此类低阻抗电路的号特征了解的不够或认识不清楚;因此,在选择电容器规格时,没有考虑到在开关的瞬间,电路中会出现一个持续时间极短[小于1微秒],能量密度极高的电压和电流脉冲.此脉冲的瞬间电压可以达到稳态电压的2-10倍,电流可以瞬间达到稳态电流的十倍以上.因此,在电容器的额定电压选择上偏低,有时候容量也不够。

钽电容失效模式及分析

钽电容失效模式及分析
"钽电容的内部结构和主要加工工艺 钽电容是通过将钽粉压制而成经高温烧结成型芯片的 阳极经过氧化处理表面生产一层五氧化二钽氧化膜再覆盖一 层二氧化锰电解质然后在二氧化锰和金属层中间涂上一层石 墨作为过渡最后用树脂把其封装成为钽电容 下图是其内部 结构示意图$
钽电容内部结构示意图 下面简单介绍下钽电容的主要加工工艺( $&$ 阳极设计 目前市场上大 量 使 用 的 贴 片 钽 电 容 其 阳 极 一 般 使 用 钽 粉经一定压力成型然后通过真空高温固化因此钽粉的质量 决定了钽电容的质量没有好的原材料无法做出高质量的元器 件后续再精密的加工也无法弥补材料上的缺陷所以钽粉直 接决定钽电容的可靠性 一般影响钽粉质量的关键因素有的 颗粒的大小和形状钽粉的配比以及钽粉的纯度和密度 $&) 烧结 在钽粉烧结成型前需加入适量的粘合剂这样保证钽粉颗 粒间不直接接触有效的降低了钽粉颗粒直接的相互摩擦和损 伤这样烧结出的钽芯更加致命质量更高 在烧结后粘合剂 受高温影响全部挥发这样原来粘合剂的位置变成了空洞有 效的提高了钽芯的气孔率 较好的烧结工艺对钽电容的损耗 和电容量的提高都有明显的改善 $&( 形成氧化膜 钽芯表面的五氧化二钽是通过电化学的方法形成的在电 解液中设置合适的电压和电流使钽芯表面逐渐生产一层致
本文通过对钽电容的结构生产工艺和主要性能参数特点 入手分析了钽电容常见的失效模式并重点模拟长期使用过 程中由于外界环境条件的变化造成钽电容 XNL值变化的问 题 这个过程可能持续几个月甚至几年直到其彻底失效才会 被发现也正是由于该过程持续时间长所以目前为止在国内 外对应这方面的研究还属于空白
"$*
密的氧化膜该氧化膜后面电极的制备至关重要如果一旦存 在空隙长期工作下存在可靠性隐患沉积速率的控制显得至 关重要

为什么尽量不要用钽电容?以及什么时候该用它?

为什么尽量不要用钽电容?以及什么时候该用它?

为什么尽量不要用钽电容?以及什么时候该用它?为什么不要选择“钽电容”?这里不去赘述“钽电容”的失效模式的原理。

这是我们不要去选用钽电容的重要原因。

看看我们的淘宝就可以知道100uF的钽电容与100uF的陶瓷电容的价格差别,大概钽电容的价格是陶瓷电容的10倍。

如果电容容量需求在100uF以下的情况下,我们现在绝大多数下,耐压如果满足的情况下,我们一般需用陶瓷电容。

贴片陶瓷电容最主要的失效模式断裂(封装越大越容易失效):贴片陶瓷电容器作常见的失效是断裂,这是贴片陶瓷电容器自身介质的脆性决定的.由于贴片陶瓷电容器直接焊接在电路板上,直接承受来自于电路板的各种机械应力,而引线式陶瓷电容器则可以通过引脚吸收来自电路板的机械应力.因此,对于贴片陶瓷电容器来说,由于热膨胀系数不同或电路板弯曲所造成的机械应力将是贴片陶瓷电容器断裂的最主要因素。

早在2007 年,美国国防后勤署(DLA)十多年来已贮存大量钽矿物,为履行美国国会的会议决定,该组织将耗尽其拥有的最后140,000磅钽材料。

从美国国防后勤署购买钽矿石的买主已包括HC Starck、DM Chemi-Met、ABS合金公司、Umicore、Ulba冶金公司和Mitsui采矿公司,这些代表了将这些钽矿石加工制成电容器级粉末、钽制品磨损件或切削工具的众多公司。

从美国国防后勤署购买这些钽矿石的投标人年复一年传统上是一贯的,这样当钽矿石供应变的吃紧时,因美国国防后勤署供应耗尽,一些公司只得抢夺新的矿石供应源。

如果失去美国国防后勤署的钽矿石供应,估计2007年钽矿石供应市场留下150,000磅的缺口,2008年缺口为350,000磅。

这个事件发生的时间不合时宜,因为现在的供应能力窘迫。

比如第二大硬研矿石卖主澳大利亚的瓜利亚子公司在第四季度已总体削减矿石产量25%(即格林布什矿产量的一半),以便该公司能完成在澳大利亚的管理事宜。

同样情形,在巴西冶金/CIF和巴拉那巴拿马(Paranapanema)两公司2006年的钽矿石产量已下降,原因是他们将兴趣转向开采更盈利的金属上。

电容失效模式和失效机理

电容失效模式和失效机理

电容失效模式和失效机理
电容器是一种常见的电子元件,它们在电子设备中起着储存电荷和滤波的重要作用。

然而,电容器也会出现失效,主要有以下几种模式和机理:
1. 电容漏电流增加,电容器在使用过程中,由于介质老化或者制造过程中的缺陷,会导致电容器的绝缘性能下降,从而使得电容器的漏电流增加。

这种失效模式会导致电路中的电流泄露,影响整个电路的性能。

2. 电容器内部短路,电容器内部的金属层或电介质层可能会出现短路现象,导致电容器无法正常工作。

这种失效模式会导致电路中的电压异常,甚至损坏其他元件。

3. 电容器老化,随着使用时间的增加,电容器的性能会逐渐下降,如电容值减小、损耗角正切值增大等,最终导致电容器失效。

这种失效模式是由于电容器内部材料的老化和疲劳造成的。

4. 电容器机械损坏,在运输、安装或使用过程中,电容器可能会受到机械振动或冲击,导致内部连接不良或元件损坏,从而引起
电容器失效。

总的来说,电容器的失效主要是由于材料老化、制造缺陷、外部环境等因素引起的。

为了延长电容器的使用寿命,可以采取合适的工作条件、定期检测和维护等措施,以确保电容器的可靠性和稳定性。

贴片电容破裂、失效的主要原因和对策

贴片电容破裂、失效的主要原因和对策

贴片电容破裂、失效的主要原因和对策主要包括三点:1、产生破裂、短路等问题的主要原因不是由于贴片电容的本身,更多的在这个电容的整个安装、焊接等工艺方面的因素造成的。

2、破裂、失效是在使用贴片电容中遇到的最常见、最主要的问题。

3、A VX针对这个普遍的状况提出了解决方法和相应的产品,命名为:FlexiTerm,并阐述了该产品的主要好处和特性。

需要强调的是:1、虽然,在文章上看到了这个产品的介绍,但目前,我们还没有在市场上发现这颗料在有大规模的销售。

2、当我们在线路排版时注意到这个问题,并且在整个使用贴片电容的生产过程中加强工艺控制,那相应的破裂、失效的情况会有很好的改善。

一、破裂的原因分析及对策电容的巨大普及性与可选择性技术的比较,首先是他们出色的可靠性记录和低成本。

但是在某一特定环境下由于元器件的陶瓷部分破裂会发生一些问题。

当元器件焊接到电路板后,这些失效通常由机械破坏产生;当电路板误操作或在极其苛刻的环境条件下组装,也会导致失效。

破裂问题正如贴片电容在元器件数量方面占的统治地位,多层陶瓷电容(MLCC)因为其高可靠性及低成本被普遍应用于电路设计。

即使因为陶瓷材料的特性,MLCC 本身很有可能在组装的过程中因为操作不当或是在特殊的环境下出现破裂。

因为这个原因,破裂成为贴装到电路板上的MLCC的最普遍的失效模式。

弯曲附有元件的印刷电路板,最普遍的一个结果就是导致MLCC 元件的破裂。

这种弯曲是在组装生产和恶劣的操作条件下机械导致的外力造成的。

最坏的情形,一个低阻值的电阻破裂失效会导致极高的温度,当其直接连接到电源线并有充足电流通过时电路板的直接区域将会造成毁灭性的破坏。

点击查看详细分析二、贴片电容破裂、短路现象案例分析不良原因分析:此裂纹在电容器的生产制造过程中不会产生,与电容器在使用过程中受到机械应力或热应力的作用有关,所以在未了解贵公司生产工艺情况下,初步分析可能有以下几方面原因:1、电容在贴装过程中,若贴片机吸嘴头压力过大发生弯曲,容易产生变形导致裂纹产生;2、焊盘布局上与金属框架焊接端部焊接过量的焊锡在焊接时受到热膨胀作用力,使其产生推力将电容举起,容易产生裂纹。

钽电容热失效 -回复

钽电容热失效 -回复

钽电容热失效-回复钽电容热失效(Tantalum Capacitor Thermal Failure)导言:钽电容器是一种高性能、大容量的电子元件,广泛用于各种电子设备中。

然而,钽电容器在使用过程中可能会经历热失效,这会对设备的性能和寿命产生严重影响。

本文将详细解释钽电容器热失效的原因、表现以及如何避免这种问题的发生。

一、钽电容器的基本工作原理为了更好地理解钽电容器的热失效问题,首先需要了解它的基本工作原理。

钽电容器的核心部分是由钽金属片和绝缘材料层组成的。

当钽电容器处于电流通路中时,钽金属片充当电解质并与绝缘材料之间的导电液体相互作用。

通过这种作用,钽电容器能够存储和释放电能。

二、钽电容器热失效的原因1. 高温环境: 高温是钽电容器热失效的主要原因之一。

当钽电容器长时间处于高温环境中时,钽金属片和绝缘材料之间的导电液体会发生物理和化学变化,导致电容器的性能下降。

2. 过大的电流负载: 钽电容器通常具有一定的电流负载能力。

当电流超过其额定负载时,会使钽金属片和绝缘材料受到过大的压力,从而导致热失效。

3. 电压应力: 钽电容器在工作过程中,电压的变化会使钽金属片和绝缘材料之间的导电液体受到应力,从而引发热失效。

三、钽电容器热失效的表现1. 电容值下降: 温度升高会导致电容值的下降,这会影响钽电容器的性能。

2. 漏电流增加: 钽电容器的漏电流是指在没有外加电压的情况下,电容器自身产生的漏电流。

当热失效发生时,漏电流会显著增加。

3. ESR增大: ESR(等效串联电阻)是钽电容器的一个重要参数,用于描述电容器在工作中的能耗。

当钽电容器发生热失效时,ESR值会增大。

四、如何避免钽电容器热失效1. 控制环境温度: 避免将钽电容器暴露在过高的温度下,选择合适的工作环境可以显著延长钽电容器的使用寿命。

2. 适配电流负载: 确保钽电容器的电流负载不超过其额定负载范围,以避免过度热失效。

3. 备份电容器: 在设计电子设备时,可以考虑将多个钽电容器并联,以增加容量和减少负载,从而降低热失效的风险。

钽电容失效(湿度影响)

钽电容失效(湿度影响)

钽电容的三大罪状:1.固钽因“不断击穿”又“不断自愈”问题产生失效。

在正常使用一段时间后常发生固钽密封口的焊锡融化,或见到炸开,焊锡乱飞到线路板上。

分析原因是其工作时“击穿”又“自愈”,在反复进行,导致漏电流增加。

这种短时间(ns~ms)的局部短路,又通过“自愈”后恢复工作。

关于“自愈”。

理想的Ta2O5 介质氧化膜是连续性的和一致性的。

加上电压或高温下工作时,由于TA+离子疵点的存在,导致缺陷微区的漏电流增加,温度可达到500℃~1000℃以上。

这样高的温度使MnO2还原成低价的Mn3O4。

有人测试出Mn3O4的电阻率要比MnO2高4~5个数量级。

与Ta2O5介质氧化膜相紧密接触的Mn3O4就起到电隔离作用,防止Ta2O5介质氧化膜进一步破坏,这就是固钽的局部“自愈了”。

但是,很可能在紧接着的再一次“击穿”的电压会比前一次的“击穿”电压要低一些。

在每次击穿之后,其漏电流将有所增加,而且这种击穿电源可能产生达到安培级的电流。

同时电容器本身的储存的能量也很大,导致电容器永久失效。

2.固钽有“热致失效”问题?固钽的Ta2O5介质氧化膜有单向导电性能,当有充放大电流通过Ta2O5介质氧化膜,会引起发热失效。

无充放大电流时,介质氧化薄相当稳定,微观其离子排列不规则、无序的,称作无定形结构。

目测呈现的颜色是五彩干涉色。

当无定形结构向定形结构逐步转化,逐步变为有序排列,称之微“晶化”,目测呈现的颜色不再是五彩干涉色,而是无光泽、较暗的颜色。

Ta2O5介质氧化薄膜的“晶化”疏散的结构导致钽电容器性能恶化直至击穿失效。

3.固钽有“场致失效”问题(dV/dT)。

固钽加上高的电压,内部形成高的电场,易于局部击穿。

击穿事故发生率随时间减低到一个稳定值。

当击穿电压被接近时,击穿发生率增加。

随着电压的增长,装置因在某个疵点发生的热逃逸而发生故障的机率也增加。

击穿电压依赖于脉冲的持续。

在某些实验中,可以看到击穿电压随着脉冲长度的增加而降低。

贴片钽电容失效机理和分析

贴片钽电容失效机理和分析

贴片钽电容失效机理和分析贴片钽电容失效机理和分析方法包括常见的失效机理、分析方法和工具。

如何防止电路工作不正常和防止贴片钽电容坏,但智者千虑难免一失,一旦坏了,千万不要敬而远之,而应该如获至宝。

开车的人都知道,哪里最能练出驾驶水平?高速公路不行,只有闹市和不良路况的时候。

社会的发展就是一个发现问题解决问题的过程,出现问题不可怕,但频繁出现同一类问题是非常可怕的。

贴片钽电容失效的分析是基于一个基本的改进手段,“基于失效机理的预防措施”。

问题发现了,把引起问题的要素规避了,形成了规范,大家以后设计都遵守了,问题自然不会再现了。

ESD的防护,很多公司都在做,做的方法包括加湿,但加湿可能会带来MSD的问题,如果通过I/V曲线测试,发现波峰焊载流焊后出现贴片钽电容某些管脚对VCC、GND开路,那就要考虑MSD问题了,解决办法就是在焊接前加热几个小时,将潮气散发出去。

比如贴片钽电容烧坏了,要检测一下是哪个管脚坏掉了,及坏掉的现象是什么,通过万用表、I/V曲线图示仪、示波器,高级点的外协找X射线透视下,判断出失效的机理,并顺藤摸瓜,找到那块与该管脚关联的电路,分析电路和工厂内的工艺过程,找到引起该失效机理的点并改进之。

贴片电容也称电化学电容,与传统静电电容器不同,主要表如今贮存能量的几上。

作为能量的贮存或输出安装,其储能的几表现为电容量的大小。

依据贴片电容储能的机理,其原理可分为:在电极P 溶液界面经过电子和离子或偶极子的定向排列所产生的双电层电容器。

双电层理论由19 世纪末H elm h otz 等提出。

关于双电层的代表理论和模型有好几种,其中以H elm h otz 模型最为简单且可以充沛阐明双电层电容器的工作原理。

模型以为金属外表上的静电荷将从溶液中吸收局部不规则的分配离子,使它们在电极P 溶液界面的溶液一侧,离电极一定间隔排成一排,构成一个电荷数量与电极外表剩余电荷数量相等而符号相反的界面层。

于是,在电极上和溶液中就构成了两个电荷层,这就是我们通常所讲的双电层。

贴片陶瓷电容失效机理分析

贴片陶瓷电容失效机理分析

多层贴片陶瓷电容(MLCC)失效机理分析一.MLCC的应用及发展方向MLCC,广泛用于消费、通讯、信息类电子整机设备中,主要起到滤波、隔直、耦合、振荡等作用。

随着电子信息产业不断的发展,电子设备向薄、小、轻、便携式发展,MLCC也逐步向小型化、大容量化、高频率方向发展,MLCC在我们的HID及高端平板电视里有着极为广阔的应用,片状电容是增长速度最快的无源电子元器件之一,具有广阔的发展前景。

二.MLCC的基本结构MLCC有三大部分组成:1. 陶瓷介质 2.内部电极 3.外部电极其中电极一般为Ag或AgPd(钯),陶瓷介质一般为(SrBa)TiO3,多层陶瓷结构通过高温烧结而成。

器件端头镀层一般为烧结Ag/AgPd,然后制备一层Ni阻挡层(以阻挡内部Ag/AgPd材料,防止其和外部Sn发生反应),再在Ni层上制备Sn或SnPb层用以焊接。

近年来,也出现了端头使用Cu的MLCC产品。

三.MLCC的失效模式多层陶瓷电容器本身的内在可靠性十分优良,可以长时间稳定使用。

但如果器件本身存在缺陷或在组装过程中引入缺陷,则会对其可靠性产生严重影响。

陶瓷多层电容器失效的原因分为外部因素和内在因素。

内在因素主要包括以下三个方面: 1.陶瓷介质内空洞导致空洞产生的主要因素为陶瓷粉料内的有机或无机污染,烧结过程控制不当等。

空洞的产生极易导致漏电,而漏电又导致器件内部局部发热,进一步降低陶瓷介质的绝缘性能从而导致漏电增加。

该过程循环发生,不断恶化,严重时导致多层陶瓷电容器开裂、爆炸,甚至燃烧等严重后果。

2. 烧结裂纹烧结裂纹常起源于一端电极,沿垂直方向扩展。

主要原因与烧结过程中的冷却速度有关,裂纹和危害与空洞相仿。

3.分层多层陶瓷电容器的烧结为多层材料堆叠共烧。

烧结温度可以高达1000℃以上。

层间结合力不强,烧结过程中内部污染物挥发,烧结工艺控制不当都可能导致分层的发生。

分层和空洞、裂纹的危害相仿,为重要的多层陶瓷电容器内在缺陷。

贴片电容失效原因和解决办法

贴片电容失效原因和解决办法

贴片电容失效原因和解决办法
贴片电容(多层片式陶瓷电容器)是目前用量比较大的常用元件,生产的贴片电容来讲有NPO、X7R、Z5U、Y5V等不同的规格,不同的规格有不同的用途。

在使用过程中我们也经常会遇到各种各样的问题,带给我们不小的影响,本文主要针对的是贴片电容失效的情形,分析其产生的原因以及对此应对的办法,希望能够帮助到大家能够更加快速有效的解决这类的问题。

贴片陶瓷电容最主要的失效模式断裂
贴片陶瓷电容器作常见的失效是断裂,这是贴片陶瓷电容器自身介质的脆性决定的.由于贴片陶瓷电容器直接焊接在电路板上,直接承受来自于电路板的各种机械应力,而引线式陶瓷电容器则可以通过引脚吸收来自电路板的机械应力.因此,对于贴片陶瓷电容器来说,由于热膨胀系数不同或电路板弯曲所造成的机械应力将是贴片陶瓷电容器断裂的最主要因素.
陶瓷贴片电容器的断裂陶瓷贴片电容器受到机械力后断裂的示意如下图:
陶瓷贴片电容器机械断裂后,断裂处的电极绝缘间距将低于击穿电压,会导致两个或多个电极之间的电弧放电而彻底损坏陶瓷贴片电容器,机械断裂后由于电极间放电的陶瓷贴片电容器剖面显微结构如下图:
上图是机械断裂后由于电极间放电的陶瓷贴片电容器剖面显微结构对于陶瓷贴片电容器机械断裂的防止方法主要有:尽可能的减少电路板的弯曲、减小陶瓷贴片电容器在电路板上的应力、减小陶瓷贴片电容器与电路板的热膨胀系数的差异而引起的机械应力.
如何减小陶瓷贴片电容器在电路板上的应力将在下面另有行进叙述,这里不再赘述.减小陶瓷贴片电容器与电路板的热膨胀系数的差异而引起的机械应力可以通过选择封装尺寸小的电容器来减缓,如铝基电路板应尽可能用1810以下的封装,如果电容量不够可以采用多只并联的方法或采用叠片的方法解决.也可以采用带有引脚的封装形式的陶瓷电容器解决,新晨阳电子。

贴片电容裂纹失效原因分析

贴片电容裂纹失效原因分析

贴片电容裂纹失效原因分析贴片电容是电子设备中常见的电子元器件之一,它广泛应用于电子电路中,主要用于过滤、耦合、绝缘电容等方面。

然而,在使用过程中,贴片电容有时会出现裂纹失效的情况。

本文将对贴片电容裂纹失效的原因进行分析。

一、外力作用:贴片电容在使用过程中容易受到外界的机械振动、冲击等力的作用。

当贴片电容所承受的应力超过其材料的耐力极限时,就会发生裂纹失效。

例如,在运输、组装、焊接等过程中,贴片电容可能受到机械冲击而导致裂纹失效。

二、热膨胀不匹配:贴片电容由多种材料组成,如电极材料、介质材料等。

这些材料在使用过程中产生热膨胀时,可能会存在不匹配的情况。

当贴片电容的不同部分存在热膨胀不匹配时,就会产生应力集中,从而导致裂纹失效。

此外,贴片电容在焊接过程中也会受到高温的影响,当焊接温度过高或焊接时间过长时,可能会导致贴片电容内部的材料发生热膨胀不一致,从而引发裂纹失效。

三、环境因素:贴片电容的失效与环境因素密切相关。

在高温、高湿度、高盐度、高气压等特殊环境下,贴片电容的材料容易产生膨胀或腐蚀,导致内部应力积累,从而引发裂纹失效。

另外,在一些粗糙表面的基板上安装贴片电容,其间发生微小位移时,也会形成应力集中而导致裂纹失效。

四、焊接过程:贴片电容在焊接过程中容易受到过温或焊接不良的影响,从而导致裂纹失效。

焊接温度过高或焊接时间过长,可能会引起焊点附近的材料热膨胀,产生应力集中;焊接温区宽度不均匀、接触不良或焊接剂残留等因素,也会对贴片电容产生不良影响。

五、材料质量:贴片电容的材料质量是决定其裂纹失效的重要因素之一、如果材料本身质量不稳定、工艺控制不当或混入杂质,就容易降低贴片电容的抗裂性能和可靠性。

六、设计问题:贴片电容的设计问题也会引发裂纹失效。

例如,结构设计不合理、焊盘过小、应力集中等因素,都可能导致贴片电容裂纹失效。

综上所述,贴片电容裂纹失效的原因主要包括外力作用、热膨胀不匹配、环境因素、焊接过程、材料质量和设计问题。

钽电容失效的模式

钽电容失效的模式

钽电容失效的模式钽电容失效的模式很恐怖,轻则烧毁冒烟,重则火光四溅。

不同的使用电压和不同的工作温度与产品的额定电压会导致出现不同的寿命,如果一个产品的工作温度较低,使用的电压也较低,那么它的失效率就非常低。

从侧面同时也证明如果一只钽电解电容的漏电流较小钽电容就相当于产品的降额幅度更大,相当与这只产品的实验电压低或使用温度低。

如果一只产品的高温漏电流较小,其可靠性更高。

在具体使用时,由于电路产生的热量积聚,产品工作时环境温度有可能达到50度以上,因此实际使用电压必须考虑到温度升高会导致产品的漏电流增加的问题.因此实际使用电压应该更低.由于贴片钽电容漏电流随温度的增加而增加。

工作在温度较高时,最大工作电压必须降额使用。

在实际使用中过高的温度和使用电压对产品的可靠性影响非常大。

钽电解电容使用在电路中时,在正常的工作电压以外,还要受到浪涌电压和电流的冲击.因此,工作时实际加在产品上的电压=浪涌电压+工作电压+交流纹波电压.由于使用电路中的阻抗不一样,因此,当电路阻抗较低时,实际的浪涌电压在瞬间可以达到1.5-2.5倍的稳态工作电压.因此,使用在低阻抗电路中时,考虑到开关瞬间的浪涌冲击电压会远超过产品容许承受的电压冲击,因此稳态的工作电压不能超过额定值的1/3.否则,产品就非常容易出现瞬间的过压而击穿.因此,在电路设计时必须为不断产生的浪涌留出电压余量.钽电容的反向击穿钽电容是典型的极性元件,由于其介质层特殊的物理结构,它基本不能承受反向电压.这里引用的反向电压值是指在任何时候出现在电容器上的最大反向电压。

这些极限建立在假定电容器在其工作期间的极大多数时间内极性正确的基础上。

只是在短时间内极性反,例如出现在开关的瞬间外加波形的较小KEMET的部分。

连续工作在反向电压下会导致漏电流大幅度增加甚至击穿.在有连续反向电压出现的场合,可以两个一样的电容器背靠背阴极连接在一起组成一个无极性电容器. 在绝大多数情况下,这种组合是原来单个电容器容量的一半。

贴片电容断裂及失效的原因分析

贴片电容断裂及失效的原因分析

贴片电容断裂及失效的原因分析
由于贴片电容的材质是高密度、硬质、易碎和研磨的MLCC,所以在使用过程中,需要十分谨慎。

经有关工程师分析,以下几种情况容易造成贴片电容的断裂及失效:
1、贴片电容在贴装过程中,若贴片机吸嘴头压力过大发生弯曲,容易产生变形导致裂纹产生;
2、如该颗料的位置在边缘部份或靠近边源部份,在分板时会受到分板的牵引力而导致电容产生裂纹最终而失效.建议在设计时尽可能将贴片电容与分割线平行排放.当我们处理线路板时,建议采用简单的分割器械处理,如我们在生产过程中,
因生产条件的限制或习惯用手工分板时,建议其分割槽的深度控制在线路板本身厚度的 1/3~1/2之间,当超过1/2时,强烈建议采用分割器械处理,否则,手工分板将会大大增加线路板的挠曲,从而会对相关器件产生较大的应力,损害其可靠性.
3、焊盘布局上与金属框架焊接端部焊接过量的焊锡在焊接时受到热膨胀作用力,使其产生推力将电容举起,容易产生裂纹.
4、在焊接过程中的热冲击以及焊接完后的基板变形容易导致裂纹产生:电容在进行波峰焊过程中,预热温度,时间不足或者焊接温度过高容易导致裂纹产生,
5、在手工补焊过程中.烙铁头直接与电容器陶瓷体直接接触,容量导致裂纹产生。

焊接完成后的基板变型(如分板,安装等)也容易导致裂纹产生。

本文由东莞市朗进电子有限公司整理
(贴片电容三极管钽电容)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贴片钽电容失效机理和分析
贴片钽电容失效机理和分析方法包括常见的失效机理、分析方法和工具。

如何防止电路工作不正常和防止贴片钽电容坏,但智者千虑难免一失,一旦坏了,千万不要敬而远之,而应该如获至宝。

开车的人都知道,哪里最能练出驾驶水平?高速公路不行,只有闹市和不良路况的时候。

社会的发展就是一个发现问题解决问题的过程,出现问题不可怕,但频繁出现同一类问题是非常可怕的。

贴片钽电容失效的分析是基于一个基本的改进手段,“基于失效机理的预防措施”。

问题发现了,把引起问题的要素规避了,形成了规范,大家以后设计都遵守了,问题自然不会再现了。

ESD的防护,很多公司都在做,做的方法包括加湿,但加湿可能会带来MSD的问题,如果通过I/V曲线测试,发现波峰焊载流焊后出现贴片钽电容某些管脚对VCC、GND开路,那就要考虑MSD问题了,解决办法就是在焊接前加热几个小时,将潮气散发出去。

比如贴片钽电容烧坏了,要检测一下是哪个管脚坏掉了,及坏掉的现象是
什么,通过万用表、I/V曲线图示仪、示波器,高级点的外协找X射线透视下,判断出失效的机理,并顺藤摸瓜,找到那块与该管脚关联的电路,分析电路和工厂内的工艺过程,找到引起该失效机理的点并改进之。

贴片电容也称电化学电容,与传统静电电容器不同,主要表如今贮存能量的几上。

作为能量的贮存或输出安装,其储能的几表现为电容量的大小。

依据贴片电容储能的机理,其原理可分为:在电极P 溶液界面经过电子和离子或偶极子的定向排列所产生的双电层电容器。

双电层理论由19 世纪末H elm h otz 等提出。

关于双电层的代表理论和模型有好几种,其中以H elm h otz 模型最为简单且可以充沛阐明双电层电容器的工作原理。

模型以为金属外表上的静电荷将从溶液中吸收局部不规则的分配离子,使它们在电极P 溶液界面的溶液一侧,离电极一定间隔排成一排,构成一个电荷数量与电极外表剩余电荷数量相等而符号相反的界面层。

于是,在电极上和溶液中就构成了两个电荷层,这就是我们通常所讲的双电层。

双电层有贮存电能量的作用,电容器的容量能够应用以下公式来计算:式中,E为贴片电容的储能大小;C为电容器的电容量;V 为电容器的工作电压。

由此可见,双电层电容器的容量与电极电势和资料自身的属性有关。

通常为了构成稳定的双电层,普通采用导电性能良好的极化电极。

在电极外表或体相中的二维与准二维空间,电活性物质停止欠电位堆积,发作高度可逆的化学吸附、脱附或氧化复原反响,产生与电极充电电位有关的法拉第准电容器。

关于普通的电解电容来说,电容值和/或电压值越大,整个封装也越大。

电解电容通常提供微法拉数量级的电容值,从约0.1uF到约1F,其电压标称值最高可达1kVdc。

普通来说,额定电压越高,电容值就越小,而电容值越大,封装也就越大,而且工作电压也可能会降低。

这些规则根本上也适用于贴片电容。

贴片电容的容值在1F以上,工作电压范围从1.5V到160V 以至更高。

随着电容值和电压增加,其体积也会增加。

更多资讯请登入:/。

相关文档
最新文档