基于改进粒子群算法的最小二乘影响系数法的理论及实验研究
多目标粒子群算法的改进
多目标粒子群算法的改进多目标粒子群算法(Multi-Objective Particle Swarm Optimization, MOPSO)是对传统粒子群算法的改进和扩展,用于解决多目标优化问题。
在多目标优化问题中,存在多个冲突的目标函数,传统的单目标优化算法无法直接应用于解决这类问题。
因此,多目标粒子群算法应运而生。
多目标粒子群算法的改进主要体现在两个方面:多目标适应度函数的定义和多目标解的维护策略。
多目标适应度函数的定义是多目标粒子群算法的核心。
在传统的粒子群算法中,适应度函数一般为单个目标函数,通过最小化或最大化目标函数的值来寻找最优解。
而在多目标粒子群算法中,需要定义多个目标函数,并将其结合起来构成一个多目标适应度函数。
多目标适应度函数的定义需要考虑目标之间的冲突和权重分配问题,以便在搜索过程中对不同目标进行平衡和权衡。
多目标解的维护策略是多目标粒子群算法的另一个关键点。
传统的粒子群算法通过更新粒子的位置和速度来搜索解空间,但在多目标优化问题中,需要维护一组解集合,即粒子群的帕累托最优解集合。
多目标解的维护策略需要考虑解集合的多样性和收敛性,以便在搜索过程中保持一组较好的非劣解。
多目标粒子群算法的改进可以从多个方面展开。
一方面,可以改进目标函数的定义,采用更加合理和准确的目标函数来描述实际问题。
另一方面,可以改进粒子的更新策略,引入更加灵活和高效的更新算子,以提高搜索的效率和性能。
此外,还可以改进多目标解的维护策略,设计更加有效的解集合更新算法,以保证解集合的多样性和收敛性。
近年来,研究者们在多目标粒子群算法的改进方面做出了许多有益的尝试和探索。
例如,有研究者提出了基于领域知识的多目标粒子群算法,通过利用问题的领域知识来引导搜索过程,提高算法的搜索性能。
还有研究者提出了基于自适应权重的多目标粒子群算法,通过自适应调整目标函数的权重,实现对不同目标的平衡和权衡。
此外,还有研究者提出了基于机器学习的多目标粒子群算法,通过利用机器学习方法来提高算法的搜索性能和学习能力。
改进的粒子群优化算法
改进的粒子群优化算法背景介绍:一、改进策略之多目标优化传统粒子群优化算法主要应用于单目标优化问题,而在现实世界中,很多问题往往涉及到多个冲突的目标。
为了解决多目标优化问题,研究者们提出了多目标粒子群优化算法 (Multi-Objective Particle Swarm Optimization,简称MOPSO)。
MOPSO通过引入非劣解集合来存储多个个体的最优解,并利用粒子速度更新策略进行优化。
同时还可以利用进化算法中的支配关系和拥挤度等概念来评估和选择个体,从而实现多目标优化。
二、改进策略之自适应权重传统粒子群优化算法中,个体和全局最优解对于粒子速度更新的权重是固定的。
然而,在问题的不同阶段,个体和全局最优解的重要程度可能会发生变化。
为了提高算法的性能,研究者们提出了自适应权重粒子群优化算法 (Adaptive Weight Particle Swarm Optimization,简称AWPSO)。
AWPSO通过学习因子和自适应因子来调整个体和全局最优解的权重,以实现针对问题不同阶段的自适应调整。
通过自适应权重,能够更好地平衡全局和局部能力,提高算法收敛速度。
三、改进策略之混合算法为了提高算法的收敛速度和性能,研究者们提出了将粒子群优化算法与其他优化算法进行混合的方法。
常见的混合算法有粒子群优化算法与遗传算法、模拟退火算法等的组合。
混合算法的思想是通过不同算法的优势互补,形成一种新的优化策略。
例如,将粒子群优化算法的全局能力与遗传算法的局部能力结合,能够更好地解决高维复杂问题。
四、改进策略之应用领域改进的粒子群优化算法在各个领域都有广泛的应用。
例如,在工程领域中,可以应用于电力系统优化、网络规划、图像处理等问题的求解。
在经济领域中,可以应用于股票预测、组合优化等问题的求解。
在机器学习领域中,可以应用于特征选择、模型参数优化等问题的求解。
总结:改进的粒子群优化算法通过引入多目标优化、自适应权重、混合算法以及在各个领域的应用等策略,提高了传统粒子群优化算法的性能和收敛速度。
粒子群优化算法的改进研究及在石油工程中的应用
粒子群优化算法在多个工程领域中得到了成功的应用,以下是一些典型的例 子:
1、优化问题:粒子群优化算法在函数优化、多目标优化等优化问题中发挥 出色,如旅行商问题、生产调度问题等。
2、控制问题:粒子群优化算法在控制系统设计和优化中也有广泛的应用, 如无人机路径规划、机器人动作控制等。
3、机器学习问题:粒子群优化算法在机器学习领域中用于参数优化、模型 选择等问题,如支持向量机、神经网络等模型的优化。
粒子群优化算法的基本原理
粒子群优化算法是一种基于种群的随机优化技术,通过模拟鸟群、鱼群等群 体的社会行为而设计的。在粒子群优化算法中,每个优化问题的解都被看作是在 搜索空间中的一只鸟(或鱼),称为“粒子”。每个粒子都有一个位置和速度, 通过不断更新粒子的位置和速度来搜索最优解。
粒子群优化算法的实现步骤
粒子群优化算法在石油工程中的 应用
石油工程中经常遇到各种优化问题,例如钻井轨迹优化、生产计划优化、储 层参数反演等。粒子群优化算法在解决这些优化问题中具有广泛的应用前景。以 下是一些具体的应用案例:
1、钻井轨迹优化:在石油钻井过程中,需要确定钻头的钻进轨迹以最大限 度地提高油气资源的采收率。粒子群优化算法可以用于优化钻井轨迹,以降低钻 井成本和提高采收率。
遗传算法与粒子群优化算法的改 进
遗传算法的改进主要包括增加基因突变概率、采用不同的编码方式、调整交 叉和突变操作、增加选择策略的多样性等。这些改进能够提高遗传算法的搜索能 力和收敛速度,使得其更加适用于求解各种复杂的优化问题。
粒子群优化算法的改进主要包括增加惯性权重、调整速度和位置更新公式、 增加约束条件、引入随机因素等。这些改进能够提高粒子群优化算法的全局搜索 能力和收敛速度,使得其更加适用于求解各种非线性优化问题。
基于改进粒子群算法的工程设计优化问题研究
基于改进粒子群算法的工程设计优化问题研究在当今的工程领域,优化设计问题至关重要。
它不仅能够提高工程产品的性能和质量,还能有效降低成本和缩短研发周期。
而粒子群算法作为一种强大的优化工具,在解决工程设计优化问题方面展现出了巨大的潜力。
然而,传统的粒子群算法在某些复杂的工程问题中可能存在局限性,因此对其进行改进成为了研究的热点。
粒子群算法的基本原理是模拟鸟群觅食的行为。
在算法中,每个粒子代表问题的一个潜在解,它们在解空间中飞行,通过不断调整自己的速度和位置来寻找最优解。
粒子的速度和位置更新取决于其自身的历史最优位置和整个群体的历史最优位置。
这种简单而有效的机制使得粒子群算法在处理许多优化问题时表现出色。
然而,在实际的工程设计优化中,问题往往具有高维度、多约束和非线性等特点,这给传统粒子群算法带来了挑战。
例如,在高维度空间中,粒子容易陷入局部最优解;多约束条件可能导致算法难以满足所有约束;非线性特性则可能使算法的搜索变得困难。
为了克服这些问题,研究人员提出了多种改进粒子群算法的策略。
其中一种常见的方法是引入惯性权重。
惯性权重的引入可以控制粒子的飞行速度,使其在搜索过程中更好地平衡全局搜索和局部搜索能力。
较大的惯性权重有利于全局搜索,能够帮助粒子跳出局部最优;较小的惯性权重则有助于在局部区域进行精细搜索,提高解的精度。
另一种改进策略是对粒子的学习因子进行调整。
学习因子决定了粒子向自身历史最优位置和群体历史最优位置学习的程度。
通过合理设置学习因子,可以提高算法的收敛速度和搜索效率。
此外,还有一些研究将粒子群算法与其他优化算法相结合,形成混合算法。
例如,将粒子群算法与遗传算法相结合,利用遗传算法的交叉和变异操作来增加种群的多样性,避免算法早熟收敛。
在工程设计优化问题中,改进粒子群算法已经取得了许多显著的成果。
以机械工程中的结构优化设计为例,通过改进粒子群算法,可以在满足强度、刚度等约束条件的前提下,优化结构的形状、尺寸和材料分布,从而减轻结构重量,提高结构的性能。
基于PSO_-LSSVM模型空调负荷预测研究
#BA?+++样本 空调负荷实测值#NZ
#W=>+++样本 空调负荷预测值#NZ
平均相对误差绝对值 '#(的计算式为*
'#(
]&
]&
#BA?*#W=> #BA?
式中!'#(+++平均相对误差绝对值
预测结果与分析
8 月() 月 空 调 负 荷 实 测 值( 预 测 值 分 别 见 图 &($$
!数据预处理 对数据进行缺失检查#并采用箱形图检测方法 检测异常数据#对于异常数据进行剔除再填充符合 实际 的 数 据# 填 充 方 法 采 用 牛 顿 插 值 法$ 采 用 'B<KDEKBU函数对输入变量进行归一化处理$ !预测过程 B3输入训练集(测试集#并进行数据预处理#建 立 0..1'模型$ V3初 始 化 粒 子 群# 包 括 随 机 位 置 和 速 度# 设 定 -./算法的参数和 0..1'模型的参数$ A3计算每个粒子的初始适应度$ T3将初始适应度作为当前每个粒子的最优解# 并记录当前的位置作为局部最优位置$ 将最佳初始 适应度作为当前全局最优解#并记录当前位置$ @3更新粒子速度和位置$ W3评价(比较 粒 子 的 个 体 最 优 解( 全 局 最 优 解# 求最优适应度$ X3判断是否满足迭代终止条件#若满足#则输出 最优正 则 化 参 数( 核 函 数 参 数$ 否 则# 进 入 下 一 步骤$ C3依 据 适 应 度 值# 更 新 粒 子 的 位 置 和 速 度# 重 复该循环#直至满足迭代终止条件$ D3输出全局 最 优 正 则 化 参 数( 核 函 数 参 数 作 为 0..1'模型的训练参数#得到最终预测模型$
粒子群优化算法及其应用研究【精品文档】(完整版)
摘要在智能领域,大部分问题都可以归结为优化问题。
常用的经典优化算法都对问题有一定的约束条件,如要求优化函数可微等,仿生算法是一种模拟生物智能行为的优化算法,由于其几乎不存在对问题的约束,因此,粒子群优化算法在各种优化问题中得到广泛应用。
本文首先描述了基本粒子群优化算法及其改进算法的基本原理,对比分析粒子群优化算法与其他优化算法的优缺点,并对基本粒子群优化算法参数进行了简要分析。
根据分析结果,研究了一种基于量子的粒子群优化算法。
在标准测试函数的优化上粒子群优化算法与改进算法进行了比较,实验结果表明改进的算法在优化性能明显要优于其它算法。
本文算法应用于支持向量机参数选择的优化问题上也获得了较好的性能。
最后,对本文进行了简单的总结和展望。
关键词:粒子群优化算法最小二乘支持向量机参数优化适应度目录摘要 (I)目录 (II)1.概述 (1)1.1引言 (1)1.2研究背景 (1)1.2.1人工生命计算 (1)1.2.2 群集智能理论 (2)1.3算法比较 (2)1.3.1粒子群算法与遗传算法(GA)比较 (2)1.3.2粒子群算法与蚁群算法(ACO)比较 (3)1.4粒子群优化算法的研究现状 (4)1.4.1理论研究现状 (4)1.4.2应用研究现状 (5)1.5粒子群优化算法的应用 (5)1.5.1神经网络训练 (6)1.5.2函数优化 (6)1.5.3其他应用 (6)1.5.4粒子群优化算法的工程应用概述 (6)2.粒子群优化算法 (8)2.1基本粒子群优化算法 (8)2.1.1基本理论 (8)2.1.2算法流程 (9)2.2标准粒子群优化算法 (10)2.2.1惯性权重 (10)2.2.2压缩因子 (11)2.3算法分析 (12)2.3.1参数分析 (12)2.3.2粒子群优化算法的特点 (14)3.粒子群优化算法的改进 (15)3.1粒子群优化算法存在的问题 (15)3.2粒子群优化算法的改进分析 (15)3.3基于量子粒子群优化(QPSO)算法 (17)3.3.1 QPSO算法的优点 (17)3.3.2 基于MATLAB的仿真 (18)3.4 PSO仿真 (19)3.4.1 标准测试函数 (19)3.4.2 试验参数设置 (20)3.5试验结果与分析 (21)4.粒子群优化算法在支持向量机的参数优化中的应用 (22)4.1支持向量机 (22)4.2最小二乘支持向量机原理 (22)4.3基于粒子群算法的最小二乘支持向量机的参数优化方法 (23)4.4 仿真 (24)4.4.1仿真设定 (24)4.4.2仿真结果 (24)4.4.3结果分析 (25)5.总结与展望 (26)5.1 总结 (26)5.2展望 (26)致谢 (28)参考文献 (29)Abstract (30)附录 (31)PSO程序 (31)LSSVM程序 (35)1.概述1.1引言最优化问题是在满足一定约束条件下,寻找一组参数值,使得系统的某些性能指标达到最大或者最小。
基于粒子群算法求解多目标优化问题
基于粒子群算法求解多目标优化问题一、本文概述随着科技的快速发展和问题的日益复杂化,多目标优化问题在多个领域,如工程设计、经济管理、环境保护等,都显得愈发重要。
传统的优化方法在处理这类问题时,往往难以兼顾多个目标之间的冲突和矛盾,难以求得全局最优解。
因此,寻找一种能够高效处理多目标优化问题的方法,已成为当前研究的热点和难点。
粒子群算法(Particle Swarm Optimization, PSO)作为一种群体智能优化算法,具有收敛速度快、全局搜索能力强等优点,已经在多个领域得到了广泛应用。
近年来,粒子群算法在多目标优化问题上的应用也取得了显著的成果。
本文旨在探讨基于粒子群算法求解多目标优化问题的原理、方法及其应用,为相关领域的研究提供参考和借鉴。
本文首先介绍多目标优化问题的基本概念和特性,分析传统优化方法在处理这类问题时的局限性。
然后,详细阐述粒子群算法的基本原理和流程,以及如何将粒子群算法应用于多目标优化问题。
接着,通过实例分析和实验验证,展示基于粒子群算法的多目标优化方法在实际问题中的应用效果,并分析其优缺点。
对基于粒子群算法的多目标优化方法的发展趋势和前景进行展望,为未来的研究提供方向和建议。
二、多目标优化问题概述多目标优化问题(Multi-Objective Optimization Problem, MOP)是一类广泛存在于工程实践、科学研究以及社会经济等各个领域中的复杂问题。
与单目标优化问题只寻求一个最优解不同,多目标优化问题涉及多个相互冲突的目标,这些目标通常难以同时达到最优。
因此,多目标优化问题的解不再是单一的最优解,而是一组在各个目标之间达到某种平衡的最优解的集合,称为Pareto最优解集。
多目标优化问题的数学模型通常可以描述为:在给定的决策空间内,寻找一组决策变量,使得多个目标函数同时达到最优。
这些目标函数可能是相互矛盾的,例如,在产品设计中,可能同时追求成本最低、性能最优和可靠性最高等多个目标,而这些目标往往难以同时达到最优。
多目标优化的粒子群算法及其应用研究共3篇
多目标优化的粒子群算法及其应用研究共3篇多目标优化的粒子群算法及其应用研究1多目标优化的粒子群算法及其应用研究随着科技的发展,人们对于优化问题的求解需求越来越高。
在工程实践中,很多问题都涉及到多个优化目标,比如说在物流方面,安全、效率、成本等指标都需要被考虑到。
传统的单目标优化算法已不能满足这些需求,因为单目标算法中只考虑单一的优化目标,在解决多目标问题时会失效。
因此,多目标优化算法应运而生。
其中,粒子群算法是一种被广泛应用的多目标优化算法,本文将对这种算法进行介绍,并展示其在实际应用中的成功案例。
1. 算法原理粒子群算法(Particle Swarm Optimization,PSO)是一种仿生智能算法,源自对鸟群的群体行为的研究。
在算法中,将待优化的问题抽象成一个高维的空间,然后在空间中随机生成一定数量的粒子,每个粒子都代表了一个潜在解。
每个粒子在空间中移动,并根据适应度函数对自身位置进行优化,以期找到最好的解。
粒子的移动和优化过程可以通过以下公式表示:$$v_{i,j} = \omega v_{i,j} + c_1r_1(p_{i,j} - x_{i,j}) + c_2r_2(g_j - x_{i,j})$$$$x_{i,j} = x_{i,j} + v_{i,j}$$其中,$i$ 表示粒子的编号,$j$ 表示该粒子在搜索空间中的第 $j$ 个维度,$v_{i,j}$ 表示粒子在该维度上的速度,$x_{i,j}$ 表示粒子在该维度上的位置,$p_{i,j}$ 表示粒子当前的最佳位置,$g_j$ 表示整个种群中最好的位置,$\omega$ 表示惯性权重,$c_1$ 和 $c_2$ 分别为粒子向自己最优点和全局最优点移动的加速度系数,$r_1$ 和 $r_2$ 为两个 $[0,1]$ 之间的随机值。
通过粒子群的迭代过程,粒子逐渐找到最优解。
2. 多目标优化问题多目标优化问题的具体表述为:给出一个目标函数集 $f(x) = \{f_1(x), f_2(x),...,f_m(x)\}$,其中 $x$ 为决策向量,包含 $n$ 个变量,优化过程中需求出 $f(x)$ 的所有最佳解。
基于改进粒子群优化算法的PID控制器参数整定
基于改进粒子群优化算法的PID控制器参数整定
蒋凌云;魏庆来;张峰华;王博宇;张俊康;韦欣彤
【期刊名称】《控制工程》
【年(卷),期】2024(31)3
【摘要】针对标准粒子群优化算法优化PID控制器参数存在的早熟以及陷入局部
最优等问题,引入粒子二阶振荡环节、反向学习、自适应惯性权重,并结合设计的惯
性权重动态调整策略、粒子越界随机反射墙,提出一种新型分阶段迭代的改进粒子
群优化算法。
在6个标准测试函数上进行测试,其性能相比于一些已有的改进粒子
群优化算法更加优秀。
将这些算法用于自动电压调节器系统的PID控制器参数整定,仿真结果表明,所提出的改进粒子群优化算法整定的PID控制器的控制效果更好。
【总页数】8页(P470-477)
【作者】蒋凌云;魏庆来;张峰华;王博宇;张俊康;韦欣彤
【作者单位】中国科学院自动化研究所复杂系统管理与控制国家重点实验室;中国
地质大学(北京)信息工程学院
【正文语种】中文
【中图分类】TP29
【相关文献】
1.基于改进粒子群优化算法的PID参数整定
2.基于粒子群优化算法的PID控制器
参数整定3.基于改进粒子群优化算法的PID控制器整定4.基于改进粒子群算法的PID控制器参数整定优化5.基于改进粒子群优化算法的四旋翼PID参数整定研究
因版权原因,仅展示原文概要,查看原文内容请购买。
基于粒子群算法的微电网优化调度研究的开题报告
基于粒子群算法的微电网优化调度研究的开题报告1. 研究背景和意义随着能源需求的持续增长和环境问题的日益突出,微电网(Microgrid)技术得到了快速发展,被广泛应用于城市、工业园区、农村地区和海岛等场景中。
微电网是一种基于分布式能源资源(DER)的电力系统,可以通过综合利用风能、太阳能、水能等多种能源来源,提高能源利用率,并将能源供应与电网解耦来实现本地化的电力供应。
微电网具有能源供应的安全可靠性、能源利用的经济性和环境污染的减少等优点,而且可以推动电力系统向分布式、智能化、绿色低碳化等方向发展,因此被认为是未来电力系统的重要发展方向。
在微电网的运行过程中,优化调度问题是一个至关重要的问题,涉及到能量数据的收集和分析、综合能源负荷预测、能源供需平衡和能源调度等方面,对于提高微电网能源利用效率、降低系统运行成本具有重要作用。
而通过建立微电网数学模型,并运用优化算法实现优化调度也是微电网研究的重要方向之一。
目前,主要的微电网优化算法包括基于遗传算法、粒子群算法、模拟退火算法、人工神经网络等。
这些算法具有不同的优缺点,其中粒子群算法具有搜索速度快、易于实现、收敛性好等特点,已经被广泛应用于微电网优化模型中。
2. 研究目标和内容本文将以粒子群算法为基础,研究微电网的优化调度问题。
具体研究内容如下:(1)建立微电网的数学模型,考虑微电网的供电服务性能、电力质量、可靠性及经济性等因素,制定优化调度目标函数。
(2)基于粒子群算法,设计微电网优化调度算法,确定约束条件、定义粒子、速度和适应度函数等。
(3)进行算法实现并应用于实际微电网系统,模拟分析算法的优化性能,并与其他优化算法进行比较。
(4)分析改善方案,提出微电网优化调度的实用性推广方案和相关技术应用前景,为微电网的普及和应用提供支撑。
3. 研究方法和步骤本文将采用以下方法和步骤:(1)文献阅读和调研,了解微电网的基本概念、原理、技术及研究现状;(2)建立微电网的数学模型,包括负载模型、能量存储模型、能量供应模型等;(3)基于粒子群算法,设计微电网优化调度算法,并进行算法实现;(4)选取适当的微电网数据进行仿真实验,分析算法的优化性能,并与其他优化算法进行比较;(5)分析仿真实验结果,提出改善方案和实用性推广方案,为微电网实际应用提供支撑。
改进粒子群算法
改进粒子群算法粒子群算法(Particle Swarm Optimization, PSO)是一种启发式算法,用于求解优化问题。
它是通过模拟鸟群或鱼群等生物群体的行为而开发的算法,具有较好的全局搜索性能和快速收敛特性。
然而,传统的PSO算法存在一些问题,如早熟收敛、局部最优等。
下面我们将介绍一些改进粒子群算法的方法。
1. 多群体PSO算法多群体粒子群算法(Multiple Swarm Particle Swarm Optimization, MSPSO),是一种新型的PSO算法。
它能够有效地克服传统PSO算法的局部最优问题。
该算法不同于传统PSO算法,它的粒子群初始位置是在多个初始位置进行搜索,然后合并粒子最终达到全局优化。
2. 改进的种群动态变异策略的PSO算法种群动态变异策略粒子群算法(Dynamic Mutation Strategy Particle Swarm Optimization, DMSPSO)利用粒子的最佳位置和种群均值来改变突变概率,以使种群的多样性得以保持。
改进了传统粒子群算法中的局部搜索能力和收敛速度。
3. 采用时间序列分析的PSO算法时间序列分析PSO算法(Time Series Analysis Particle Swarm Optimization, TSAPSO)是一种基于时间序列分析的PSO算法。
该算法采用时间序列分析方法,通过分析时间序列间的关系,提高了算法的全局搜索能力和精度。
同时,该算法还可以克服传统PSO算法的早熟收敛问题。
4. 多策略筛选算法的PSO算法多策略筛选算法的粒子群算法(Multiple Strategy Filtering Particle Swarm Optimization, MSFPSO)是一种新型的PSO算法。
该算法采用多个策略进行迭代,通过筛选和动态调整策略,以达到最优解。
该算法具有较强的适应性和搜索性能,可应用于各种优化问题。
基于粒子群-最小二乘支持向量机算法的沥青拌和站中含氧量的软测量
第 5 期
厦 门大 学 学报 ( 自然 科 学版 )
J o u r n a l o f Xi a me n Un i v e r s i t y( Na t u r a l S c i e n c e )
Vo 1 . 5 2 NO.5
Se p. 20 13
青 老化 , 影响成品料质量_ 4 ] , 若温度过低 , 将导致后续沥青
混合料无法充分搅拌 , 影响沥青 的包裹性 , 同时温度过低 也 容易导致再生沥青干燥 滚筒粘料 , 粘料严 重时 , 需要花 费大量人力 和物力 去清 理. 干燥滚 筒 的温度 控制 和燃烧 器 的负荷 、 燃烧状态密切相关 , 对 于以重油为燃 料 的燃烧
V M 的软测量 对 电厂烟气含 氧量 进行实 验研究 , 结果 证 明该方法 具有更好 的性 能指标. 本文基 于一些 在线测 量
的研 究 , 沥青 热再 生设 备 的开 发 是 热再 生 沥 青 的关 键
技 术 ] .
厂拌热再生主要是将铣刨下来 的旧沥青混合料通 过
皮带运输 机和垂 直料 斗提 升机输送 到 干燥滚筒 , 通过 燃
关键 词 : 粒子群一 最小二乘支持 向量机 ; 沥青拌和站 ; 含 氧量 ; 燃烧状态 ; 燃 烧器
中图分 类号 : T M 3 4 3 . 0 3
文献标 志 码 : A
文章编 号 : 0 4 3 8 — 0 4 7 9 ( 2 0 1 3 ) 0 5 — 0 6 3 3 — 0 5 器而言 , 燃 烧状 态 控 制 的关键 技 术 为风/ 油 比的准确 控 制, 目前沥青拌 和站使 用 的重 油燃烧 器一般 是根据 燃烧 乘 支 持 向量机 算 法 的沥 青 拌 和 站 中含 氧量 的软 测 量
粒子群算法研究综述
粒子群算法综述控制理论与控制工程09104046 吕坤一、粒子群算法的研究背景人工智能经过半个世纪的发展,经历了由传统人工智能、分布式人工智能到现场人工智能等阶段的发展。
到二十世纪九十年代,一些学者开始从各种活动和现象的交互入手,综合地由个体的行为模型开始分析社会结构和群体规律,于是90年代开始,就产生了模拟自然生物群体(swarm)行为的优化技术。
Dorigo等从生物进化的机理中受到启发, 通过模拟蚂蚁的寻径行为, 提出了蚁群优化方法;Eberhar 和Kennedy于1995年提出的粒子群优化算法是基于对鸟群、鱼群的模拟。
这些研究可以称为群体智能(swarm-intelligenee)。
通常单个自然生物并不是智能的,但是整个生物群体却表现出处理复杂问题的能力,群体智能就是这些团体行为在人工智能问题中的应用。
粒子群优化(Particle Swarm Optimization , PSC)最初是处理连续优化问题的, 目前其应用已扩展到组合优化问题。
由于其简单、有效的特点,PSC已经得到了众多学者的重视和研究。
二、粒子群算法的研究现状及研究方向粒子群算法(PSC)自提出以来,已经历了许多变形和改进,包括数学家、工程师、物理学家、生物学家以及心理学家在内的各类研究者对它进行了分析和实验,大量研究成果和经验为粒子群算法的发展提供了各许多合理的假设和可靠的基础,并为实际的工业应用指引了新的方向。
目前,PSC的研究也得到了国内研究者的重视,并已取得一定成果。
十多年来,PSC的研究方向得到发散和扩展,已不局限于优化方面研究。
PSC 算法按其研究方向分为四部分:算法的机制分析研究、算法性能改进研究、算法的应用研究及离散性PSC算法研究。
算法的机制分析主要是研究PSC算法的收敛性、复杂性及参数设置。
算法性能改进研究主要是对原始PSC算法的缺陷和不足进行改进,以提高原始PSC算法或标准PSC算法的一些方面的性能。
线性回归模型的总体最小二乘平差算法及其应用研究
线性回归模型的总体最小二乘平差算法及其应用研究一、本文概述本文旨在深入研究和探讨线性回归模型的总体最小二乘平差算法及其应用。
线性回归模型是统计学中一种重要的预测和解释工具,它用于描述和预测两个或多个变量之间的关系。
然而,在实际应用中,由于数据误差、异常值等因素的存在,传统的最小二乘法往往不能得到最优的估计结果。
因此,本文引入总体最小二乘平差算法,以期提高线性回归模型的稳定性和准确性。
总体最小二乘平差算法是一种基于总体误差最小化的优化方法,它同时考虑了自变量和因变量的误差,避免了传统最小二乘法中可能出现的模型偏差。
本文首先介绍了线性回归模型和最小二乘法的基本原理,然后详细阐述了总体最小二乘平差算法的理论基础和计算方法。
在应用方面,本文探讨了总体最小二乘平差算法在多个领域的应用,包括经济学、医学、工程学等。
通过实证分析和案例研究,本文验证了总体最小二乘平差算法在改善线性回归模型预测精度和稳定性方面的有效性。
本文还讨论了算法在实际应用中可能遇到的挑战和问题,并提出了相应的解决策略。
本文的研究不仅为线性回归模型的优化提供了新的思路和方法,也为相关领域的实证研究提供了有益的参考和借鉴。
未来,我们将继续深入研究总体最小二乘平差算法的理论和应用,以期在更广泛的领域发挥其作用。
二、线性回归模型的基本理论线性回归模型是一种经典的统计预测方法,其基本理论建立在数理统计和最小二乘法的基础上。
其核心思想是通过寻找一条最佳拟合直线,使得这条直线与一组观测数据点的误差平方和最小。
线性回归模型的基本形式为 (Y = \beta_0 + \beta_1 +\varepsilon),其中 (Y) 是因变量,() 是自变量,(\beta_0) 和(\beta_1) 是回归系数,(\varepsilon) 是随机误差项。
这个模型假设因变量与自变量之间存在线性关系,并通过最小二乘法来估计回归系数。
最小二乘法是一种数学优化技术,它通过最小化误差的平方和来寻找数据的最佳函数匹配。
粒子群算法研究及其工程应用案例
粒子群算法研究及其工程应用案例一、概述随着现代制造业对高精度生产能力和自主研发能力需求的提升,优化指导技术在精确生产制造领域中的应用日益广泛。
粒子群优化算法(Particle Swarm Optimization,PSO)作为一种基于群体智能的优化算法,因其结构简单、参数较少、对优化目标问题的数学属性要求较低等优点,被广泛应用于各种工程实际问题中。
粒子群算法起源于对鸟群捕食行为的研究,通过模拟鸟群或鱼群等群体行为,利用群体中的个体对信息的共享,使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而找到最优解。
自1995年由Eberhart博士和kennedy博士提出以来,粒子群算法已成为一种重要的进化计算技术,并在工程应用中展现出强大的优势。
在工程应用中,粒子群算法可用于工艺参数优化设计、部件结构轻量化设计、工业工程最优工作路径设计等多个方面。
通过将粒子群算法与常规算法融合,可以形成更为强大的策略设计。
例如,在物流路径优化、机器人路径规划、神经网络训练、能源调度优化以及图像分割等领域,粒子群算法都取得了显著的应用成果。
本文旨在深入研究粒子群算法的改进及其工程应用。
对优化理论及算法进行分析及分类,梳理粒子群算法的产生背景和发展历程,包括标准粒子群算法、离散粒子群算法(Discrete Particle Swarm Optimization, DPSO)和多目标粒子群算法(Multi Objective Particle Swarm Optimization Algorithm, MOPSO)等。
在此基础上,分析粒子群算法的流程设计思路、参数设置方式以及针对不同需求得到的改进模式。
结合具体工程案例,探讨粒子群算法在工程实际中的应用。
通过构建基于堆栈和指针概念的离散粒子群改进方法,分析焊接顺序和方向对高速铁路客车转向架构架侧梁的焊接残余应力和变形的影响。
同时,将粒子群算法应用于点云数据处理优化设计,提高曲面重建和粮食体积计算的精度和效率。
基于粒子群算法的GM(1,1)_模型优化
0 引言灰色系统理论是由我国著名学者邓聚龙教授首创的一门系统科学理论,其产生与发展为人们科学认识和解决不确定的系统问题提供了一个新的视角[1]。
GM(1,1)模型作为经典的灰色预测模型,具有所需原始数据量少、计算简便、适用性强等优点,在农业、工业、经济管理、工程技术等领域中得到了广泛应用。
然而传统GM(1,1)模型也存在一定的局限性,当发展系数越大时,GM(1,1)模型的预测精度越低。
为提升传统GM(1,1)模型的精度,扩大适用范围,学者们进行了大量的研究,结果表明,模型背景值构造以及初始值选取极大程度上影响了预测精度。
背景值优化方面,一是优化传统的背景值公式,如蒋诗泉[2]利用复化梯形公式优化背景值,王晓佳等[3]将分段线性插值函数与Newton 插值公式相结合,改进了背景值的构造方法。
背景值公式优化方法尽管在一定程度上提升了模型精度,但是背景值计算均较为复杂。
基于此,张可[4]结合非线性优化的粒子群算法对背景值参数直接进行寻优,提升了预测精度,扩大了模型使用范围;杨孝良[5]提出三参数背景值构造的新方法,提升了背景值的平滑效果;徐宁[6]基于误差最小化对GM(1,1)模型背景值进行优化,该方法改善了发展系数较大时建模精度低的不足,保持了较好的无偏性,计算过程也很简便,但是证明基于原始序列有齐次指数增长规律的前提,限制了模型的适用范围。
初始条件优化方面,熊萍萍[7]针对非等间距 GM(1,1) 模型的预测问题,提出以非等间距一阶累加生成序列各分量的加权平均数作为优化的初始值,通过算例验证了所提出的非等间距优化模型的有效性和可行性;张彬[8]将背景值优化公式和边值修正相结合对模型进行改进;郑雪平[9]借鉴徐宁和张彬的思路,将初值优化方法和背景值优化结合起来进行模型优化,使近似齐次指数序列拟合效果得到明显提升。
为提升模型的适应性,本文利用智能算法实现动态寻优的目的,采用平均相对误差最小准则,构建适应度函数,将传统GM(1,1)模型的背景值系数与初始条件同时优化后,运用粒子群算法得到最优值,通过算例对优化后GM(1,1)模型的适用范围和有效性进行了验证。
基于粒子群优化最小二乘支持向量机的交通事故预测方法
第23卷第4期2023年8月交 通 工 程Vol.23No.4Aug.2023DOI:10.13986/ki.jote.2023.04.016基于粒子群优化最小二乘支持向量机的交通事故预测方法韦凌翔1,2,赵洪旭2,赵鹏飞3,钟栋青2,陈天昊2(1.陆军工程大学国防工程学院,南京 210007;2.盐城工学院材料科学与工程学院,江苏盐城 224051;3.北京建筑大学土木与交通工程学院,北京 102616)摘 要:为解决交通事故预测中非线性样本影响预测精度的问题,本文构建了基于粒子群算法(PSO)优化的最小二乘支持向量机(LSSVM)的交通事故预测方法.在构建交通事故数LSSVM 预测模型的基础上,采用PSO 算法优化LSSVM 的惩罚系数和核函数宽度;设计了基于粒子群优化最小二乘支持向量机的交通事故预测模型;最后以我国连续48个月的道路交通事故数据建立模型,验证了该预测方法的有效性.实验结果表明:PSO 优化LSSVM 的交通事故模型比使用经验参数的LSSVM 预测模型的预测效果更好.是准确预测交通事故的方法.关键词:交通安全;交通事故;最小二乘支持向量机(LSSVM);粒子群优化算法(PSO);预测模型中图分类号:X 951;U 491.31文献标志码:A文章编号:2096⁃3432(2023)04⁃094⁃06收稿日期:2022⁃07⁃16.基金项目:北京市博士后工作经费资助项目(No.2021⁃zz⁃111);北京建筑大学青年教师科研能力提升计划资助(No.X21066);江苏省大学生创新训练计划项目;北京建筑大学培育项目专项资金资助(X23044).作者简介:韦凌翔(1991 ),男,讲师,博士在读,研究方向为城市交通安全㊁数据挖掘与建模分析研究,E⁃mail:weilx@.通讯作者:赵鹏飞(1991 ),男,博士,讲师,研究方向为交通安全㊁交通运输规划与管理,E⁃mail:zhaopengfei@.Traffic Crash Prediction Method Using Least Squares Support Vector Machine with Particle Swarm OptimizationWEI Lingxiang 1,2,ZHAO Hongxu 2,ZHAO Pengfei 3,ZHONG Dongqin 2,CHEN Tianhao 2(1.College of Defense Engineering,Army Engineering University of PLA,Nanjing 210007,China;2.School of material science and Engineering,Yancheng Institute of Technology,Yancheng Jiangsu 224051,China;3.School of Civil and Transportation Engineering,Beijing University of Civil Engineering and Architecture,Beijing102616,China)Abstract :In order to solve the problem that nonlinear samples affect the prediction accuracy in trafficcrash prediction,this paper constructs a traffic crash prediction method based on least squares support vector machine (LSSVM)optimized by particle swarm optimization (PSO).Based on the construction of LSSVM prediction model for traffic crashes,the PSO algorithm is used to optimize the penalty coefficient and kernel function width of LSSVM.A traffic crash prediction model based on particle swarmoptimization least squares support vector machine is designed.Finally,a model is established based on road traffic crash data for 48consecutive months in China,which verifies the effectiveness of the prediction method.Experimental results show that the traffic crash model of PSO optimized LSSVM has a better prediction effect than that of LSSVM prediction model using empirical parameters.It is a method ofaccurately predicting traffic crashes. 第4期韦凌翔,等:基于粒子群优化最小二乘支持向量机的交通事故预测方法Key words:traffic safety;traffic crashes;least squares support vector machine(LSSVM);particleswarm optimization algorithm(PSO);prediction model0 引言随着城镇化的高密度的集中与开发,城市机动车保有量依然存在持续增长,小汽车出行在居民出行比例中仍旧占有较大比例,现代城市道路交通系统面临空前未有的高峰时段出行需求压力,而交通事故已经严重威胁人民生命和财产安全成为了的当今社会的主要问题[1-3].交通事故预测是一项基础性的工作,用以改善和提升城市道路交通安全环境,作为道路交通安全领域的重点研究内容之一,对于降低路面事故危害㊁改善道路安全性有着重大作用[3-4].近年来,国内外众多学者已展开较为广泛的研究,旨在能对交通事故进行科学的预测:早期用于预测交通事故的多元线性回归模型㊁Smeed模型㊁灰度预测模型等多属于统计回归模型[4-5],但是传统的回归模型无法较好地提取交通事故数据的内在相关性,无法进一步提升预测精度;随着人工智能技术的进一步开发,人们逐渐地将其融入到了交通事故预测分析中,主要代表性的交通事故预测方法有卷积神经网络模型[6]㊁相关向量机模型[7]㊁支持向量机模型[8]㊁时间序列组合预测模型[9]㊁BP神经网络[10]㊁长短期记忆网络模型[11]等.以上文献的研究表明,交通事故数据具有较为复杂的非线性特征,其产生和变化机理受到各种客观因素影响,会造成交通事故数据的趋势具有较强的波动性,因此如何运用非线性理论方法在有限交通事故数据中提取趋势特征进行预测是研究的主要方向. LSSVM算法是基于支持向量机算法加以改进而得到的,可提取小样本数据趋势特征,具有可靠的全局最优性,并在多个应用领域得到验证[12].众多研究表明LSSVM算法在样本量很小的预测中占有一定得优势,但是该算法能否预测准确却很大程度上取决于参数选择[13],针对此问题,本文利用PSO 算法的全局搜索能力对预测模型的惩罚系数和核函数宽度进行寻优,从而减少搜寻最优参数的所需时间并提升交通事故预测模型的预测效果.为此,本文将LSSVM算法与PSO算法相结合,建立基于PSO 算法优化参数的LSSVM交通事故预测模型,以我国连续48个月的道路交通事故发生数为例进行仿真计算,验证了此交通事故预测模型的可行性和高效性.1 LSSVM原理设交通事故数据集:X={(x i,y i)},i=1,2, , n;x i∈R d,y i∈R,其中,x i交通事故数输入量;y i是交通事故数输出量;n为交通事故数据个数;d为交通事故影响因素维度.支持向量机回归的基本思想是将一个非线性函数φ(x i)映射到高维特征空间,然后用函数f(㊃)在此高维特征空间内描述φ(x i)和y i之间的非线性映射关系,即:f(x i)=ωTφ(x i)+b(1)式中,ω=(ω1,ω2, ,ωn)表示惯性权重系数;b表示预先设置的阈值,通过结构风险的最小化来确定式(1)的参数ω,b.在LSSVM中,在结构风险的最小化原则(Structural Risk Minimization principle, SRM)的基础上,回归问题可转化为以下约束问题: min R=12‖ω‖2+c2∑n i=1ξ2is.t.y i=〈ω㊃φ(x i)〉+b+ξi,i=1,2, ,n s.t.ξi≥0,i=1,2, ,ìîíïïïïn(2)式中,c为惩罚因子,控制对样本超出计算误差的惩罚程度;‖ω‖2用来控制模型的复杂程度;ξi为松弛因子.求解式(2)的优化问题,可将有约束问题通过建立拉格朗日函数将转化为无约束问题:L=12|ω|2+c2∑n i=1ξ2-∑n i=1αi(ωTφ(x i)+b+ξi-y i)(3)式中,αiαi(α=1,2, ,n)表示拉格朗日乘数,最优的拉格朗日乘数αi和阈值b可根据KKT优化条件由式(4)求得:∂l∂ω=0→ω=∑n i=1αiφ(x i)∂l∂b=0→∑n i=1αi=0∂l∂ξi=0→αi=cξi∂l∂αi=0→ωTφ(x i)+b+ξi-y i=ìîíïïïïïïïïïï0(4)将式(5)转化为矩阵形式所表示的线性方程组:59交 通 工 程2023年0e e Ω+c -1éëêêùûúúI b αéëêêùûúúN =o Y éëêêùûúúN (5)式中,e =[111 1],αN=[α1α2αn ];Y N =[y 1y 2y n ];Ω=φ(x 1)φ(x 1)φ(x 1)φ(x 2) φ(x 1)φ(x n )φ(x 2)φ(x 1)φ(x 2)φ(x 2) φ(x 2)φ(x n )︙︙ ︙φ(x n )φ(x 1)φ(x n )φ(x 2) φ(x n )φ(x n éëêêêêêùûúúúúú).基于交通事故样本集{(x i ,y i )},求解线性方程组(6),可得到交通事故预测模型的参数(b ,α1,α2, ,αn ).令K (x i ,x j )=φ(x i )φ(x j ),从而得到LSSVM 的交通事故预测模型为:y i =∑nj =1αj K (x i ,x j )+b +1c αi(6)式中,K (x i ,x j )为核函数是高纬度特征空间的内积,此核函数满足Mercer 条件.本文采用泛化能力较好的高斯径向基函数(RBF 函数)作为算法的核函数[12]见式(17):K (x i ,x j )(=exp-‖x i -x j ‖22σ)2(7)2 PSO 算法原理粒子群优化算法(PSO)是一种受鸟类觅食行为启发的全局搜索算法[14],其主要思想是:初始化一组随机粒子的位置和速度,并在一定条件下通过迭代寻找最优解.搜寻过程中将每个粒子的最佳位置定义为单个极值P best ,将当前种群中粒子的最佳位置定义为全局极值G best .在d 维搜索空间中,有m 个粒子表示问题的可能解X ={X 1,X 2, ,X m },X i ={x i 1,x i 2, ,x id }代表第i 个粒子的位置,个体适应度由LSSVM 训练中每个训练集样本产生的均方误差(MSE)表示.适应度函数构造如下:MSE =1n∑ni =1(y i -^y i )2(8)式中,y i 是交通事故实际值;^y i 是交通事故的预测值;n 是交通事故数据数.三维空间中粒子的速度定义为V i ={v i 1,v i 2,,v id },P i ={p i 1,p i 2, ,p id }代表局部最优位置P best ,P g ={p g 1,p g 2, ,p gd }代表全局最优位置G best ,根据式(9)(10)确定第i 个粒子更新后的位置和速度:V t +1i =ωV t i +C 1R 1(P t i -X t i )+C 2R 2(G t i -X t i )(9)x t +1i =x t i +v t +1i (10)式中,ω是惯性权重;t 是迭代次数;C 1和C 2是加速度常量;R 1和R 2是在[0,1]范围内两个独立的随机数.V max 和V min 分别是速度的最大㊁最小值,粒子的速度在[V min ,V max ]的范围内,在粒子的速度更新后,有:if v id <V min then v id =V min(11)if v id >V max then v id =V max (12)如果PSO 算法的迭代次数达到最大迭代次数或者适应度值达到预设的最小适应度值时,则将退出迭代周期并输出全局最优参数.3 基于PSO-LSSVM 的交通事故数预测模型对LSSVM 模型的核函数宽度和惩罚系数用PSO 算法进行优化时,首先初始化粒子群种群规模m 的大小,各个粒子位置向量X i 和速度向量V i ,然后将其带入式(13)得到本次迭代各粒子所代表的交通事故数预测值,并根据式(8)计算各粒子均方误差指标(适应值)来评价粒子的优劣,即参数向量的优劣.理想的适应度函数E 应该能反映LSSVM 在不同参数下的泛化性能,即最小化测试样本集的目标值和预测值之间的误差.将选择高斯径向基函数作为核函数带入式(6),交通事故数测模型演变为:y i =∑nj =1αj exp (-‖x i -x j ‖2/2σ2)+b +1c αi (13)模型中待定的参数为惩罚因子c 和核函数宽度σ,采用PSO 算法对惩罚系数和和函数宽度(c ,σ)进行寻优.本文给出了基于PSO 算法优化LSSVM 的交通事故数预测模型的参数算法实现步骤具体如下.步骤1:交通事故数据预处理,将前12个月交通事故数作为输入变量,第13个月的交通事故数作为输出变量,对交通事故数据进行标准化处理,选取训练样本集和预测样本集.步骤2:选择高斯径向基(RBF)函数作为交通事故数预测模型的核函数.步骤3:设置LSSVM 的参数C 和σ2,初始化PSO 算法参数:种群规模m ㊁最大迭代次数T max ㊁和最小的适应度ε㊁学习因子C 1和C 2㊁惯性权重ω㊁以及粒子的最大速度V max ,初始化各粒子的位置向量X i =(x i 1,x i 2, ,x id )㊁速度向量V i =(υi 1,υi 2, ,υid ).69 第4期韦凌翔,等:基于粒子群优化最小二乘支持向量机的交通事故预测方法步骤4:粒子i 的当前最优位置为初始位置X i =(x i 1,x i 2, ,x id ),即P i =X i (i =1,2, ,m ).步骤5:将初始粒子和交通事故数据集{(x i ,y i )}代入到模型中训练,并根据式(8)计算每个粒子的适应度值E t i.步骤6:对于单个粒子,将目前位置的适应度E t i 与其最优位置E (t -1)pi的适应度作比较,如果min (E ti,E(t -1)pi)=E t i,此时E t i=E t p,X t i=P t i ,最小适应度为E t P ,局部最优位置为P t i .步骤7:对于所有粒子,将每一个粒子局部最优位置的适应度值E t p 与全局最优位置的适应度值E (t -1)g 作比较,如果min (E t p ,E (t -1)g)=E t p ,此时E t p =E t g ,P t i =P t g ,最小适应度为E t g ,全局最优位置为P t g .步骤8:根据式(9)(10)更新下一轮粒子的位置向量X (t +1)i 和速度向量V (t +1)i ,并根据式(8)计算出各相应粒子当前的适应值E (t +1)i.重复步骤6㊁7.步骤9:终止条件判断:如果满足限制条件(E t i >ε或t >T max ),则输出c 和σ2,然后通过解码得到参数建立最佳参数组合的LSSVM 交通事故预测模型;否则返回重复执行步骤5.图1 交通事故PSO-LSSVM 预测模型的步骤4 实例验证与分析4.1 交通事故案例数据以‘中华人民共和国道路交通事故统计年报(2006 2010)“交通事故发生起数的月度数据(表1)案例,具体操作步骤如下:2006⁃01 2009⁃12共48个月的交通事故数据作为训练集,2010年12个月的交通事故数据作为测试集,模型输入输出确定后,利用PSO 算法获得模型的最优参数组合.4.2 交通事故预测模型参数设置本文选择的参考模型为LSSVM 模型,模型的初始参数组合根据经验设置.前12个月的交通事故发生数作为模型的输入变量,第13个月的交通事故发生数作为模型的输出变量,构造输入输出矩阵.PSO-LSSVM 模型的参数初始值设置如下:粒子数m =20,最大迭代次数T max =100,C 1=C 2=2,ω=0.9,V max =1,核函数宽度σ2∈(0,200),惩罚系数c ∈(0,100),适应度选为均方误差(具体详见式(8)).图3表示PSO 的迭代过程,适应度最终收敛到0.05以下.PSO -LSSVM 交通事故数预测模型的参数优化结果如图4所示,通过交通事故测试数据,得到最佳组合为:c =84.6993,σ2=0.82329.4.3 交通事故预测结果分析为对比LSSVM 交通事故预测模型与PSO -LSSVM 交通事故预测模型预测结果的差异性,本文选取相对误差(RE)分析预测差异的指标,相对误差能直观反映交通事故预测的可信度见式(14):RE =y i -^yi y i(14)79交 通 工 程2023年表1摇交通事故发生起数原始数据2006年2007年2008年2009年2010年月份事故数月份事故数月份事故数月份事故数月份事故数137765127199121654118540120772233636227420219765217849215508328219324491321558317677315711432424428278423232420214418069529734526409522421518361518199630530627376623091617956617706731590727705721598719124717796832234827949821748820035818521932386927542921675919960918752103109810261501020588102051310173651130984112758011227331121615112007512281811229121122514112265071221047图2 PSO-LSSVM 交通事故数预测模型参数优化迭代图3 基于PSO 算法的LSSVM 参数优化结果 将交通事故训练数据代入到模型中,得到交通事故预测实例中训练数据的PSO -LSSVM 模型㊁LSSVM 模型的训练数据的结果图,如图4所示.图4绘制了把训练样本数据代入PSO -LSSVM 交通事故数预测模型的预测结果图,图中横坐标表示按照2007 2009年的顺序共36个月,左边纵坐标表示交通事故发生的数量,右边纵坐标表示相对误差.图4 交通事故数训练样本预测结果对比图由图4可看出,在交通事故数据训练阶段,LSSVM 模型与PSO-LSSVM 模型的交通事故数的预测值曲线的变化趋势与交通事故数的实际值曲线的变化趋势基本吻合,PSO -LSSVM 的每个年份的相对误差趋于稳定,明显低于经验LSSVM 模型的相对误差.将交通事故预测数据代入到模型中,得到交通事故预测实例中测试数据的PSO -LSSVM 模型㊁LSSVM 模型的交通事故预测值.图5是将交通事故数据测试样本输入2种预测模型的预测结果图,横89 第4期韦凌翔,等:基于粒子群优化最小二乘支持向量机的交通事故预测方法坐标代表2010年12个月,交通事故发生起数用纵坐标表示,真实值与预测值之间的相对误差用右边纵坐标表示.图5 交通事故数测试样本集预测结果对比图由图5可看出在交通事故数据预测阶段:LSSVM 模型的最大相对误差为3.736%㊁最小相对误差为0.36%,PSO -LSSVM 模型的最大相对误差为0.382%,最小相对误差为0.028%;总体来看,PSO-LSSVM 模型的预测值与实际值有更好的拟合,相对误差都在0.5%以下,预测精度较好.综合以上分析结果可得出:PSO -LSSVM 模型的预测值曲线的拟合度明显优于LSSVM 模型,这说明PSO-LSSVM 的预测结果更加准确,预测相比经验参数的LSSVM 模型更加有效.5摇结束语1)本文构建了基于PSO 算法优化LSSVM 交通事故预测方法,该方法用于我国连续48个月的道路交通事故发生数的预测,结果表明,本文所建模型是一种可行㊁有效的交通事故数预测模型.2)本文提出的交通事故预测方法对其他城市㊁省份具有较强的适用性和可移植性,为我国城市交通安全的提升和交通事故数据分析提供了一定的数据支撑和理论基础.3)本文所预测的交通事故发生数具有不确定性和偶然性,在接下来的预测中可使用经验模态分解技术将交通事故数分解为更稳定的序列模块,这可缓解交通事故数的非线性和波动性问题,从而有利于提高预测的精度.参考文献:[1]蔡晓禹,雷财林,彭博,等.基于驾驶行为和信息熵的道路交通安全风险预估[J].中国公路学报,2020,33(6):190⁃201.[2]WEI Lingxiang,FENG Tianliu,ZHAO Pengfei,et al.Driver sleepiness detection algorithm base on relevance vector machine[J].The Baltic Journal of Road and BridgeEngineering,2021,16(1):118⁃139.[3]LIANG Mingming,ZHANG Yun,QU Guangbo,et al.Epidemiology of fatal crashes in an underdeveloped city forthe decade 2008 2017[J].International journal of injury control and safety promotion,2020,27(2):253⁃260.[4]宋英华,程灵希,刘丹,等.基于组合预测优化模型的交通事故预测研究[J].中国安全科学学报,2017,27(5):31⁃35.[5]韦凌翔,陈红,王龙飞,等.诱发道路交通事故的关键因子分析方法研究[J].交通信息与安全,2015,33(1):85⁃89,99.[6]Zheng Ming,Li Tong,Zhu Rui,et al.Traffic accident’s severity prediction:A deep⁃learning approach⁃based CNNnetwork[J].IEEE Access,2019,7:39897⁃39910.[7]王文博,陈红,韦凌翔.交通事故时间序列预测模型研究[J].中国安全科学学报,2016,26(6):52⁃56.[8]YU B,WANG Y T,YAO J B,et al.A comparison of theperformance of ann and SVM for the prediction of traffic accident duration [J ].Neural Network World Journal,2016,26(03):271⁃287.[9]谢学斌,孔令燕.基于ARIMA 和XGBoost 组合模型的交通事故预测[J].安全与环境学报,2021,21(1):277⁃284.[10]张逸飞,付玉慧.基于ARIMA⁃BP 神经网络的船舶交通事故预测[J].上海海事大学学报,2020,41(3):47⁃52.[11]李文书,邹涛涛,王洪雁,等.基于双尺度长短期记忆网络的交通事故量预测模型[J].浙江大学学报(工学版),2020,54(8):1613⁃1619.[12]张淑娟,邓秀勤,刘波.基于粒子群优化的最小二乘支持向量机税收预测模型研究[J].计算机科学,2017,44(S1):119⁃122.[13]王语园,李嘉波,张福.基于粒子群算法的最小二乘支持向量机电池状态估计[J].储能科学与技术,2020,9(4):1153⁃1158.[14]YUAN Qing,ZHAI Shihong,WU Li,et al.Blastingvibration velocity prediction based on least squares support vector machine with particle swarm optimization algorithm[J].Geosystem Engineering,2019,22(5):279⁃288.99。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
o p t i mi z a t i o n wi t h c r o s s — f a c t o r s wa s i n t r o d u c e d i n t o t h e l e a s t — s q u a r e i n f l u e n c e c o e f ic f i e nt me t h o d f o r r o t o r ba l a n c i n g . Th e o r e t i c a l a n a l y s i s s h o we d t ha t t he i mp r o v e d a l g o r i t h m h a s a g o o d c o n v e r g e nc e a n d a n a b i l i t y o f g l o b a l s e a r c h i n g;i t c a n r e d u c e t h e ma x i mu m b la a n c i n g we i g h t a n d t h e ma x i mu m r e s i d u a l v i b r a t i o n e f f e c t i v e l y, c o mp a r e d wi t h t he b a s i c l e a s t — s q u a r e i l u f n e n c e c o e f i f c i e n t me t h o d.Te s t s v e r i ie f d t h e c o r r e c t n e s s a n d f e a s i b i l i t y o f t he p r o p o s e d me t h o d. Ke y wo r ds:r o t o r b a l a n c i n g;i n f l u e n c e c o e f f i c i e n t me t h o d;l e a s t s q u a r e me t h o d;p a r t i c l e s wa r m o p t i mi z a t i o n
c o mp a r a t i v e l y l a r g e r i n a r o t o r b a l a n c e p r o c e s s wi t h t he l e a s t — s q u a r e i n lu f e n c e c o e f f i c i e n t me t h o d, a p a r t i c l e s wa r m
振 第3 2卷第 8期
动
与
冲
击
J OURNAL OF VI BRAT I ON AND S H0CK
基 于 改进 粒子 群算 法 的最 小 二乘 影 响 系数法 的理 论 及 实验研 究
王星星 ,吴贞焕 ,杨 国安 ,贾
( 1 . 北京 化工大学 诊断与 自愈工程研究 中心 , 北京
2 .C o l l e g e o f I n f o r ma t i o n S c i e n c e a n d T e c h n o l o g y ,B e r i n g U n i v e r s i t y o f C h e m i c a l T e c h n o l o y, g B e r i n g 1 0 0 0 2 9 ,C h i n a )
光
1 0 0 0 2 9 )
1 0 0 0 2 9 ; 2 . 北京化工大学 信息科 学与技术 学院 , 北京
摘 要 :针对最小二乘影响系数法平衡过程中出现的某些测点残余振动较大及平衡质量较大等问题, 将一种基于
遗传 交叉 因子改进 的粒 子群算法 引入到转子动平衡最小二乘影响 系数 法中。实例计算说 明改进后 的算法具 有很好 收敛 特性 和全局搜 索能力 , 与基本最小二乘量和最大残余振 动大小 。通过实
Ab s t r a c t : Fo r t h e p r o b l e m t h a t t h e r e s i d u a l v i b r a t i o n o f s o me me a s ur e d po i n t s a n d t h e b a l a n c i n g we i g h t we r e
( 1 .D i a g n o s i s a n d S e l f - r e c o v e r y E n g i n e e r i n g R e s e a r c h C e n t e r ,B e i j i n g U n i v e r s i t y o f C h e m i c a l T e c h n o l o g y , B e i j i n g 1 0 0 0 2 9 , C h i n a ;
b a s e d o n a n i mpr o v e d p a r t i c l e s wa r m o pt i mi z a t i o n a l g o r i t h m
W A NG Xi n g — x i n g ,
Z h e n — h u a n ,Y A NG G u o — a n ,J I A G u a n g
验验 证 了结 果 的正 确 性 和方 法 的可 行 性 。
关键 词 :转子动平衡 ; 影响系数 法 ; 最小二乘法 ; 粒子群算法
中图 分 类 号 :T H1 1 3 . 2 文 献标 识 码 :A
Th e o r y a n d t e s t s f o r l e a s t s q u a r e i nf lu e n c e c o e ic f i e n t me t h o d