空间向量与立体几何(教师版)

合集下载

(教师用书)高中数学 第三章 空间向量与立体几何教案 苏教版选修2-1

(教师用书)高中数学 第三章 空间向量与立体几何教案 苏教版选修2-1

第3章空间向量与立体几何3.1空间向量及其运算3.1.1 空间向量及其线性运算3.1.2 共面向量定理(教师用书独具)●三维目标1.知识与技能(1)了解空间向量与平面向量的联系与区别.(2)理解空间向量的线性运算及其性质.(3)理解共面向量定理.2.过程与方法(1)学生通过类比平面向量的学习过程了解空间向量的研究内容和方法,经历向量及其运算由平面向空间的推广,体验数学概念的形成过程.(2)通过类比平面向量基本定理,得出共面向量基本定理,并能利用共面向量基本定理证明向量共面,学会判定与证明向量共面及四点共面的方法.3.情感、态度与价值观逐步培养学生观察、分析、综合和类比能力,会准确地阐述自己的思路和观点,着重培养学生的认知能力.●重点难点重点:了解空间向量与平面向量的联系与区别,理解空间向量的线性运算及其性质.难点:共面向量定理的理解及应用.先回顾平面向量的定义及线性运算法则,类比得出空间向量的有关定义及运算法则,并通过空间图形进行严格的理论验证,从而突出教学重点.对于共面向量定理,完全可由平面向量基本定理类比得出,重在应用其证明共面问题,通过例题,体现向量法证明线线平行、线面平行的方法与步骤,从而突破教学难点.(教师用书独具)●教学建议本节内容是第三章《空间向量与立体几何》的第一节,由于是起始节,所以这节课中也包含了章引言的内容.章引言中提到了本章的主要内容和研究方法,即类比平面向量来研究空间向量的概念和运算.向量是既有大小又有方向的量,它能像数一样进行运算,本身又是一个“图形”,所以它可以作为沟通代数和几何的桥梁,在很多数学问题的解决中有着重要的应用.本章要学习的空间向量,将为解决三维空间中图形的位置关系与度量问题提供一个十分有效的工具.采用的教学方式是通过问题启发引导学生自主完成概念的探究过程,紧紧围绕教学重点展开教学,并从教学过程的每个环节入手,努力突破教学难点.●教学流程回顾平面向量的定义,类比得出空间向量的定义、几何表示、符号表示;找出空间向量与平面向量的区别与联系.⇒回顾平面向量的线性运算法则,得出空间向量的线性运算法则,并通过空间图形加以验证,得出空间向量线性运算满足的运算律.理解单位向量、共线向量、平行向量等概念,理解共线向量定理成立的条件及作用.⇒理解共面向量的定义,区分向量共面与直线共面的区别,理解共面向量定理的内涵,会用共面向量定理证明向量共面,从而证明立体几何问题如共面问题、线面平行问题等.⇒通过例1及变式训练,使学生掌握空间向量的线性运算法则,在常见的立体图形中,灵活的应用三角形和平行四边形法则进行空间向量的运算,实现利用给定向量表示某一向量的目的.⇒通过例2及变式训练,使学生体会共线向量定理的两个应用,正向可用来证明线线平行,逆用可用来求解字母参数,体会向量法解证立体几何问题的步骤与规律.⇒通过例3及变式训练,使学生体会共面向量定理的两个应用,正向可用来证明线面平行,四点共面,逆用可用来求解字母参数,体会向量法解证立体几何问题的步骤与规律.⇒通过易错易误辨析,体会零向量的特殊性,在分析向量间关系及向量运算时,应注意零向量的特殊性.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固基本知识,形成基本能力.在空间,把既有大小又有方向的量叫做空间向量.已知空间四边形ABCD ,则AB →+BC →+CD →+DA →=0还成立吗?【提示】 成立.根据向量的加法法则,表示相加向量的有向线段依次首尾相接,其和为从第一个向量的首指向最后一个向量的尾,故AB →+BC →+CD →+DA →=AA →=0.向量加法可以推广到有限个向量的和,并且可用口诀记忆:首尾首尾首指向尾.【问题导思】共线向量一定是同一直线上的向量吗?【提示】 共线向量不一定是同一直线上的向量,而是表示向量的有向线段只要可以平移到同一直线上即可,因此共线向量也叫平行向量.对空间任意两个向量a,b (a ≠0),b 与a 共线的充要条件是存在实数λ,使b =λa .如果两个向量a 、b ),使得p =x a +y b .图3-1-1如图3-1-1,在长方体ABCD -A ′B ′C ′D ′中,化简下列各式,并在图中标出化简得到的向量:【思路探究】 观察各式涉及的向量在图形中的位置特点,将减法运算转化为加法运算,利用向量加法的三角形法则即可化简.【自主解答】(3)设M 是线段AC ′的中点,则12AD →+12AB →-12=12AD →+12AB →+12=12(AD →+AB →+)=12=AM →.向量,AM →如图所示.1.进行向量的线性运算,实质是进行向量求和,解题时应抓住两条主线:一是基本“形”,通过作出向量,运用平行四边形法则或三角形法则求和;二是基于“数”,熟练掌握AB →+BC →=AC →及向量中点公式.2.用已知向量表示空间向量,实质是向量的线性运算的反复应用.图3-1-2如图3-1-2,在平行六面体ABCD -A 1B 1C 1D 1中,AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别为AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示:(1)AC 1→;(2)AP →; (3)A 1N →;(4)MP →+NC 1→.【解】 (1)AC 1→=AB →+BC →+CC 1→=b +c +a . (2)∵P 为D 1C 1→的中点, ∴D 1P →=12D 1C 1→=12AB →=12b ,∴AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12AB →=a +c +12b .(3)A 1N →=A 1A →+AB →+BN →=-AA 1→+b +12AD →=-a +b +12c .(4)∵MP →=MA 1→+A 1D 1→+D 1P → =12AA 1→+AD →+12AB → =12a +c +12b . NC 1→=NC →+CC 1→=12AD →+AA 1→=12c +a .∴MP →+NC 1→=(12a +c +12b )+(12c +a )=32a +12b +32c .图3-1-3如图3-1-3,已知点E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 上的点,其中E ,H 是中点,F ,G是三等分点,且CF =2FB ,CG =2GD .试判断四边形EFGH 的形状.【思路探究】 证明向量EH →∥FG →且模不相等. 【自主解答】 ∵E ,H 分别是AB ,AD 的中点, ∴EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →. 又∵CF →=2FB →,CG →=2GD →, ∴CF →=23CB →,CG →=23CD →,∴FG →=CG →-CF →=23CD →-23CB →=23(CD →-CB →)=23BD →, ∴BD →=32FG →,∴EH →=34FG →,∴EH →∥FG →,|EH →|=34|FG →|.又点F 不在直线EH 上,∴EH ∥FG ,且EH ≠FG , ∴四边形EFGH 是梯形.1.证明EFGH 为梯形,必须证明两点:①EH →∥FG →; ②|EH →|≠|FG →|.2.利用向量共线可证空间图形中的两直线平行,为向量法证明立体几何问题奠定了基础.设e 1,e 2是空间两个不共线的向量,已知AB →=e 1+k e 2,BC →=5e 1+4e 2,DC →=-e 1-2e 2,且A 、B 、D 三点共线,求实数k 的值. 【解】 ∵BC →=5e 1+4e 2,DC →=-e 1-2e 2. ∴BD →=BC →+CD →=(5e 1+4e 2)+(e 1+2e 2)=6e 1+6e 2. ∵A ,B ,D 三点共线, ∴AB →=λBD →.∴e 1+k e 2=λ(6e 1+6e 2).∵e 1,e 2是不共线向量,∴⎩⎪⎨⎪⎧1=6λ ,k =6λ ,∴k =1.(2012·辽宁高考)如图3-1-4,直三棱柱ABC -A ′B ′C ′,点M ,N 分别为A ′B 和B ′C ′的中点.证明:MN ∥平面A ′ACC ′.图3-1-4【思路探究】 利用向量的线性运算得到向量MN →可以由平面A ′ACC ′内两个不共线的向量表示即可.【自主解答】 因为MN →=MA ′→+A ′N →,且点M ,N 分别为A ′B 和B ′C ′的中点,所以MN →=12BA ′→+12(A ′B ′→+A ′C ′→)=12(B ′A ′→+AA ′→)+12(A ′B ′→+A ′C ′→)=12AA ′→+12A ′C ′→. 因为MN ⊄平面A ′ACC ′,所以MN ∥平面A ′ACC ′.1.判断三个向量共面,即利用向量的线性运算实现其中一个向量能用另外两个向量惟一表示.2.利用向量判断线面平行有两种方法:一是利用共线向量定理,找出平面内的一个向量与直线上的向量共线;二是利用共面向量定理,找出平面内不共线的两个向量能表示出直线上的向量.两种方法中注意说明直线不在平面内.已知非零向量e 1,e 2不共线,如果AB →=e 1+e 2,AC →=2e 1+8e 2,AD →=3e 1-3e 2,求证:A ,B ,C ,D 四点共面. 【证明】 令λ(e 1+e 2)+μ(2e 1+8e 2)+ν(3e 1-3e 2)=0, 则(λ+2μ+3ν)e 1+(λ+8μ-3ν)e 2=0.∵e 1,e 2不共线,则⎩⎪⎨⎪⎧λ+2μ+3ν=0,λ+8μ-3ν=0,解得λ=-5,μ=1,ν=1是其中一组解, 则AB →=15AC →+15AD →,∴A 、B 、C 、D 四点共面.忽略零向量导致错误下列命题:①空间任意两个向量a ,b 不一定是共面的; ②a ,b 为空间两个向量,则|a |=|b |⇔a =b ; ③若a ∥b ,则a 与b 所在直线一定平行; ④若a ∥b ,b ∥c ,则a ∥c . 其中错误命题的序号是________. 【错解】 ②【错因分析】 ①空间任意两个向量都是共面的.②向量的模相等时,两个向量不一定相等,还要看向量的方向.③当a ∥b 时,它们所在直线平行或重合.④当b =0时,a 与c 不一定平行.【防范措施】 向量的平行(共线)不具备传递性,即若a ∥b ,b ∥c ,不一定有a ∥c ,但当b 为非零向量时,向量平行(共线)具备传递性,即若b ≠0,则当a ∥b ,b ∥c 时,有a ∥c .【正解】 ①②③④1.空间向量是平面向量的拓广和延伸,空间向量的线性运算法则和运算律与平面向量具有可类比性,但空间向量比平面向量应用范围更广泛.2.共线向量定理是判定两向量共线的充要条件,利用共线向量定理可以解决两方面的问题:(1)判定两向量共线;(2)由两向量共线,求待定字母的值.3.共面向量定理是判断三向量共面的理论依据,依此可以证明三向量共面,从而证明四点共面与线面平行问题.1.在空间四边形ABCD 中,AB →+BC →+CD →+DA →=______. 【解析】 AB →+BC →+CD →+DA →=AC →+CD →+DA →=AD →+DA →=0. 【答案】 02.在长方体ABCD -A 1B 1C 1D 1中,化简式子:DA →-DB →+B 1C →-B 1B →+CB 1→-CB →=________. 【解析】 DA →-DB →+B 1C →-B 1B →+CB 1→-CB →=BA →+BC →+BB 1→=BD →+BB 1→=BD 1→. 【答案】 BD 1→3.有下列命题:①平行于同一直线的向量是共线向量;②平行于同一平面的向量是共面向量;③平行向量一定是共面向量;④共面向量一定是平行向量.其中正确的命题有________.【解析】 “共面向量一定是平行向量”不正确,即共面向量不一定共线.①②③均正确. 【答案】 ①②③图3-1-54.如图3-1-5,在空间四边形ABCD 中,E 、F 为AB 、CD 的中点,试证EF →,BC →,AD →共面. 【证明】 空间四边形ABCD 中,E 、F 分别是AB 、CD 上的点,利用多边形加法法则可得⎭⎬⎫EF →=EA →+AD →+DF →,EF →=EB →+BC →+CF →.①又E 、F 分别是AB 、CD 的中点,故有EA →=-EB →,DF →=-CF →.②将②代入①中,两式相加得2EF →=AD →+BC →. 所以EF →=12AD →+12BC →,即EF →与BC →、AD →共面.一、填空题1.下列命题中真命题的个数是________. ①空间中任两个单位向量必相等;②将空间中所有的单位向量移到同一起点,则它们的终点构成一个圆; ③若两个非零向量a ,b 满足a =k b ,则a ,b 同向; ④向量共面即它们所在的直线共面.【解析】 ①是假命题,单位向量模相等,但方向不一定相同,因此空间中任两个单位向量不一定相等; ②是假命题,将空间中所有的单位向量移到同一起点,则它们的终点构成一个球面; ③是假命题,当k >0时,a ,b 同向,当k <0时,a ,b 反向;④是假命题,表示共面向量的有向线段所在的直线可以“平移”(平行移动)到同一平面,但不一定共面. 【答案】 02.平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 和BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →=________. 【解析】 B 1M →=B 1B →+BM →=c +12BD →=c +12B 1D 1→=c +12b -12a =-12a +12b +c .【答案】 -12a +12b +c3.非零向量e 1、e 2不共线,若k e 1+e 2与e 1+k e 2共线,则k =________. 【解析】 若k e 1+e 2与e 1+k e 2共线,则k e 1+e 2=λ(e 1+k e 2),∴⎩⎪⎨⎪⎧k =λ,λk =1,∴k =±1.【答案】 ±14.空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA →上,且OM →=2MA →,N 为BC 的中点,则MN →=________.(用a ,b ,c 表示)【解析】 如图, MN →=ON →-OM →=12(OB →+OC →)-23OA → =12(b +c )-23a =-23a +12b +12c .【答案】 -23a +12b +12c5.如图3-1-6,在正方体ABCD —A 1B 1C 1D 1中,下列各式中运算的结果为BD 1→的是________.图3-1-6①(A 1D 1→-A 1A →)-AB →;②(BC →+BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→-A 1A →)+DD 1→.【解析】 (A 1D 1→-A 1A →)-AB →=AD 1→-AB →=BD 1→,(BC →+BB 1→)-D 1C 1→=BC 1→+C 1D 1→=BD 1→. 【答案】 ①② 6.有四个命题:①若p =x a +y b ,则p 与a ,b 共面; ②若p 与a ,b 共面,则p =x a +y b ; ③若MP →=xMA →+yMB →,则P 、M 、A 、B 共面; ④若P 、M 、A 、B 共面,则MP →=xMA →+yMB →. 其中真命题是________(填序号).【解析】 由共面向量定理知,①真;若p 与a ,b 共面,当a 与b 共线且p 与a 和b 不共线时,就不存在实数组(x ,y )使p =x a +y b 成立,故②假.同理③真,④假.【答案】 ①③7.在下列各式中,使P ,A ,B ,C 四点共面的式子的序号为________. ①OP →=OA →-OB →-OC →; ②OP →=17OA →+14OB →+12OC →;③PA →+PB →+PC →=0; ④OP →+OA →+OB →+OC →=0; ⑤OP →=12OA →-OB →+32OC →.【解析】 根据四点共面的充要条件,易知①②④不适合,③⑤适合. 【答案】 ③⑤8.(2013·平遥高二检测)已知点G 是△ABC 的重心,O 是空间任一点,若OA →+OB →+OC →=λOG →,则λ=________.【解析】 如图,取AB 的中点D , OG →=OC →+CG → =OC →+23CD →=OC →+23·12(CA →+CB →)=OC →+13[(OA →-OC →)+(OB →-OC →)]=13OA →+13OB →+13OC →. ∴OA →+OB →+OC →=3OG →. 【答案】 3 二、解答题图3-1-79.如图3-1-7,已知平行六面体ABCD -A ′B ′C ′D ′,M 是线段CC ′的中点,G 是线段AC ′的三等分点,化简下列各式,并在图中标出化简得到的向量:(1)AB →+BC →; (2)AB →+AD →+AA ′→; (3)AB →+AD →+12CC ′→;(4)13(AB →+AD →+AA ′→).【解】 (1)AB →+BC →=AC →.(2)AB →+AD →+AA ′→=AC →+AA ′→=AC →+CC ′→=AC ′→. (3)AB →+AD →+12CC ′→=AB →+BC →+CM →=AC →+CM →=AM →.(4)13(AB →+AD →+AA ′→)=13AC ′→=AG →. 向量AC →,AC ′→,AM →,AG →如图所示.10.如图3-1-8所示,四边形ABCD 、ABEF 都是平行四边形且不共面,M 、N 分别是AC 、BF 的中点,判断CE →与MN →是否共线.图3-1-8【解】 ∵M 、N 分别是AC 、BF 的中点,四边形ABCD 、ABEF 都是平行四边形, ∴MN →=MA →+AF →+FN →=12CA →+AF →+12FB →,MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,∴12CA →+AF →+12FB →=-12CA →+CE →-AF →-12FB →, ∴CE →=CA →+2AF →+FB →=2(MA →+AF →+FN →)=2MN →, ∴CE →∥MN →,即CE →与MN →共线.图3-1-911.如图3-1-9,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,AB =2EF ,H 为BC 的中点.求证:FH ∥平面EDB . 【证明】 因为H 为BC 的中点,所以FH →=12(FB →+FC →)=12(FE →+EB →+FE →+ED →+DC →)=12(2FE →+EB →+ED →+DC →).因为EF ∥AB ,CD ∥AB ,且AB =2EF ,所以2FE →+DC →=0,所以FH →=12(EB →+ED →)=12EB →+12ED →.因为EB →与ED →不共线,由共面向量定理知,FH →,EB →,ED →共面. 因为FH ⊄平面EDB ,所以FH ∥平面EDB .(教师用书独具)已知A 、B 、M 三点不共线,对于平面ABM 外的任一点O ,确定下列各条件下,点P 是否与A 、B 、M 一定共面. (1)OB →+OM →=3OP →-OA →; (2)OP →=4OA →-OB →-OM →.【思路探究】 判断点P 是否在平面MAB 内,可先看MP →能否用向量MA →、MB →表示.当MP →能用MA →、MB →表示时,点P 位于平面MAB 内,否则点P 不在平面MAB 内.【自主解答】 (1)原式可变形为 OP →=OM →+(OA →-OP →)+(OB →-OP →) =OM →+PA →+PB →,∴OP →-OM →=PA →+PB →, ∴PM →=-PA →-PB →,∴P 与M 、A 、B 共面. (2)原式可变形为 OP →=2OA →+OA →-OB →+OA →-OM →=2OA →+BA →+MA →, ∴AP →=-AO →-AB →-AM →,表达式中还含有AO →, ∴P 与A 、B 、M 不共面.1.解答本题中注意构造以P 、A 、B 、M 中某一点为起点,另三点为终点的三个向量来判断此三向量是否共面,若共面又共起点,此四点必共面,否则不共面.2.要证四点共面,可先作从同一点出发的三个向量,由向量共面推知点共面,应注意待定系数法的应用.已知A 、B 、C 三点不共线,对平面ABC 外的任一点M 满足OM →=13OA →+13OB →+13OC →.(1)判断MA →、MB →、MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. 【解】 (1)∵OM →=13OA →+13OB →+13OC →,∴13(OA →-OM →)+13(OB →-OM →)+13(OC →-OM →)=0, ∴MA →+MB →+MC →=0, ∴MA →=-MB →-MC →,∴MA →、MB →、MC →三个向量是共面向量. (2)由(1)知MA →、MB →、MC →三个向量共面, 又有共同起点M ,所以M 、A 、B 、C 四点共面, 即点M 在平面ABC 内.3.1.3 空间向量基本定理 3.1.4 空间向量的坐标表示(教师用书独具)●三维目标 1.知识与技能(1)掌握空间向量基本定理,能恰当地选择基底,用基向量表示空间任一向量. (2)理解空间向量的正交分解,理解向量坐标的意义.(3)掌握向量加法、减法、数乘的坐标运算法则,会应用向量坐标进行线性运算,能判断向量共线. 2.过程与方法(1)由平面向量基本定理,类比得出空间向量基本定理,体会定理的条件及内涵;会在具体空间图形中,选取基底表示空间向量. (2)类比平面向量坐标运算法则,得出空间向量坐标运算法则,并运用这些法则进行向量坐标线性运算. (3)运用向量坐标进行向量共线的判定与应用. 3.情感、态度与价值观能过教师的引导,学生探究,激发学生求知欲望和学习兴趣,使学生具备探究、归纳、应用的能力,形成严谨的思维习惯. ●重点难点重点:用基底表示空间向量,向量线性运算的坐标表示. 难点:用基底表示空间向量.教学时,应采用类比思维的方法,先回顾平面向量基本定理及坐标表示,得出空间向量基本定理及坐标表示,降低问题的难度,在具体的常见几何体(正方体、三棱锥、棱柱)中,展示用基底表示空间向量的方法与过程,突出本节的重点,化解教学的难点.(教师用书独具)●教学建议空间向量基本定理是向量法研究立体几何问题的基石,是本章的重中之重,空间向量的坐标表示及坐标运算,是坐标法研究立体几何的工具.因此本节课是全章内容的工具性内容,为学生学习立体几何提供新角度、新手段、新方法.由于学生已学习了平面向量基本定理及坐标运算,因而本节宜采用类比教学法,多发挥学生自主探究能力,通过回顾→类比→完善→应用的环节获取新知识,应用新知识.除使用常规的教学手段外,还将使用多媒体投影和计算机辅助教学,增加教学的直观性和趣味性.●教学流程回顾平面向量基本定理,类比得出空间向量基本定理,强调基向量的不共面性,线性表示的惟一性,常见几何体中基底的一般选法,定义单位正交基,推导空间向量基本定理的推论 .⇒回顾平面向量的坐标表示,得出空间向量的坐标表示,理清向量坐标的实际意义,向量坐标与点坐标的关系.⇒回顾平面向量线性运算的坐标表示,得出空间向量的线性运算的坐标表示,向量坐标与起始点坐标的关系,共线向量的坐标条件.⇒通过例1及变式训练,让学生掌握基底的选取条件,即不共面向量,加深对基底概念的理解.⇒通过例2及变式训练,让学生掌握如何选取基向量,如何用基底表示某一向量,在具体操作中运用向量的线性运算法则.⇒通过例3及变式训练,让学生掌握向量坐标运算法则,掌握如何运用起点、终点坐标表示向量坐标.⇒通过例4及变式训练,让学生掌握向量共线的坐标条件的应用,由此判定向量共线或求值.⇒通过易错易误辨析,让学生分清向量共线与向量同向的区别,以免概念混淆,解题出错.⇒归纳整理,进行课堂小结,整体认识本节所学知识.⇒完成当堂双基达标,巩固基本知识,形成基本能力.p=x e1+y e2+z e3.如果三个向量e1,e2,e3如果空间一个基底的三个基向量是两两互相垂直,那么这个基底叫做正交基底.特别地:当一个正交基底的三个基向量都是单位向量时,称这个基底为单位正交基底,通常用{i ,j ,k }表示.设O ,A ,B ,C 是不共面的四点,则对空间任意一点P ,都存在惟一的有序实数组(x ,y ,z ),使得OP =xOA →+yOB →+zOC →.【问题导思】空间直角坐标系中,点的坐标与向量坐标有何联系与区别?【提示】 在空间直角坐标系中,当起点为原点时,向量坐标就是其终点坐标;当起点不是原点时,向量坐标是终点坐标减去起点坐标.所以向量坐标不是点的坐标,而是终点坐标与起点坐标的差值.在空间直角坐标系中,设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则AB →=(a 2-a 1,b 2-b 1,c 2-c 1);当空间向量a 的起点移至坐标原点时,其终点坐标就是向量a 的坐标.【问题导思】空间向量的坐标运算与几何运算相比较,有哪些好处?【提示】 坐标运算实际上是实数间的运算,运算起来更为简捷方便. 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3)已知{e 1,e 2,e 3}是空间的一个基底,且OA →=e 1+2e 2-e 3,OB →=-3e 1+e 2+2e 3,OC →=e 1+e 2-e 3,试判断{OA →,OB →,OC →}能否作为空间的一个基底?若能,试以此基底表示向量OD →=2e 1-e 2+3e 3;若不能,请说明理由.【思路探究】 判断{OA →,OB →,OC →}能否作为基底,关键是判断它们是否共面,一般假设其共面,利用共面向量定理分析;求OD →的表示式,设OD →=pOA →+qOB →+zOC →,利用待定系数法求系数.【自主解答】 假设OA →、OB →、OC →共面,由向量共面的充要条件知存在实数x 、y 使OA →=xOB →+yOC →成立. ∴e 1+2e 2-e 3=x (-3e 1+e 2+2e 3)+y (e 1+e 2-e 3)=(-3x +y )e 1+(x +y )e 2+(2x -y )e 3,∵{e 1,e 2,e 3}是空间的一个基底, ∴e 1,e 2,e 3不共面, ∴⎩⎪⎨⎪⎧-3x +y =1,x +y =2,2x -y =-1,此方程组无解,即不存在实数x 、y 使OA →=xOB →+yOC →, ∴OA →,OB →,OC →不共面.故{OA →,OB →,OC →}能作为空间的一个基底. 设OD →=pOA →+qOB →+zOC →,则有2e 1-e 2+3e 3=p (e 1+2e 2-e 3)+q (-3e 1+e 2+2e 3)+z (e 1+e 2-e 3)=(p -3q +z )e 1+(2p +q +z )e 2+(-p +2q -z )e 3 ∵{e 1,e 2,e 3}为空间的一个基底,∴⎩⎪⎨⎪⎧p -3q +z =2,2p +q +z =-1,-p +2q -z =3,解之得⎩⎪⎨⎪⎧p =17,q =-5,z =-30,∴OD →=17OA →-5OB →-30OC →.1.判断三个向量能否作为基底,关键是判断它们是否共面,若从正面判断难以入手,可以用反证法结合共面向量定理或者利用常见的几何图形帮助,进行判断.2.求一向量在不同基底下的表示式(或坐标),一般采用待定系数法,即设出该向量在新基底下的表示式(或坐标),转化为在原基底下的表示式,对比系数.若{a ,b ,c }是空间的一个基底.试判断{a +b ,b +c ,c +a }能否作为空间的一个基底.【解】 假设a +b ,b +c ,c +a 共面,则存在实数λ,μ,使得a +b =λ(b +c )+μ(c +a )成立,即a +b =μa +λb +(λ+μ)c . ∵{a ,b ,c }是空间的一个基底, ∴a ,b ,c 不共面. ∴⎩⎪⎨⎪⎧μ=1λ=1λ+μ=0,此方程组无解.即不存在实数λ,μ,使得a +b =λ(b +c )+μ(c +a )成立,∴a +b ,b +c ,c +a 不共面. 故{a +b ,b +c ,c +a }能作为空间的一个基底.图3-1-10如图3-1-10,四棱锥P -OABC 的底面为矩形,PO ⊥平面OABC ,设OA →=a ,OC →=b ,OP →=c ,E ,F 分别是PC ,PB 的中点,试用a ,b ,c 表示:BF →,BE →,AE →,EF →.【思路探究】选取基向量→观察空间图形→利用线性运算→用基底表示向量【自主解答】 连结OB ,则BF →=12BP →=12(BO →+OP →)=12(-OA →-OC →+OP →)= -12a -12b +12c . BE →=BC →+CE →=-a +12CP →=-a +12(CO →+OP →)=-a +12(-b +c )=-a -12b +12c .AE →=AP →+PE →=AO →+OP →+12PC →=AO →+OP →+12(PO →+OC →)=-a +c +12(-c +b )=-a +12b +12c .EF →=12CB →=12OA →=-12a .1.空间中的任一向量均可用一组不共面的向量来表示,只要基底选定,这一向量用基底表达的形式是惟一的. 2.用基底来表示空间中的向量是用向量解决数学问题的关键,解题时注意三角形法则以及平行四边形法则的应用.图3-1-11如图3-1-11,在平行六面体ABCD -A ′B ′C ′D ′中,AB →=a ,AD →=b ,=c ,M 是CD ′的中点,N 是C ′D ′的中点,用基底{a ,b ,c }表示以下向量:(1)AM →;(2)AN →.【解】 (1)AM →=12(AC →+)=12(AB →+AD →+AD →+)=12(a +2b +c )=12a +b +12c . (2)AN →=12(+)=12[(AB →+AD →+)+(AD →+)]=12(AB →+2AD →+2)=12a +b +c .已知A ,B ,C 三点的坐标分别是(2,-1,2),(4,5,-1),(-2,2,3),求适合下列条件的点P 的坐标.(1)OP →=12(AB →-AC →);(2)AP →=12(AB →-AC →).【思路探究】 利用向量的坐标等于终点的坐标减去起点的坐标求出AB →,AC →,然后进行坐标运算得到OP →,AP →,从而可确定点P 的坐标. 【自主解答】 AB →=(2,6,-3),AC →=(-4,3,1).(1)OP →=12(AB →-AC →)=12(6,3,-4)=(3,32,-2),则点P 的坐标为(3,32,-2).(2)设点P 的坐标为(x ,y ,z ),则AP →=(x -2,y +1,z -2).由(1)知,AP →=12(AB →-AC →)=(3,32,-2),则⎩⎪⎨⎪⎧ x -2=3y +1=32z -2=-2,解得⎩⎪⎨⎪⎧x =5y=12z =0,则点P 的坐标为(5,12,0).1.牢记运算法则是正确进行向量线性运算的关键.2.涉及已知点的坐标进行向量运算时,注意利用终点的坐标减去起点的坐标得到向量的坐标,这是向量运算的前提.已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),求AB →,AC →及2AB →+3AC →. 【解】 AB →=(-1,1,2)-(-2,0,2)=(1,1,0), AC →=(-3,0,4)-(-2,0,2)=(-1,0,2),2AB →+3AC →=2(1,1,0)+3(-1,0,2)=(2,2,0)+(-3,0,6)=(-1,2,6).已知A (1,0,0),B (0,1,0),C (0,0,2),求满足DB ∥AC ,DC ∥AB 的点D 的坐标.【思路探究】 由已知条件DB ∥AC ,DC ∥AB ,转化为向量平行,用共线向量定理及空间向量平行的坐标表示,可求得D 点的坐标. 【自主解答】 设D (x ,y ,z ),则DB →=(-x,1-y ,-z ),AC →=(-1,0,2), 由DB ∥AC ,设DB →=λAC →,即(-x,1-y ,-z )=(-λ,0,2λ), 则⎩⎪⎨⎪⎧-x =-λ,1-y =0,-z =2λ,解得⎩⎪⎨⎪⎧x =λ,y =1,z =-2λ,得D (λ,1,-2λ).∴DC →=(-λ,-1,2+2λ),AB →=(-1,1,0). 又DC →∥AB →,设DC →=μAB →,即(-λ,-1,2+2λ)=(-μ,μ,0), 则⎩⎪⎨⎪⎧-λ=-μ,-1=μ,2+2λ=0.解得λ=μ=-1.∴点D 的坐标为(-1,1,2).1.本例中,求点D 的坐标,主要是利用两向量平行的坐标条件,列出关于点D 的坐标的方程组,通过解方程组求得.2.两向量平行的充要条件有两个:①a =λb ,②⎩⎪⎨⎪⎧x 1=λx 2y 1=λy 2z 1=λz 2,依此,既可以判定两向量共线,也可以通过两向量平行求待定字母的值.设a =(2,3,0),b =(-3,-2,1),计算2a +3b,5a -6b ,并确定λ,μ的值,使λa +μb 与向量b 平行. 【解】 ∵a =(2,3,0),b =(-3,-2,1),∴2a +3b =2(2,3,0)+3(-3,-2,1)=(4,6,0)+(-9,-6,3)=(-5,0,3), 5a -6b =5(2,3,0)-6(-3,-2,1)=(10,15,0)-(-18,-12,6)=(28,27,-6). ∵λa +μb =λ(2,3,0)+μ(-3,-2,1)=(2λ-3μ,3λ-2μ,μ),且(λa +μb )∥b , ∴2λ-3μ-3=3λ-2μ-2=μ1. ∴λ=0,μ∈R ,即λ=0,μ∈R 时,λa +μb 与b 平行.误解“两向量平行”和“两向量同向”已知向量a =(1,2,3),b =(x ,x 2+y -2,y ),并且a ,b 同向,求x ,y 的值.【错解】 由题意知a ∥b ,则x 1=x 2+y -22=y3,可得⎩⎪⎨⎪⎧y =3x ①x 2+y -2=2x ②,把①代入②得x 2+x -2=0,解得x =-2或x =1.当x =-2时,y =-6;当x =1时,y =3.【错因分析】 “两向量同向”是“两向量平行”的充分不必要条件.错解忽略了“同向”这一条件的限制,扩大了范围. 【防范措施】 由于向量具有平移不变性,因此有关向量的平行问题与直线的平行是有区别的,并且两向量同向与向量平行也是不等价的,向量平行则两向量可能同向也可能反向,因此,解决这类问题时要特别注意限制条件.【正解】 由题意知a ∥b ,则x 1=x 2+y -22=y3,可得⎩⎪⎨⎪⎧y =3x ①x 2+y -2=2x ②,把①代入②得x 2+x -2=0,解得x =-2或x =1.当x=-2时,y =-6;当x =1时,y =3.当⎩⎪⎨⎪⎧ x =-2y =-6时,b =(-2,-4,-6)=-2a ,向量a 与b 反向,不符合题意,故舍去.当⎩⎪⎨⎪⎧ x =1y =3时,b =(1,2,3)=a ,向量a 与b 同向,故⎩⎪⎨⎪⎧x =1y =3.1.用基底表示空间几何体中一向量时,应结合立体图形,根据空间向量线性运算法则,写出要求的向量表达式. 2.建立空间直角坐标系后,空间向量都有惟一的坐标(x ,y ,z ),两向量间的线性运算也有相应的坐标运算法则.3.对于两向量a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),a ∥b ⇔a =λb ⇔⎩⎪⎨⎪⎧x 1=λx 2y 1=λy 2z 1=λz 2(b ≠0),依此可以判定两向量平行或由两向量平行求待定字母的值.1.下列说法正确的是________.①任何三个不共线的向量都可构成空间的一个基底; ②不共面的三个向量就可构成空间的单位正交基底; ③单位正交基底中的基向量模为1,且互相垂直;④不共面且模为1的三个向量可构成空间的单位正交基底.【解析】 根据基底的有关概念可知:任何三个不共面的向量都可以构成一个基底,当这三个基向量是模为1且两两垂直的向量时,称此基底为单位正交基底,故有③正确,①②④错误.【答案】 ③图3-1-122.如图3-1-12,已知平行六面体OABC -O ′A ′B ′C ′中,OA →=a ,OC →=c ,=b ,D 是四边形OABC 的中心,则OD →=________.【解析】 结合图形,充分利用向量加、减的三角形法则和平行四边形法则,利用基向量a 、b 、c 表示OD →.仔细观察会发现OD →与OA →、OC →是共面向量,故它们三者之间具有线性关系,即可得到答案.【答案】 12a +12c3.已知a =(1,-2,1),a +b =(-1,2,-1),则b =______. 【解析】 设b =(x ,y ,z ),则a +b =(x +1,y -2,z +1).∴⎩⎪⎨⎪⎧x +1=-1,y -2=2,z +1=-1.∴⎩⎪⎨⎪⎧x =-2,y =4,z =-2.∴b =(-2,4,-2). 【答案】 (-2,4,-2)4.设a =(1,5,-1),b =(-2,3,5).若(k a +b )∥(a -3b ),求k . 【解】 法一 ∵a =(1,5,-1),b =(-2,3,5).∴k a +b =k (1,5,-1)+(-2,3,5)=(k -2,5k +3,-k +5).a -3b =(1,5,-1)-3(-2,3,5)=(7,-4,-16).∵(k a +b )∥(a -3b ). ∴k -27=5k +3-4=-k +5-16.∴k =-13.法二 ∵(k a +b )∥(a -3b ). ∴k a +b =λ(a -3b ).∴⎩⎪⎨⎪⎧k =λ,1=-3λ,∴k =-13.一、填空题1.设命题p :a ,b ,c 是三个非零向量,命题q :{a ,b ,c }为空间的一个基底,则命题p 是命题q 的______条件(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”).【解析】 命题q 中,{a ,b ,c }为空间的一个基底,则根据基底的定义,可知a ,b ,c 为非零向量,且为不共面向量.故q ⇒p ,pD⇒/q ,所以命题p 是命题q 的必要不充分条件.【答案】 必要不充分2.设向量a ,b ,c 不共面,则下列可作为空间的一个基底的是________.①{a +b ,b -a ,a }; ②{a +b ,b -a ,b }; ③{a +b ,b -a ,c }; ④{a +b +c ,a +b ,c }.【解析】 因为只有③中三个向量不共面,所以可以作为一个基底. 【答案】 ③3.已知{i ,j ,k }为空间的一个基底,若a =i -j +k ,b =i +j +k ,c =i +j -k ,d =3i +2j -4k ,又d =α a +β b +γc ,则α=________,β=________,γ=________.【解析】 由题意知:⎩⎪⎨⎪⎧α+β+γ=3-α+β+γ=2α+β-γ=-4,解之得:⎩⎪⎨⎪⎧α=12β=-1γ=72.【答案】 12 -1 72图3-1-134.如图3-1-13,已知正方体ABCD —A ′B ′C ′D ′中,E 是底面A ′B ′C ′D ′的中心,a =12AA ′→,b =12AB →,c =13AD →,AE →=x a +y b +z c ,则x ,y ,z 的值分别为x =________,y =________,z =________.【解析】 由题意知AA ′→,AB →,AD →为不共面向量,而AE →=AA ′→+A ′E →=AA ′→+12(A ′B ′→+A ′D ′→)=AA ′→+12AB →+12AD →=2a +b +32c ,∴x =2,y =1,z =32.【答案】 2 1 325.已知A (3,2,1),B (-4,5,3),C (-1,2,1),则2AB →+5AC →的坐标为________. 【解析】 2AB →+5AC →=2(-7,3,2)+5(-4,0,0) =(-14-20,6+0,4+0)=(-34,6,4). 【答案】 (-34,6,4)6.(2013·平遥高二检测)已知a =(λ+1,0,2λ),b = (6,2μ-1,2),a ∥b ,则λ与μ的值分别为________.。

空间向量与立体几何教案

空间向量与立体几何教案

第三章空间向量与立体几何3.1空间向量及其运算(一)教学目标:㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律;㈡能力目标:⒈理解空间向量的概念,掌握其表示方法;⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律;⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题.㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物.教学重点:空间向量的加减与数乘运算及运算律.教学难点:应用向量解决立体几何问题.教学方法:讨论式.教学过程:Ⅰ.复习引入[师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢?[生]既有大小又有方向的量叫向量.向量的表示方法有:①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:AB.[师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量.[师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算:⒈向量的加法:⒉向量的减法:⒊实数与向量的积:实数λ与向量a的积是一个向量,记作λa,其长度和方向规定如下:(1)|λa|=|λ||a|(2)当λ>0时,λa与a同向;当λ<0时,λa与a反向;当λ=0时,λa=0.[师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢? [生]向量加法和数乘向量满足以下运算律加法交换律:a +b =b +a加法结合律:(a +b )+c =a +(b +c ) 数乘分配律:λ(a +b )=λa +λb[师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本P 26~P 27.Ⅱ.新课讲授[师]如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量.例如空间的一个平移就是一个向量.那么我们怎样表示空间向量呢?相等的向量又是怎样表示的呢?[生]与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量.[师]由以上知识可知,向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的. [师]空间向量的加法、减法、数乘向量各是怎样定义的呢? [生]空间向量的加法、减法、数乘向量的定义与平面向量的运算一样:AB OA OB +==a +b , OA OB AB -=(指向被减向量),=OP λa )(R ∈λ[师]空间向量的加法与数乘向量有哪些运算律呢?请大家验证这些运算律.[生]空间向量加法与数乘向量有如下运算律:⑴加法交换律:a + b = b + a ;⑵加法结合律:(a + b ) + c =a + (b + c );(课件验证) ⑶数乘分配律:λ(a + b ) =λa +λb .[师]空间向量加法的运算律要注意以下几点:⑴首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量.即:n n n A A A A A A A A A A 11433221=++++-因此,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量. ⑵首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量.即:011433221=+++++-A A A A A A A A A A n n n .⑶两个向量相加的平行四边形法则在空间仍然成立.因此,求始点相同的两个向量之和时,可以考虑用平行四边形法则.例1已知平行六面体''''D C B A ABCD -(如图),化简下列向量表达式,并标出化简结果的向量:;⑴BC AB + ;⑵'AA AD AB ++'21CC AD AB ++⑶.⑷)'(31AA AD AB ++ 说明:平行四边形ABCD 平移向量 a 到A’B’C’D’的轨迹所形成的几何体,叫做平行六面体.记作ABCD —A’B’C’D’.平行六面体的六个面都是平行四边形,每个面的边叫做平行六面体的棱.解:(见课本P 27)说明:由第2小题可知,始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量,这是平面向量加法的平行四边形法则向空间的推广.Ⅲ.巩固练习课本P 92 练习 Ⅳ. 教学反思平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.关于向量算式的化简,要注意解题格式、步骤和方法. Ⅴ.课后作业⒈课本P 106 1、2、⒉预习课本P 92~P 96,预习提纲: ⑴怎样的向量叫做共线向量?⑵两个向量共线的充要条件是什么? ⑶空间中点在直线上的充要条件是什么? ⑷什么叫做空间直线的向量参数表示式? ⑸怎样的向量叫做共面向量?⑹向量p 与不共线向量a 、b 共面的充要条件是什么? ⑺空间一点P 在平面MAB 内的充要条件是什么? 板书设计:§9.5 空间向量及其运算(一)一、平面向量复习 二、空间向量 三、例1⒈定义及表示方法 ⒈定义及表示⒉加减与数乘运算 ⒉加减与数乘向量 小结 ⒊运算律 ⒊运算律教学后记:空间向量及其运算(2)一、课题:空间向量及其运算(2)二、教学目标:1.理解共线向量定理和共面向量定理及它们的推论;2.掌握空间直线、空间平面的向量参数方程和线段中点的向量公式.三、教学重、难点:共线、共面定理及其应用. 四、教学过程:(一)复习:空间向量的概念及表示;(二)新课讲解:1.共线(平行)向量:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。

空间向量与立体几何(整章教案

空间向量与立体几何(整章教案

空间向量与立体几何第一章:空间向量基础1.1 向量的定义与表示介绍向量的概念,理解向量是有大小和方向的量。

学习如何用坐标表示空间中的向量,包括二维和三维空间中的向量。

1.2 向量的加法和数乘学习向量的加法运算,掌握三角形法则和平行四边形法则。

学习向量的数乘运算,理解数乘对向量大小和方向的影响。

1.3 向量的长度和方向学习向量的长度(模)的定义和计算方法。

学习向量的方向,理解余弦定理在向量夹角计算中的应用。

1.4 向量垂直与向量积学习向量垂直的概念,掌握向量垂直的判定方法。

学习向量积的定义和计算方法,理解向量积的几何意义。

第二章:立体几何基础2.1 平面和直线学习平面的定义和表示方法,掌握平面的基本性质。

学习直线的定义和表示方法,掌握直线的性质和判定方法。

2.2 点、线、面的位置关系学习点、线、面之间的位置关系,包括点在线上、点在面上、线在面上的判定。

学习线与线、线与面、面与面之间的位置关系。

2.3 空间角的计算学习空间角的定义和计算方法,包括二面角和平面角的计算。

学习空间角的性质和应用,理解空间角在立体几何中的重要性。

2.4 立体几何中的定理和公式学习立体几何中的重要定理和公式,如欧拉公式、施瓦茨公式等。

学会运用定理和公式解决立体几何问题。

后续章节待补充。

空间向量与立体几何第六章:空间向量的应用6.1 向量在几何中的应用学习利用向量解决几何问题,如计算线段长度、向量夹角、向量垂直等。

掌握向量在三角形和平面几何中的应用。

6.2 向量在物理中的应用引入物理中的向量概念,如速度、加速度、力等。

学习利用向量解决物理问题,如计算物体的运动轨迹、速度变化等。

6.3 向量在坐标变换中的应用学习坐标变换的基本概念,如平移、旋转等。

掌握利用向量进行坐标变换的方法和应用。

第七章:立体几何中的特殊形状7.1 柱体和锥体学习柱体和锥体的定义和性质,包括圆柱、圆锥、棱柱、棱锥等。

掌握计算柱体和锥体的体积、表面积等方法。

7.2 球体学习球体的定义和性质,掌握球体的方程和参数。

空间向量在立体几何中的应用教案(教师使用)

空间向量在立体几何中的应用教案(教师使用)

空间向量在立体几何中的应用(一)授课时间:2014年5月11日第7节课 授课班级:高二(9)班 授课教师:高志华教学目标 1、知识与技能(1) 进一步理解向量垂直的充要条件; (2)利用向量法证明线线、线面垂直;(3)利用向量解决立体几何问题,培养学生数形结合的思想方法; 2、过程与方法通过学生对空间几何图形的认识,建立恰当的空间直角坐标系,利用向量的坐标将几何问题代数化,提高学生应用知识的能力。

3、情感态度与价值观通过空间向量在立体几何中的应用,让学生感受数学、体会数学的美感, 从而激发学数学、用数学的热情。

教学重点建立恰当的空间直角坐标系,用向量法证明线线、线面垂直。

教学难点、关键建立恰当的空间直角坐标系,直线的方向向量; 正确写出空间向量的坐标。

教学方法启发式教学、讲练结合 教学媒体ppt 课件学法指导交流指导,渗透指导. 课型 新授课教学过程一、知识的复习与引人 自主学习1.若OP =x i +y j +z k ,那么(x ,y ,z )叫做向量OP 的坐标,也叫点P 的坐标.2. 如图,已知长方体D C B A ABCD ''''-的边长为AB=2,AD=2,1AA '=.以这个长方体的顶点A 为坐标原点,射线A A AD AB ',,分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,试求长方体各个顶点及A C '中点G 的坐标.3.设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),那么b a ±=(x 1±x 2,y 1±y 2, ), a ⊥b ⇔ b a ∙=x 1x 2+y 1y 2+ =0.4.设M 1(x 1,y 1,z 1),M 2(x 2,y 2,z 2),则 12M M =(2121,x x y y --, ) [探究]1.直线的方向向量:直线的方向向量是指和这条直线平行(或重合)的非零向量,一条直线的方向向量有 个. 2.空间位置关系的向量表示位置关系向量表示直线l 1的方向向量为1l , 直线l 2的方向向量为2l , 直线a 的方向向量为a , 直线b 的方向向量为b .l 1⊥ l 21l ⊥2l ⇔l 1⊥αl 1⊥a ,l 1⊥b, ,a b αα⊂⊂,a ∩b=o ,[合作探究]二、新授课:利用空间向量证明线线垂直、线面垂直例1、如图,在棱长为2的正方体ABCD-A1B1C1D1中,M为BC的中点,N为AB的中点,P为BB1的中点.(Ⅰ)求证:BD1⊥B1C;(Ⅱ)求证:BD1⊥平面MNP.设计意图:使学生明确空间向量在证明线线垂直、线面垂直中的作用。

20学而思教材讲义高二数学秋季秋季 第12讲 空间向量与立体几何综合 教师版

20学而思教材讲义高二数学秋季秋季  第12讲 空间向量与立体几何综合 教师版

当前形势空间向量与立体几何在近五年北京卷(理)考查14分高考要求内容要求层次具体要求A B C证明平行与垂直√运用向量的数量积证明直线与直线的平行与垂直直线的方向向量√灵活掌握共线向量性质平面的法向量√利用向量的数量积来计算平面的法向量线、面位置关系√运用空间向量的性质判断线面之间的平行与垂直线线、线面、面面的夹角√运用空间向量的数量积计算线线角线面角面面角北京高考解读2009年2010年(新课标)2011年(新课标)2012年(新课标)2013年(新课标)第16题14分第16题14分第16题14分第16题14分第17题14分新课标剖析满分晋级第12讲空间向量与立体几何综合立体几何9级点面距离与动点问题立体几何10级空间向量与立体几何综合立体几何11级折叠问题与最值问题考点1:空间向量的运算1.向量的加法、减法与数乘向量运算与平面向量类似; 2.空间向量的基本定理:共线向量定理:对空间两个向量a ,b (0b ≠),a b ∥的充要条件是存在实数x ,使a xb =.共面向量定理:如果两个向量a ,b 不共线,则向量c 与向量a ,b 共面的充要条件是,存在唯一的一对实数x ,y ,使c xa yb =+. 空间向量分解定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在唯一一个有序实数组x ,y ,z ,使p xa yb zc =++.表达式xa yb zc ++,叫做向量a ,b ,c 的线性表示式或线性组合.上述定理中,a ,b ,c 叫做空间的一个基底,记作{}a b c ,,,其中a b c ,,都叫做基向量. 由此定理知,空间任意三个不共面的向量都可以构成空间的一个基底. 四点共面定理:设点P 满足等式:OP xOA yOB zOC =++,其中x y z ∈R ,,,则P A B C ,,,四点共面的充要条件是1x y z ++=.<教师备案>四点共面定理的证明.充分性即证:若1x y z ++=,则P A B C ,,,四点共面,必要性即证:若P A B C ,,,四点共面,则有1x y z ++=. 先证充分性:∵1x y z ++=, ∴1z x y =--,∴(1)OP xOA yOB x y OC =++--()()x OA OC y OB OC OC =-+-+xCA yCB OC =++. 即CP xCA yCB =+,由共面向量定理知P A B C ,,,四点共面. 再证必要性:设x y z k ++=, 由条件OP xOA yOB zOC =++, 得:()OP xOA yOB k x y OC =++--()()x OA OC y OB OC kOC =-+-+()()(1)x OA OC y OB OC OC k OC =-+-++-,∴()()(1)OP OC x OA OC y OB OC k OC -=-+-+-, 即(1)CP xCA yCB k OC =++-,∵P A B C ,,,四点共面,而点O 为空间任意一点, ∴只能1k =,即1x y z ++=. 综上知,命题成立.知识点睛12.1空间向量的概念与运算3.两个向量的夹角:已知两个非零向量a b ,,在空间任取一点O ,作OA a =,OB b =,则AOB ∠叫做向量a 与b 的夹角,记作a b 〈〉,.通常规定0πa b 〈〉≤,≤. 在这个规定下,两个向量的夹角就被唯一确定了,并且a b b a 〈〉=〈〉,,. 如果90a b 〈〉=︒,,则称a 与b 互相垂直,记作a b ⊥. 4.两个向量的数量积:已知空间两个向量a ,b ,定义它们的数量积(或内积)为:cos a b a b a b ⋅=〈〉, 空间两个向量的数量积具有如下性质: ⑴ 0ab a b ⇔⋅=;⑵ 2a a a =⋅;⑶ ab a b ⋅≤.空间两个向量的数量积满足如下运算律:⑴ ()()a b a b λλ⋅=⋅;⑵ a b b a ⋅=⋅;⑶ ()a b c a c b c +⋅=⋅+⋅.<教师备案>空间向量的运算法则与平面向量大致一样,只不过是从二维平面转到三维空间.空间向量主要是用来解决立体几何问题.空间向量在暑期没有预习课程,只有这一讲同步讲义.提高班学案1【铺1】 ⑴ 给出下列命题:①两个空间向量相等,则它们起点相同,终点也相同;②若空间向量a ,b ,满足a b =,则a b =; ③在正方体1111ABCD A B C D -中,必有11AC A C =;④若空间向量m ,n ,p 满足m n =,n p =,则m p =; ⑤空间中任意两个单位向量必相等. 其中不正确的命题的个数是( )A .1B .2C .3D .4 ⑵ 如图所示,在平行六面体1111ABCD A B C D -中,M 为AC 与BD的交点,若11A B a =,11A D b =,1A A c =,则下列向量中与1B M 相等的是( ) A .111222a b c -++ B .111222a b c ++C .1122a b c -+D .1122a b c -++⑶ 设1e ,2e 是空间两个不共线的向量,已知122AB e ke =+,123CB e e =+,122CD e e =-,且A B D ,,三点共线,则k =__. ⑷ 若ABC △中,90C ∠=︒,()123A k -,,,()210B -,,,()402C k -,,,则k =__.【解析】 ⑴ C当两向量的起点相同,终点也相同时,这两个向量必相等;但两个向量相等,却不一定有起点相同,终点相同,故①错;根据向量相等的定义,不仅模相等,而且方向相同,故②经典精讲c b a MD 1C 1B 1A 1DCBA错;根据正方体1111ABCD A B C D -中,向量AC 与11A C 的方向相同,模也相等,应有11AC A C =,故③正确;命题④显然正确;空间中任意两个单位向量模均为1,但方向不一定相同,故不一定相等,故⑤错. ⑵ D∵()12AM AB AD =+,∴()12AM a b =+,又∵11B A a =-,1A A c =,1111B M B A A A AM =++,∴()1111222B M a c a b a b c =-+++=-++.⑶ 8-∵123CB e e =+,122CD e e =-,∴()()121212234BD CD CB e e e e e e =-=--+=-,∵A B D ,,三点共线,∴AB xBD =,∴()121212244e ke x e e xe xe +=-=-,∵1e ,2e 是不共线向量,∴24xk x =⎧⎨=-⎩,∴8k =-. ⑷ 10±()612CB k =-,,,()32CA k =--,,,则()()()263222200CB CA k k k ⋅=-⨯-++⨯-=-+=,∴10k =±.【例1】 ⑴已知A B C ,,三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点 A B C ,,一定共面的是( )A .OM OA OB OC =++ B.2OM OA OB OC =--C.1123OM OA OB OC =++ D.111333OM OA OB OC =++⑵设a b ⊥,π3a c =,,π6b c =,,且1a =,2b =,3c =,则a b c ++=( )A .1763+ B.1743+ C.63D.932⑶若()213a x =,,,()129b y =-,,,如果a 与b 为共线向量,则( ) A .11x y ==,B.1122x y ==-, C.1362x y ==-, D.1362x y =-=,⑷已知空间三点()111A ,,,()104B -,,,()223C -,,,则向量AB 与CA 的夹角θ的大小是_______.【解析】 ⑴ D由向量四点共面的充要条件,只有D 选项中OA OB OC ,,系数和为1,所以选D ⑵ A∵2222ππ2221496cos 12cos 176336a b c a b c a b a c b c ++=+++⋅+⋅+⋅=++++=+∴1763a b c ++=+;⑶ C∵()213a x =,,与()129b y =-,,共线,故有213129x y ==-,∴1362x y ==-,.⑷ 120︒()213AB =--,,,()132CA =--,,,()()()()2113321cos 21414AB CA -⨯-+-⨯+⨯-==-⋅,,∴120AB CA θ==︒,.【例2】 ⑴如图所示,平行六面体1111ABCD A B C D -中,E ,F 分别在1B B 和1D D 上,且113BE BB =,123DF DD =,①证明1A E C F ,,,四点共面;②若1EF xAB y AD z AA =++,求x y z ++. F E ABC DA 1B 1C 1D 1⑵已知空间四边形OABC 中,AOB BOC AOC ∠=∠=∠,且OA OB OC ==,M N ,分别是OA BC ,的中点,G 是MN 的中点,求证:OG BC ⊥.【解析】 ⑴①∵11111233AC AB AD AA AB AD AA AA =++=+++111233AB AA AD AA ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭AB BE AD DF =+++AE AF =+,∴1A E C F ,,,四点共面 ②()EF AF AE AD DF AB BE =-=+-+112133AD DD AB BB =+--113AB AD AA =-++,∴1113x y z =-==,,,∴13x y z ++=.⑵ 如图,连接ON ,设AOB BOC AOC θ∠=∠=∠=,OA a =,OB b =,OC c =,则a b c ==,又()12OG OM ON =+()111222OA OB OC ⎡⎤=++⎢⎥⎣⎦()14a b c =++,BC c b =-,所以()()14OG BC a b c c b ⋅=++⋅- ()2214a c ab bc b c b c =⋅-⋅+⋅-+-⋅()22221cos cos 04a a a a θθ=--+=, 所以OG BC ⊥.12.2平行垂直问题GN MO CBA考点2:用空间向量证明平行垂直1.直线的方向向量与平面的法向量的概念; 2.线、面平行与垂直:(设直线12l l ,的方向向量分别为12v v ,,平面αβ,的法向量分别为12n n ,) ⑴线线的平行关系:1l ∥2l (或1l 与2l 重合)1v ⇔∥2v ;线面的平行关系:1l ∥α或1l α⊂⇔存在实数x y ,,使1v xm yn =+110v n ⇔⋅=(其中m n ,为平面α内的两个不共线的向量) 面面的平行关系:α∥β(α,β重合)⇔1n ∥2n ; ⑵线线垂直:12l l 12120v v v v ⇔⇔⋅=;⑶线面垂直:1l α⊥11v n ⇔∥;⑷面面垂直:12120n n n n αβ⇔⇔⋅=;<教师备案>上面的证明线、面平行或垂直的结论不是绝对的,有其它的等价条件,需要灵活运用.一般来讲,证明平行或垂直用纯粹的立体几何更简便,涉及到稍微复杂的求角度时,适合用空间向量无脑算.提高班学案2【铺1】如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,PC AD ⊥.底面ABCD 为梯形,AB DC ∥,AB BC ⊥.PA AB BC ==,点E 在棱PB 上,且2PE EB =.求证:PD ∥平面EAC .EDCBAP【解析】 证法一:以A 为原点、AB 、AP 所在直线分别为y 轴、z 轴,建立如图所示的空间直角坐标系.设PA AB BC a ===,则(000)A ,,,(00)B a ,,,(0)C a a ,,,(00)P a ,,,2033a a E ⎛⎫ ⎪⎝⎭,,.设(0)D a y ,,,则()PC a a a =-,,,(0)AD a y =,,, ∵PC AD ⊥,∴20PC AD a ay ⋅=+=,解得y a =-; 则有(0)D a a -,,,()PD a a a =--,,, 经典精讲知识点睛z yPEB A2033a a EA ⎛⎫=-- ⎪⎝⎭,,,33a a EC a ⎛⎫=- ⎪⎝⎭,,;∵2PD EA EC =+,PD ⊄平面EAC ,∴PD ∥平面EAC .(或者求出平面EAC 的法向量(112)n =-,,得出PD 与n 垂直也可证明结论) 证法二:AB BC =,AB BC ⊥,∴ABC △是等腰直角三角形;PA ⊥平面ABCD ⇒PA AD ⊥,又AD PC ⊥,∴AD ⊥平面PAC ;∴AD AC ⊥.又AB DC ∥,∴DAC △也是等腰直角三角形; ∴22DC AC AB ==.连接BD ,交AC 于点M ,则2DM DC MB AB==. 在BPD △中,2PE DMEB MB==,∴PD EM ∥.又PD ⊄平面EAC ,EM ⊂平面EAC , ∴PD ∥平面EAC .【例3】如图,四棱锥P ABCD -的底面是正方形,PA ⊥底面ABCD ,2PA =,45PDA ∠=︒,点E 、F 分别为棱AB 、PD 的中点.⑴求证:AF ∥平面PCE ;⑵求证:平面PCE ⊥平面PCD ;【追问】PC 上是否存在一点H ,使得AC ⊥面EFH ?【解析】 以A 为坐标原点,建立如图所示的坐标系A xyz -.⑴ ()002P ,,,()020D ,,,()200B ,,,()220C ,,, 则()011F ,,,()100E ,,, 于是,()011AF =,,,()102EP =-,,,()120EC =,, 因为()12AF EP EC =+,所以AF 与EP EC ,共面. 又AF ⊄面ECP ,所以AF ∥平面PCE .⑵ 因为()022PD =-,,,所以0AF PD ⋅=,即AF PD ⊥; 又()200DC =,,,所以0AF DC ⋅=,即AF DC ⊥. 于是AF ⊥面PCD ,由⑴AF ∥平面PCE , 则面PCE ⊥面PCD .【追问】设22H x x ⎛⎫- ⎪ ⎪⎝⎭,,,则()220AC =,,,()111EF =-,,,212EH x x ⎛⎫=- ⎪ ⎪⎝⎭,,, 易知0AC EF ⋅=,由()121202AC EH x x x ⋅=-+=⇒=.于是点112222H ⎛ ⎝⎭,,满足AC ⊥面EFH . MPEBA DP FEDBAHz yx P FE DCBAMz yxPED CB A 【点评】证明线面平行问题,可以有三个途径,一是在平面PCE 内找一向量与AF 共线;二是说明AF能用平面PCE 内的两不共线向量线性表示,三是证明AF 与平面的法向量垂直.证明面面垂直,也可以转化证明它们的法向量垂直,或者其中一个面的法向量平行于另一个面.尖子班学案1【拓2】 如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,ABE △是等腰直角三角形,AB AE =,FA FE =,45AEF ∠=︒. ⑴求证:EF ⊥平面BCE ;⑵设线段CD 的中点为P ,在直线AE 上是否存在一点M ,使得∥PM 平面BCE ?若存在,请指出点M 的位置,并证明你的结论;若不存在,请说明理由;PFEDCBA【解析】 ⑴ ∵ABE △为等腰直角三角形,AB AE =,∴AE AB ⊥.又∵面ABEF ⊥平面ABCD ,AE ⊂平面ABEF ,平面ABEF 平面ABCD AB =,∴AE ⊥平面ABCD .∴AE AD ⊥.因此,AD ,AB ,AE 两两垂直,以A 为坐标原点,建立如图所示的直角坐标系A xyz -. 设1AB =,则1AE =,(010)B ,,,(100)D ,,,(001)E ,,,(110)C ,,.∵FA FE =,45AEF ∠=︒,∴90AFE ∠=︒.从而,11022F ⎛⎫- ⎪⎝⎭,,.∴11022EF ⎛⎫=-- ⎪⎝⎭,,,(011)BE =-,,,(100)BC =,,.110022EF BE ⋅=+-=,0EF BC ⋅=.∴EF BE ⊥,EF BC ⊥.∵BE ⊂平面BCE ,BC ⊂平面BCE ,BC BE B =,∴EF ⊥平面BCE .⑵ 存在点M ,当M 为AE 中点时,PM ∥平面BCE .设(00)M m ,,,1102P ⎛⎫ ⎪⎝⎭,,.从而112,,PM m ⎛⎫=-- ⎪⎝⎭, 由11111002222,,,,PM EF m m ⎛⎫⎛⎫⋅=--⋅--=⇒= ⎪ ⎪⎝⎭⎝⎭,即M 为AE 中点时,PM FE ⊥,又EF ⊥平面BCE ,直线PM 不在平面BCE 内, 故PM ∥平面BCE .目标班学案1【拓3】 如图,四棱锥S ABCD -的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点. ⑴ 求证:AC SD ⊥;⑵ 若SD ⊥平面PAC ,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC .若存在,求:SE EC 的值;若不存在,试说明理由.【解析】 ⑴ 连BD ,设AC 交BD 于O ,连接SO ,由题意知SO ⊥平面ABCD .以O 为坐标原点,OB ,OC ,OS 分别为x 轴、y 轴、z 轴正方向,建立坐标系O xyz -如图.设底面边长为a , 则高()222622SO aa a ⎛⎫=-= ⎪ ⎪⎝⎭. 于是600S a ⎛⎫ ⎪ ⎪⎝⎭,,,200D a ⎛⎫- ⎪ ⎪⎝⎭,,,200C a ⎛⎫ ⎪ ⎪⎝⎭,,, 200OC a ⎛⎫= ⎪ ⎪⎝⎭,,,260SD a a ⎛⎫=-- ⎪ ⎪⎝⎭,,, 0OC SD ⋅=,故OC SD ⊥.从而AC SD ⊥.⑵ 在棱SC 上存在一点E 使BE ∥平面PAC .由题设知,260DS a a ⎛⎫= ⎪ ⎪⎝⎭,,是平面PAC 的一个法向量, 设CE tCS =,则由260CS a a ⎛⎫=- ⎪ ⎪⎝⎭,,,200B a ⎛⎫ ⎪ ⎪⎝⎭,,,220BC a a ⎛⎫=- ⎪ ⎪⎝⎭,,可得: ()2261BE BC CE BC tCS a a t at ⎛⎫=+=+=-- ⎪ ⎪⎝⎭,,. 而22661003BE DS a a a at t ⎛⎫⋅=⇔⨯-+⨯=⇔= ⎪ ⎪⎝⎭. 即当21SE EC =∶∶时,BE DS ⊥.而BE 不在平面PAC 内,故BE ∥平面PAC .考点3:用空间向量求异面直线所成角和点面距离12.3角度与距离问题OPC BA Sx y z EPDBA S1.设直线12l l ,的方向向量分别为12v v ,,则12l l ,所成角θ满足:121212cos cos v v v v v v θ⋅=〈〉=,,π02θ⎡⎤∈⎢⎥⎣⎦, 2.空间中的点面距离⑴体积法⑵空间向量法:定点A 到平面α的距离,可设平面α的法向量为n ,面α内一点B ,则点A 到平面α的距离为AB n n⋅<教师备案>空间两条直线所成角的范围是π02⎡⎤⎢⎥⎣⎦,,异面直线所成角的范围是π02⎛⎤⎥⎝⎦,,而两个向量之间的夹角范围是[]0π,,这些是求空间中两条直线所成角时需要注意的地方.尖子班学案2【铺2】如图,正四棱锥P ABCD -的底面边长与侧面棱长都是2,M 是PC 的中点.⑴ 求异面直线AD 和BM 所成角的大小. ⑵ 求异面直线AM 和PD 所成角的余弦值. 【解析】 ⑴ 解法一:∵AD BC ∥,∴AD 和BM 所成的角就是BC 和BM 所成的角; ∵PBC △是正三角形,∴30MBC ∠=︒; ∴AD 和BM 所成的角为30︒. 解法二:设P 在底面的射影为O ,由于P ABCD -为正四棱锥, 所以O 为底面正方形的中心;以O 点为原点,DA 方向为x 轴正方向,DC 方向为y 轴正方向,OP 为z 轴建立如图所示的空间直角坐标系O xyz -; 由于四棱锥侧面都是边长为2的正三角形, ∴斜高3PH =,2PO =;∴(110)A -,,,(110)B ,,,(110)C -,,,(110)D --,,,()002P ,,;∴11222M ⎛⎫- ⎪ ⎪⎝⎭,,,(200)AD =-,,,31222BM ⎛⎫=-- ⎪ ⎪⎝⎭,,; ∴3cos 23AD BM AD BM AD BM⋅===⋅,; 经典精讲知识点睛Oz yxMPD BAH AB CDPM1第12讲·提高-尖子-目标·教师版∴向量AD 与向量BM 所成的角为30︒,即直线AD 和BM 所成的角为30︒. ⑵ 由⑴解法二得()112PD =---,,,33222AM ⎛⎫=- ⎪ ⎪⎝⎭,,;∴5cos AM PD AM PD AM PD⋅==-⋅,; 而直线AM 和PD 所成角只能在0︒至90︒之间,∴直线AM 和PD 所成角的余弦值为5.【例4】如图,在四棱锥O ABCD -中,底面ABCD 是边长为1的菱形,π4ABC ∠=,OA ⊥底面ABCD ,2OA =,M 为OA 的中点,N 为BC的中点.⑴ 证明:直线MN ∥平面OCD ;⑵ 求异面直线AB 与MD 所成角的大小; ⑶ 求点B 到平面OCD 的距离.【解析】 作AP CD ⊥于点P ,如图,分别以AB 、AP 、AO 所在直线为x 、y 、z 轴建立空间直角坐标系.()000A ,,,()100B ,,,220D ⎛⎫ ⎪ ⎪⎝⎭,,()002O ,,,()001M ,,,200P ⎛⎫ ⎪ ⎪⎝⎭,,2210C ⎛⎫- ⎪ ⎪⎝⎭,,2210N ⎛⎫- ⎪ ⎪⎝⎭,. ⑴ 2211MN ⎛⎫=-- ⎪ ⎪⎝⎭,,202OP ⎛⎫=- ⎪ ⎪⎝⎭,,222OD ⎛⎫=-- ⎪ ⎪⎝⎭,. 设平面OCD 的法向量为()n x y z =,,, 则00n OP n OD ⋅=⋅=,, 即2202220z y z ⎧-=⎪⎨⎪-=⎪⎩,,取2z =解得(042n =,,.∵(22110420MN n ⎛⎫⋅=--⋅= ⎪ ⎪⎝⎭,,,, ∴MN ∥平面OCD . ⑵ 设AB 与MD 所成的角为θ,∵()221001AB MD ⎛⎫==-- ⎪ ⎪⎝⎭,,,,, ∴1cos 2AB MDAB MD θ⋅==⋅,∴π3θ=,即AB 与MD 所成角的大小为π3.PNM O D CB AxyzNM ODCBA24 第12讲·提高-尖子-目标·教师版⑶ 设点B 到平面OCD 的距离为d ,则d 为OB 在平面OCD 的法向量(042n =,,上的投影的绝对值;由()102OB =-,,,得23OB n d n⋅==, 所以点B 到平面OCD 的距离为23.目标班学案2【拓3】 如图,已知棱锥S ABCD -的底面是边长为4的正方形,S 在底面的射影O 落在正方形ABCD内,且O 到AB 、AD 的距离分别是2、1.⑴ 求证:AB SC ⋅是定值;⑵ 已知P 是SC 的中点,且3SO =,问在棱SA 上是否存在一点Q ,使异面直线OP 与BQ 所成的角为90︒?若不存在,说明原因;若存在,则求AQ 的长.O SPCD 解析图xyzOD ABCPS【解析】 ⑴ 以点O 为坐标原点,OS 所在的直线为z 轴,过点O 且与AD 平行的直线为x 轴,过点O 且与AB 平行的直线为y 轴,建立如图的空间直角坐标系. 设高OS h =,则由已知得()()()000210230O A B -,,,,,,,,,()()23000C S h -,,,,,,()()04023AB SC h ==--,,,,,,则()()0243012AB SC h ⋅=⨯-+⨯+⨯-=,即AB SC ⋅是定值.⑵ 在棱SA 上任取一点()000Q x y z ,,,使01AQ AS λλ=,≤≤.由已知得()3333003112222S P OP ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,()213AS =-,,. 由AQ AS λ=得()()00021213x y z λ-+=-,,,,, 从而022x λ=-,01y λ=-,03z λ=,()00023BQ x y z =--,,. 假设OP BQ ⊥,则0OP BQ ⋅=,即()()0003323022x y z --+-+=, ∴()()392400122λλλλ+-+=∈,,,∴34λ=. 故在棱SA 上存在点119244Q ⎛⎫- ⎪⎝⎭,,,使OP BQ ⊥.1第12讲·提高-尖子-目标·教师版此时()22233321314444AQ AS ==-++=.考点4:用空间向量求线面角设直线l 的方向向量为v ,平面α的法向量为n ,则l 与α所成角θ满足: sin cos v nv n v nθ⋅=〈〉=,(π02θ⎡⎤∈⎢⎥⎣⎦,);<教师备案> 用空间向量求角度时很多都不是直接求的角度本身的三角函数值,而是相关联的其它值,需要注意根据角度的范围定出所求角度的具体值.【例5】如图,已知点P 在正方体1111ABCD A B C D -的对角线1BD 上,60PDA ∠=︒. ⑴ 求DP 与1CC 所成角的大小; ⑵ 求DP 与平面11AA D D 所成角的大小.【解析】 如图,以D 为原点,DA 为单位长建立空间直角坐标系D xyz -.则(100)DA =,,,1(001)CC =,,.连结BD ,11B D . 在平面11BB D D 中,延长DP 交11B D 于H . 设(1)(0)DH m m m =>,,, 由已知60DH DA 〈〉=︒,, 由cos DA DH DA DH DA DH ⋅=〈〉, 可得2221m m =+.解得2m =,所以221DH ⎛⎫= ⎪ ⎪⎝⎭,,. ⑴ 因为1220011222cos 12DH CC ⨯+⨯+⨯〈〉==⨯,, 所以145DH CC 〈〉=︒,. 即DP 与1CC 所成的角为45︒.⑵ 平面11AA D D 的一个法向量是(010)DC =,,. 因为220110122cos 212DH DC ⨯+⨯+⨯〈〉==⨯,, 所以60DH DC 〈〉=︒,. 可得DP 与平面11AA D D 所成的角为30︒.经典精讲知识点睛D 1C 1B 1A 1D C BAPP D 1C 1B 1A 1D CB AH x y z24 第12讲·提高-尖子-目标·教师版尖子班学案3【拓2】 如图,在棱长为1的正方体1111ABCD A B C D -中,P 是侧棱1CC 上的一点,且CP m =,⑴试确定m ,使得直线AP 与平面11BDD B 所成角的正切值为32 ⑵在线段11A C 上是否存在一个定点Q ,使得对任意的m ,1D Q 在平面1APD 上的射影垂直于AP ?并证明你的结论.【解析】 ⑴ 建立如图所示的空间直角坐标系,则()100A ,,,()110B ,,, ()01P m ,,,()010C ,,,()000D ,,,()1111B ,,,()1001D ,,,所以()110BD =--,,,()1001BB =,,,()11AP m =-,,,()110AC =-,,,又由0AC BD ⋅=,10AC BB ⋅=知AC 为平面11BB D D 的一个法向量,设AP 与平面11BB D D 所成的角为θ,则2πsin cos 222AP AC AP AC mθθ⋅⎛⎫=-==⎪⎝⎭⨯⨯+, ()223222132m =⨯++,解得13m =,故当13m =时,直线AP 与平面11BDD B 所成的角的正切值为32⑵若在11A C 上存在这样的点Q ,设此点的横坐标为x ,则()11Q x x -,,,()110D Q x x =-,,,依题意,对任意的m 要使1D Q 在平面1APD 上的射影垂直于AP ,等价于()1110102D Q AP AP D Q x x x ⊥⇔⋅=⇔-+-=⇔=,即Q 为11A C 的中点时,满足题设要求.目标班学案3【拓3】如图所示,在直三棱柱111ABC A B C -中,1AB BB =,D 为AC 的中点,1AC ⊥平面1A BD .⑴ 求证:11B C ⊥平面11ABB A ;⑵ 设E 是1CC 的中点,试求出1A E 与平面1A BD 所成角的正弦值.E A 1B 1C 1ABCD【解析】 ⑴ 连接1AB ,∵1AB B B =,∴四边形11ABB A 为正方形,∴11A B AB ⊥.yz Q PD 1C 1B 1A 1DCBAz EC 1B 1A 1AB C D A 1B 1C 1D 11第12讲·提高-尖子-目标·教师版又∵1AC ⊥面1A BD ,∴11AC A B ⊥,∴1A B ⊥面11AB C , ∴111A B B C ⊥.又111BB B C ⊥,∴11B C ⊥平面11ABB A . ⑵ 在矩形11ACC A 中,由11AC A D ⊥可知11~A AD ACC △△,则11112CC CC AC AA AD AC==,故12AC AA =,从而AB BC =. 建立如图的空间直角坐标系,不妨设2AB =, 则()200A ,,,()1202A ,,,()1022C ,,,()021E ,,, 可得()1222AC =-,,,()1221A E =--,,. 由题意可知1AC 即为平面1A BD 的一个法向量, 设1A E 与平面1A BD 所成的角为θ, 则1111113sin cos 233AC A E AC A E AC A Eθ⋅====⨯⨯,.考点5:用空间向量求二面角设平面αβ,的法向量分别为12n n ,,则αβ,所成的二面角θ满足:121212cos cos n n n n n n θ⋅=〈〉=,(θ为平面α,β所生成的二面角,[]0πθ∈,)<教师备案> 利用空间向量求二面角的办法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,要注意结合实际图形判断所求角是锐角还是钝角.【例6】如图,在三棱锥P ABC -中,PA PB =,PA PB ⊥, AB BC ⊥,30BAC ∠=︒,平面PAB ⊥平面ABC .⑴ 求证:PA ⊥平面PBC ;⑵ 求二面角P AC B --的余弦值;⑶ 求异面直线AB 和PC 所成角的余弦值.【追问】在线段PC 上有一点E ,PE PC λ=,求λ的值,使得二面角C AB E --的大小为60︒?【解析】 在平面PAB 中作PO AB ⊥于点O ,∵平面PAB ⊥平面ABC ,∴PO ⊥平面ABC .过点O 作BC 的平行线,交AC 于点D .经典精讲知识点睛PBA24 第12讲·提高-尖子-目标·教师版如图,以O 为原点,直线OD OB OP ,,分别为x 轴, y 轴,z 轴,建立空间直角坐标系.设6PA PB ==.∵PA PB ⊥, ∴233AB PO BO AO ===. ∵30AB BC BAC ⊥∠=︒,, ∴tan302BC AB =⋅︒=.∴()000O ,,,()030A ,,()030B ,, ()230C ,,,(003P ,,,()100.D ,, ⑴ ∵(033PA =-,,()200BC =,,, ∴0PA BC ⋅=,∴PA BC ⊥. 又∵PA PB ⊥, ∴PA ⊥平面PBC .⑵ 由⑴知,(003OP =,,为平面ABC 的一个法向量,设()n x y z =,,为平面PAC 的一个法向量,∵()2230AC =,,则3302230n PA y z n AC x y ⎧⋅=-=⎪⎨⋅=+=⎪⎩,令1y =得,31x z ==-,则()311n =--,,, ∴35cos 35n OP n OP n OP⋅-===⨯⨯,由图象知,二面角P AC B --为锐角,故二面角P AC B --5. ⑶ ∵()(0230233AB PC ==,,,,-,∴30cos AB PC AB PC AB PC⋅〈〉==,, ∴异面直线AB 和PC 30. 【追问】由PE PC λ=,可得点((2313E λλλ-,,,平面ABC 的法向量为()003OP =,, 可以算出平面ABE 的一个法向量为)()13102n λλ=--,,,于是11πcos 3OP n OP n ⋅=,解得13λ=(1-舍).提高班学案3【拓1】如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动.AE 等于何值时,二面角1D EC D --的大小为π4?PBOM DCxyz D 1C 1B 1A 11第12讲·提高-尖子-目标·教师版【解析】 以D 为坐标原点,直线DA ,DC ,1DD 分别为x ,y ,z 轴,建立空间直角坐标系,设AE x =,则()1101A ,,,()1001D ,,,()10E x ,,,()100A ,,,()020C ,,.由题意可知1DD 为平面ECD 的一个法向量,设平面1D EC 的法向量为()n a b c =,,,∵()120CE x =-,,,()1021D C =-,,,()1001DD =,,, ∴()120020.0b c n D C a b x n CE ⎧-=⋅=⎧⎪⎪⇒⎨⎨+-=⎪⋅=⎪⎩⎩,令1b =,得2c =,2a x =-, ∴()212n x =-,,. 依题意()121π22cos425n DD n DD x ⋅===⋅-+ ∴123x =+,223x =-∴23AE =1D EC D --的大小为π4.【备选】如图,在直三棱柱111ABC A B C -中,1AB =,13AC AA ==60ABC ∠=︒.⑴ 证明:1AB AC ⊥; ⑵ 求二面角1A ACB --的余弦值. 【解析】 方法一:⑴ ∵三棱柱111ABC A B C -为直三棱柱,∴1AB AA ⊥在ABC △中,1AB =,3AC ,60ABC ∠=︒, 由正弦定理得30ACB ∠=︒, ∴90BAC ∠=︒,即AB AC ⊥.∴AB ⊥平面11ACC A ,又1A C ⊂平面11ACC A ,∴1AB AC ⊥. ⑵ 如图,作1AD AC ⊥交1A C 于点D 点,连结BD , 由三垂线定理知1BD AC ⊥∴ADB ∠为二面角1A ACB --的平面角. 在1Rt AAC △中,113366AA AC AD AC ⋅⋅== 在Rt BAD △中,6tan AB ADB AD ∠==∴15cos ADB ∠=, 即二面角1A ACB --15. 方法二:⑴∵三棱柱111ABC A B C -为直三棱柱,∴1AA AB ⊥,1AA AC ⊥.在ABC △,1AB =,3AC =,60ABC ∠=︒,由正弦定理得30ACB ∠=︒,∴90BAC ∠=︒,即AB AC ⊥. 如图,建立空间直角坐标系,则(000)A ,,,(100)B ,,,()030C ,,(1003A ,,DCBA C 1B 1A 1CB AC 1B 1A 1AB C DA 1B 1C 1D 1Ez y x24 第12讲·提高-尖子-目标·教师版∴(100)AB =,,,()1033AC =-,,∵()11003030AB AC ⋅=⨯+⨯+⨯-= ∴1AB AC ⊥. ⑵ 如图可取(100)m AB ==,,为平面1AAC 的法向量, 设平面1A BC 的法向量为()n x y z =,,,则0BC n ⋅=,10A C n ⋅=,又()130BC =-,,,∴30330x y y z ⎧-+=⎪⎨-=⎪⎩∴3x y =,z y = 不妨取1y =,则()311n =,,()22222231101015cos 311100m n m n m n⋅⨯+⨯+⨯===⋅++⋅++,,结合图象知二面角1A ACB --为锐二面角, ∴二面角1A ACB --的余弦值为15.如图,在三棱柱111ABC A B C -中,AB AC ⊥,顶点1A 在底面ABC 上的射影恰为B 点,且12AB AC A B ===. ⑴ 分别求出1AA 与底面ABC 、棱BC 所成的角;⑵ 在棱11B C 上确定一点P ,使14AP =并求出二面角1P AB A --的平面角的余弦值.【解析】 ⑴ 因1A 在底面ABC 上的射影恰为B 点,则1A B ⊥底面ABC .所以1A AB ∠就是1AA 与底面ABC 所成的角.因112AB A B A B AB ==⊥,,故1π4A AB ∠=,即1AA 与底面ABC 所成的角是π4.如图,以A 为原点建立空间直角坐标系,则()200C ,,,()020B ,,,()1022A ,,,()1042B ,,,()1222C ,,,()1022AA =,,,()11220BC B C ==-,,,则1111cos 288AA BC AA BC AA BC⋅===-⨯⋅,,故1AA 与棱BC 所成的角是π3.⑵ 设()111220B P B C λλλ==-,,,则()2422P λλ-,,. 于是()2214424142AP λλλ=+-+=(32λ=舍去),则P 为棱11B C 的中点,其坐yzxC B AC 1B 1A 1Pyx A B CC 1B 1A 1A 1B 1C 1CBA1第12讲·提高-尖子-目标·教师版标为()132P ,,. 设平面PAB 的法向量为()1n x y z =,,,则11032022000n AP x y z x z y y n AB ⎧⋅=++==-⎧⎧⎪⇒⇒⎨⎨⎨==⋅=⎩⎩⎪⎩,,,, 不妨取1z =,得()1201n =-,,. 而平面1ABA 的法向量为()2100n =,,,则121212225cos 55n n n n n n ⋅-===-⋅,, 故二面角1P AB A --的平面角的余弦值是255.【演练1】⑴ 设空间四点O A B P ,,,满足OP mOA nOB =+,其中1m n +=,则( )A .P AB ∈ B .P AB ∉C .点P 不一定在直线AB 上D .以上都不对⑵ 已知a b ,是空间两个向量,若2a =,2b =,7a b -=,则cos a b =,_ 【解析】 ⑴ A已知1m n +=,则1m n =-,()1OP n OA nOB OA nOA nOB =-+=-+()OP OA n OB OA ⇒-=-AP nAB ⇒=,0AB ≠∵,AP ∴和AB 共线,即点A P B ,,共线 ⑵18将7a b -=化为()27a b -=,求得12a b ⋅=,再由cos a b a b a b ⋅=,求得1cos 8a b =,【演练2】在正方体1111ABCD A B C D -中,M 、N 分别为棱1AA 和1BB 的中点,则异面直线CM 与1D N夹角的正弦值为( )A .19B .459C .259D .23 实战演练24 第12讲·提高-尖子-目标·教师版NMA 1B 1C 1D 1AB CD解析图:zyxA 1B 1C 1D 1ABC DMN【解析】 B设正方体棱长为2,以D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系,可知()221CM =-,,,()1221D N =-,,, 1111cos 999CM D N CM D N CM D N⋅===-⨯⨯,,∴145sin CM D N =,【演练3】三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为111A B C ,90BAC ∠=︒,1A A ⊥平面ABC ,13A A =1122AB AC AC ===,D 为BC 中点.⑴ 证明:平面1A AD ⊥平面11BCC B ; ⑵ 求二面角1A CC B --的余弦值.【解析】 ⑴ 如图,建立空间直角坐标系,则()()()000200020A B C ,,,,,,,,, ((11003013A C ,,,,,.∵D 为BC 的中点,∴D 点坐标为()110,,. ∴()()()1110003220AD AA BC ===-,,,,,,,,, ∵()1212000AD BC ⋅=⨯-+⨯+⨯=, ()10202300AA BC ⋅=⨯-+⨯+=.∴1BC AD BC AA ⊥⊥,,又1AA AD A =,∴BC ⊥平面1A AD ,又BC ⊂平面11BCC B ,∴平面1A AD ⊥平面11BCC B . ⑵ ∵AB ⊥平面11ACC A ,如图,可取()200m AB ==,,为平面11ACC A 的法向量, 设平面11BCC B 的法向量为()n x y z =,,,则0BC n ⋅=,10CC n ⋅=. ∵(1013CC =-,,,∴22030x y y z -+=⎧⎪⎨-=⎪⎩, 可取1y =,则311n ⎛= ⎝⎭,,. DABCA 1B 1C 1z yA 1B 1C 1ABDC1第12讲·提高-尖子-目标·教师版222222321010213cos 3200113m n ⨯+⨯+〈〉==⎛⎫++⋅++ ⎪ ⎪⎝⎭,. ∴二面角1A CC B --21.【演练4】如图,已知长方体1AC 中,112AB BC BB ===,,连接1B C ,过B 点作1B C 的垂线交1CC 于E ,交1B C 于F .⑴ 求证:1AC ⊥平面EBD ; ⑵ 求点A 到平面11A B C 的距离;⑶ 求直线ED 与平面11A B C 所成角的正弦值.【解析】 如图建立空间直角坐标系.∵1B BC BCE ∆∆∽,故2112BC CE BB ==; ⑴ ()()1000002A A ,,,,,, ()()()100010110B D C ,,,,,,,,,1112E ⎛⎫ ⎪⎝⎭,,,∴()111112011022AC BE DE ⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭,,,,,,,, ∵()111011202AC BE ⋅=⨯+⨯+-⨯=, ()111110202AC DE ⋅=⨯+⨯+-⨯=. ∴1A C BE ⊥,1A C DE ⊥,即1AC BE ⊥,1AC DE ⊥, ∵BEDE E =,所以1A C ⊥平面EBD .⑵ 设平面11A B C 的一个法向量为()m x y z =,,由11(100)A B =,,,1(012)B C =-,,,而1110A B m B C m ⎧⋅=⎪⎨⋅=⎪⎩,∴02x y z =⎧⎨=⎩,令1z =,得()021m =,,;而()1002AA =,,, ∴所求的距离为12555AA m d m⋅===⑶ 由⑵知,()021m =,,;而1102ED ⎛⎫=-- ⎪⎝⎭,,, ∴设ED 与m 所成角为θ,则1cos 5m ED m EDθ⋅==-⋅所以直线ED 与平面11A B C 所成角的正弦值为15.【演练5】如图,已知长方体1111ABCD A B C D -中,2AB =,1BC =,12AA =,棱1DD 上是否存在点P ,使平面1APC ⊥平面1ACC ,证明你的结论.A 1D 1B 1C 1A BCD E F F E D 1C 1B 1A 1D CBA x y z24 第12讲·提高-尖子-目标·教师版【解析】 如图建立空间直角坐标系,则()100A ,,,()120B ,,,()020C ,,,()1022C ,,,假设P 点存在,且DP a =,则∵平面1APC ⊥平面1ACC ,()00P a ,,, 法一:∴在平面1ACC 中作1CH AC ⊥,垂足为H 1A H C ∵,, 三点共线,∴()11CH CA CC λλ=+-()()()1201002λλ=-+-,,,, ()222λλλ=--,,,1CH AC ⊥∵,()()12221220CH AC λλλ⋅=--⋅-=∴,,,,, 49λ=∴,4810999CH ⎛⎫=- ⎪⎝⎭∴,,,∵面1APC ⊥面1ACC ,1CH AC ⊥,CH ⊥∴面1APC CH AP ⇒⊥, ()4810100999CH AP a ⎛⎫⋅=-⋅-= ⎪⎝⎭∴,,,,,25a =∴,∴存在点2005P ⎛⎫ ⎪⎝⎭,,,使面1APC ⊥面1ACC .法二:()10,0,2CC =,()11,2,2AC =-,()1,0,AP a =-,设平面1ACC 的法向量为(),,m r s t =,平面1APC 的法向量为(),,n x y z =, 则1120220m CC t m AC r s t ⎧⋅==⎪⎨⋅=-++=⎪⎩,10220n AP x az n AC x y z ⎧⋅=-+=⎪⎨⋅=-++=⎪⎩ 即可取()2,1,0m =,2,,12a n a -⎛⎫= ⎪⎝⎭, 所以平面1ACC ⊥平面1APC ⇔0m n m n ⊥⇔⋅=,即2202a a -+=,解得25a =.∴存在点2005P ⎛⎫ ⎪⎝⎭,,,使平面1APC ⊥平面1ACC .在棱长为2的正方体1111ABCD A B C D -中,E 、F 、G 分别为AD 、1AA 、11A B 中点, ⑴ 求B 到平面EFG 的距离;⑵ 求二面角1G EF D --的余弦值.大千世界ABC DA 1B 1C 1D 1P zyxHP D 1C 1B 1A 1D C B AD 1C 1B 1A 1DCBAE FG1第12讲·提高-尖子-目标·教师版【解析】 以A 为原点,AB 、AD 、1AA 分别为x 、y 、z 轴建立如图所示的坐标系.则(010)E ,,,()200B ,,,(001)F ,,,(102)G ,,; 于是向量(011)FE =-,,,(101)FG =,,; 设面EFG 的法向量为()n x y z =,,,则0n FE n FG ⋅=⋅=, 即00y z x z -=⎧⎨+=⎩,于是可取(111)n =-,,; ⑴ (210)EB =-,,,设B 到面EFG 的距离为h ;则33n EB h n⋅===⑵ 平面11ADD A 的法向量可取成(100)m =,,;于是3cos 3m n m n m n⋅===, 由图象知二面角1G EF D --3G EA C D1B 1C D 1xy。

高中数学 第3章 空间向量与立体几何 3.1 空间中向量的概念和运算学案 湘教版选修2-1-湘教版高

高中数学 第3章 空间向量与立体几何 3.1 空间中向量的概念和运算学案 湘教版选修2-1-湘教版高

3.1 空间中向量的概念和运算1.理解空间向量的概念,掌握空间向量的几何表示方法和字母表示方法.2.掌握空间向量的线性运算,数量积.3.能运用运算法则及运算律解决一些简单几何问题.1.空间向量 (1)空间向量的定义在空间,把具有大小和方向的量叫作空间向量,向量的大小叫作向量的长度或模. (2)空间向量及其模的表示方法空间向量用有向线段表示,有向线段的长度表示向量的模.如图,a 的起点是A ,终点是B ,则a 也可记作AB →,其模记作|AB →|或|a |.2.空间向量的加减法如图,从任意一点O 出发作OA →=a ,OB →=b .并且从A 出发作AC →=b ,则a +b =OC →,a -b =BA →.3.空间向量加法的运算律 (1)交换律:a +b =b +a .(2)结合律:(a +b )+c =a +(b +c ). 4.空间向量与实数相乘(1)定义:实数λ与空间向量a 的乘积λa 仍然是一个向量. (2)向量a 与λa 的关系λ的范围 方向关系 模的关系λ>0 方向相同λa 的模是a 的模的|λ|倍λ=0λa =0,其方向是任意的λ<0方向相反(3)空间向量与实数的乘法运算律①λ(a +b )=λa +λb (对向量加法的分配律). ②(λ1+λ2)a =λ1a +λ2a (对实数加法的分配律).5.空间向量的数量积(1)定义:从空间任意一点O 出发作OA →=a ,OB →=b ,则θ=∠AOB 就是a ,b 所成的角,a ,b 的数量积a ·b =|a ||b |·cos__θ.(2)空间向量数量积的运算律 向量与实数相乘和向量 数量积的结合律(λa )·b =λ(a·b )交换律 a·b =b·a 分配律a·(b +c )=a·b +a·c1.下列命题错误的是( )A .空间向量AB →的长度与向量BA →的长度相等 B .零向量没有长度,所以它不是空间向量C .同向且等长的有向线段表示同一向量或相等的向量D .若a =b ,b =c ,则a =c解析:选B.A 中的两个向量互为相反向量,所以它们长度相等;空间向量并不是一个立体图形,只要是存在于立体空间内的向量都是空间向量,所以B 错误;C 是相等向量定义的另外一个说法;我们研究的向量是自由向量,只要向量相等都可以移动到同一起点,所以D 正确.2.在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,设AB →=a ,AD →=b ,AA 1→=c ,则a·(b +c )的值为( )A .1B .0C .-1D .-2解析:选B.a·(b +c )=a·b +a·c =0.3.在正方体ABCD ­A 1B 1C 1D 1中,向量AA 1→与CC 1→是______向量,向量AC →与C 1A 1→是________向量.答案:相等 相反空间向量的加减运算如图所示,已知长方体ABCD ­A ′B ′C ′D ′.化简下列向量表达式,并在图中标出化简结果.(1)AA ′→-CB →;(2)AA ′→+AB →+B ′C ′→.【解】 (1)AA ′→-CB →=AA ′→-DA →=AA ′→+AD →=AA ′→+A ′D ′→=AD ′→. (2)AA ′→+AB →+B ′C ′→=(AA ′→+AB →)+B ′C ′→ =AB ′→+B ′C ′→=AC ′→. 向量AD ′→,AC ′→如图所示.试把本例(2)中长方体中的体对角线所对应向量AC ′→用向量AA ′→,AB →,AD→表示.解:在平行四边形ACC ′A ′中,由平行四边形法则可得AC ′→=AC →+AA ′→, 在平行四边形ABCD 中,由平行四边形法则可得AC →=AB →+AD →, 故AC ′→=AB →+AD →+AA ′→.空间向量加法、减法运算的两个技巧(1)向量加减法的三角形法则是解决空间向量加法、减法运算的关键,灵活应用相反向量可使向量间首尾相接.(2)利用三角形法则和平行四边形法则进行向量的加法运算时,务必要注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得更准确的结果.1.化简(AB →-CD →)-(AC →-BD →)=________.解析:法一:(利用相反向量的关系转化为加法运算) (AB →-CD →)-(AC →-BD →)=AB →-CD →-AC →+BD → =AB →+DC →+CA →+BD →=AB →+BD →+DC →+CA →=0. 法二:(利用向量的减法运算法则求解) (AB →-CD →)-(AC →-BD →)=(AB →-AC →)+BD →-CD →=CB →+BD →-CD →=CD →-CD →=0. 答案:02.如图,在四棱锥V ­ABCD 中,化简VA →-VC →+AB →+BC →.解:VA →-VC →+AB →+BC →=CA →+AC →=0.空间向量的线性运算如图所示,已知空间四边形ABCD 中,向量AB →=a ,AC →=b ,AD →=c ,若M 为BC 中点,G 为△BCD 的重心,试用a 、b 、c 表示下列向量:(1)DM →;(2)GM →;(3)AG →.【解】 (1)连接AM ,在△ADM 中,DM →=DA →+AM →, 由线段中点的向量表示知 AM →=12(AB →+AC →)=12(a +b ),由相反向量的概念知DA →=-AD →=-c ,所以DM →=DA →+AM → =12(a +b )-c =12(a +b -2c ). (2)在△BCD 中,GM →=13DM →=13·12(a +b -2c ) =16a +16b -13c .(3)在△ADG 中,由三角形重心的性质,得 AG →=AD →+DG →=c +23DM →=c +13(a +b -2c )=13(a +b +c ).(1)有限多个空间向量a 1,a 2,a 3,…,a n 相加,可以从某点O 出发,逐一引向量OA 1→=a 1,A 1A 2→=a 2,…,A n -1A n =a n .如图,于是以所得折线OA 1A 2…A n 的起点O 为起点,终点A n 为终点的向量OA n →就是a 1,a 2,…,a n 的和,即OA n→=OA 1→+A 1A 2→+…+A n -1A n ――→=a 1+a 2+…+a n .此即为空间向量的多边形法则.(2)用折线作向量的和时,若折线的终点与起点重合,则和向量为零向量.已知ABCD 为正方形,P 是ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形ABCD 的中心O .Q 是CD 的中点,求下列各式中x 、y 的值:(1)OQ →=PQ →+xPC →+yPA →; (2)PA →=xPO →+yPQ →+PD →. 解:如图, (1)因为OQ →=PQ →-PO →=PQ →-12(PA →+PC →)=PQ →-12PA →-12PC →,所以x =y =-12.(2)因为PA →+PC →=2PO →, 所以PA →=2PO →-PC →. 又因为PC →+PD →=2PQ →, 所以PC →=2PQ →-PD →.从而有PA →=2PO →-(2PQ →-PD →)=2PO →-2PQ →+PD →. 所以x =2,y =-2.向量的数量积及应用已知长方体ABCD ­A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AA 1B 1B 的中心,F为A 1D 1的中点.求下列向量的数量积. (1)BC →·ED 1→;(2)BF →·AB 1→.【解】 如图所示,设AB →=a ,AD →=b ,AA 1→=c , 则|a |=|c |=2,|b |=4,a ·b =b ·c =c ·a =0.(1)BC →·ED 1→=BC →·(EA 1→+A 1D 1→)=b ·⎣⎢⎡⎦⎥⎤12(c -a )+b =|b |2=42=16.(2)BF →·AB 1→=(BA 1→+A 1F →)·(AB →+AA 1→) =⎝⎛⎭⎪⎫c -a +12b ·(a +c ) =|c |2-|a |2=22-22=0.若本例的条件不变,计算EF →·FC 1→.解:EF →·FC 1→=(EA 1→+A 1F →)·(FD 1→+D 1C 1→) =⎣⎢⎡⎦⎥⎤12(AA 1→-AB →)+12AD →·⎝ ⎛⎭⎪⎫12AD →+AB →=⎣⎢⎡⎦⎥⎤12(c -a )+12b ·⎝ ⎛⎭⎪⎫12b +a =12(-a +b +c )·⎝ ⎛⎭⎪⎫12b +a=-12|a |2+14|b |2=2.(1)空间向量运算的两种方法①利用定义:利用a ·b =|a ||b |cos 〈a ,b 〉并结合运算律进行计算.②利用图形:计算两个向量的数量积,可先将各向量移到同一顶点,利用图形寻找夹角,再代入数量积公式进行运算.(2)在几何体中求空间向量数量积的步骤①首先将各向量分解成已知模和夹角的向量的组合形式.②利用向量的运算律将数量积展开,转化为已知模和夹角的向量的数量积. ③代入a ·b =|a ||b |cos 〈a ,b 〉求解.已知|a |=3,|b |=4,〈a ,b 〉=120°,则(3a -2b )·(a +2b )=________.解析:(3a -2b )·(a +2b )=3|a |2+4a ·b -4|b |2=3|a |2+4|a ||b |cos 120°-4|b |2=3×9+4×3×4×⎝ ⎛⎭⎪⎫-12-4×16=27-24-64=-61. 答案:-611.在运用空间向量的运算法则化简向量表达式时,要结合空间图形,观察分析各向量在图形中的表示,运用运算法则,化简到最简为止.2.证明两向量共线的方法为:首先判断两向量中是否有零向量.若有,则两向量共线;若两向量a ,b 中,b ≠0,且有a =λb (λ∈R ),则a ,b 共线.3.两向量的数量积,其结果是实数,而不是向量,它的值为两向量的模与两向量夹角的余弦值的乘积,其符号由夹角的余弦值决定.4.当a ≠0时,由a ·b =0不能推出b 一定是零向量,这是因为任一个与a 垂直的非零向量b ,都有a ·b =0,这由向量的几何意义就可以理解.1.如图所示,在平行六面体ABCD ­A 1B 1C 1D 1中,AA 1→+D 1C 1→-BB 1→=( )A.AB 1→B.DC →C.AD →D.BA →解析:选B.因为D 1C 1→=A 1B 1→, 所以AA 1→+D 1C 1→-BB 1→=AA 1→+A 1B 1→-BB 1→=AB 1→+B 1B →=AB →. 又AB →=DC →,所以AA 1→+D 1C 1→-BB 1→=DC →.2.如图所示,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP →·AC →=________.解析:因为AP →·AC →=AP →·(AB →+BC →)=AP →·AB →+AP →·BC →=AP →·AB →+AP →·(BD →+DC →)=AP →·BD →+2AP →·AB →,因为AP ⊥BD ,所以AP →·BD →=0.因为AP →·AB →=|AP →||AB →|cos ∠BAP =|AP →|2, 所以AP →·AC →=2|AP →|2=2×9=18. 答案:183.如图所示,已知平行六面体ABCD ­A 1B 1C 1D 1,M 为A 1C 1与B 1D 1的交点,化简下列向量表达式.(1)AA 1→+A 1B 1→; (2)AA 1→+A 1M →-MB 1→; (3)AA 1→+A 1B 1→+A 1D 1→; (4)AB →+BC →+CC 1→+C 1A 1→+A 1A →. 解:(1)AA 1→+A 1B 1→=AB 1→.(2)AA 1→+A 1M →-MB 1→=AA 1→+A 1M →+MD 1→=AD 1→. (3)AA 1→+A 1B 1→+A 1D 1→=AA 1→+A 1C 1→=AC 1→. (4)AB →+BC →+CC 1→+C 1A 1→+A 1A →=0.[A 基础达标]1.若向量a 、b 是平面α内的两个不相等的非零向量,非零向量c 在直线l 上,则“c·a =0且b·c =0”是“l ⊥α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B.当a ∥b 时,由c·a =0且c·b =0得不出l ⊥α;反之,l ⊥α一定有c·a =0且c·b =0.故选B.2.如图,在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ等于( )A.23B.13C .-13D .-23解析:选A.因为CD →=CA →+AD →=CA →+23AB →=CA →+23(CB →-CA →)=13CA →+23CB →,所以λ=23.3.如图,已知空间四边形ABCD 的对角线为AC 、BD ,设G 是CD 的中点,则AB →+12(BD →+BC →)等于( )A.AG →B.CG →C.BC →D.12BC → 解析:选A.AB →+12(BD →+BC →)=AB →+BG →=AG →.4.在正方体ABCD ­A 1B 1C 1D 1中,下列选项中化简后为零向量的是( ) A.AB →+A 1D 1→+C 1A 1→ B.AB →-AC →+BB 1→ C.AB →+AD →+AA 1→D.AC →+CB 1→ 解析:选A.在A 选项中,AB →+A 1D 1→+C 1A 1→=(AB →+AD →)+CA →=AC →+CA →=0. 5.如图,在平行六面体ABCD ­A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则下列向量中与B 1M →相等的向量是( )A .-12a +12b +cB.12a +12b +c C.12a -12b +c D .-12a -12b +c解析:选A.注意到AM →=12AC →=12A 1C 1→=12(A 1B 1→+A 1D 1→)=12(a +b ),B 1M →=B 1A 1→+A 1A →+AM →=-a+c +12(a +b )=-12a +12b +c .6.如图,已知正三棱柱ABCA 1B 1C 1的各条棱长都相等,M 是侧棱CC 1的中点,则直线AB 1和BM 的位置关系是________.解析:因为AB 1→=AA 1→+AB →,BM →=BC →+12CC 1→=BC →+12AA 1→,设三棱柱的各棱长均为a , 则AB 1→·BM →=(AA 1→+AB →)·(BC →+12AA 1→)=AA 1→·BC →+12AA 1→2+AB →·BC →+12AB →·AA 1→=0+12a 2+a 2cos 120°+0=0.所以AB 1→⊥BM →. 答案:垂直7.如图,已知四棱柱ABCD ­A 1B 1C 1D 1的底面ABCD 是矩形,AB =4,AA 1=3,∠BAA 1=60°,E 为棱C 1D 1的中点,则AB →·AE →=________.解析:AE →=AA 1→+AD →+12AB →,AB →·AE →=AB →·AA 1→+AB →·AD →+12AB →2=4×3×cos 60°+0+12×42=14.答案:148.命题:①向量a 、b 、c 共面,则它们所在的直线也共面;②若a 与b 共线,则存在唯一的实数λ,使b =λa ;③若A 、B 、C 三点不共线,O 是平面ABC 外一点,OM →=13OA →+13OB→+13OC →,则点M 一定在平面ABC 上,且在△ABC 内部. 上述命题中的真命题是________.解析:①中a 所在的直线其实不确定,故①是假命题;②中当a =0,而b ≠0时,则找不到实数λ,使b =λa ,故②是假命题;③中M 是△ABC 的重心,故M 在平面ABC 上且在△ABC 内,故③是真命题.答案:③9.已知正四面体O ­ABC 的棱长为1.求:(1)OA →·OB →;(2)(OA →+OB →)·(CA →+CB →);(3)|OA →+OB →+OC →|.解:(1)OA →·OB →=|OA →|·|OB →|·cos ∠AOB=1×1×cos 60°=12. (2)(OA →+OB →)·(CA →+CB →)=(OA →+OB →)·(OA →-OC →+OB →-OC →)=(OA →+OB →)·(OA →+OB →-2OC →)=12+1×1×cos 60°-2×1×1×cos 60°+1×1×cos 60°+12-2×1×1×cos 60°=1.(3)|OA →+OB →+OC →|=(OA →+OB →+OC →)2 =12+12+12+2(1×1×cos 60°)×3= 6.10.如图所示,已知空间四边形ABCD ,连接AC 、BD ,E 、F 、G 分别是BC 、CD 、DB 的中点,请化简(1)AB →+BC →+CD →;(2)AB →+GD →+EC →.并在图中标出化简结果的向量.解:(1)AB →+BC →+CD →=AC →+CD →=AD →.(2)因为E 、F 、G 分别为BC 、CD 、DB 的中点,所以BE →=EC →,EF →=GD →.所以AB →+GD →+EC →=AB →+BE →+EF →=AF →.故所求向量AD →,AF →,如图所示.[B 能力提升]11.正四面体A BCD 的棱长为a ,点E 、F 、G 分别为棱AB 、AD 、DC 的中点,则四个数量积:①2BA →·AC →;②2AD → ·BD →;③2FG →·AC →;④2EF →·CB→中结果为a 2的个数为( )A .1B .2C .3D .4 解析:选B.①2BA →·AC →=2·a ·a cos 120°=-a 2.②2AD →·BD →=2·a ·a ·cos 60°=a 2.③2FG →·AC →=2·a 2·a ·cos 0°=a 2. ④2EF →·CB →=2·a 2·a ·cos 120°=-a 22. 12.已知A ,B ,C 三点共线,则对空间任一点O ,存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.解析:因为A ,B ,C 三点共线,所以存在唯一实数k 使AB →=kAC →,即OB →-OA →=k (OC →-OA →),所以(k -1)OA →+OB →-kOC →=0.又λOA →+mOB →+nOC →=0,令λ=k -1,m =1,n =-k ,则λ+m +n =0.答案:013.已知平行六面体ABCD ­A ′B ′C ′D ′,化简下列向量表达式.(1)AB →+BC →;(2)AB →+AD →+AA ′→;(3)AB →+AD →+12CC ′→; (4)13(AB →+AD →+DD ′→).解:如图所示,(1)AB →+BC →=AC →.(2)AB →+AD →+AA ′→=AC →+CC ′→=AC ′→.(3)设M 是线段CC ′的中点,则 AB →+AD →+12CC ′→=AC →+CM →=AM →.(4)设G 是线段AC ′的三等分点,则 13(AB →+AD →+DD ′→)=13(AC →+CC ′→)=13AC ′→=AG →.14.(选做题)在正方体ABCD ­A 1B 1C 1D 1中,O 为AC 与BD 的交点,G 为CC 1的中点,求证:A 1O ⊥平面GBD .证明:设A 1B 1→=a ,A 1D 1→=b ,A 1A →=c , 则a·b =0,b·c =0,a·c =0. 而A 1O →=A 1A →+AO →=A 1A →+12(AB →+AD →)=c +12(a +b ), BD →=AD →-AB →=b -a ,OG →=OC →+CG →=12(AB →+AD →)+12CC 1→=12(a +b )-12c .所以A 1O →·BD →=(c +12a +12b )·(b -a ) =c ·(b -a )+12(a +b )·(b -a )=12(|b |2-|a |2)=0.所以A 1O →⊥BD →,所以A 1O ⊥BD .同理可证:A 1O →⊥OG →,所以A 1O ⊥OG .又因为OG ∩BD =O ,且A 1O ⊄平面BDG ,所以A1O⊥平面GBD.。

空间向量与立体几何(教师)

空间向量与立体几何(教师)

第一讲 空间向量与立体几何11.空间向量的概念向量:在空间,我们把具有大小和方向的量叫做向量。

如位移、速度、力等相等向量:长度相等且方向相同的向量叫做相等向量。

表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。

说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。

说明:①引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量加法的平行四边形法则在空间仍成立3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。

a平行于b记作a∥b。

注意:当我们说a、b 共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当我们说a、b平行时,也具有同样的意义。

共线向量定理:对空间任意两个向量a (a ≠0)、b ,a ∥b 的充要条件是存在实数λ使b =λa注:⑴上述定理包含两个方面:①性质定理:若a ∥b (a ≠0),则有b =λa,其中λ是唯一确定的实数。

②判断定理:若存在唯一实数λ,使b =λa (a ≠0),则有a ∥b (若用此结论判断a、b所在直线平行,还需a (或b )上有一点不在b (或a)上)。

⑵对于确定的λ和a ,b =λa 表示空间与a 平行或共线,长度为 |λa |,当λ>0时与a同向,当λ<0时与a反向的所有向量⑶若直线l ∥a,l A ∈,P 为l 上任一点,O 为空间任一点,下面根据上述定理来推导OP 的表达式。

推论:如果 l 为经过已知点A 且平行于已知非零向量a的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式OA OP =a t+ ①其中向量a叫做直线l 的方向向量在l 上取a AB=,则①式可化为 .)1(OB t OA t OP +-= ②当21=t 时,点P 是线段AB 的中点,则).(21OB OA OP +=③①或②叫做空间直线的向量参数表示式,③是线段AB 的中点公式。

数学选修2-1苏教版:第3章 空间向量与立体几何 3.2.1-3.2.2

数学选修2-1苏教版:第3章 空间向量与立体几何 3.2.1-3.2.2

§3.2 空间向量的应用3.2.1 直线的方向向量与平面的法向量 3.2.2 空间线面关系的判定(一)——平行关系学习目标 1.掌握空间点、线、面的向量表示.2.理解直线的方向向量与平面的法向量的意义;会用待定系数法求平面的法向量.3.能用向量法证明直线与直线、直线与平面、平面与平面的平行问题.知识点一 直线的方向向量与平面的法向量思考 怎样用向量来表示点、直线、平面在空间中的位置?答案 (1)点:在空间中,我们取一定点O 作为基点,那么空间中任意一点P 的位置就可以用向量OP →来表示.我们把向量OP →称为点P 的位置向量.(2)直线:①直线的方向向量:和这条直线平行或共线的非零向量.②对于直线l 上的任一点P ,在直线上取AB →=a ,则存在实数t ,使得AP →=tAB →.(3)平面:①空间中平面α的位置可以由α内两条相交直线来确定.对于平面α上的任一点P ,a ,b 是平面α内两个不共线向量,则存在有序实数对(x ,y ),使得OP →=x a +y b . ②空间中平面α的位置还可以用垂直于平面的直线的方向向量表示. 梳理 (1)用向量表示直线的位置:(2)用向量表示平面的位置:①通过平面α上的一个定点O和两个向量a和b来确定:②通过平面α上的一个定点A和法向量来确定:(3)直线的方向向量和平面的法向量:知识点二利用空间向量处理平行问题思考(1)设v1=(a1,b1,c1),v2=(a2,b2,c2)分别是直线l1,l2的方向向量.若直线l1∥l2,则向量v1,v2应满足什么关系.(2)若已知平面外一直线的方向向量和平面的法向量,则这两向量满足哪些条件可说明直线与平面平行?(3)用向量法处理空间中两平面平行的关键是什么?答案(1)由直线方向向量的定义知若直线l1∥l2,则直线l1,l2的方向向量共线,即l1∥l2⇔v1∥v2⇔v1=λv2(λ∈R).(2)可探究直线的方向向量与平面的法向量是否垂直,进而确定线面是否平行.(3)关键是找到两个平面的法向量,利用法向量平行来说明两平面平行.梳理(1)空间中平行关系的向量表示:的法向量分别为μ,v,则设直线l,m的方向向量分别为a,b,平面α,β(2)利用空间向量解决平行问题时,第一,建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;第二,通过向量的运算,研究平行问题;第三,把向量问题再转化成相应的立体几何问题,从而得出结论.1.若两条直线平行,则它们的方向向量方向相同或相反.(√)2.平面α的法向量是唯一的,即一个平面不可能存在两个不同的法向量.(×) 3.两直线的方向向量平行,则两直线平行.(×)4.直线的方向向量与平面的法向量的方向相同或相反时,直线与平面垂直.(√)类型一 求直线的方向向量、平面的法向量例1 如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点.AB =AP =1,AD =3,试建立恰当的空间直角坐标系,求平面ACE 的一个法向量.解 因为P A ⊥平面ABCD ,底面ABCD 为矩形, 所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点,AB →,AD →,AP →的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系A -xyz ,则D (0,3,0),E ⎝⎛⎭⎫0,32,12,B (1,0,0),C (1,3,0),于是AE →=⎝⎛⎭⎫0,32,12,AC →=(1,3,0).设n =(x ,y ,z )为平面ACE 的法向量,则⎩⎪⎨⎪⎧n ·AC →=0,n ·AE →=0,即⎩⎪⎨⎪⎧x +3y =0,32y +12z =0,所以⎩⎨⎧x =-3y ,z =-3y ,令y =-1,则x =z = 3.所以平面ACE 的一个法向量为n =(3,-1,3). 引申探究若本例条件不变,试求直线PC 的一个方向向量和平面PCD 的一个法向量. 解 由例1解析图可知,P (0,0,1),C (1,3,0), 所以PC →=(1,3,-1), 即为直线PC 的一个方向向量. 设平面PCD 的法向量为 n =(x ,y ,z ).因为D (0,3,0),所以PD →=(0,3,-1). 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PD →=0,即⎩⎨⎧x +3y -z =0,3y -z =0,所以⎩⎨⎧x =0,z =3y ,令y =1,则z = 3.所以平面PCD 的一个法向量为n =(0,1,3). 反思与感悟 利用待定系数法求平面法向量的步骤 (1)设向量:设平面的法向量为n =(x ,y ,z ). (2)选向量:在平面内选取两个不共线向量AB →,AC →. (3)列方程组:由⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,列出方程组.(4)解方程组:⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0.(5)赋非零值:取其中一个为非零值(常取±1).(6)得结论:得到平面的一个法向量.跟踪训练1 如图所示,在四棱锥S -ABCD 中,底面是直角梯形,∠ABC =90°,SA ⊥底面ABCD ,且SA =AB =BC =1,AD =12,建立适当的空间直角坐标系,求平面SCD 与平面SBA的一个法向量.解 如图,以A 为坐标原点,以AD →,AB →,AS →分别为x ,y ,z 轴的正方向建立空间直角坐标系A -xyz ,则A (0,0,0),D ⎝⎛⎭⎫12,0,0, C (1,1,0),S (0,0,1), 则DC →=⎝⎛⎭⎫12,1,0, DS →=⎝⎛⎭⎫-12,0,1. 易知向量AD →=⎝⎛⎭⎫12,0,0是平面SAB 的一个法向量. 设n =(x ,y ,z )为平面SDC 的法向量, 则⎩⎨⎧n ·DC →=12x +y =0,n ·DS →=-12x +z =0,即⎩⎨⎧y =-12x ,z =12x .取x =2,则y =-1,z =1,∴平面SDC 的一个法向量为(2,-1,1). 类型二 证明线线平行问题例2 已知直线l 1与l 2的方向向量分别是a =(2,3,-1),b =(-6,-9,3). 证明:l 1∥l 2.证明 ∵a =(2,3,-1),b =(-6,-9,3),∴a =-13b ,∴a ∥b ,即l 1∥l 2.反思与感悟 两直线的方向向量共线时,两直线平行;否则两直线相交或异面.跟踪训练2 已知在四面体ABCD 中,G ,H 分别是△ABC 和△ACD 的重心,则GH 与BD 的位置关系是________. 答案 平行解析 设E ,F 分别为BC 和CD 的中点,则GH →=GA →+AH →=23(EA →+AF →)=23EF →,所以GH ∥EF ,所以GH ∥BD .类型三 利用空间向量证明线面、面面平行问题例3 已知正方体ABCD-A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .证明 (1)以D 为坐标原点,以DA →,DC →,DD 1—→的方向为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则有D (0,0,0),A (2,0,0),C (0,2,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2),所以FC 1—→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1). 设n 1=(x 1,y 1,z 1)是平面ADE 的法向量, 则n 1⊥DA →,n 1⊥AE →,即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1—→·n 1=-2+2=0,所以FC 1—→⊥n 1. 又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE .(2)因为C 1B 1—→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量.由n 2⊥FC 1—→,n 2⊥C 1B 1—→,得⎩⎪⎨⎪⎧n 2·FC 1—→=2y 2+z 2=0,n 2·C 1B 1—→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F .反思与感悟 利用向量证明平行问题,可以先建立空间直角坐标系,求出直线的方向向量和平面的法向量,然后根据向量之间的关系证明平行问题.跟踪训练3 如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,PB 与底面所成的角为45°,底面ABCD 为直角梯形,∠ABC =∠BAD =90°,P A =BC =12AD =1,问在棱PD 上是否存在一点E ,使CE ∥平面P AB ?若存在,求出E 点的位置;若不存在,请说明理由.解 以A 为坐标原点.分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系A -xyz ,如图所示.∴P (0,0,1),C (1,1,0),D (0,2,0), 设存在满足题意的点E (0,y ,z ), 则PE →=(0,y ,z -1), PD →=(0,2,-1), ∵PE →∥PD →,∴y ×(-1)-2(z -1)=0,①∵AD →=(0,2,0)是平面P AB 的法向量, 又CE →=(-1,y -1,z ),CE ∥平面P AB , ∴CE →⊥AD →,∴(-1,y -1,z )·(0,2,0)=0.∴y =1,代入①得z =12,∴E 是PD 的中点,∴存在点E ,当点E 为PD 中点时,CE ∥平面P AB .1.若点A (-1,0,1),B (1,4,7)在直线l 上,则直线l 的一个方向向量的坐标可以是________.(填序号)①(-1,0,1);②(1,4,7);③(2,4,6). 答案 ③解析 显然AB →=(2,4,6)可以作为直线l 的一个方向向量.2.已知a =(2,4,5),b =(3,x ,y )分别是直线l 1,l 2的方向向量.若l 1∥l 2,则x =________,y =________. 答案 6152解析 由l 1∥l 2得,23=4x =5y ,解得x =6,y =152.3.已知向量n =(2,-3,1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是________.(填序号)①n 1=(0,-3,1);②n 2=(-2,0,4); ③n 3=(-2,-3,1);④n 4=(-2,3,-1). 答案 ④解析 由题可知只有④可以作为α的法向量.4.已知向量n =(-1,3,1)为平面α的法向量,点M (0,1,1)为平面内一定点.P (x ,y ,z )为平面内任一点,则x ,y ,z 满足的关系式是________. 答案 x -3y -z +4=0解析 由题可知MP →=(x ,y -1,z -1). 又因为n ·MP →=0,故-x +3(y -1)+(z -1)=0,化简, 得x -3y -z +4=0.5.若直线l ∥α,且l 的方向向量为(2,m,1),平面α的法向量为⎝⎛⎭⎫1,12,2,则m 为________. 答案 -8解析 ∵l ∥α,平面α的法向量为⎝⎛⎭⎫1,12,2, ∴(2,m,1)·⎝⎛⎭⎫1,12,2=0, ∴2+12m +2=0,∴m =-8.1.应用向量法证明线面平行问题的方法: (1)证明直线的方向向量与平面的法向量垂直.(2)证明直线的方向向量与平面内的某一直线的方向向量共线.(3)证明直线的方向向量可用平面内的任意两个不共线的向量表示.即用平面向量基本定理证明线面平行.2.证明面面平行的方法:设平面α的法向量为n 1=(a 1,b 1,c 1),平面β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ).一、填空题1.已知l 1的方向向量为v 1=(1,2,3),l 2的方向向量为v 2=(λ,4,6),若l 1∥l 2,则λ=________. 答案 2解析 ∵l 1∥l 2,∴v 1∥v 2,则1λ=24,∴λ=2.2.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则μ的值为________. 答案 12解析 因为a ∥b ,故2μ-1=0,即μ=12.3.直线l 的方向向量s =(-1,1,1),平面α的一个法向量为n =(2,x 2+x ,-x ),若直线l ∥α,则x 的值为________. 答案 ±2解析 易知-1×2+1×(x 2+x )+1×(-x )=0, 解得x =±2.4.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k 的值为________. 答案 4解析 因为α∥β,所以平面α与平面β的法向量共线, 所以(-2,-4,k )=λ(1,2,-2), 所以⎩⎪⎨⎪⎧-2=λ,-4=2λ,k =-2λ,解得⎩⎪⎨⎪⎧λ=-2,k =4.所以k 的值是4.5.已知平面α内两向量a =(1,1,1),b =(0,2,-1)且c =m a +n b +(4,-4,1).若c 为平面α的法向量,则m ,n 的值分别为________. 答案 -1,2解析 c =m a +n b +(4,-4,1)=(m ,m ,m )+(0,2n ,-n )+(4,-4,1)=(m +4,m +2n -4,m -n +1),由c 为平面α的法向量,得⎩⎪⎨⎪⎧ c ·a =0,c ·b =0,得⎩⎪⎨⎪⎧m =-1,n =2.6.已知A (4,1,3),B (2,3,1),C (3,7,-5),点P (x ,-1,3)在平面ABC 内,则x 的值为________. 答案 11解析 ∵点P 在平面ABC 内, ∴存在实数k 1,k 2, 使AP →=k 1AB →+k 2AC →,即(x -4,-2,0)=k 1(-2,2,-2)+k 2(-1,6,-8),∴⎩⎪⎨⎪⎧ 2k 1+6k 2=-2,k 1+4k 2=0,解得⎩⎪⎨⎪⎧k 1=-4,k 2=1.∴x -4=-2k 1-k 2=8-1=7, 即x =11.7.已知l ∥α,且l 的方向向量为m =(2,-8,1),平面α的法向量为n =(1,y,2),则y =________.答案 12解析 ∵l ∥α,∴l 的方向向量m =(2,-8,1)与平面α的法向量n =(1,y,2)垂直,∴2×1-8×y +2=0,∴y =12. 8.若平面α的一个法向量为u 1=(-3,y,2),平面β的一个法向量为u 2=(6,-2,z ),且α∥β,则y +z =________.答案 -3解析 ∵α∥β,∴u 1∥u 2,∴-36=y -2=2z. ∴y =1,z =-4.∴y +z =-3.9.已知平面α与平面β平行,若平面α与平面β的法向量分别为μ=(5,25,5),v =(t,5,1),则t 的值为________.答案 1解析 ∵平面α与平面β平行,∴平面α的法向量μ与平面β的法向量v 平行,∴5t =255=51,解得t =1. 10.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量为n =(-1,-1,-1),且β与α不重合,则β与α的位置关系是________.答案 α∥β解析 AB →=(0,1,-1),AC →=(1,0,-1),n ·AB →=(-1,-1,-1)·(0,1,-1)=-1×0+(-1)×1+(-1)×(-1)=0,n ·AC →=(-1,-1,-1)·(1,0,-1)=-1×1+0+(-1)·(-1)=0,∴n ⊥AB →,n ⊥AC →.∴n 也为α的一个法向量.又α与β不重合,∴α∥β.11.若平面α的一个法向量为u 1=(m,2,-4),平面β的一个法向量为u 2=(6,-4,n ),且α∥β,则m +n =________.答案 5解析 ∵α∥β,∴u 1∥u 2.∴m 6=2-4=-4n∴m =-3,n =8.∴m +n =5.二、解答题12.如图,在正方体ABCD -A 1B 1C 1D 1中,求证:AC 1—→是平面B 1D 1C 的法向量.证明 如图,以D 为坐标原点,DA ,DC ,DD 1分别为x ,y ,z 轴,建立空间直角坐标系.设正方体的棱长为1,则D 1(0,0,1),A (1,0,0),C (0,1,0),B 1(1,1,1),C 1(0,1,1).所以AC 1—→=(-1,1,1),D 1B 1—→=(1,1,0),CB 1—→=(1,0,1),所以AC 1—→·D 1B 1—→=(-1,1,1)·(1,1,0)=0,AC 1—→·CB 1—→=(-1,1,1)·(1,0,1)=0,所以AC 1—→⊥D 1B 1—→,AC 1—→⊥CB 1→,又B 1D 1∩CB 1=B 1,且B 1D 1,CB 1⊂平面B 1D 1C ,所以AC 1⊥平面B 1D 1C ,AC 1—→是平面B 1D 1C 的法向量.13.已知A ⎝⎛⎭⎫0,2,198,B ⎝⎛⎭⎫1,-1,58,C ⎝⎛⎭⎫-2,1,58是平面α内的三点,设平面α的法向量a =(x ,y ,z ),求x ∶y ∶z 的值.解 AB →=⎝⎛⎭⎫1,-3,-74,AC →=⎝⎛⎭⎫-2,-1,-74, 由⎩⎪⎨⎪⎧ a ·AB →=0,a ·AC →=0,得⎩⎨⎧ x -3y -74z =0,-2x -y -74z =0, 解得⎩⎨⎧x =23y ,z =-43y , 则x ∶y ∶z =23y ∶y ∶⎝⎛⎭⎫-43y =2∶3∶(-4). 三、探究与拓展14.已知O ,A ,B ,C ,D ,E ,F ,G ,H 为空间的9个点(如图所示),并且OE →=kOA →,OF →=kOB →,OH →=kOD →,AC →=AD →+mAB →,EG →=EH →+mEF →.求证:(1)A ,B ,C ,D 四点共面,E ,F ,G ,H 四点共面;(2)AC →∥EG →.证明 (1)由AC →=AD →+mAB →,EG →=EH →+mEF →,知A ,B ,C ,D 四点共面,E ,F ,G ,H 四点共面.(2)∵EG →=EH →+mEF →=OH →-OE →+m (OF →-OE →)=k (OD →-OA →)+km (OB →-OA →)=kAD →+kmAB →=k (AD →+mAB →)=kAC →,∴AC →∥EG →.15.如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,问:当点Q 在什么位置时,平面D 1BQ ∥平面P AO?解 如图所示,以点D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴,建立空间直角坐标系,在CC 1上任取一点Q ,连结BQ ,D 1Q .设正方体的棱长为1,则O ⎝⎛⎭⎫12,12,0,P ⎝⎛⎭⎫0,0,12, A (1,0,0),B (1,1,0),D 1(0,0,1),则Q (0,1,z ),则OP →=⎝⎛⎭⎫-12,-12,12, BD 1→=(-1,-1,1),∴OP →∥BD 1—→,∴OP ∥BD 1.AP →=⎝⎛⎭⎫-1,0,12,BQ →=(-1,0,z ), 当z =12时,AP →=BQ →, 即当AP ∥BQ 时,有平面P AO ∥平面D 1BQ , ∴当Q 为CC 1的中点时,平面D 1BQ ∥平面P AO .。

空间向量与立体几何(整章教案

空间向量与立体几何(整章教案

空间向量与立体几何第一章:空间向量1.1 向量的概念向量的定义向量的表示方法向量的几何表示1.2 向量的运算向量的加法向量的减法向量的数乘1.3 向量的性质向量的模向量的方向向量的单位向量1.4 向量共线定理共线向量的定义向量共线的性质向量共线的判定第二章:立体几何基础2.1 立体几何的定义三维空间的概念立体几何的研究对象2.2 点、线、面的关系点的定义线的定义面的定义2.3 立体图形的性质立体图形的边和角立体图形的角度和体积立体图形的对角和表面积2.4 立体图形的分类棱柱棱锥球体圆柱圆锥第三章:向量在立体几何中的应用3.1 向量在立体几何中的作用向量在立体几何中的重要性向量在立体几何中的应用实例3.2 向量与立体图形的交点向量与平面交点向量与直线交点向量与立体图形的交点3.3 向量与立体图形的距离和角度向量与立体图形的距离向量与立体图形的夹角向量与立体图形的对角线3.4 向量与立体图形的对偶性对偶性的定义向量与立体图形的对偶性关系对偶性在立体几何中的应用第四章:空间解析几何4.1 解析几何的概念解析几何的定义解析几何的研究对象4.2 空间直角坐标系直角坐标系的定义空间直角坐标系的建立空间直角坐标系的性质4.3 空间点的坐标点的坐标表示方法空间点的坐标与向量的关系空间点的坐标与立体图形的关系4.4 空间向量的解析表示向量的解析表示方法空间向量的坐标运算空间向量的几何意义第五章:空间向量与立体几何的综合应用5.1 空间向量与立体几何的关联空间向量与立体几何的关系空间向量在立体几何中的应用实例5.2 空间向量与立体图形的碰撞检测碰撞检测的概念空间向量与立体图形的碰撞检测方法空间向量与立体图形的碰撞检测应用5.3 空间向量与立体图形的动态模拟动态模拟的概念空间向量与立体图形的动态模拟方法空间向量与立体图形的动态模拟应用5.4 空间向量与立体几何的计算机图形学计算机图形学的概念空间向量与立体图形的计算机图形学方法空间向量与立体图形的计算机图形学应用第五章:空间向量的运算5.1 向量的加法和减法向量加法和减法的定义和性质几何表示和坐标表示实例分析和练习5.2 向量的数乘向量数乘的定义和性质几何表示和坐标表示实例分析和练习5.3 向量的点积向量点积的定义和性质几何表示和坐标表示实例分析和练习5.4 向量的叉积向量叉积的定义和性质几何表示和坐标表示实例分析和练习第六章:立体图形的性质与分类6.1 棱柱棱柱的定义和性质不同类型的棱柱棱柱的表面积和体积6.2 棱锥棱锥的定义和性质不同类型的棱锥棱锥的表面积和体积6.3 球体球体的定义和性质球体的表面积和体积球体的对称性6.4 圆柱和圆锥圆柱的定义和性质圆锥的定义和性质圆柱和圆锥的表面积和体积第七章:向量在立体几何中的应用7.1 向量在立体几何中的作用向量在立体几何中的重要性向量在立体几何中的应用实例7.2 向量与立体图形的交点向量与平面交点向量与直线交点向量与立体图形的交点7.3 向量与立体图形的距离和角度向量与立体图形的距离向量与立体图形的夹角向量与立体图形的对角线7.4 向量与立体图形的对偶性对偶性的定义向量与立体图形的对偶性关系第八章:空间解析几何8.1 解析几何的概念解析几何的基本概念坐标系和坐标变换8.2 空间直角坐标系空间直角坐标系的定义和性质坐标变换和坐标系间的转换8.3 空间点的坐标表示点的坐标表示方法点的坐标运算8.4 空间直线和平面方程直线方程平面方程实例分析和练习第九章:空间向量与立体几何的综合应用9.1 空间向量在工程中的应用空间向量在机械工程中的应用空间向量在土木工程中的应用9.2 立体几何在设计中的应用立体几何在建筑设计中的应用立体几何在产品设计中的应用9.3 空间向量与立体几何在科学计算中的应用空间向量在物理模拟中的应用立体几何在天文观测中的应用9.4 空间向量与立体几何在计算机图形学中的应用计算机图形学的基本概念空间向量和立体图形在计算机图形学中的应用第十章:空间向量与立体几何的案例研究10.1 空间向量与立体几何在医学成像中的应用医学成像技术的基本原理空间向量在医学成像数据分析中的应用10.2 空间向量与立体几何在导航中的应用导航的基本概念空间向量在导航中的应用10.3 空间向量与立体几何在虚拟现实技术中的应用虚拟现实技术的基本概念空间向量和立体图形在虚拟现实中的应用10.4 空间向量与立体几何在其他领域的应用案例教育游戏设计航空航天工程重点和难点解析1. 第五章中向量的运算:这是空间向量与立体几何的基础部分,学生需要理解并掌握向量的加减法、数乘、点积和叉积等基本运算。

2019-2020学年高中数学(苏教版 选修2-1)教师用书:第3章 空间向量与立体几何 3.1.5

2019-2020学年高中数学(苏教版 选修2-1)教师用书:第3章 空间向量与立体几何 3.1.5

3.1.5 空间向量的数量积1.理解空间向量的夹角的概念,理解空间向量的数量积的概念、性质和运算律.(重点) 2.掌握空间向量的数量积及应用.(重点、难点) 3.理解向量夹角与直线所成角的区别.(易错点)[基础·初探]教材整理1 空间向量的夹角阅读教材P 91~P 92上半部分,完成下列问题. a ,b 是空间两个非零向量,过空间任意一点O ,作OA→=a ,OB→=b ,则∠AOB 叫做向量a 与向量b 的夹角,记作〈a ,b 〉,a ,b的范围是[0,π],如果〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .如图3-1-25,在正方体ABCD -A 1B 1C 1D 1中,求向量BC1→与AC →夹角的大小.图3-1-25【解】 ∵AD1→=BC1→,∴∠CAD 1的大小就等于〈BC1→,AC →〉. ∵△ACD 1为正三角形,∴∠CAD 1=π3,∴〈BC1→,AC →〉=π3. ∴向量BC1→与AC →夹角的大小为π3. 教材整理2 空间向量的数量积阅读教材P 92例1以上的部分,完成下列问题. 1.数量积的定义设a ,b 是空间两个非零向量,我们把数量|a ||b |·cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉.规定:零向量与任一向量的数量积为0. 2.数量积的性质 (1)cosa ,b=a·b|a||b|(a ,b 是两个非零向量).(2)a ⊥b ⇔a·b =0(a ,b 是两个非零向量). (3)|a |2=a·a =a 2. 3.数量积的运算律 (1)a·b =b·a ;(2)(λa )·b =λ(a·b )(λ∈R ); (3)a ·(b +c )=a·b +a·c.1.判断(正确的打“√”,错误的打“×”) (1)若a·b =0,则a =0或b =0.( ) (2)在△ABC 中,〈AB →,BC →〉=∠B .( ) (3)两个向量的数量积是数量,而不是向量.( )(4)若a ,b 均为非零向量,则a·b =|a||b |是a 与b 共线的充要条件.( ) 【答案】 (1)× (2)× (3)√ (4)×2.已知|a |=2,|b |=22,a·b =-22,则a 与b 的夹角为________.【导学号:09390075】【解析】 cos 〈a ,b 〉=a·b |a||b|=-222×22=-22,又∵〈a ,b 〉∈[0,π],∴〈a ,b 〉=3π4.【答案】 3π4教材整理3 数量积的坐标表示阅读教材P 93~P 94例3以上的部分,完成下列问题. 1.若a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),则 (1)a ·b =x 1x 2+y 1y 2+z 1z 2.(2)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2+z 1z 2=0(a ≠0,b ≠0). (3)|a |=a·a =x21+y21+z21. (4)cos 〈a ,b 〉=x1x2+y1y2+z1z2x21+y21+z21·x22+y22+z22(a ≠0,b ≠0).2.空间两点间距离公式设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB =错误!.1.若a =(-1,0,2),b =(x ,y,1),且a ⊥b ,则x =______. 【解析】 ∵a ⊥b ,∴a·b =-x +2=0,解得x =2. 【答案】 22.与向量a =(1,2,2)方向相同的单位向量是________.【解析】 |a |=12+22+22=3,故与a 方向相同的单位向量是a |a|=13(1,2,2)=⎝ ⎛⎭⎪⎫13,23,23.【答案】 ⎝ ⎛⎭⎪⎫13,23,23[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:[小组合作型]已知长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AA 1B 1B 的中心,F 为A 1D 1的中点.求下列向量的数量积.(1)BC →·ED1→; (2)BF →·AB1→.【精彩点拨】 法一(基向量法):BC →与ED1→,BF →与AB1→的夹角不易求,可考虑用向量AB →,AD →,AA1→表示向量BC →,ED1→,BF →,AB1→,再求结论即可.法二(坐标法):建系→求相关点坐标→向量坐标→数量积. 【自主解答】法一(基向量法):如图所示,设AB →=a ,AD →=b ,AA1→=c ,则|a |=|c |=2,|b |=4,a ·b =b ·c =c ·a =0.(1)BC →·ED1→=BC →·(EA1→+A1D1→)=b ·错误!=|b |2=42=16.(2)BF →·AB1→=(BA1→+A1F →)·(AB →+AA1→)=⎝ ⎛⎭⎪⎫c -a +12b ·(a +c )=|c |2-|a |2=22-22=0.法二(坐标法):以A 为原点建立空间直角坐标系,如图所示,则B (2,0,0),C (2,4,0),E (1,0,1),D 1(0,4,2),F (0,2,2),A (0,0,0),B 1(2,0,2),∴BC →=(0,4,0),ED1→=(-1,4,1),BF →=(-2,2,2),AB1→=(2,0,2), (1)BC →·ED1→=0×(-1)+4×4+0×1=16. (2)BF →·AB1→=-2×2+2×0+2×2=0.解决此类问题的常用方法1.基向量法:首先选取基向量,然后用基向量表示相关的向量,最后利用数量积的定义计算.注意:基向量的选取要合理,一般选模和夹角都确定的向量.2.坐标法:对于建系比较方便的题目,采用此法比较简单,只需建系后找出相关点的坐标,进而得向量的坐标,然后利用数量积的坐标公式计算即可.[再练一题]1.在上述例1中,求EF →·FC1→.【解】 法一:EF →·FC1→=错误!·错误!=错误!(-a +b +c )·错误! =-12|a |2+14|b |2=2.法二:以A 为原点建立空间直角坐标系,则E (1,0,1),F (0,2,2),C 1(2,4,2),∴EF →=(-1,2,1),FC1→=(2,2,0),∴EF →·FC1→=-1×2+2×2+1×0=2.如图3-1-26所示,在平行六面体ABCD -A ′B ′C ′D ′中,AB =4,AD =3,AA ′=5,∠BAD =90°,∠BAA ′=∠DAA ′=60°.(1)求AC ′的长;(2)求AC′→与AC →的夹角的余弦值.图3-1-26【精彩点拨】 求线段长,要利用向量的方法求解,关键是找到表示AC ′的基向量,只要模与夹角均可知,则问题可求解,求夹角问题则是向量数量积的逆用.【自主解答】 (1)∵AC′→=AB →+AD →+AA′→, ∴|AC′→|2=(AB →+AD →+AA′→)2 =|AB →|2+|AD →|2+|AA′→|2+2(AB →·AD →+AB →·AA′→+AD →·AA′→) =42+32+52+2(0+10+7.5)=85. ∴|AC′→|=85.(2)法一:设AC′→与AC →的夹角为θ,∵ABCD 是矩形,∴|AC →|=32+42=5. 由余弦定理可得cos θ=AC′2+AC2-CC′22AC′·AC =85+25-252·85·5=8510. 法二:设AB →=a ,AD →=b ,AA′→=c , 依题意得AC′→·AC →=(a +b +c )·(a +b ) =a 2+2a ·b +b 2+a ·c +b ·c=16+0+9+4×5×cos 60°+3×5×cos 60° =16+9+10+152=852,∴cos θ=AC′→·AC →|AC′→|·|AC →|=85285×5=8510.1.求两点间的距离或某线段的长度,就是把此线段用向量表示,然后用|a |2=a ·a ,即|a |=a·a 通过向量运算求|a |.2.对于空间向量a ,b ,有cos 〈a ,b 〉=a·b|a||b|.利用这一结论,可以较方便地求解异面直线所成角的问题,由于向量的夹角的取值范围为[0,π],而异面直线所成的角的取值范围为⎝ ⎛⎦⎥⎤0,π2,故〈a ,b 〉∈⎝ ⎛⎦⎥⎤0,π2时,它们相等;而当〈a ,b 〉∈⎝⎛⎭⎪⎫π2,π时,它们互补.[再练一题]2.如图3-1-27,正四面体ABCD 中,M ,N 分别为棱BC ,AB 的中点,设AB→=a ,AC→=b ,AD →=c .(1)用a ,b ,c 分别表示向量DM →,CN →; (2)求异面直线DM 与CN 所成角的余弦值.图3-1-27【解】 (1)DM →=12(DB →+DC →)=12[(AB →-AD →)+(AC →-AD →)] =12[(a -c )+(b -c )]=12(a +b -2c ), CN →=12(CB →+CA →)=12[(AB →-AC →)-AC →] =12[(a -b )-b ]=12(a -2b ).(2)设棱长为1,即|a |=|b |=|c |=1且〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=π3,则|DM →|=|CN →|=32. 又DM →·CN →=14(a +b -2c )·(a -2b ) =14(a 2+a ·b -2a ·c -2a ·b -2b 2+4b ·c ) =-18,∴cos 〈DM →,CN →〉=DM →·CN →|DM →||CN →|=-1832×32=-16.∴异面直线DM 与CN 所成角的余弦值为16.已知(1)若a ∥b ,分别求λ与m 的值;(2)若|a |=5,且与c =(2,-2λ,-λ)垂直,求a .【精彩点拨】 利用向量平行、垂直、向量的模列方程组求解. 【自主解答】 (1)由a ∥b ,得 (λ+1,1,2λ)=k (6,2m -1,2), ∴错误!解得错误! ∴实数λ=15,m =3.(2)∵|a |=5,且a ⊥c , ∴错误!化简,得⎩⎨⎧5λ2+2λ=3,2-2λ2=0,解得λ=-1.因此,a =(0,1,-2).向量平行与垂直问题主要有两种题型1.平行与垂直的判断2.利用平行与垂直求参数或其他问题,即平行与垂直的应用.[再练一题]3.如图3-1-28所示,在直三棱柱ABC -A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 是A 1B 1的中点.求证:A 1B ⊥C 1M .图3-1-28【证明】 如图所示,以CA →,CB →,CC1→为正交基底,建立空间直角坐标系C -xyz .依题意得B (0,1,0),A 1(1,0,2),错误!,2),B 1(0,1,2),则M 错误!,错误!,2,于是错误!=(-1,1,-2),C1M →=⎝ ⎛⎭⎪⎫12,12,0,∴A1B →·C1M →=-12+12+0=0,∴A1B →⊥C1M →,故A 1B ⊥C 1M .[探究共研型]探究1 【提示】 对于三个不为0的实数a ,b ,c ,若ab =ac ,则b =c .对于三个非零向量a ,b ,c ,若a ·b =a ·c ,不能得出b =c ,即向量不能约分.如图,在三棱锥S -ABC 中,SC ⊥平面ABC ,则SC ⊥AC ,SC ⊥BC .设CS →=a ,CA →=b ,CB →=c ,则a ·b =a ·c =0,但b ≠c .探究2 数量积运算是否有除法?【提示】 数量积的运算不满足除法,即对于向量a ,b ,若a ·b =k ,不能得到a =k b ⎝ ⎛⎭⎪⎫或b =k a ,例如当非零向量a ,b 垂直时,a ·b =0,但a =0b 显然是没有意义的.探究3 数量积运算满足结合律吗?【提示】 由定义得(a ·b )c =(|a ||b |cos 〈a ,b 〉)c ,即(a ·b )c =λ1c ;a (b ·c )=a (|b ||c |cos 〈b ,c 〉),即a (b ·c )=λ2a ,因此,(a ·b )c 表示一个与c 共线的向量,而a (b ·c )表示一个与a 共线的向量,而a 与c 不一定共线,所以(a ·b )c =a (b ·c )不一定成立.如图3-1-29,已知正四面体OABC 的棱长为1.求: (1)OA →·OB →;(2)(OA →+OB →)·(CA →+CB →); (3)|OA →+OB →+OC →|.图3-1-29【精彩点拨】 在正四面体OABC 中,OA →,OB →,OC →的模和夹角都已知,因此可以先把相关向量用OA →,OB →,OC →线性表示,再结合空间向量数量积的运算律与运算性质求解即可.【自主解答】 在正四面体OABC 中,|OA →|=|OB →|=|OC →|=1, 〈OA →,OB →〉=〈OA →,OC →〉=〈OB →,OC →〉=60°.(1)OA →·OB →=|OA →||OB →|·cos ∠AOB =1×1×cos 60°=12. (2)(OA →+OB →)·(CA →+CB →)=(OA →+OB →)·(OA →-OC →+OB →-OC →) =(OA →+OB →)·(OA →+OB →-2OC →)=OA2→+2OA →·OB →-2OA →·OC →+OB →2-2OB →·OC →=12+2×12-2×1×1×cos 60°+12-2×1×1×cos 60° =1+1-1+1-1=1. (3)|OA →+OB →+OC →|=错误! =错误!=错误!. [再练一题]4.已知a +3b 与7a -5b 垂直,且a -4b 与7a -2b 垂直,则〈a ,b 〉=________.【导学号:09390076】【解析】 由条件知,(a +3b )·(7a -5b )=7|a |2+16a·b -15|b |2=0, 及(a -4b )·(7a -2b )=7|a |2+8|b |2-30a·b =0. 两式相减,得46a·b =23|b |2,∴a·b =12|b |2.代入上面两个式子中的任意一个,即可得到|a |=|b |. ∴cos 〈a ,b 〉=a·b |a||b|=12|b|2|b|2=12.∵〈a ,b 〉∈[0°,180°],∴〈a ,b 〉=60°. 【答案】 60°[构建·体系]1.已知向量a =(4,-2,-4),b =(6,-3,2),则(a +b )·(a -b )的值为________.【解析】 ∵a +b =(10,-5,-2),a -b =(-2,1,-6),∴(a +b )·(a -b )=-20-5+12=-13.【答案】 -132.已知向量a =(2,-3,0),b =(k,0,3).若a ,b 成120°的角,则k =________.【解析】 cos 〈a ,b 〉=a·b |a|·|b|=2k 139+k2=-12,得k =-39. 【答案】 -393.如图3-1-30,已知正三棱柱ABC -A 1B 1C 1的各条棱长都相等,M 是侧棱CC 1的中点,则异面直线AB 1和BM 所成的角的大小是________.图3-1-30【解析】 AB1→=AB →+BB1→,BM →=BC →+CM →,设棱长为1.又∵AB1→·BM →=(AB →+BB1→)(BC →+CM →)=AB →·BC →+BB1→·BC →+AB →·CM →+BB1→·CM →=-12+0+0+12=0,∴cos 〈AB1→,BM →〉=AB1→·BM →|AB1→|·|BM →|=0,∴AB1→⊥BM →,∴直线AB 1与BM 所成的角为90°.【答案】 90°4.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________.【解析】 ∵AE →=AD →+DE →=AD →+12AB →,BD →=AD →-AB →,∴AE →·BD →=⎝ ⎛⎭⎪⎫AD →+12AB →·(AD →-AB →)=AD →2-AD →·AB →+12AB →·AD →-12AB →2=4-0+0-2=2.【答案】 25.如图3-1-31所示,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,求OA 与BC 所成角的余弦值.图3-1-31【解】 由题意知BC →=AC →-AB →,∴OA →·BC →=OA →·AC →-OA →·AB →=|OA →||AC →|cos 〈OA →,AC →〉-|OA →||AB →|cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120°=24-162,∴cos 〈OA →,BC →〉=OA →·BC →|OA →||BC →|=24-1628×5=3-225,∴OA 与BC 所成角的余弦值为3-225.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)。

空间向量与立体几何教案

空间向量与立体几何教案

空间向量与立体几何教案一、教学目标1. 让学生掌握空间向量的基本概念,理解空间向量的几何表示和运算规则。

2. 培养学生运用空间向量解决立体几何问题的能力,提高空间想象和思维能力。

3. 通过对空间向量与立体几何的学习,激发学生对数学的兴趣,培养学生的创新意识和实践能力。

二、教学内容1. 空间向量的基本概念及几何表示2. 空间向量的线性运算(加法、减法、数乘、共线向量、平行向量)3. 空间向量的数量积(定义、性质、运算规则、几何意义)4. 空间向量的垂直与平行(垂直的判断、平行的判断、垂直与平行的应用)5. 空间向量在立体几何中的应用(线线、线面、面面间的位置关系)三、教学方法1. 采用讲授法,系统地讲解空间向量与立体几何的基本概念、性质和运算规则。

2. 运用案例分析法,引导学生通过具体例子学会运用空间向量解决立体几何问题。

3. 利用多媒体技术,展示空间向量的几何形象,增强学生的空间想象力。

4. 开展小组讨论与合作交流,培养学生的团队协作能力和表达能力。

四、教学环境1. 教室环境:宽敞、明亮,教学设备齐全,包括黑板、投影仪、计算机等。

2. 学习资源:教材、辅导资料、网络资源等。

3. 实践场地:学校机房、实验室等。

五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 作业完成情况:检查学生作业的完成质量,评估学生对知识点的掌握程度。

3. 考试成绩:定期进行测验,检验学生对空间向量与立体几何知识的掌握情况。

4. 实践能力:评估学生在实践活动中运用空间向量解决立体几何问题的能力。

5. 学生自评与互评:鼓励学生自我总结,互相交流学习经验,提高学习效果。

六、教学重点与难点教学重点:1. 空间向量的基本概念及几何表示。

2. 空间向量的线性运算规则。

3. 空间向量的数量积的定义和性质。

4. 空间向量的垂直与平行判断。

5. 空间向量在立体几何中的应用。

教学难点:1. 空间向量的数量积的运算规则。

高中数学(人教B版 选修2-1)教师用书第3章 空间向量与立体几何 3.1.4

高中数学(人教B版 选修2-1)教师用书第3章 空间向量与立体几何 3.1.4

空间向量的直角坐标运算.了解空间向量坐标的定义..掌握空间向量运算的坐标表示.(重点).能够利用坐标运算来求空间向量的长度与夹角.(难点、重点)[基础·初探]教材整理空间向量的直角坐标运算阅读教材~“空间向量平行和垂直的条件”以上部分内容,完成下列问题..单位正交基底与坐标向量建立空间直角坐标系,分别沿轴,轴,轴的正方向引单位向量,,,这三个互相垂直的单位向量构成空间向量的一个基底{,,},这个基底叫做单位正交基底.单位向量,,都叫做坐标向量..空间向量的直角坐标运算()设=(,,),=(,,).向量坐标运算法则+=(+,+,+),-=(-,-,-),λ=(λ,λ,λ),·=++.()设(,,),(,,),则=-=(-,-,-).也就是说,一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标..已知向量=(,-,-),=(,-),则下列结论正确的是( ).+=(,-,-).-=(,-,-).·=.=(,-,-)【解析】易验证,,均不正确,正确.【答案】.在空间直角坐标系中,若(),(),则向量的坐标为.【答案】(-,-)教材整理空间向量平行和垂直的条件阅读教材“空间向量平行和垂直的条件”以下部分内容,完成下列问题.已知向量=(),=(-),且+与-互相垂直,则=( )...【解析】+=(-,),-=(,-),且(+)·(-)=(-)+-=,解得=. 【答案】教材整理两个向量夹角与向量长度的坐标计算公式阅读教材第行以下部分内容,完成下列问题.若=(,,),=(,,),则()·=;()==;()≠,≠,〈,〉==;()≠,≠,⊥⇔·=⇔.【答案】()++()()()++=。

(教师用书)高中数学 第二章 空间向量与立体几何章末归纳提升课件 北师大版选修2-1

(教师用书)高中数学 第二章 空间向量与立体几何章末归纳提升课件 北师大版选修2-1

→ n· P A =0, 设平面 PAB 的法向量为 n=(x,y,z).则 → n · A B =0. 由于 P→ A = (a,0 , - a) , A → B = ( - a , a,0) , 所 以
ax-az=0, -ax+ay=0.
令 z=1,得 x= y=1,所以 n=(1,1,1),所以
如图 2-3 ,在空间直角坐标系中,已知 E,F 分别是正方体 ABCD-A1B1C1D1 的棱 BC 和 CD 的中点,求: (1)A1D 与 EF 所成角的大小; (2)A1F 与平面 B1EB 所成角的正弦值; (3)平面 CD1B1 与平面 D1B1B 夹角的余弦值.
图 2-3
【思路点拨】 面角与二面角.
→ m· AB1=0, 由 → m · AD 1=0
图 2-1
【思路点拨】 (1)取 BD 中点 G,证明 P→ A ∥E→ G. (2)通过计算 P→ B· D→ E =0,P → B· E→ F =0,证明 PB⊥DE, PB⊥EF.
【规范解答】
→ ,DC → ,DP → 所在 以 D 点为坐标原点,DA
ห้องสมุดไป่ตู้
的方向为 x, y,z 轴建立空间直角坐标系 D- xyz(如右图所 示).设 DC=a, (1)连接 AC,交 BD 于 G,连接 EG. a a 依题意得 A(a,0,0), P(0,0, a) , E(0, , ), 因为底面 ABCD 2 2 a 是正方形,所以 G 是此正方形的中心,故点 G 的坐标为( , 2 a a a → → → → , 0) 且 PA = ( a, 0 ,- a ) , EG = ( , 0 ,- ) ,所以 PA = 2 EG , 2 2 2 即 PA∥EG,而 EG 平面 EDB 且 PA⊄平面 EDB,所以 PA∥ 平面 EDB.

空间向量与立体几何教案

空间向量与立体几何教案

空间向量与立体几何教案教案:空间向量与立体几何一、教学目标:1.知识与能力目标:掌握空间向量的基本概念和运算法则,并能够运用空间向量解决立体几何问题。

2.过程与方法目标:培养学生的观察能力和逻辑思维能力,通过实例分析和综合运用,激发学生对数学的兴趣和学习积极性。

3.情感态度目标:培养学生的合作学习精神,增强学生对数学的自信心和探究精神。

二、教学重点难点:1.教学重点:空间向量的概念、性质及运算法则。

2.教学难点:如何灵活应用空间向量解决立体几何问题。

三、教学方法:1.教师讲授与学生合作探究相结合的方法。

2.案例分析和综合运用的方法。

四、教学过程:第一节空间向量的概念和性质(40分钟)1.通过引入空间向量的概念,让学生了解空间向量的定义,并掌握向量的表示方法。

2.解释向量的性质,如向量的加法、数乘、共线和共面性质。

3.设计一些简单的例题进行讲解,引导学生掌握和理解空间向量的性质。

第二节空间向量的运算法则(40分钟)1.通过实例引导,让学生掌握向量的加法、减法、数量积和向量积的运算法则。

2.类比二维向量,在立体几何实例中引入空间向量运算,帮助学生理解和应用空间向量运算。

第三节空间向量在立体几何中的应用(40分钟)1.通过立体几何实例,引导学生运用空间向量解决立体几何问题。

2.给学生创设情境,让学生在小组合作的形式下,互相讨论和解决立体几何问题。

3.设计不同难度的立体几何问题,让学生进行综合运用,提高解决问题的能力。

第四节拓展课程与归纳总结(40分钟)1.设计拓展课程,引导学生发现和探究空间向量在其他学科中的应用,如物理、工程等领域。

2.巩固和总结空间向量的知识点,通过小测验和思维导图等方式,让学生检验和反思自己的学习效果。

五、教学资源准备:1.多媒体教学设备和教学课件。

2.各类立体几何教具和实物模型。

3.教科书及参考资料。

六、教学评价与反思:1.课堂提问与讨论,根据学生的回答和互动评价学生的理解和能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国高考数学分类汇编:空间向量与立体几何1.已知i ,j ,k 是两两垂直的单位向量,a =2i -j +k ,b =i +j -3k ,则a²b 等于( A ) A .-2 B .-1 C .±1 D .22.已知a =(2,- 1,3),b =(-4,2,x ),c =(1,-x, 2),若(a +b )⊥c ,则x 等于( B )A .4B .-4 C. 12D .-63.若a =(1,λ,-1),b =(2,-1,2),且a 与b 的夹角的余弦为19,则|a |等于( C )A.94 B.102 C.32D. 6 解析:因为a²b =1³2+λ³(-1)+(-1)³2=-λ,又因为a²b =|a||b |²cos〈a ,b 〉=2+λ2²9²19=132+λ2,所以13 2+λ2=-λ.解得λ2=14,所以|a |=1+14+1=32.答案:C4.如图,在空间直角坐标系中有四棱锥P -ABCD ,底面ABCD 是边长为2的正方形,PA ⊥平面ABCD ,且PA =2,E 为PD 的中点,则|BE|等于( C )A . 2 B. 5 C. 6 D .2 25.已知向量a =(-1, 0,1),b =(1,2,3) ,k ∈R ,若ka -b 与b 垂直,则k =_7__.解析:因为(ka -b )⊥b ,所以(ka -b )²b =0,所以ka²b -|b |2=0,所以k (-1³1+0³2+1³3)-(12+22+32)2=0,解得k =7.答案:76.若两条不同直线l 1、l 2的方向向量分别为a =(1,2,-2)、b =(-2,3,2),则( B ) A .l 1∥l 2 B .l 1⊥l 2 C .l 1、l 2相交但不垂直 D .l 1与l 2的关系不能确定7.已知l ∥π,且l 的方向向量为(2,m,1),平面π的法向量为⎝ ⎛⎭⎪⎫1,12,2,则m 等于 ( ) A .-8 B .-5 C .5 D .8解析:∵l ∥π,∴直线l 的方向向量与平面π的法向量垂直.∴2+m2+2=0,m =-8.答案:A8.若两个不同平面π1、π2的法向量分别为n 1=(1,2,-2)、n 2=(-3,-6,6),则( A ) A .π1∥π2 B .π1⊥π 2 C .π1、π2相交但不垂直 D .以上均不正确9.设平面π1的法向量为(1,2,-2),平面π2的法向量为(-2,-4,k ),若π1∥π2,则k =( C ) A .2 B .-4C .4 D .-210.已知直线l 1的一个方向向量为 (-7,3,4),直线l 2的一个方向向量为(x ,y,8),且l 1∥l 2,则x =_____,y =______.解析:∵l 1∥l 2,∴-7x =3y =48,∴x =-14,y =6.答案:-14 611.若平面π1的一个法向量为n 1=(-3,y,2),平面π2的一个法向量为n 2=(6,-2,z ),且π1∥π2,则 y+z =________.解析:∵π1∥π2,∴n 1∥n 2.∴-36=y -2=2z.∴y =1,z =-4.∴y +z =-3.答案:-312.已知平面π内有一个点M (1,-1,2),平面π的一个法向量为n =(6,-3,6),则下列点P 中,在平面π内的是( )A .P (2,3, 3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)解析:对选项A :MP =(1,4,1).MP ²n =6-12+6=0.∴MP⊥n ,故点P (2,3,3)在π内. 答案:A13.已知A ,B ,C 三点的坐标分别为A (4,1,2),B (2,5,-1),C (3,2,λ),若AC ⊥BC ,则λ=________.解析:∵AC =(-1,1,λ-2),BC =(1,-3,λ+1),且AC ⊥BC,∴-1-3+(λ-2)(λ+1)=0.解得λ=3或-2.答案:3或-214.在长方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱BB 1、B 1C 1的中点,若∠CMN =90°,则异面直线AD 1与DM 的夹角为( D )A .30°B .45°C .60°D .9015.(2012²陕西高考)如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )A.55 B.53 C.255D.35解析:设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1), C 1(0,2,0),B 1=(0,2,1),可得向量1AB=(-2,2,1), 1BC =(0,2,-1),由向量的夹角公式得cos 〈1AB ,1BC〉=-2³0+2³2+1³-10+4+1²4+4+1=15=55.答案:A 16.已知平面α的一个法向量n =(-2,-2,1),点A (2,-1,0)在α内,则P (1,3,-2)到α的距离为( C )A .10B .3 C.83 D.10317.已知正方体ABCD -A 1B 1C 1D 1的棱长为a ,则点A 1到直线BC 1的距离是( A )A.62a B .a C.2a D.a 218.在长方体ABCD -A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离为( ) A.83 B.38 C.43 D.34解析:如图,建立空间直角坐标系,则D (0,0,0),A (2,0,0),A 1(2,0,4),B 1(2,2,4),D 1(0,0,4).∴11D B =(2,2,0),1D A =(2,0,-4),1AA=(0,0,4),设n =(x ,y ,z )是平面AB1D 1的一个法向量,则n ⊥11D B ,n ⊥1D A ,∴⎩⎪⎨⎪⎧n ²11D B =0,n ²1D A=0,即⎩⎪⎨⎪⎧2x +2y =0,2x -4z =0.令z =1,则平面AB 1D 1的一个法向量为n =(2,-2,1).∴由1AA在n 上射影可得A 1到平面AB 1D 1的距离为d =|1AA²n ||n |=43.答案:C19.在直三棱柱ABC -A 1B 1C 1中,AA 1=BC =AB =2,AB ⊥BC ,求平面A 1C 1C 与平面A 1B 1C 的夹角.解:如图所示,建立空间直角坐标系.则A (2,0,0),C (0,2,0),A 1(2, 0,2),B 1(0,0,2),C 1(0,2,2),设AC 的中点为M ,连BM ,∵BM ⊥AC ,BM ⊥CC 1,∴BM ⊥平面A 1C 1C ,即BM=(1,1,0)是平面A 1C 1C 的一个法向量.设平面A 1B 1C 的一个法向量是n =(x ,y ,z ),1A C =(-2,2,-2),11A B=(-2,0,0),∴n ²11A B =-2x =0,n ²1A C=-2x +2y -2z =0.令z =1,解得x =0,y =1.∴n =(0,1,1).设法向量n 与BM的夹角为φ,平面A 1C 1C 与平面A 1B 1C 的夹角为θ.∵cos θ=|cos φ|=|n ²BM ||n ||BM |=12,解得θ=π3,即平面A 1C 1C 与平面A 1B 1C 的夹角为π3. 20.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,建立适当的空间直角坐标系,求cos 〈1AC ,1AC〉.解:建立如图所示的空间直角坐标系.则A (0,0,0),C (1,1,0),A 1 (0,0,1),C 1(1,1,1),可知1AC=(1,1,1),1A C =(1,1,-1).所以cos 〈1AC ,1AC〉=1AC ²1A C | 1AC ||1A C |=13³3=13.21.【2012高考陕西理】如图,在空间直角坐标系中有直三棱柱111ABC A B C -,12CA CC CB ==,则直线1BC与直线1AB 夹角的余弦值为( A )3522.设a =(x,4,3) ,b =(3,2,z ),若a ∥b ,则xz 等于( B ) A .-4 B .9 C .-9D.64923.已知A (2,-5,1),B (2,-2,4),C (1,-4,1),则AB 与AC的夹角为( C )A .30°B .45° C.60° D .90°24.已知向量AM =⎝ ⎛⎭⎪⎫0,1,12,AN =⎝⎛⎭⎪⎫-1,12,1,则平面AMN 的一个法向量是( D )A .(-3,-2,4)B .(3,2,-4)C .(-3,-2,-4)D .(-3,2,-4)25.如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别为AA 1、AB 、BB 1、B 1C 1的中点,则异面直线EF 与GH 的夹角等于( B )A .45°B .60°C .90°D .120°解析:以D 为原点,DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系(图略),设正方体棱长为1,则E ⎝ ⎛⎭⎪⎫1,0,12,F ⎝ ⎛⎭⎪⎫1,12,0,G ⎝ ⎛⎭⎪⎫1,1,12,H ⎝ ⎛⎭⎪⎫12,1,1,∴EF =⎝ ⎛⎭⎪⎫0,12,-12,GH =⎝ ⎛⎭⎪⎫-12,0,12,cos 〈EF ²GH 〉=-1422²22=-12.∴EF 与GH 的夹角为60°.答案:B26.正方体ABCD -A 1B 1C 1D 1中,直线BC 1与平面A 1BD 夹角的余弦值为( C )A.24B.23C.33D.32 解析:以A 为坐标原点,以AB ,AD ,AA 1分别为x 轴,y 轴,z 轴建立空间直角坐标系,设正方体棱长为1,则C 1(1,1,1),A 1(0,0,1),B (1,0,0),D (0,1,0).∵1AC =(1,1,1),1BA =(-1,0,1),BD=(-1,1,0), ∴1AC ²1BA =0,1AC ²BD=0, ∴1AC即为平面A 1BD 的法向量.设BC 1与面A 1BD 夹角为θ,又1BC=(0, 1,1),则sin θ=|1AC ²1BC ||1AC ||1BC |=23²2=63,∴cos θ=33.答案: C27.平面α的法向量为m =(1,0,-1),平面β的法向量为n =(0,-1,1),则平面α与平面β的夹角的大小为______.解析:cos 〈m ,n 〉=m²n |m ||n |=-12²2=-12,∴〈m ,n 〉=120°,即平面α与β的夹角大小为60°.答案:60°28.已知a =(1,1,1),b =(0,2,-1),c =ma +nb +(4,-4, 1).若c 与a 及b 都垂直,则m ,n 的值分别___. 29.(如图所示,直三棱柱ABC -A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点. (1)求BN的长;(2)求A 1到平面BCN 的距离;(3)求证:A 1B ⊥C 1M .解:如图,建立空间直角坐标系. (1)依题意得B (0,1,0),N (1,0,1),∴BN=(1,-1,1),即|BN|= 3.(2)依题意得A 1(1,0,2)、B 1(0,1,2),∴1BA =(1,-1,2),1CB =(0,1,2),1BA ²1CB =3,|1BA|=6,|1CB |=5,∴cos 〈1BA ,1CB 〉=1BA ²1CB|1BA ||1CB |=3010.设平面BCN 的一个法向量为n =(x ,y ,z ),BN =(1,-1,1),CB =(0,1,0),得⎩⎪⎨⎪⎧x -y +z =0,y =0,取x =1,得n =(1,0,-1).n 0=⎝ ⎛⎭⎪⎫22,0,-22,则A 1到平面BCN 的距离为d =|1BA ²n 0|=|22-2|=22.(3)证明:依题意得C 1(0,0, 2)、M ⎝ ⎛⎭⎪⎫12,12,2,1A B = (-1,1,-2),1C M =⎝ ⎛⎭⎪⎫12,12,0.∵1A B ·1C M =-12+12+0=0,∴1A B ⊥1C M .∴A 1B ⊥C 1M .30.【2012高考四川理】如图,在正方体1111ABCD A BC D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成角的大小是__2π_______。

相关文档
最新文档