全国高考数学试题分类汇编:常用逻辑用语(教师版)
-高考数学 真题分类汇编 常用逻辑用语(含解析,7页)
常用逻辑用语1.(2012·湖南高考卷·T2·5分)命题“若α=4π,则tan α=1”的逆否命题是 A.若α≠4π,则tan α≠1 B. 若α=4π,则tan α≠1[来~@源%:*中&国教育出版网] C. 若tan α≠1,则α≠4π D. 若tan α≠1,则α=4π【答案】C【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,所以 “若α=4π,则tan α=1”的逆否命题是 “若tan α≠1,则α≠4π”. 【点评】本题考查了“若p ,则q”形式的命题的逆命题、否命题与逆否命题,考查分析问题的能力.2.(2012·四川高考卷· T6 · 5分)下列命题正确的是( ) A 、若两条直线和同一个平面所成的角相等,则这两条直线平行 B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行 D 、若两个平面都垂直于第三个平面,则这两个平面平行 [答案]C[解析]若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A 错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B 错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D 错;故选项C 正确.[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式.3.(2012·四川高考卷· T7 · 5分)设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( )A 、a b =-B 、//a bC 、2a b =D 、//a b 且||||a b = [答案]D[解析]若使||||a ba b =成立,则方向相同,与b a 选项中只有D 能保证,故选D. [点评]本题考查的是向量相等条件⇔模相等且方向相同.学习向量知识时需注意易考易错零向量,其模为0且方向任意.4.(2012·陕西高考卷· T3· 5分)设,R a b ∈,i 是虚数单位,则“0ab =”是“复数iba +为纯虚数”的( )A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件 【答案】 B【解析】当0ab =时,00a b ==或,b a i +不一定为纯虚数,反之,当ba i+为纯虚数时,0,0,0a b ab =≠=,因此B 正确。
历年(2020-2023)全国高考数学真题分类(集合与常用逻辑用语)汇编(附答案)
历年(2020‐2023)全国高考数学真题分类(集合与常用逻辑用语)汇编【2023年真题】1.(2023·新课标I 卷 第1题) 已知集合{2,1,0,1,2}M =--,2{|60}N x x x =--…,则M N ⋂=( ) A. {2,1,0,1}--B. {0,1,2}C. {2}-D. {2}2. (2023·新课标I 卷 第7题) 记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列:乙:{}n sn为等差数列,则( )A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件3.(2023·新课标II 卷 第2题)设集合{0,}A a =-,{1,2,22}B a a =--,若A B ⊆,则a =( ) A. 2B. 1C.23D. 1-【2022年真题】4.(2022·新高考I 卷 第1题)若集合{4}M x =<,{|31}N x x =…,则M N ⋂=( ) A. {|02}x x <…B. 1{|2}3x x <…C. {|316}x x <…D. 1{|16}3x x <…5.(2022·新高考II 卷 第1题)已知集合{1,1,2,4}A =-,{||1|1}B x x =-…,则A B ⋂=( ) A. {1,2}-B. {1,2}C. {1,4}D. {1,4}-【2021年真题】6.(2021·新高考I 卷 第1题)设集合{|24}A x x =-<<,{2,3,4,5}B =,则A B ⋂=( ) A. {2}B. {2,3}C. {3,4}D. {2,3,4}7.(2021·新高考II 卷 第2题)设集合{1,2,3,4,5,6},U = {1,3,6},{2,3,4}A B ==,则()U A B ⋂=ð( ) A. {3}B. {1,6}C. {5,6}D. {1,3}【2020年真题】8.(2020·新高考I 卷 第1题)设集合{|13}A x x =剟,{|24}B x x =<<,则A B ⋃=( ) A. {|23}x x <…B. {|23}x x 剟C. {|14}x x <…D. {|14}x x <<9.(2020·新高考II 卷 第2题)设集合{2,3,5,7}A =,{1,2,3,5,8}B =,则A B ⋂=( ) A. {1,3,5,7} B. {2,3} C. {2,3,5} D. {1,2,3,5,7,8}参考答案1.(2023·新课标I 卷 第1题)解:(,2][3,)N =-∞-⋃+∞,所以{2};M N ⋂=-故选.C 2. (2023·新课标I 卷 第7题) 解:方法1:为等差数列,设其首项为1a ,公差为d ,则1(1)2n n n S na d -=+,111222n S n d da d n a n -=+=+-,112n n S S dn n +-=+, 故{}nS n为等差数列,则甲是乙的充分条件,, 反之,{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t 即1(1)n nna S t n n +-=+,故1(1)n n S na t n n +=-⋅+故1(1)(1)n n S n a t n n -=--⋅-,2n …两式相减有:11(1)22n n n n n a na n a tn a a t ++=---⇒-=,对1n =也成立,故{}n a 为等差数列, 则甲是乙的必要条件, 故甲是乙的充要条件,故选.C 方法2:因为甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为.d 即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n -=+=+-,故{}n S n为等差数列,即甲是乙的充分条件. 反之,乙:{}n S n为等差数列.即11n n S S D n n +-=+,1(1).n SS n D n =+-即1(1).n S nS n n D =+-当2n …时,11(1)(1)(2).n S n S n n D -=-+-- 上两式相减得:112(1)n n n a S S S n D -=-=+-, 所以12(1).n a a n D =+-当1n =时,上式成立.又1112(2(1))2n n a a a nD a n D D +-=+-+-=为常数.所以{}n a 为等差数列. 则甲是乙的必要条件, 故甲是乙的充要条件,故选C3.(2023·新课标II 卷 第2题)解:A B ⊆,则220a -=,1a =,{0,1}A =-,{1,1,0}B =-,满足,选.B 4.(2022·新高考I 卷 第1题)解:因为{|016}M x x =<…,1{|}3N x x =…, 故1{|16}.3M N x x ⋂=<… 5.(2022·新高考II 卷 第1题)解:方法一:通过解不等式可得集合{|02}B x x =剟,则{1,2}A B ⋂=,故B 正确. 法二:代入排除法.1x =-代入集合{||1|1}B x x =-…,可得|1||11|21x -=--=>,1x =-,不满足,排除A 、;4D x =代入集合{||1|1}B x x =-…,可得|1||41|31x -=-=>,4x =,不满足,排除 C ,故B 正确.6.(2021·新高考I 卷 第1题)解:因为集合{}{}24,2,3,4,5A x x B =-<<=,所以{2,3}.A B ⋂= 故选.B7.(2021·新高考II 卷 第2题) 解:由题设可得U {1,5,6}B =ð, 故U (){1,6}.A B ⋂=ð 故选.B8.(2020·新高考I 卷 第1题)解:因为集合{|13}A x x =剟,{|24}B x x =<<, ={|14}.A B x x ⋃<…故选.C9.(2020·新高考II 卷 第2题)解:因为集合A ,B 的公共元素为:2,3,5 故{2,3,5}.A B ⋂= 故选:.C。
高考数学讲义常用逻辑用语.板块三.逻辑连接词与量词.教师版1
题型一:逻辑连接词 【例1】 写出下列命题的“p ⌝”命题:(1)正方形的四边相等;(2)平方和为0的两个实数都为0;(3)若ABC ∆是锐角三角形, 则ABC ∆的任何一个内角是锐角;(4)若0abc =,则,,a b c 中至少有一个为0;(5)若(1)(2)0x x --≠,则1x ≠且2x ≠.【考点】逻辑连接词 【难度】1星【题型】解答【关键词】无【解析】 【答案】(1)存在一个正方形的四边不相等.(2)平方和为0的两个实数不都为0.(3)若ABC ∆是锐角三角形, 则ABC ∆的某个内角不是锐角.(4)若0abc =,则,,a b c 中都不为0.(5)若(1)(2)0x x --≠,则1x =或2x =.【例2】 若:{|1},:{0}p N x R x q ⊄∈>-=∅.写出由其构成的“p 或q ”、“p 且q ”、“非p ”形式的新命题,并指出其真假.【考点】逻辑连接词 【难度】2星【题型】解答【关键词】无【解析】 ,p q 均为假命题.典例分析板块三.逻辑连接词与量词【答案】 “p 或q ”为::{|1}p N x R x ⊄∈>-或:{0}q =∅,是假命题;“p 且q ”为::{|1}p N x R x ⊄∈>-且:{0}q =∅,是假命题;“非p ”为::{|1}p N x R x ⊆∈>-,是真命题.【例3】 用联结词“且”、“或”分别联结下面所给的命题p q ,构成一个新的复合命题,判断它们的真假.⑴p :1是质数;q :1是合数;⑵p :菱形的对角线互相垂直;q :菱形的对角线互相平分;【考点】逻辑连接词 【难度】2星【题型】解答【关键词】无【解析】 【答案】⑴p 是假命题,q 是假命题,故p q ∨,p q ∧都是假命题;⑵p 是真命题,q 是真命题,故p q ∨是真命题,p q ∧是真命题.【例4】 把下列各组命题,分别用逻辑联结词“且”“或”“非”联结成新命题,并判断其真假.⑴p :梯形有一组对边平行;q :梯形有一组对边相等.⑵p :1是方程2430x x -+=的解;q :3是方程2430x x -+=的解.⑶p :不等式2210x x -+>解集为R ;q :不等式2221x x -+≤解集为∅.⑷p :{0}∅Ü;q :0∈∅.【考点】逻辑连接词 【难度】2星【题型】解答【关键词】无【解析】 ⑴∵p 真,q 假,∴p q ∧为假,p q ∨为真,p ⌝为假,q ⌝为真. ⑵∵p 真,q 真,∴p q ∧为真,p q ∨为真,p ⌝为假,q ⌝为假.⑶∵p 假,q 假,∴p q ∧为假,p q ∨为假,p ⌝为真,q ⌝为真.⑷∵p 真,q 假,∴p q ∧为假,p q ∨为真,p ⌝为假,q ⌝为真.【答案】⑴p q ∧为假,p q ∨为真,p ⌝为假,q ⌝为真.⑵p q ∧为真,p q ∨为真,p ⌝为假,q ⌝为假.⑶p q ∧为假,p q ∨为假,p ⌝为真,q ⌝为真.⑷p q ∧为假,p q ∨为真,p ⌝为假,q ⌝为真.【例5】 判断下面对结论的否定是否正确,如果不正确,请写出正确的否定结论:⑴至少有一个S 是P ;否定:至少有两个或两个以上S 是P ;⑵最多有一个S 是P .否定:最少有一个S 是P ;⑶全部S 都是P .否定:全部的S 都不是P .【考点】逻辑连接词 【难度】2星【题型】解答【关键词】无【解析】 “集合M 中至少有一个元素m 不具有性质a ”的否定是:集合M 中所有元素都具有性质a .反之亦对.因为“集合M 中至少有一个元素不具有性质a ”,它包含了“M 中有一个元素不具有性质a 、两个元素不具有性质a ……所有元素都不具有性质a ”等各种情形.因此它的否定是“M 中所有元素都具有性质a ”.如“三角形中至少有一个内角大于或等于60︒”的否定是“三角形中所有内角都小于60︒”.注意“都不是”的否定不是“都是”,而是“不都是”,也即“至少有一个是”.如“a 、b 都不是零”的否定是“a ,b 中至少有一个是零”.【答案】⑴不正确,没有一个S 是P .⑵不正确,至少有两个S 是P .⑶不正确,存在一个S 不是P .【例6】 “220a b +≠”的含义为__________;“0ab ≠”的含义为__________.A .a b ,不全为0B .a b ,全不为0C .a b ,至少有一个为0D .a 不为0且b 为0,或b 不为0且a 为0【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 220a b +≠的含义为a b ,不全为0,选A ; 0ab ≠的含义为,a b 全不为0,选B .【答案】A,B【例7】 已知全集R U =,A U ⊆,B U ⊆,如果命题p A B U ,则命题“p ⌝”是( )A AB U B ðC A B ID ()()U U A B I 痧 【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 【答案】D ;【例8】 命题“关于x 的方程(0)ax b a =≠的解是唯一的”的结论的否定是( )A .无解B .两解C .至少两解D .无解或至少两解【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 【答案】D ;【例9】 若条件:P x A B ∈I ,则P ⌝是( )A .x A ∈且xB ∉ B .x A ∉或x B ∉C .x A ∉且x B ∉D .x A B ∈U【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 x 至少不属于A B ,中的一个. 【答案】B ;【例10】 命题:“若220()R a b a b +=∈,,则“0a b ==”的逆否命题是( ) A .若0()R a b a b ≠≠∈,,则220a b +≠B .若0a ≠且0()R b a b ≠∈,,则220a b +≠C .若0()R a b a b =≠∈,,则220a b +≠D .若0a ≠或0()R b a b ≠∈,,则220a b +≠【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 0a b ==的否定为a b ,至少有一个不为0. 【答案】D ;【例11】 命题“2230ax ax -+>恒成立”是假命题,则实数a 的取值范围是( )A .0a <或3a ≥B .0a ≤或3a ≥C .0a <或3a >D .03a <<【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 0a <时,显然2230ax ax -+>不恒成立;0a =时,恒成立; 0a >时,只需240a ∆=-12a ≥即可,解得3a ≥.【答案】A ;【例12】 命题“p 或q ”是真命题,“p 且q ”是假命题,则( )A .命题p 和命题q 都是假命题B .命题p 和命题q 都是真命题C .命题p 和命题“非q ”的真值不同D .命题p 和命题q 的真值不同【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 【答案】D .【例13】 已知命题p :若实数x y ,满足220x y +=,则x y ,全为0;命题q :若a b >,则11a b<,给出下列四个复合命题:①p 且q ②p 或q ③p ⌝④q ⌝,其中真命题的个数为( )A .1B .2C .3D .4【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 p 为真命题,q 为假命题,∴p ⌝为假命题,q ⌝为真命题,②④为真命题. 【答案】B ;【例14】 由下列各组命题构成“p 或q ”为真,“p 且q ”为假,“p ⌝”为真的是( )A .p :0=∅,q :0∈∅B .p :等腰三角形一定是锐角三角形,q :正三角形都相似C .p :{}{}a a b ,躿,q :{}a a b ∈,D .p :53>,q :12是质数【关键词】无【解析】 【答案】B ;【例15】 在下列结论中,正确的是( )①“p q ∧”为真是“p q ∨”为真的充分不必要条件②“p q ∧”为假是“p q ∨”为真的充分不必要条件③“p q ∨”为真是“p ⌝”为假的必要不充分条件④“p ⌝”为真是“p q ∧”为假的必要不充分条件A .①②B .①③C .②④D .③④【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 p q ∧为真,p q ⇒都为真p q ⇒∨为真,反之不成立,①正确; p q ∧为假,可能,p q 都为假,故推不出p q ∨为真,②错误;p ⌝为假,有p 为真,故p q ∨为真;而p q ∨为真,p 可能为假,从而p ⌝可能 为真,③正确;p ⌝为真,说明p 假,从而p q ∧为假,④错误;故选B .【答案】B【例16】 设命题p :2x >是24x >的充要条件,命题q :若22a b c c >,则a b >.则( ) A .“p 或q ”为真 B .“p 且q ”为真C .p 真q 假D .p ,q 均为假命题【考点】逻辑连接词 【难度】2星 【题型】选择【关键词】2008年,北京东城,高考二模【解析】 p 假q 真.【答案】A .【例17】 若命题“p 且q ”为假,且“p ⌝”为假,则 ()A .p 或q 为假B .q 假C .q 真D .p 假【关键词】无【解析】“p∧(且)为假,得q为假⌝”为假,则p为真,而p q【答案】B【例18】若条件:∈I,则PP x A B⌝是()A.x A∉ D. x A B∉且x B∈⋃∈且x B∉ B. x A∉或x B∉ C. x A【考点】逻辑连接词【难度】2星【题型】选择【关键词】无【解析】P∉I,∴x至少不属于,A B中的一个.⌝:x A B【答案】B【例19】设集合{}{}=>=<,那么“x MM x x P x x|2,|3∈I”的∈”是“x M P∈,或x P()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【考点】逻辑连接词【难度】2星【题型】选择【关键词】无【解析】“x M∈I”,反之可以∈”不能推出“x M P∈,或x P【答案】A【例20】p或q”是假命题.其中正确的结论是()A.①③B.②④C.②③D.①④【考点】逻辑连接词【难度】2星【题型】选择【关键词】无【解析】“非p或非q”是假命题⇒“非p”与“非q”均为假命题.【答案】C【例21】 已知命题p 且q 为假命题,则可以肯定 ( )A.p 为真命题B.q 为假命题C.,p q 中至少有一个是假命题D.,p q 都是假命题【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 【答案】C【例22】 已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无【解析】 :12p x ⌝+≤,31x -≤≤,2:56q x x ⌝-≤,2560x x -+≥,3x ≥或2x ≤ 【答案】A【例23】 下列判断正确的是 ( )A.22x y x y ≠⇔≠或x y ≠-B.命题“a 、b 都是偶数,则a b +是偶数” 的逆否命题是“若a b +不是偶数,则a 、b 都不是偶数”C.若“p 或q ”为假命题,则“非p 且非q ”是真命题D.已知,,a b c 是实数,关于x 的不等式20ax bx c ++≤的解集是空集,必有0a >且0∆≤【考点】逻辑连接词 【难度】2星【题型】选择【关键词】无 【解析】 A 不正确,因为“x y ≠或x y ≠-”只要求其中之一成立即行,而22x y ≠需二者都成立;B 不正确,“a 、b 都是偶数”的否定是“a 、b 不都是偶数”;D 不正确,不等式 20ax bx c ++≤的解集是空集还可能是0,0a b c ==> .【答案】C【例24】 在下边的横线上填上真命题或假命题.⑴若命题“p ⌝”与命题“p q ∨”都是真命题,那么p q ∧是______; p q ⌝∧是_____;⑵若命题“p ⌝或q ⌝”是假命题,那么p q ∧是______;p q ∨是_______; p ⌝是_______.【考点】逻辑连接词 【难度】2星【题型】填空【关键词】无 【解析】 ⑴p ⌝真,说明p 为假命题;又p q ∨为真命题,故q 为真命题,从而p q ∧是假命题;p q ⌝∧是真命题;⑵根据“p ⌝或q ⌝”是假命题知,命题p ⌝、q ⌝都是假命题,从而p 、q 都是真命题,故p q ∧ 是真命题;p q ∨是真命题;p ⌝是假命题.【答案】⑴真命题,真命题,⑵真命题,真命题,假命题【例25】 ⑴p q ∨为真命题是p q ∧为真命题的 条件;⑵p ⌝为假命题是p q ∨为真命题的 条件.(填:充分不必要、必要不充分、充要、既不充分也不必要).【考点】逻辑连接词 【难度】2星【题型】填空【关键词】无【解析】 ⑴p q ∨真⇒p 真或q 真;p q ∧真⇒p 真且q 真,故p q ∨为真命题是p q ∧为真命题的必要不充分条件;⑵p ⌝假则p 真,从而p q ∨真,但p q ∨真时,p 可能假,故推不出p ⌝假,故p ⌝为假命题是p q ∨为真命题的充分不必要条件.【答案】⑴必要不充分,⑵充分不必要【例26】 如在下列说法中:①“p 且q ”为真是“p 或q ”为真的充分不必要条件;②“p 且q ”为假是“p 或q ”为真的充分不必要条件;③“p 或q ”为真是“非p ”为假的必要不充分条件;④“非p ”为真是“p 且q ”为假的必要不充分条件.其中正确的是__________.【考点】逻辑连接词 【难度】2星【题型】填空【关键词】无【解析】 【答案】①③.【例27】 如果命题“非p 或非q ”是假命题,给出下列四个结论:①命题“p 且q ”是真命题;②命题“p 且q ”是假命题;③命题“p 或q ”是真命题;④命题“用“充分、必要、充要”填空:①p q ∨为真命题是p q ∧为真命题的________________条件;②p ⌝为假命题是p q ∨为真命题的_____________________条件.【考点】逻辑连接词 【难度】2星【题型】填空【关键词】无【解析】 【答案】必要,必要【例28】 已知命题::p “若1a >,则32a a >”;命题:q “若0a >,则1a a>”.则在“p 或q ”、“p 且q ”、“非p ”、“非q ”四个命题中,真命题是 .【考点】逻辑连接词 【难度】2星【题型】填空【关键词】无【解析】 p 真,q 假. 【答案】p 或q ,非q【例29】 命题:0p 不是自然数;命题q 是无理数,则在命题“p 或q ”、“p 且q ”、“非p ”、“非q ”中,真命题是 ;假命题是 .【考点】逻辑连接词 【难度】2星 【题型】填空【关键词】无【解析】 p 假,q 真. “p 或q ”为真,只要,p q 中有一个为真即可;“p 且q ”必须,p q中均为真.【答案】 “p 或q ”, “非p ”; “p 且q ”, “非q ”【例30】 命题“对一切非零实数x ,总有12x x+≥”的否定是 ,它是 命题.(填“真”或“假”)【考点】逻辑连接词 【难度】2星 【题型】填空【关键词】无【解析】 例如:2x =-,则1,0,2x R x x x∈≠+<. 【答案】1,0,2x R x x x∃∈≠+<,真命题【例31】 甲、乙两人参加一次竞赛,设命题p 是“甲获奖”,命题q 是“乙获奖”,试用p q,及逻辑联结词“且”、“或”、“非”表示:⑴两人都获奖; ⑵两人都未获奖; ⑶恰有一人获奖; ⑷至少有一人获奖.【考点】逻辑连接词 【难度】2星 【题型】解答【关键词】无【解析】 ⑷也是对⑵中情况的否定,故也可表示为(()())p q ⌝⌝∧⌝,故容易知道(()())p q p q ∨=⌝⌝∧⌝,也即()()()p q p q ⌝∨=⌝∧⌝.【答案】⑴两人都获奖说明两个命题都成立,故为p q ∧;⑵都未获奖说明两个命题都不成立,故为()()p q ⌝∧⌝; ⑶恰有一人获奖说明一个命题成立,另一个命题不成立,故为()()p q p q ⌝∧∨∧⌝;⑷至少有一人获奖说明p 或q 成立,即p q ∨.【例32】 命题p :若R a b ∈,,则1a b +>是1a b +>的充分条件,命题q :函数y 的定义域是(1][3)-∞-+∞U ,,,则( ) A .p 或q 为假 B .p 且q 为真 C .p 真q 假 D .p 假q 真【考点】逻辑连接词 【难度】3星 【题型】选择【关键词】无【解析】 令1,1a b ==-,知命题p 假;由1203x x --⇒≥≥或1x -≤,故命题q 真;【答案】D ;【例33】 已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④p s ⌝⌝是的必要条件而不是充分条件;⑤r 是s 的充分条件而不是必要条件,则正确命题序号是( )A .①④⑤B .①②④C .②③⑤D .②④⑤【考点】逻辑连接词 【难度】3星 【题型】选择【关键词】2007年,湖北,高考【解析】 由右图易知;qsr p【答案】B ;【例34】 已知p :方程220x mx ++=有两个不等的负根;q :方程244(2)10x m x +-+=无实根.若p q ∨为真,p q ∧为假,则实数m 的取值范围是_______.【考点】逻辑连接词 【难度】3星 【题型】填空【关键词】无【解析】 由题意知,命题p q ,一真一假;p 为真时有:280m m m -<⎧⇒>⎨∆=->⎩q 为真时有:216(2)16013m m ∆=--<⇒<<;p 真q 假时有3m ≥;p 假q 真时有1m <≤(1[3)m ∈+∞U ,; 【答案】(1[3)m ∈+∞U ,【例35】 已知命题p :关于x 的不等式20062008x x a -+->恒成立;命题q :关于x 的函数log (2)a y ax =-在[01],上是减函数.若p 或q 为真命题,p 且q 为假命题,则实数a 的取值范围是_______;【考点】逻辑连接词 【难度】3星 【题型】填空【关键词】无【解析】 由题意知,命题p q ,一真一假;20062008x x -+-的最小值为2,故此不等式恒成立,即p 为真时有2a <;q 为真时log (2)a y ax =-在[01],上是减函数,∵0a >,故内层函数为减函数,从而外层对数函数为增函数,有1a >,又202a a ->⇒<,故12a <<;p 真q 假时1a ≤;p 假q 真时a 不存在,故(1]a ∈-∞,; 【答案】(1]-∞,;【例36】 已知命题p :方程2220a x ax +-=在[11]-,上有解;命题q :只有一个实数满足不等式2220x ax a ++≤.若p q ∨是假命题,求a 的取值范围.【考点】逻辑连接词 【难度】3星 【题型】解答【关键词】无【解析】 由2220a x ax +-=知0a ≠,解此方程得1212x x a a ==-,.∵方程2220a x ax +-=在[11]-,上有解,∴1||1a ≤或2||1a≤,∴||1a ≥.只有一个实数满足不等式2220x ax a ++≤,表明抛物线222y x ax a =++与x 轴只有一个公共点,∴2480a a ∆=-=, ∴0a =或2a =.∴命题p 为假,则11a -<<;命题q 为假,则0a ≠且2a ≠.∴若p q ∨是假命题,则p q ,都是假命题,a 的取值范围是(10)(01)-U ,,. 【答案】(10)(01)-U ,,【例37】 命题:p 方程210x mx ++=有两个不等的正实数根,命题:q 方程244(2)10x m x +++=无实数根.若“p 或q ”为真命题,求m 的取值范围.【考点】逻辑连接词 【难度】3星 【题型】解答【关键词】无【解析】 “p 或q ”为真命题,则p 为真命题,或q 为真命题,或q 和p 都是真命题当p 为真命题时,则2121240010m x x m x x ⎧∆=->⎪+=->⎨⎪=>⎩,得2m <-;当q 为真命题时,则216(2)160m ∆=+-<,得31m -<<- 当q 和p 都是真命题时,得32m -<<- ∴1m <-【答案】1m <-【例38】 已知函数2()(1)lg 2f x x a x a =++++(R a ∈,且2)a ≠-,⑴()f x 能表示成一个奇函数()g x 和一个偶函数()h x 的和,求()g x 和()h x 的解析式;⑵命题p :函数()f x 在区间2[(1))a ++∞,上是增函数;命题q :函数()g x 是减函数.如果命题p 且q 为假,p 或q 为真,求a 的取值范围. ⑶在⑵的条件下,比较(2)f 与3lg2-的大小.【考点】逻辑连接词 【难度】4星 【题型】解答【关键词】无【解析】 ⑴∵()()()f x g x h x =+,()()()()()f x g x h x g x h x -=-+-=-+,∴[]1()()()(1)2g x f x f x a x =--=+,[]21()()()lg 22h x f x f x x a =+-=++; ⑵命题p 为真时有:21(1)2a a +-+≤1a ⇒≥-或32a -≤,命题q 为真时有:101a a +<⇒<-;命题p 且q 为假,p 或q 为真包括:p 真q 假与p 假q 真两种情况;故1a -≥或312a -<<-,即32a >-;⑶(2)42(1)lg 226lg 2f a a a a =++++=+++,(2)(3lg 2)23lg 2lg 2f a a --=++++,32x >-时,20x +>,函数()23lg 2lg 2x x x ϕ=++++在32⎛⎫-+∞ ⎪⎝⎭,上单调递增, 故3()02a ϕϕ⎛⎫>-= ⎪⎝⎭,即在⑵的条件下,(2)3lg2f >-.【答案】⑴()(1)g x a x =+,2()lg 2h x x a =++, ⑵32a >-,⑶(2)3lg2f >-题型二:全称量词与存在量词【例39】 判断下列命题是全称命题,还是存在性命题.⑴平面四边形都存在外接圆;⑵有些直线没有斜率; ⑶三角形的内角和等于π; ⑷有一些向量方向不定; ⑸所有的有理数都是整数; ⑹实数的平方是非负的.【考点】全称量词与存在量词 【难度】1星 【题型】解答【关键词】无【解析】 .【答案】⑴全称命题;⑵存在性命题;⑶全称命题,意思是所有的三角形都有内角和等于π;⑷存在性命题;⑸全称命题;⑹全称命题【例40】 判断下列命题是全称命题还是存在性命题.⑴线段的垂直平分线上的点到这条线段两个端点的距离相等;⑵负数的平方是正数;⑶有些三角形不是等腰三角形; ⑷有些菱形是正方形.【考点】全称量词与存在量词 【难度】1星 【题型】解答【关键词】无【解析】【答案】⑴全称命题;⑵全称命题;⑶存在性命题;⑷存在性命题.【例41】 设语句()p x :cos()sin 2πx x +=-,写出“()R p θθ∀∈,”,并判断它是不是真命题.【考点】全称量词与存在量词 【难度】2星 【题型】解答【关键词】无【解析】 R θ∀∈,cos()sin 2πθθ+=-;由诱导公式知,是真命题.【答案】R θ∀∈,cos()sin 2πθθ+=-;真命题【例42】 用量词符号“∀∃,”表示下列命题,并判断下列命题的真假.⑴任意实数x 都有,2210x x ++>; ⑵存在实数x ,2210x x ++<;⑶存在一对实数a b ,,使20a b +<成立; ⑷有理数x 的平方仍为有理数;⑸实数的平方大于0.⑹有一个实数乘以任意一个实数都等于0.【考点】全称量词与存在量词 【难度】2星 【题型】解答【关键词】无【解析】 ⑴R x ∀∈,2210x x ++>;假命题,1x =-时,结论不成立;⑵R x ∃∈,2210x x ++<;假命题,R x ∈时,2221(1)0x x x ++=+≥; ⑶R a b ∃∈,,20a b +<;真命题,如12a b ==-,; ⑷Q x ∀∈,2Q x ∈;真命题; ⑸R x ∀∈,20x >;假命题,200=.⑹R a ∃∈,R x ∀∈,有0ax =;真命题,0a =即满足.【答案】⑴R x ∀∈,2210x x ++>;假命题⑵R x ∃∈,2210x x ++<;假命题 ⑶R a b ∃∈,,20a b +<;真命题 ⑷Q x ∀∈,2Q x ∈;真命题⑸R x ∀∈,20x >;假命题,200=. ⑹R a ∃∈,R x ∀∈,有0ax =;真命题【例43】判断下列命题是全称命题还是存在性命题,并判断真假.⑴所有的素数是奇数;⑵一切实数x,有2(1)0x->;⑶对于正实数x,12xx+≥;⑷1sin2sinRx xx∀∈+,≥;⑸一定有实数x满足2230x x--=;⑹至少有一个整数x能被2和3整除;⑺存在两个相交平面垂直于同一条直线;⑻{|x x x∃∈是无理数},2x是无理数.【考点】全称量词与存在量词【难度】2星【题型】解答【关键词】无【解析】【答案】⑴⑵⑶⑷是全称命题,⑸⑹⑺⑻是存在性命题,⑴⑵⑷⑺是假命题,⑶⑸⑹⑻是真命题.【例44】判断下列命题是全称命题还是存在性命题,并判断真假.⑴21x+是整数(Rx∈);⑵对所有的实数x,3x>;⑶对任意一个整数x,221x+为奇数;⑷末位是0的整数,可以被2整除;⑸角平分线上的点到这个角的两边的距离相等;⑹正四面体中两侧面的夹角相等;⑺有的实数是无限不循环小数;⑻有些三角形不是等腰三角形;⑼有的菱形是正方形.【考点】全称量词与存在量词【难度】2星【题型】解答【关键词】无【解析】⑴~⑹是全称命题,⑺~⑼是存在性命题,⑶~⑼是真命题,⑴⑵是假命题.【答案】⑴~⑹是全称命题,⑺~⑼是存在性命题,⑶~⑼是真命题,⑴⑵是假命题【例45】 写出下列命题p 的否定形式,并判断p 与p ⌝的真假.⑴平行四边形的对边相等; ⑵不等式22210x x ++≤有实数解. ⑶R x ∀∈,210x x ++>; ⑷R x ∃∈,21x x +<; ⑸有些实数的绝对值是正数.⑹不是每个质数都是偶数.【考点】全称量词与存在量词 【难度】2星 【题型】解答【关键词】无【解析】 ⑴p ⌝:存在对边不相等的平行四边形;p 真,p ⌝假;⑵p ⌝:不等式22210x x ++≤无实数解;p 假,p ⌝真; ⑶p ⌝:R x ∃∈,210x x ++≤;p 真,p ⌝假; ⑷p ⌝:R x ∀∈,21x x +≥;p 假,p ⌝真;⑸p ⌝:任意实数的绝对值都不是正数(或:,0R x x ∀∈≤);p 真,p ⌝假. ⑹p ⌝:每个质数都是偶数;p 真,p ⌝假.【答案】⑴p 真,p ⌝假;⑵p 假,p ⌝真;⑶p 真,p ⌝假;⑷p 假,p ⌝真;⑸p 真,p ⌝假;⑹p 真,p ⌝假.【例46】 判断下列命题的真假:(1)对任意的,x y 都有222x y xy +≥; (2)所有四边形的两条对角线都互相平分; (3)∃实数2a ≠且1b ≠-使22425a b a b +-+≤-;(4)存在实数x 使函数4()(0)f x x x x=+>取得最小值4.【考点】全称量词与存在量词 【难度】2星 【题型】解答【关键词】无【解析】 (1)是真命题,因为对任意实数,x y ,都有2222()0x y xy x y +-=-≥,∴222x y xy +≥.(2)是假命题,只有平行四边形才满足两条对角线互相平分,如梯形就不满足这个条件.(3)是假命题,因为2222425(2)(1)0a b a b a b +-++=-++≥,当且仅当2,1a b ==-时等号成立, 所以不存在实数对,a b ,使22(2)(1)0a b -++<,不存在即实数2a ≠且1b ≠-使22425a b a b +-+≤-.(4)是真命题,因为存在实数20x =>,使函数4()(0)f x x x x=+>取得最小值4.【答案】(1)是真命题,(2)是假命题,(3)是假命题,(4)是真命题。
集合与常用逻辑用语--2023高考真题分类汇编完整版
集合与常用逻辑用语--高考真题汇编第一章第一节集合1.(2023全国甲卷理科1)设集合{}31,A x x k k ==+∈Z ,{}32,B x x k k ==+∈Z ,U 为整数集,则()U A B = ð()A.{}3,x x k k =∈ZB.{}31,x x k k =-∈ZC.{}32,x x k k =-∈Z D.∅【分析】根据整数集的分类,以及补集的运算即可解出.【解析】因为整数集{}{}{}3,3+1,3+2,x x k k x x k k x x k k ==∈=∈=∈Z Z Z Z ,=U Z ,所以(){}3,U A B x x k k ==∈Z ð.故选A .2.(2023全国甲卷文科1)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}2,5N =,则U N M = ð()A.{}2,3,5 B.{}1,3,4 C.{}1,2,4,5 D.{}2,3,4,5【分析】利用集合的交并补运算即可得解.【解析】因为全集{1,2,3,4,5}U =,集合{1,4}M =,所以{}2,3,5U M =ð,又{2,5}N =,所以{2,3,5}U N M = ð.故选A.3.(2023全国乙卷理科2)设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x =()A.()U M N ð B.U N Mð C.()U M N ð D.U M Nð【分析】由题意逐一考查所给的选项运算结果是否为{}2x x 即可.【解析】由题意可得{}2M N x x =< ,则(){}2U M N x x = ð,选项A 正确;{}1U M x x =ð,则{}1U N M x x =>- ð,选项B 错误;{}11M N x x =-<< ,则(){}11U M N x x x =- 或ð,选项C 错误;{}12U N x x x =-或ð,则{}12U M N x x x =< 或ð,选项D 错误;故选A.4.(2023全国乙卷文科2)设全集{}0,1,2,4,6,8U =,集合{}0,4,6M =,{}0,1,6N =,则U M N = ð()A.{}0,2,4,6,8 B.{}0,1,4,6,8 C.{}1,2,4,6,8 D.U【分析】由题意可得U N ð的值,然后计算U M N ð即可.【解析】由题意可得{}2,4,8U N =ð,则{}0,2,4,6,8U M N = ð.故选A.5.(2023新高考I 卷1)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N =()A.{}2,1,0,1--B.{}0,1,2 C.{}2- D.{}2【解析】{}(][)260,23,N x x x =--≥=-∞-+∞ ,所以{}2M N =- ,故选C.6.(2023新高考II 卷2)2.设集合{}{}0,,1,2,22A a B a a =-=--,若A B ⊆,则a =()A.2 B.1 C.23D.1-【解析】因为A B ⊆,所以必有20a -=或220a -=,解得2a =或1a =.当2a =时,{}{}0,2,1,0,2A B =-=,不满足A B ⊆;当1a =时,{}{}0,1,1,1,0A B =-=-,符合题意.所以1a =.故选B.7.(2023北京卷1)已知集合{}20M x x =+,{}10N x x =-<,则M N = ()A.{}21x x -<B.{}21x x -<C.{}2x x - D.{}1x x <【分析】先化简集合,M N ,然后根据交集的定义计算.【解析】由题意,{20}{|2}M xx x x =+≥=≥-∣,{10}{|1}N x x x x =-<=<∣,根据交集的运算可知,{|21}M N x x =-≤< .故选A.8.(2023天津卷1)已知集合{}{}{}1,2,3,4,5,1,3,1,2,4U A B ===,则U B A = ð()A .{}1,3,5B .{}1,3C .{}1,2,4D .{}1,2,4,5【分析】对集合B 求补集,应用集合的并运算求结果;【解析】由{3,5}U B =ð,而{1,3}A =,所以{1,3,5}U B A = ð.故选A.第二节充分条件与必要条件、全称量词与存在量词1.(2023全国甲卷理科7)“22sin sin 1αβ+=”是“sin cos 0αβ+=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据充分条件、必要条件概念及同角三角函数的基本关系得解.【解析】当2απ=,0β=时,有22sin sin 1αβ+=,但sin cos 0αβ+≠,即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,()2222sin sin cos sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=.综上可知,22sin sin 1αβ+=是sin cos 0αβ+=成立的必要不充分条件.故选B.2.(2023新高考I 卷7)已记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:n S n ⎧⎫⎨⎬⎩⎭为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解析】{}n a 为等差数列,设首项为1a 公差为d ,则()112n n n S na d -=+,111222n S n d d a d n a n -=+=+-,所以n S n ⎧⎫⎨⎬⎩⎭为等差数列,所以甲是乙的充分条件.n S n ⎧⎫⎨⎬⎩⎭为等差数列,即()()()1111111n n n n n n nS n S S S na S n n n n n n +++-+--==+++为常数,设为t ,即()11n nna S t n n +-=+,故()11n n S na tn n +=-+,()()()1112n n S n a t n n n -=---≥,两式相减得()1112n n n n n a S S na n a tn -+=-=---,12n n a a t +-=为常数,对1n =也成立,所以{}n a 为等差数列,所以甲是乙的必要条件.所以,甲是乙的充要条件,故选C.3.(2023北京卷8)若0xy ≠,则“0x y +=”是“2x yy x+=-”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】解法一:证明充分性可由0x y +=得到x y =-,代入x yy x+化简即可,证明必要性可由2x y y x +=-去分母,再用完全平方公式即可;解法二:由x y y x+通分后用配凑法得到完全平方公式,证明充分性可把0x y +=代入即可;证明必要性把2x yy x+=-代入,解方程即可.【解析】解法一:充分性:因为0xy ≠,且0x y +=,所以x y =-,所以112x y y y y x y y-+=+=--=--,所以充分性成立;必要性:因为0xy ≠,且2x yy x+=-,所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=.所以必要性成立.所以“0x y +=”是“2x yy x+=-”的充要条件.故选C.解法二:充分性:因为0xy ≠,且0x y +=,所以()2222222222x y xy x y x y x y xy xy xy y x xy xy xy xy+-+++--+===-,所以充分性成立;必要性:因为0xy ≠,且2x yy x+=-,所以()()22222222222x y xy x y x y x y x y xy xy y x xy xy xy xy+-++++-+====-=-,所以()20x y xy+=,所以()20x y +=,所以0x y +=,所以必要性成立.所以“0x y +=”是“2x yy x+=-”的充要条件.故选C.4.(2023天津卷2)“22a b =”是“222a b ab +=”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【分析】根据充分、必要性定义判断条件的推出关系,即可得答案.【解析】由22a b =,则a b =±,当0a b =-≠时222a b ab +=不成立,充分性不成立;由222a b ab +=,则2()0a b -=,即a b =,显然22a b =成立,必要性成立;所以22a b =是222a b ab +=的必要不充分条件.故选B.。
全国高考数学 试题分类汇编13 常用逻辑用语
2013年全国高考理科数学试题分类汇编13:常用逻辑用语一、选择题 1 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知集合{}1,A a =,{}1,2,3B =,则“3a =”是“A B ⊆”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A 2 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))命题“对任意x R ∈,都有20x ≥”的否定为 ( )A .对任意x R ∈,都有20x <B .不存在x R ∈,都有20x <C .存在0x R ∈,使得200x ≥D .存在0x R ∈,使得200x <【答案】D 3 .(2013年高考四川卷(理))设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( )A .:,2p x A xB ⌝∀∃∈∉ B .:,2p x A x B ⌝∀∉∉C .:,2p x A x B ⌝∃∉∈D .:,2p x A x B ⌝∃∈∈【答案】D 4 .(2013年高考湖北卷(理))在一次跳伞训练中,甲.乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .()()p q ⌝∨⌝B .()p q ∨⌝C .()()p q ⌝∧⌝D .p q ∨【答案】A 5 .(2013年高考上海卷(理))钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的 ( ) A .充分条件 B .必要条件 C .充分必要条件 D .既非充分也非必要条件【答案】 B . 6 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知下列三个命题:① 若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ② ②若两组数据的平均数相等, 则它们的标准差也相等; ③ ③直线x + y + 1 = 0与圆2212x y +=相切. ④ 其中真命题的序号是: ( ) A .①②③ B .①②C .②③D .②③【答案】C 7 .(2013年高考陕西卷(理))设z 1, z 2是复数, 则下列命题中的假命题是( )A .若12||0z z -=, 则12z z =B .若12z z =, 则12z z =C .若||||21z z =, 则2112··z z z z =D .若12||||z z =, 则2122z z =【答案】D8 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))给定两个命题p ,q .若p ⌝是q 的必要而不充分条件,则p 是q ⌝的( )A .充分而不必要条件B .必要而不充分条件C .充要条件 (D ) 既不充分也不必要条件 【答案】A 9 .(2013年高考陕西卷(理))设a , b 为向量, 则“||||||=a a b b ·”是“a //b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】C 10.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))已知函数),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω,则“)(x f 是奇函数”是2πϕ=的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B11.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))"0"a ≤“是函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】C 12.(2013年高考北京卷(理))“φ=π”是“曲线y=sin(2x +φ)过坐标原点的”( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A13.(2013年上海市春季高考数学试卷(含答案))已知 a b c R ∈、、,“240b ac -<”是“函数2()f x ax bx c =++的图像恒在x 轴上方”的 ( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【答案】D 二、填空题14.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))定义“正对数”:0,01,ln ln ,1,x x x x +<<⎧=⎨≥⎩现有四个命题: ①若0,0a b >>,则ln ()ln b a b a ++=; ②若0,0a b >>,则ln ()ln ln ab a b +++=+ ③若0,0a b >>,则ln ()ln ln a a b b+++≥-④若0,0a b >>,则ln ()ln ln ln 2a b a b ++++≤++其中的真命题有__________________.(写出所有真命题的编号) 【答案】①③④。
2024年高中数学学业水平考试分类汇编专题01集合与常用逻辑用语
专题01集合与常用逻辑用语考点一:集合的概念1.(2023·江苏)对于两个非空实数集合A 和B ,我们把集合{},,x x a b a A b B =+∈∈∣记作A B *.若集合{}{}0,1,0,1A B ==-,则A B *中元素的个数为()A .1B .2C .3D .4【答案】C【详解】{}{}0,1,0,1A B ==-,则{}0,1,1A B *=-,则A B *中元素的个数为3故选:C考点二:集合间的基本关系1.(2023春·福建)已知全集为U ,M N M ⋂=,则其图象为()A .B .C .D .【答案】A【详解】全集为U ,M N M ⋂=,则有M N ⊆,选项BCD 不符合题意,选项A 符合题意.故选:A考点三:集合的基本运算1.(2023·北京)已知全集{}1,2,3,4U =,集合{}1,2A =,则U A =ð()A .{}1,3B .{}2,3C .{}1,4D .{}3,4【答案】D【详解】因为{1,2,3,4},{1,2}U A ==,所以{}3,4U A =ð;故选:D.2.(2023·河北)设集合{}2,3,4M =,{}3,4,5N =,则M N ⋂=()A .{}2B .{}5C .{}3,4D .{}2,3,4,5【答案】C【详解】根据列举法表示的集合可知,由{}2,3,4M =,{}3,4,5N =,利用交集运算可得{}3,4M N ⋂=.故选:C3.(2023·山西)已知集合{}1216=≤<∣x A x,{53}=-<≤∣B x x ,则A B = ()A .{54}xx -<<∣B .{53}-<≤∣x x C .{03}xx ≤≤∣D .{34}xx ≤<∣【答案】C【详解】解:因为1216x ≤<,即04222x ≤<,所以04x ≤<,所以{}{}|1216|04xA x x x =≤<=≤<,因为{|53}B x x =-<≤所以{}|03A B x x =≤≤ 故选:C4.(2023·江苏)已知集合{}{}2,0,2,0,2,4A B =-=,则A B = ()A .{}0,2B .{}2,2,4-C .{}2,0,2-D .{}2,0,2,4-【答案】A【详解】集合{}{}2,0,2,0,2,4A B =-=,则{}0,2A B =I .故选:A5.(2023春·浙江)已知全集{2,4,6,8,10}U =,集合{2,4}A =,{1,6,8}B =,则()U B A ⋂=ð()A .{2,4}B .{6,8,10}C .{6,8}D .{2,4,6,8,10}【答案】C【详解】因为全集{2,4,6,8,10}U =,集合{2,4}A =,所以{}6,8,10U A =ð,因为{1,6,8}B =,所以(){}6,8U A B = ð,故选:C6.(2023春·湖南)已知集合{}0,1A =,{}1,2,3B =,则A B = ()A .{}1B .{}1,2C .{}0,1D .{}1,2,3【答案】A【详解】由题意得A B = {}1,故选:A7.(2023·广东)设集合{}012M =,,,{}1,0,1N =-,则M N ⋃=()A .{}0,1B .{}0,1,2C .{}1,0,1,2-D .{}1,0,1-【答案】C【详解】因为集合{}012M =,,,{}1,0,1N =-,因此,{}1,0,1,2M N ⋃=-.故选:C.8.(2023春·新疆)已知集合{}{}1,0,1,0,1,2A B =-=,则A B = ()A .{}1,0,1,2-B .{}0,1C .{}1,0,1-D .{}1,1,2-【答案】B【详解】因为集合{}{}1,0,1,0,1,2A B =-=,所以A B = {}0,1.故选:B9.(2022春·天津)已知集合{}1,3A =,{}2,3,4B =,则A B ⋂等于()A .{}1B .{}3C .{}1,3D .{}1,2,3,4【答案】B【详解】集合{}1,3A =,{}2,3,4B =,则A B ⋂等于{}3.故选:B10.(2022·山西)已知集合{1U =,2,3,4},{1A =,3},{1B =,4},则()U A B ⋂=ð()A .{2,3}B .{3}C .{1}D .{1,2,3,4}【答案】B【详解】集合{1U =,2,3,4},{1A =,3},{1B =,4},则{}2,3U C B =,{}3U A C B ⋂=故选:B11.(2022春·辽宁)已知集合{}2,4A =,{}2,3B =,则A B ⋃=().A .{2}B .{2,3}C .{2,4}D .{2,3,4}【答案】D【详解】解:因为{}2,4A =,{}2,3B =,所以{}2,3,4A B = 故选:D12.(2022春·浙江)已知集合{}0,1,2A =,{}1,2,3,4B =,则A B = ()A .∅B .{}1C .{}2D .{}1,2【答案】D【详解】∵{}0,1,2A =,{}1,2,3,4B =,∴{}1,2A B = .故选:D.13.(2022秋·浙江)已知集合P ={0,1,2},Q ={1,2,3},则P ∩Q =()A .{0}B .{0,3}C .{1,2}D .{0,1,2,3}【答案】C【详解】 P ={0,1,2},Q ={1,2,3}∴P ∩Q ={1,2};故选:C.14.(2022春·浙江)已知集合{}{}0,1,2,3,4,1,1,2,3,5A B ==-,则A B = ()A .{}1,5-B .{}1,3C .{}1,2,3D .{}1,0,1,2,3,4,5-【答案】C【详解】由题意中的条件有{1,2,3}A B ⋂=.故选:C15.(2022秋·福建)已知集合{}{}2,0,1,0,1,2A B =-=,则A B = ()A .{}0,1B .{}2,0,1-C .{}0,1,2D .{}2,0,1,2-【答案】A【详解】解:因为集合{}{}2,0,1,0,1,2A B =-=,所以{}0,1A B = ,故选:A.16.(2022秋·广东)已知集合{}0,2,3M =,{}1,3N =,则M N ⋃=()A .{}3B .{}0,1,2C .{}0,1,2,3D .{}0,2,3,1,3【答案】C【详解】依题意M N ⋃={}0,1,2,3.故选:C17.(2022春·贵州)已知集合{}{}1,2,1,3A B ==,则A B = ()A .{}1B .{}2C .{}3D .∅【答案】A【详解】由{}{}1,2,1,3A B ==得,A B = {}1.故选:A.18.(2021·北京)已知集合{}1,4,5A =,{}1,2,3B =,则A B ⋃=()A .{}1,2,3B .{}1,2,3,4C .{}2,3,4,5D .{}1,2,3,4,5【答案】D【详解】{}{}{}1,4,51,2,31,2,3,4,5A B ⋃⋃==.故选:D.19.(2021春·天津)已知集合{}1,2A =,{}1,2,3B =,则A B ⋃等于()A .∅B .{}3C .{}1,2D .{}1,2,3【答案】D【详解】因为{}1,2A =,{}1,2,3B =,则{}1,2,3A B = .故选:D.20.(2021春·河北)已知集合{}1,0,1M =-,{}0,1N =,则M N ⋂=()A .{}0,1B .{}0C .{}1D .{}1,0,1-【答案】A【详解】 集合{}1,0,1M =-,{}0,1N =,{}0,1M N ∴= ,故选:A .21.(2021秋·吉林)设集合{}1,2A =,{}2,3,4B =,则A B = ()A .{}1,2,3,4B .{}1,2C .{}2,3,4D .{}2【答案】D【详解】因为{}1,2A =,{}2,3,4B =,所以{2}A B = ,故选:D22.(2021·吉林)已知集合{}1,0,1,2A =-,{}2,1,2B =-,则A B = ()A .{}1B .{}2C .{}1,2D .{}2,0,1,2-【答案】C【详解】集合{}1,0,1,2A =-,{}2,1,2B =-,则A B = {}1,2.故选:C23.(2021春·浙江)设集合{}1,2,3A =,{}2,3,4B =,则A B = ()A .{}1,3B .{}2,3C .{}1,4D .{}2,4【答案】B【详解】由题意可得{}2,3A B ⋂=.故选:B.24.(2021秋·浙江)已知集合{4,5,6},{3,5,7}A B ==,则A B = ()A .∅B .{5}C .{4,6}D .{3,4,5,6,7}【答案】B【详解】因为{4,5,6},{3,5,7}A B ==,所以{}5A B = .故选:B.25.(2021春·福建)已知集合{}1,3A =-,{}1,0B =-,则A B = ()A .{}1,0,3-B .{}1,0-C .{}1-D .∅【答案】C【详解】由已知{1}A B ⋂=-.故选:C .26.(2021秋·福建)已知集合{}0,1A =,{}1,0B =-,则A B ⋃=()A .{}1,0-B .{}0,1C .{}1,1-D .{}1,0,1-【答案】D【详解】因为{}0,1A =,{}1,0B =-,所以A B ⋃={}1,0,1-,故选:D27.(2021秋·河南)已知全集{1,2,3,4,5,6}U =,集合{1,3,5}A =,则U A =ð()A .{1,3,5}B .{2,4,6}C .{3,4,5}D .{1,3,4,5}【答案】B【详解】由题意U A =ð{2,4,6}.故选:B .28.(2021·湖北)设集合{}1,2,3,4,5A =,{}2,4,6,8B =,则A B = ()A .∅B .{}2C .{}2,4D .{}2,4,8【答案】C【详解】因为集合{}1,2,3,4,5A =,{}2,4,6,8B =,所以A B = {}2,4,故选:C29.(2021秋·广东)设全集U ={}12345,,,,,A ={}12,,则U A =ð()A .{} 12345,,,,B .{} 2345,,,C .{} 345,,D .{} 34,【答案】C【详解】解:因为{}12345U =,,,,,{}12A =,所以{}U 3,4,5A =ð故选:C30.(2021春·贵州)已知集合{}{}1101A B =-=,,,,则A B = ()A .{0}B .{1}C .{2}D .∅【答案】B【详解】集合{}{}1101A B =-=,,,,则{1}A B ⋂=,故选:B考点四:充分条件与必要条件1.(2023·北京)已知a ,b ∈R ,则“0a b ==”是“0a b +=”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【详解】如果0a b ==,则有0a b +=,是充分条件;如果0a b +=,则有a b =-,但不能推出0a b ==,比如1,1,0a b a b ==-+=,不是必要条件;所以“0a b ==”是“0a b +=”的充分不必要条件;故选:A.2.(2023·河北)设,a b R ∈,则“a b >”是“33a b >”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【详解】∵函数()3f x x =在(),-∞+∞上单调递增,∴当a b >时,()()f a f b >,即33a b >,反之亦成立,∴“a b >”是“33a b >”的充分必要条件,故选C.3.(2023春·浙江)设x ∈R ,则“|1|1x -<”是“22x x <”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【详解】由|1|1x -<得02x <<,由22x x <得02x <<,所以“|1|1x -<”是“22x x <”的充要条件,故选:C4.(2023春·福建)“1x =”是“21x =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【详解】由1x =可得1x =±,由21x =可得1x =±,所以“1x =”是“21x =”的充要条件.故选:C.5.(2023春·湖南)设p :四棱柱是正方体,q :四棱柱是长方体,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【详解】正方体是特殊的长方体,而长方体不一定是正方体,所以p 是q 的充分不必要条件.故选:A.6.(2022·山西)如果不等式1-<x a 成立的充分不必要条件是1322x <<;则实数a 的取值范围是()A .13,22⎛⎫ ⎪⎝⎭B .13,22⎡⎤⎢⎥⎣⎦C .13,,22∞∞⎛⎫⎛⎫-⋃+ ⎪ ⎪⎝⎭⎝⎭D .13,,22∞∞⎛⎤⎡⎫-⋃+ ⎪⎥⎢⎝⎦⎣⎭【答案】B【详解】1-<x a ,解得:11a x a -<<+,所以11a x a -<<+成立的充分不必要条件是1322x <<,故13<<22x x ⎧⎫⎨⎬⎩⎭是{}1<<1+x a x a -的真子集,所以1123+1>2a a -≤⎧⎪⎪⎨⎪⎪⎩或11<23+12a a -≥⎧⎪⎪⎨⎪⎪⎩,解得:1322a ≤≤,故实数a 的取值范围是13,22⎡⎤⎢⎥⎣⎦.故选:B7.(2022春·浙江)设a ,b 是实数,则“a b >”是“a b >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【详解】对于a b >,比如1,3a b ==-,显然13a b =<=,不能推出a b >;反之,如果a b >,则必有0,a a a b b >∴=>≥;所以“a b >”是“a b >”的必要不充分条件;故选:B.8.(2021·北京)设a R ∈,则“1a =”是“21a =”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【详解】当1a =时,21a =,充分性成立;反过来,当21a =时,则1a =±,不一定有1a =,故必要性不成立,所以“1a =”是“21a =”的充分而不必要条件.故选:A9.(2021秋·吉林)设x ,R y ∈,则“1x >”是“0x >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【详解】若1x >可以得出0x >,但0x >得不出1x >,所以“1x >”是“0x >”的充分不必要条件,故选:A10.(2021春·浙江)“4x =”是“22x x =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【详解】解:若4x =,则422416==,即22x x =成立,故充分性成立;显然2x =时22224==,即22x x =,故由22x x =推不出4x =,故必要性不成立;故“4x =”是“22x x =”的充分不必要条件;故选:A11.(2021秋·浙江)若,a b ∈R ,则“14ab ≥”是“2212a b +≥”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【详解】解:当14ab ≥,由于,a b ∈R ,22112242a b ab +≥≥⨯=,故充分性成立;当,a b ∈R ,不妨设1,1a b =-=,2212a b +≥成立,114ab =-≥不成立,故必要性不成立.故“14ab ≥”是“2212a b +≥”的充分不必要条件.故选:A.12.(2021湖北)已知:02p x <<,:13q x -<<,则p 是q 的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分不必要条件【答案】A【详解】由:02p x <<,可得出:13q x -<<,由:13q x -<<,得不出:02p x <<,所以p 是q 的充分而不必要条件,故选:A.13.(2021秋·广西)“0x =”是“20x =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【详解】若0x =,则0x =,若20x =,则0x =,则“0x =”是“20x =”的充要条件,故选:C.考点五:全称量词与存在量词1.(2023·河北)设命题p :R α∀∈,sin 1α≥-,则p 的否定是()A .R α∃∈,sin 1α≤-B .R α∃∈,sin 1α<-C .R α∀∈,sin 1α≤-D .R α∀∈,sin 1α<-【答案】B【详解】由题意可知,含有一个量词命题的否定将∀改为∃,并否定结论即可,所以命题p :R α∀∈,sin 1α≥-的否定为“R α∃∈,sin 1α<-”.故选:B2.(2023·江苏)命题“x ∀∈R ,210x x ++>”的否定为()A .x ∀∈R ,210x x ++≤B .x ∃∈R ,210x x ++≤C .x ∃∈R ,210x x ++<D .x ∃∈R ,210x x ++>【答案】B【详解】由题意x ∀∈R ,210x x ++>,否定是x ∃∈R ,210x x ++≤【答案】B【详解】由题意得“x ∃∈R ,210x x ++<”的否定是x ∀∈R ,210x x ++≥,故选:B4.(2023春·新疆)命题“2 0,250x x x ∃>++>”的否定是()A .2 0,250x x x ∀>++≤B .2 0,250x x x ∀≤++>C .2 0,250x x x ∃>++≤D .2 0,250x x x ∃≤++>【答案】A【详解】因为命题“2 0,250x x x ∃>++>”是特称量词命题,故其否定是“2 0,250x x x ∀>++≤”.故选:A5.(2022春·天津)命题“x ∃∈R ,21x x +≥”的否定是()A .x ∃∈R ,21x x +<B .x ∃∈R ,21x x +≤C .x ∀∈R ,21x x +<D .x ∀∈R ,21x x +≤【答案】C【详解】命题“x ∃∈R ,21x x +≥”的否定为“x ∀∈R ,21x x +<”.故选:C6.(2022春·辽宁)如果命题p :()3,x ∀∈+∞,29x >,则p ⌝为().A .p ⌝:()3,x ∃∈+∞,29x >B .p ⌝:()3,x ∀∈+∞,29x <C .p ⌝:()3,x ∃∈+∞,29x ≤D .p ⌝:()3,x ∀∈+∞,29x ≤【答案】C【详解】解:命题p :()3,x ∀∈+∞,29x >,是全称命题,所以p ⌝为:p ⌝:()3,x ∃∈+∞,29x ≤故选:C7.(2022春·浙江)命题“2,210x R x x ∀∈-+>”的否定为()A .2000,210x R x x ∃∈-+>B .2,210x R x x ∀∈-+≥C .2,210x R x x ∀∈-+≤D .2000,210x R x x ∃∈-+≤【答案】D【详解】命题“2,210x R x x ∀∈-+>”的否定为“2000,210x R x x ∃∈-+≤”【答案】C【详解】对于全称量词命题“x M ∀∈,()p x ”,其否定为存在量词命题“x M ∃∈,()p x ⌝”,因此,命题“x ∀∈R ,2210x x -+≥”的否定为“x ∃∈R ,2210x x -+<”,故选:C.。
高考数学重难点第7讲-集合与常用逻辑用语7大题型(解析版)(老师专用)(新高考)(全国通用)
重难点第7讲集合与常用逻辑用语7大题型——每天30分钟7天掌握集合与常用逻辑用语7大题型【命题趋势】1、集合集合是高考数学的必考考点,常见以一元一次、一元二次不等式的形式,结合有限集、无限集考查集合的交集、并集、补集等,偶尔涉及集合的符号辨识,一般出现在高考的第1题,以简单题为主,但除了常规考法以外,日常练习中多注意新颖题目的考向。
2、常用逻辑用语常用逻辑用语是高考数学的重要考点,常见考查真假命题的判断;全称量词、特称量词命题以及命题的否定;偶尔涉及充分条件与必要条件以及根据描述进行逻辑推理等,中等偏易难度。
但一般很少单独考考查,常常与函数、不等式、数列、三角函数、立体几何等交汇,热点是“充要条件”,考生复习时需多注意这方面。
第1天认真研究满分技巧及思考热点题型【满分技巧】一、与集合元素有关问题的解题策略1、研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义.2、利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合是否满足元素的互异性.二、子集的个数如果集合A中含有n个元素,则有(1)A的子集的个数有2n个.(2)A的非空子集的个数有2n-1个.(3)A的真子集的个数有2n-1个.(4)A的非空真子集的个数有2n-2个.三、集合中常见的参数求法1、已知一个元素属于集合,求集合中所含的参数值.(1)确定性的运用:利用集合中元素的确定性解出参数的所有可能值;(2)互异性的运用:根据集合中元素的互异性对集合中元素进行检验.2、利用两个集合之间的关系确定参数的取值范围第一步:弄清两个集合之间的关系,谁是谁的子集;第二步:看集合中是否含有参数,若A B,且A中含参数应考虑参数使该集合为空集的情形;第三步:将集合间的包含关系转化为方程(组)或不等式(组),求出相关的参数的值或取值范围.常采用数形结合的思想,借助数轴解答.3、根据集合运算的结果确定参数的取值范围法一:根据集合运算结果确定集合对应区间的端点值之间的大小关系,确定参数的取值范围.法二:(1)化简所给集合;(2)用数轴表示所给集合;(3)根据集合端点间关系列出不等式(组);(4)解不等式(组);(5)检验.【注意】(1)确定不等式解集的端点之间的大小关系时,需检验能否取“=”;(2)千万不要忘记考虑空集。
高中数学知识点总结:常用逻辑用语
优选精品优选精品 欢迎下载欢迎下载1 / 2高中数学知识点总结:常用逻辑用语高中学生在学习中或多或少有一些困惑,的编辑为大家总结了高中数学知识点总结:常用逻辑用语,各位考生可以参考。
常用逻辑用语:1、四种命题:⑴原命题:若p 则q;⑵逆命题:若q 则p;⑶否命题:若p;⑶否命题:若 p p 则 q;⑷逆否命题:若q;⑷逆否命题:若 q q 则 p注:注:11、原命题与逆否命题等价、原命题与逆否命题等价;;逆命题与否命题等价。
判断命题真假时注意转化。
2、注意命题的否定与否命题的区别:命题否定形式是、注意命题的否定与否命题的区别:命题否定形式是 ; ; ;否否命题是命题是 . . .命题命题或 的否定是 且 且 的否定是 或 . 3、逻辑联结词:⑴且⑴且(and) (and) (and) :命题形式:命题形式:命题形式 p q; p q p q p q p p q; p q p q p q p⑵或⑵或(or)(or)(or):命题形式:命题形式:命题形式 p q; p q; p q; 真真真 真 真 假 ⑶非⑶非(not)(not)(not):命题形式:命题形式:命题形式 p . p . p . 真真假 假 真 假 假 真 假 真 真假 假 假 假 真或命题的真假特点是一真即真,要假全假且命题的真假特点是一假即假,要真全真非命题的真假特点是一真一假4、充要条件优选精品优选精品 欢迎下载欢迎下载2 / 2 由条件可推出结论,条件是结论成立的充分条件由条件可推出结论,条件是结论成立的充分条件;;由结论可推出条件,则条件是结论成立的必要条件。
5、全称命题与特称命题:短语所有在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号表示。
含有全体量词的命题,叫做全称命题。
短语有一个或有些或至少有一个在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号 表示,含有存在量词的命题,叫做存在性命题。
高三数学:专题02 常用逻辑用语 理(教师版)
山东省2013届高三数学 各地市最新模拟理数试题精品分类汇编 专题02 常用逻辑用语 理(教师版)一、选择题1. (山东省济南市2013年1月高三上学期期末理10)非零向量,a b 使得||||||a b a b +=-成立的一个充分非必要条件是A. //a bB. 20a b +=C. ||||a ba b =D. a b =2.(山东省德州市2013年1月高三上学期期末校际联考理3)设,,,,a b R ∈则“1a ≥且1b ≥”是“2a b +≥”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.(山东省淄博市2013届高三上学期期末理5) “1-=m ”是“直线02)12(=+-+y m mx 与直线033=++my x 垂直”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】当210m -=,即12m =时,两直线方程为4x =-和13302x y ++=,此时两直线不垂直。
当0m =时,两直线方程为2y =和1x =-,此时两直线垂直。
当0m ≠且12m ≠时,两直线方程为21212m y x m m =+--和33y x mm=--,两直线的斜率为3,12m mm--,要使两直线垂直,则有3()112m mm⨯-=--,解得1-=m ,所以直线02)12(=+-+y m mx与直线033=++my x 垂直”则有1-=m 或0m =,所以1-=m 是两直线垂直的充分而不必要条件,选A.4.(山东省诸城市2013届高三12月月考理)“22a b >”是22log log a b >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.(山东省枣庄三中2013年1月高三上学期阶段测试理)已知,a b R +∈,那么 “122<+b a ” 是“1ab a b +>+”的A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件6.(山东省潍坊市四县一区2013届高三11月联考理)下列命题中的假命题是 A.02,1>∈∀-x R x B.1lg ,<∈∃x R xC.0,2>∈∀x R x D.2tan ,=∈∃x R x7.(山东省潍坊市四县一区2013届高三11月联考理)已知条件1:≤x p ,条件11:<x q ,则p 是q ⌝成立的A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分也非必要条件8.(山东省泰安市2013届高三上学期期中考试理)命题“所有实数的平方都是正数”的否定为A.所有实数的平方都不是正数B.有的实数的平方是正数C.至少有一个实数的平方是正数D.至少有一个实数的平方不是正数9.(山东省实验中学2013届高三第三次诊断性测试理)设}{}2,1{2a N M ==,,则”“1=a 是”“M N ⊆的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件10.(山东省实验中学2013届高三第三次诊断性测试理)设命题p :曲线x e y -=在点),(e 1-处的切线方程是:ex y -=;命题q :b a ,是任意实数,若b a >,则1111+<+b a ,则( )A.“p 或q ”为真B.“p 且q ”为真C.p 假q 真D.p ,q 均为假命题11.(山东省实验中学2013届高三第一次诊断性测试理)如果命题 “⌝(p 或q)”为假命题,则A .p ,q 均为真命题B .p ,q 均为假命题C .p ,q 中至少有一个为真命题D . p, q 中至多有一个为真命题12.(山东省实验中学2013届高三第二次诊断性测试理)若)(x f 是R 上的增函数,且2)2(,4)1(=-=-f f ,设{}31)(|<++=t x f x P ,{}4)(|-<=x f x Q ,若“P x ∈”是“Q x ∈的充分不必要条件,则实数t 的取值范围是A.1-≤tB.1->tC.3≥tD.3>t13.(山东省聊城市东阿一中2013届高三上学期期初考试)是的( )A .充分不必要条件 B.必要不充分条件C .充要条件D. 既不充分也不必要条件14.(山东省临沂市2013届高三上学期期中考试理)已知命题:,30xp x ∀∈>R ,则 A .0:,30xp x ⌝∃∈≤RB .:,30xp x ⌝∀∈≤RC .0:,30xp x ⌝∃∈<RD .:,30xp x ⌝∀∈<R15.(山东省青岛市2013届高三上学期期中考试理)在A B C ∆中,“A B >”是“tan tan A B >”的A 充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件16.(山东省青岛市2013届高三上学期期中考试理)给出下列三个结论:(1)若命题p 为真命题,命题q ⌝为真命题,则命题“p q ∧”为真命题;(2)命题“若0xy =,则0x =或0y =”的否命题为“若0xy ≠,则0x ≠或0y ≠”;(3)命题“,20x x ∀∈>R ”的否定是“ ,20x x ∃∈≤R ”.则以上结论正确的个数为 A .3个 B .2个 C .1个 D .0个17.(山东省济南外国语学校2013届高三上学期期中考试理)"1""||1"x x >>是的( ) A .充分不必要条件 B.必要不充分条件C .充分必要条件 D .既不充分又不必要条件18.(山东省德州市乐陵一中2013届高三10月月考理)下列有关命题的说法正确的是 A .命题“若0xy =,则0x =”的否命题为:“若0xy =,则0x ≠” B .“若0=+y x ,则x ,y 互为相反数”的逆命题为真命题C .命题“R ∈∃x ,使得2210x -<”的否定是:“R ∈∀x ,均有2210x -<”D .命题“若cos cos x y =,则x y =”的逆否命题为真命题二、填空题:19.(山东省诸城市2013届高三12月月考理)已知命题P :x ∀∈[0,l],x a e ≥,命题q :“x ∃∈R ,x 2+4x+a=0”,若命题“p∧q”是真命题,则实数a 的取值范围是 ;三、解答题:20.(山东省德州市乐陵一中2013届高三10月月考理)(本小题满分12分)设命题p :实数x 满足03422<+-a ax x ,其中0<a ;命题q :实数x 满足2280,x x +->且p q ⌝⌝是的必要不充分条件,求实数a 的取值范围.21.(山东省泰安市2013届高三上学期期中考试理)(本小题满分12分)已知集合A 为函数()()()lg 1lg 1f x x x =+--的定义域,集合{}22120B x a ax x =---≥.(I )若112A B xx ⎧⎫⋂=≤<⎨⎬⎩⎭,求a 的值; (II )求证2a ≥是A B φ⋂=的充分不必要条件. 【解析】22.(山东省烟台市莱州一中20l3届高三第二次质量检测理)已知全集U=R ,非空集合{23x A xx -=-<}0,{()()22B x x a x a =---<}0.(1)当12a =时,求()U C B A ⋂;(2)命题:p x A ∈,命题:q x B ∈,若q 是p 的必要条件,求实数a 的取值范围. 【解析】23.(山东省烟台市莱州一中2013届高三10月月考理)(12分)已知{}{}m2,--208≤=1Sxxxx-P≤x=(1)若PS⋃,求实数m的取值范围;P⊆(2)是否存在实数m,使得“Px∈”的充要条件,若存在,求出m的取值范x∈”是“S围;若不存在,请说明理由.【解析】。
全国高考数学试题分类汇编13经常使用逻辑用语
全国高考理科数学试题分类汇编13:经常使用逻辑用语一、选择题1 .( 一般高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知集合{}1,A a =,{}1,2,3B =,则“3a =”是“A B ⊆”的( )A .充分而没必要要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A2 .( 一般高等学校招生统一考试重庆数学(理)试题(含答案))命题“对任意x R ∈,都有20x ≥”的否定为( )A .对任意x R ∈,都有20x <B .不存在x R ∈,都有20x <C .存在0x R ∈,使得200x ≥D .存在0x R ∈,使得200x <【答案】D3 .( 高考四川卷(理))设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( )A .:,2p x A xB ⌝∀∃∈∉ B .:,2p x A x B ⌝∀∉∉C .:,2p x A x B ⌝∃∉∈D .:,2p x A x B ⌝∃∈∈【答案】D 4 .( 高考湖北卷(理))在一次跳伞训练中,甲.乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一名学员没有降落在指定范围”可表示为 ( )A .()()p q ⌝∨⌝B .()p q ∨⌝C .()()p q ⌝∧⌝D .p q ∨【答案】A 5 .( 高考上海卷(理))钱大姐常说“廉价没好货”,她这句话的意思是:“不廉价”是“好货”的 ( )A .充分条件B .必要条件C .充分必要条件D .既非充分也非必要条件【答案】 B . 6 .( 一般高等学校招生统一考试天津数学(理)试题(含答案))已知下列三个命题:① 若一个球的半径缩小到原先的12, 则其体积缩小到原先的18; ② ②若两组数据的平均数相等, 则它们的标准差也相等; ③ ③直线x + y + 1 = 0与圆2212x y +=相切. ④ 其中真命题的序号是: ( ) A .①②③ B .①② C .②③ D .②③ 【答案】C 7 .( 高考陕西卷(理))设z 1, z 2是复数, 则下列命题中的假命题是( )A .若12||0z z -=, 则12z z =B .若12z z =, 则12z z =C .若||||21z z =, 则2112··z z z z =D .若12||||z z =, 则2122z z =【答案】D8 .( 一般高等学校招生统一考试山东数学(理)试题(含答案))给定两个命题p ,q .若p ⌝是q 的必要而不充分条件,则p 是q ⌝的( )A .充分而没必要要条件B .必要而不充分条件C .充要条件 (D ) 既不充分也没必要要条件 【答案】A9 .( 高考陕西卷(理))设a , b 为向量, 则“||||||=a a b b ·”是“a ),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω)(x f 2πϕ="0"a ≤()=(-1)f x ax x (0,+)∞ a b c R∈、、240b ac -<2()f x ax bx c =++x0,01,ln ln ,1,x x x x +<<⎧=⎨≥⎩0,0a b >>ln ()ln b a b a ++=0,0a b >>ln ()ln ln ab a b +++=+0,0a b >>ln ()ln ln aa bb+++≥-0,0a b >>ln ()ln ln ln 2a b a b ++++≤++写出所有真命题的编号) 【答案】①③④。
高考真题和模拟题分类汇编 数学 专题02 常用逻辑用语 Word版含解析
高考真题和模拟题分类汇编数 学专题02 常用逻辑用语一、选择题部分1.(2021•高考全国乙卷•文T3)已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是()A. p q ∧B. p q ⌝∧C. p q ∧⌝D. ()p q ⌝∨ 【答案】A .【解析】由于1sin 1x -≤≤,所以命题p 为真命题;由于0x ≥,所以||e 1x ≥,所以命题q 为真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选A .2.(2021•山东聊城三模•T 4.)已知直线l:(a −1)x +y −3=0,圆C:(x −1)2+y 2=5.则“ a =−1 ”是“ l 与C 相切”的().A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件【答案】B .【考点】必要条件、充分条件与充要条件的判断,直线与圆的位置关系【解析】圆C:(x −1)2+y 2=5的圆心为(1,0),半径r =√5,由直线l 和C 相切可得:圆心到直线的距离d =√(a−1)2+1=√5,解得2a 2−a −3=0,解得a =−1或a =32,故a =−1是a =−1或a =32的充分不必要条件,故答案为:B. 【分析】根据直线与圆相切的性质解得a =−1或a =32,再由充分必要条件即可判断B 正确。
3.(2021•安徽蚌埠三模•文T 3.)下面四个条件中,使a >b 成立的必要不充分条件是( )A .a ﹣2>bB .a +2>bC .|a |>|b |D .【答案】B .【解析】a >b 无法推出a ﹣2>b ,故A 错误;“a >b ”能推出“a +2>b ”,故选项B 是“a >b ”的必要条件,但“a +2>b ”不能推出“a >b ”,不是充分条件,满足题意,故B 正确;“a >b ”不能推出“|a |>|b |”即a 2>b 2,故选项C 不是“a >b ”的必要条件,故C 错误;a >b 无法推出>,如a >b >1时,故D 错误.b >4.(2021•上海嘉定三模•T13.)已知直角坐标平面上两条直线方程分别为l 1:a 1x +b 1y +c 1=0,l 2:a 2x +b 2y +c 2=0,那么“=0是“两直线l1,l2平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B.【解析】若“=0则a1b2﹣a2b1=0,若a1c2﹣a2c1=0,则l1不平行于l2,若“l1∥l2”,则a1b2﹣a2b1=0,∴=0,故“=0是“两直线l1,l2平行的必要不充分条件.5.(2021•河南济源平顶山许昌三模•文T11.)下列结论中正确的是()①设m,n是两条不同的直线,α,β是两个不同的平面,若m⊥α,m∥n,n∥β,则α⊥β;②x=是函数y=sin x+sin(β﹣x)取得最大值的充要条件;③已知命题p:∀x∈R,4x<5x;命题q:∃x>0,x2>2x,则¬p∧q为真命题;④等差数列{a n}中,前n项和为S n,公差d<0,若a8=|a9|,则当S n取得最大值时,n=15.A.①③B.①④C.②③D.③④【答案】A.【解析】对于①:设m,n是两条不同的直线,α,β是两个不同的平面,若m⊥α,m∥n,直线m相当于平面α的法向量,由于n∥β,则α⊥β,故①正确;对于②,函数f(x)=sin x+sin(﹣x)满足f(0)=f(),故x=不是取得最大值的充要条件,故②错误;③已知命题p:∀x∈R,4x<5x;当x=﹣1时,不成立,命题q:∃x>0,x2>2x,当x=3时,成立,则¬p∧q为真命题,故③正确;④等差数列{a n}中,前n项和为S n,公差d<0,若a8=|a9|,即a8=﹣a9,则当S n取得最大值时,n=8或9,故④错误.6.(2021•上海浦东新区三模•T14.)关于x、y的二元一次方程组的系数行列式D=0是该方程组有解的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D.【解析】系数行列式D≠0时,方程组有唯一的解,系数行列式D=0时,方程组有无数个解或无解.∴当系数行列式D=0,方程可能有无数个解,也有可能无解,反之,若方程组有解,可能有唯一解,也可能有无数解,则行列式D可能不为0,也可能为0.∴系数行列式D=0是方程有解的既不充分也不必要条件.7.(2021•福建宁德三模•T3) 不等式x2−2x−3<0成立的一个充分不必要条件是( )A. −1<x<3B. −1≤x<2C. −3<x<3D. 0≤x<3【答案】D.【解析】∵x2−2x−3<0,∴−1<x<3,∵[0,3)⊊(−1,3),∴不等式x2−2x−3<0成立的一个充分不必要条件是[0,3),故选:D.先解不等式x2−2x−3<0的解集,利用子集的包含关系,借助充分必要条件的定义即可.本题考查了充分必要条件的判定,一元二次不等式的解法,属于基础题.8.(2021•宁夏中卫三模•理T2.)命题“若a2+b2=0,则a=0且b=0”的否定是()A.若a2+b2≠0,则a≠0且b≠0B.若a2+b2=0,则a≠0且b≠0C.若a2+b2≠0,则a≠0或b≠0D.若a2+b2=0,则a≠0或b≠0【答案】D.【解析】命题“若a2+b2=0,则a=0且b=0”的否定是“若a2+b2=0,则a≠0或b≠0”.8.(2021•江西南昌三模•理T7.)随机变量X服从正态分布,有下列四个命题:①P(X≥k)=0.5;②P(X<k)=0.5;③P(X>k+1)<P(X<k﹣2);④P(k﹣1<X<k)>P(k+1<X<k+2).若只有一个假命题,则该假命题是()A.①B.②C.③D.④【答案】C.【解析】因为4个命题中只有一个假命题,又①P(X≥k)=0.5;②P(X<k)=0.5,由正态分布的相知可知,①②均为真命题,所以μ=k,则P(X>k+1)>P(X>k+2)=P(X<k﹣2),故③错误;因为P(k﹣1<X<k)=P(k<X<k+1)>P(k+1<X<k+2),故④正确.9.(2021•江西上饶三模•理T 1.)设x∈R,则“﹣2<x<2”是“1<x<2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B.【解析】∵(1,2)⊊(﹣2,2),∴﹣2<x<2是1<x<2的必要不充分条件.10.(2021•安徽马鞍山三模•理T5.)已知命题p:“∃x∈R,x2﹣x+1<0”,则¬p为()A.∃x∈R,x2﹣x+1≥0B.∃x∉R,x2﹣x+1≥0C.∀x∈R,x2﹣x+1≥0D.∀x∈R,x2﹣x+1<0【答案】C.【解析】由特称命题的否定为全称命题,可得命题p:∃x∈R,x2﹣x+1<0,则¬p是∀x∈R,x2﹣x+1≥0.11.(2021•浙江杭州二模•理T3.)设,是非零向量,则“⊥”是“函数f(x)=(x+)•(x﹣)为一次函数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B.【解析】f(x)=(x)•(x﹣)=•x2+(﹣)x﹣•,若⊥,则•=0,如果同时有||=||,则函数恒为0,不是一次函数,故不充分;如果f(x)是一次函数,则•=0,故⊥,该条件必要.12.(2021•江西鹰潭二模•理T5.)下列命题中,真命题的是()A.函数y=sin|x|的周期是2πB.∀x∈R,2x>x2C.函数y=ln是奇函数D.a+b=0的充要条件是=﹣1【答案】C.【解析】对于A,函数y=sin|x|不是周期函数,故A是假命题;对于B,当x=2时2x=x2,故B是假命题;对于C,函数y=f(x)=ln的定义域(﹣2,2)关于原点对称,且满足f(﹣x)=﹣f(x),故函数f(x)是奇函数,故C是真命题;对于D,“a+b=0”的必要不充分条件是“=﹣1”,即D是假命题.13.(2021•北京门头沟二模•理T6)“sinα=cosα”是“α=π4+2kπ,(k∈Z)”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B.【解析】由“sinα=cosα”得:α=kπ+π4,k∈Z,故sinα=cosα是“α=π4+2kπ,(k∈Z)”的必要不充分条件,故选:B.根据充分必要条件的定义结合集合的包含关系判断即可.本题考查了充分必要条件,考查三角函数以及集合的包含关系,是一道基础题.14.(2021•天津南开二模•T2.)已知x∈R,则“”是“x2<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B.【解析】由<0,解得x<1;由x2<1,解得﹣1<x<1,∵(﹣1,1)⊆(﹣∞,1)∴“”是“x2<1”的必要不充分条件.15.(2021•辽宁朝阳二模•T4.)已知x1,x2是一元二次方程ax2+bx+c=0的两个不同的实根x1,x2,则“x1>1且x2>1”是“x1+x2>2且x1•x2>1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A.【解析】已知x1,x2是一元二次方程ax2+bx+c=0的两个不同的实根x1,x2,则当“x1>1且x2>1”时,整理得:“x1+x2>2且x1•x2>1”.当x1=0.99,x2=2,满足:“x1+x2>2且x1•x2>1”但是“x1>1且x2>1”不成立,故“x1>1且x2>1”是“x1+x2>2且x1•x2>1”的充分不必要条件.16.(2021•浙江丽水湖州衢州二模•T6.)“关于x的方程=|x﹣m|(m∈R)有解”的一个必要不充分条件是()A.m∈[﹣2,2]B.m∈[﹣,]C.m∈[﹣1,1]D.m∈[1,2]【答案】C.【解析】化简=|x﹣m|,得2x2﹣2mx+m2﹣1=0,关于x的方程=|x﹣m|有解的充要条件是△≥0,即4m2﹣8(m2﹣1)≥0,解得﹣≤m.因此关于x的方程=|x﹣m|,有解的必要不充分条件是﹣≤m的真子集.17.(2021•安徽淮北二模•文T5.)在△ABC中,“sin A>cos B”是“△ABC为锐角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B.【解析】若B为钝角,A为锐角,则sin A>0,cos B<0,则满足sin A>cos B,但△ABC为锐角三角形不成立,若△ABC为锐角三角形,则A,B,π﹣A﹣B都是锐角,即π﹣A﹣B<,即A+B>,B>﹣A,则cos B <cos(﹣A),即cos B<sin A,故“sin A>cos B”是“△ABC为锐角三角形”的必要不充分条件.18.(2021•宁夏银川二模•文T4.)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥α”是“m∥n”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B.【解析】因为m⊄α,n⊂α,当m∥α时,m与n不一定平行,即充分性不成立;当m∥n时,满足线面平行的判定定理,m∥α成立,即必要性成立;所以“m∥α”是“m∥n”的必要不充分条件.19.(2021•新疆乌鲁木齐二模•文T3.)已知命题p:∀x∈R,cos x≤1,则()A.¬p:∃x0∈R,cos x0≥1B.¬p:∀x∈R,cos x≥1C.¬p:∀x∈R,cos x>1D.¬p:∃x0∈R,cos x0>1【答案】D.【解析】因为全称命题的否定是特称命题,所以命题p:∀x∈R,cos x≤1,¬p:∃x0∈R,cos x0>1.20.(2021•山西调研二模•文T3.)已知p:a∈(1,3),q:f(x)=log a x在(0,+∞)单调递增,则p是q的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A.【解析】∵q:f(x)=log a x在(0,+∞)单调递增,∴a>1,∵(1,3)⊊(1,+∞),∴p是q的充分不必要条件,故选:A.根据对数函数单调性的性质,求出a的等价条件,利用充分条件和必要条件的定义进行判断即可得到结论.本题主要考查充分条件和必要条件的判断,根据对数函数的单调性是解决本题的关键.二、填空题部分21.(2021•安徽马鞍山三模•文T13.)已知命题“∃x0∈R,x02﹣x0+1<0”,写出这个命题的否定:.【答案】∀x∈R,x2﹣x+1≥0.【解析】因为特称命题的否定是全称命题,所以命题:∃x0∈R,x02﹣x0+1<0的否定:∀x∈R,x2﹣x+1≥0.22.(2021•贵州毕节三模•文T13.)命题“若sinα=sinβ,则α=β”的否命题为真命题.(填“真”或“假”)【答案】真.【解析】命题“若sinα=sinβ,则α=β”的否命题为若sinα≠sinβ,则α≠β”其否命题为真命题.23.(2021•福建宁德三模•T15) 能够说明“若ax >ay,a<0,则x>y”是假命题的一组整数x,y的值依次为______ .【答案】−1,1(满足x<0,y>0,x,y∈Z均可)【解析】当ax >ay,a<0,可得1x<1y,①当x,y同号时,可得x>y,②当x,y异号时,y>0>x。
2023年高考数学总复习第一章 集合与常用逻辑用语 第1节:集合(教师版)
2023年高考数学总复习第一章集合与常用逻辑用语第1节集合考试要求1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集;5.能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系表示关系文字语言符号语言集合间的基本关系相等集合A 与集合B 中的所有元素都相同A =B 子集A 中任意一个元素均为B 中的元素A ⊆B 真子集A 中任意一个元素均为B 中的元素,且B 中至少有一个元素不是A 中的元素A B空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集符号表示A ∪BA ∩B若全集为U ,则集合A 的补集为∁U A图形表示集合{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A}表示4.集合的运算性质(1)A∩A=A,A∩=,A∩B=B∩A.(2)A∪A=A,A∪=A,A∪B=B∪A.(3)A∩(∁U A)=,A∪(∁U A)=U,∁U(∁U A)=A.1.若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个,非空子集有2n-1个,非空真子集有2n-2个.2.注意空集:空集是任何集合的子集,是非空集合的真子集.3.A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B.4.∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).1.思考辨析(在括号内打“√”或“×”)(1)任何一个集合都至少有两个子集.()(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.()(3)若{x2,1}={0,1},则x=0,1.()(4)对于任意两个集合A,B,(A∩B)⊆(A∪B)恒成立.()答案(1)×(2)×(3)×(4)√解析(1)错误.空集只有一个子集.(2)错误.{x|y=x2+1}=R,{y|y=x2+1}=[1,+∞),{(x,y)|y=x2+1}是抛物线y =x2+1上的点集.(3)错误.当x=1时,不满足集合中元素的互异性.2.若集合P={x∈N|x≤2023},a=22,则()A.a∈PB.{a}∈PC.{a}⊆PD.a∉P答案D解析因为a=22不是自然数,而集合P是不大于2023的自然数构成的集合,所以a∉P,只有D正确.3.(2021·新高考Ⅰ卷)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}答案B解析因为A={x|-2<x<4},B={2,3,4,5},所以A∩B={2,3}.4.(易错题)(2021·南昌调研)集合A={-1,2},B={x|ax-2=0},若B⊆A,则由实数a的取值组成的集合为()A.{-2}B.{1}C.{-2,1}D.{-2,1,0}答案D解析对于集合B,当a=0时,B=,满足B⊆A;当a≠0时,B又B⊆A,所以2a=-1或2a=2,解得a=-2或a=1.5.(2021·西安五校联考)设全集U=R,A={x|y=2x-x2},B={y|y=2x,x∈R},则(∁U A)∩B=()A.{x|x<0}B.{x|0<x≤1}C.{x|1<x≤2}D.{x|x>2}答案D解析易知A={x|0≤x≤2},B={y|y>0}.∴∁U A={x|x<0或x>2},故(∁U A)∩B={x|x>2}.6.(2021·全国乙卷)设集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T =()A. B.S C.T D.Z答案C解析法一在集合T中,令n=k(k∈Z),则t=4n+1=2(2k)+1(k∈Z),而集合S中,s=2n+1(n∈Z),所以必有T⊆S,所以S∩T=T.法二S={…,-3,-1,1,3,5,…},T={…,-3,1,5,…},观察可知,T⊆S,所以S∩T=T.考点一集合的基本概念1.已知集合U={(x,y)|x2+y2≤1,x∈Z,y∈Z},则集合U中元素的个数为()A.3B.4C.5D.6答案C解析当x=-1时,y=0;当x=0时,y=-1,0,1;当x=1时,y=0.所以U={(-1,0),(0,-1),(0,0),(0,1),(1,0)},共有5个元素.2.若集合A={a-3,2a-1,a2-4},且-3∈A,则实数a=________.答案0或1解析①当a-3=-3,即a=0时,此时A={-3,-1,-4},②当2a-1=-3,即a=-1时,此时A={-4,-3,-3}舍,③当a2-4=-3,即a=±1时,由②可知a=-1舍,则a=1时,A={-2,1,-3},综上,a=0或1.3.(2022·武汉调研)用列举法表示集合A={x|x∈Z且86-x∈N}=________.答案{-2,2,4,5}解析由题意x可取-2,2,4,5,故答案为{-2,2,4,5}.4.设A是整数集的一个非空子集,对于k∈A,如果k-1∉A,且k+1∉A,那么称k是A的一个“孤立元”.给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.答案6解析依题意可知,由S的3个元素构成的所有集合中,不含“孤立元”时,这三个元素一定是连续的三个整数.∴所求的集合为{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6个.感悟提升 1.研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义.2.利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合中的元素是否满足互异性.考点二集合间的基本关系例1(1)已知集合A={-1,1},B={x|ax+1=0}.若B⊆A,则实数a的所有可能取值的集合为()A.{-1}B.{1}C.{-1,1}D.{-1,0,1}(2)已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},且B⊆A,则实数m的取值范围是________.答案(1)D(2)[-1,+∞)解析(1)当B=时,a=0,此时,B⊆A.当B≠时,则a≠0,∴B x|x=-1a又B⊆A,∴-1a∈A,∴a=±1.综上可知,实数a所有取值的集合为{-1,0,1}.(2)∵B⊆A,①当B=时,2m-1>m+1,解得m>2,②当B≠2m-1≤m+1,2m-1≥-3,m+1≤4,解得-1≤m≤2,综上,实数m的取值范围[-1,+∞).感悟提升 1.若B⊆A,应分B=和B≠两种情况讨论.2.已知两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.合理利用数轴、Venn图帮助分析及对参数进行讨论.确定参数所满足的条件时,一定要把端点值代入进行验证,否则易增解或漏解.训练1(1)(2022·大连模拟)设集合A={1,a,b},B={a,a2,ab},若A=B,则a2022+b2023的值为()A.0B.1C.-2D.0或-1(2)已知集合A={x|log2(x-1)<1},B={x||x-a|<2},若A⊆B,则实数a的取值范围为()A.(1,3)B.[1,3]C.[1,+∞)D.(-∞,3]答案(1)B(2)B解析(1)集合A={1,a,b},B={a,a2,ab},若A=B,则a2=1或ab=1.由集合互异性知a≠1,当a=-1时,A={1,a,b}={1,-1,b},B={a,a2,ab}={-1,1,-b},有b=-b,得b=0.∴a2022+b2023=(-1)2022+02023=1.当ab=1时,集合A={1,a,b},B={a,a2,ab}={a,a2,1},有b=a2.又b=1a,∴a2=1a,得a=1,不满足题意.综上,a2022+b2023=1,故选B. (2)由log2(x-1)<1,得0<x-1<2,所以A=(1,3).由|x-a|<2得a-2<x<a+2,所以B=(a-2,a+2).因为A⊆B a-2≤1,a+2≥3,解得1≤a≤3.所以实数a的取值范围为[1,3].考点三集合的运算角度1集合的基本运算例2(1)(2021·全国乙卷)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则∁U(M∪N)=()A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}(2)(2021·西安测试)设全集U=R,M={x|y=ln(1-x)},N={x|2x(x-2)<1},那么图中阴影部分表示的集合为()A.{x|x≥1}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|x≤1}答案(1)A(2)B解析(1)法一因为集合M={1,2},N={3,4},所以M∪N={1,2,3,4}.又全集U={1,2,3,4,5},所以∁U(M∪N)={5}.故选A.法二因为∁U(M∪N)=(∁U M)∩(∁U N),∁U M={3,4,5},∁U N={1,2,5},所以∁U(M∪N)={3,4,5}∩{1,2,5}={5}.故选A.(2)题图中阴影表示的集合为(∁U M)∩N.易知M={x|x<1},N={x|0<x<2},∴(∁U M)∩N={x|1≤x<2}.角度2利用集合的运算求参数例3(1)(2021·日照检测)已知集合A={x∈Z|x2-4x-5<0},B={x|4x>2m},若A∩B 中有三个元素,则实数m的取值范围是()A.[3,6)B.[1,2)C.[2,4)D.(2,4](2)已知集合A={x|x2-4≤0},B={x|2x+a≤0},若A∪B=B,则实数a的取值范围是()A.a<-2B.a≤-2C.a>-4D.a≤-4答案(1)C(2)D解析(1)因为x2-4x-5<0,解得-1<x<5,则集合A={x∈Z|x2-4x-5<0}={0,|x1,2,3,4},易知集合B又因为A∩B中有三个元素,所以1≤m2<2,解之得2≤m <4.故实数m 的取值范围是[2,4).(2)集合A ={x |-2≤x ≤2},B |x ≤由A ∪B =B 可得A ⊆B ,作出数轴如图.可知-a2≥2,即a ≤-4.感悟提升1.进行集合运算时,首先看集合能否化简,能化简的先化简,再研究其关系并进行运算.2.数形结合思想的应用:(1)离散型数集或抽象集合间的运算,常借助Venn 图求解;(2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心.训练2(1)(2021·全国甲卷改编)设集合M ={x |0<x <4},N |13≤x <M ∩N =N ,则a 的取值范围为()A.a ≤13B.a >4C.a ≤4D.a >13(2)集合M ={x |2x 2-x -1<0},N ={x |2x +a >0},U =R .若M ∩(∁U N )=∅,则a 的取值范围是()A.(1,+∞)B.[1,+∞)C.(-∞,1)D.(-∞,1]答案(1)C(2)B 解析(1)由M ∩N =N ,∴M ⊇N .当N =∅时,即a ≤13成立;当N ≠∅时,借助数轴易知13<a ≤4.综上,a ≤4.(2)易得M ={x |2x 2-x -1<0}x |-12<x <1∵N ={x |2x +a >0}x |x >-a2∴∁U N x|x ≤-a 2由M ∩(∁U N )=,则-a 2≤-12,得a ≥1.Venn 图的应用用平面上封闭图形的内部代表集合,这种图称为Venn 图.集合中图形语言具有直观形象的特点,将集合问题图形化.利用Venn 图的直观性,可以深刻理解集合的有关概念,快速进行集合的运算.例1设全集U ={x |0<x <10,x ∈N +},若A ∩B ={3},A ∩(∁U B )={1,5,7},(∁U A )∩(∁U B )={9},则A =________,B =________.答案{1,3,5,7}{2,3,4,6,8}解析由题知U ={1,2,3,…,9},根据题意,画出Venn 图如图所示,由Venn图易得A ={1,3,5,7},B ={2,3,4,6,8}.例2(2020·新高考海南卷)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%答案C解析如图,用Venn 图表示该中学喜欢足球和游泳的学生所占的比例之间的关系,设既喜欢足球又喜欢游泳的学生占该中学学生总数的比例为x ,则(60%-x )+(82%-x )+x =96%,解得x =46%.故选C.例3向100名学生调查对A,B两件事的看法,得到如下结果:赞成A的人数是全体的35,其余不赞成;赞成B的人数比赞成A的人数多3人,其余不赞成.另外,对A,B都不赞成的人数比对A,B都赞成的学生人数的13多1人,则对A,B都赞成的学生人数为________,对A,B都不赞成的学生人数为________.答案3613解析由题意知赞成A的人数为100×3560,赞成B的人数为60+3=63.如图,记100名学生组成的集合为U,赞成A的学生的全体记为集合A,赞成B的学生的全体记为集合B,并设对A,B都赞成的学生数为x,则对A,B都不赞成的人数为x3+1,由题意,知(60-x)+(63-x)+x+x3+1=100,解得x=36.所以对A,B都赞成的学生人数为36人,对A,B都不赞成的学生人数为13人.1.(2021·新高考Ⅱ卷)设集合U={1,2,3,4,5,6},A={1,3,6},B={2,3,4},则A∩(∁U B)=()A.{3}B.{1,6}C.{5,6}D.{1,3}答案B解析由题设可得∁U B={1,5,6},故A∩(∁U B)={1,6}.2.(2021·郑州模拟)设集合A={x|3x-1<m},若1∈A且2∉A,则实数m的取值范围是()A.(2,5)B.[2,5)C.(2,5]D.[2,5]答案C解析∵A={x|3x-1<m},1∈A且2∉A,∴3×1-1<m且3×2-1≥m,解得2<m≤5.3.(2021·浙江卷)设集合A={x|x≥1},B={x|-1<x<2},则A∩B=()A.{x|x>-1}B.{x|x≥1}C.{x|-1<x<1}D.{x|1≤x<2}答案D解析因为集合A={x|x≥1},B={x|-1<x<2},所以A∩B={x|1≤x<2}.故选D.4.(2022·河南名校联考)已知集合A={a,a2,0},B={1,2},若A∩B={1},则实数a的值为()A.-1B.0C.1D.±1答案A解析由题意a=1或a2=1,当a=1,此时A={1,1,0}与元素互异性矛盾,∴a=-1,故选A.5.已知集合A={x∈Z|y=log5(x+1)},B={x∈Z|x2-x-2<0},则()A.A∩B=AB.A∪B=BC.B AD.A B答案C解析由x+1>0,得x>-1,∴A={x∈Z|x>-1}={0,1,2,3,…}.由x2-x-2<0,得-1<x<2,∴B={0,1},∴A∩B=B,A∪B=A,B A.6.设集合A={(x,y)|x+y=1},B={(x,y)|x-y=3},则满足M⊆(A∩B)的集合M 的个数是()A.0B.1C.2D.3答案C解析+y =1,-y =3=2,=-1,∴A ∩B ={(2,-1)}.由M ⊆(A ∩B ),知M =或M ={(2,-1)}.7.(2022·太原模拟)已知集合M ={x |(x -2)2≤1},N ={y |y =x 2-1},则(∁R M )∩N =()A.[-1,+∞)B.[-1,1]∪[3,+∞)C.[-1,1)∪(3,+∞)D.[-1,1]∪(3,+∞)答案C解析由已知可得M ={x |-1≤x -2≤1}={x |1≤x ≤3},N ={y |y ≥-1},∴∁R M ={x |x <1或x >3},∴(∁R M )∩N ={x |-1≤x <1或x >3}.8.设集合A ={x |(x +2)(x -3)≤0},B ={a },若A ∪B =A ,则a 的最大值为()A.-2B.2C.3D.4答案C解析因为A ={x |(x +2)(x -3)≤0},所以A ={x |-2≤x ≤3}.又因为B ={a },且A ∪B =A ,所以B ⊆A ,所以a 的最大值为3.9.(2021·合肥模拟)已知集合A ={-2,-1,0,1,2},集合B ={x ||x -1|≤2},则A ∩B =________.答案{-1,0,1,2}解析B ={x |-2≤x -1≤2}={x |-1≤x ≤3},又A ={-2,-1,0,1,2},∴A ∩B ={-1,0,1,2}.10.(2021·湖南雅礼中学检测)设集合A ={x |y =x -3},B ={x |1<x ≤9},则(∁R A )∩B =________.答案(1,3)解析因为A ={x |y =x -3},所以A ={x |x ≥3},所以∁R A ={x |x <3}.又B ={x |1<x ≤9},所以(∁R A )∩B =(1,3).11.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________.答案[1,+∞)解析由题意知,A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ).由A ⊆B ,画出数轴,如图所示,得c ≥1.12.已知集合A ={a ,b ,2},B ={2,b 2,2a },若A =B ,则a +b =________.答案34或1解析由A =B=2a ,=b 2=b 2,=2a .=2a ,=b 2,=0,=0=0,=1,=b 2,=2a ,=0,=0=14,=12,又由集合中元素的互异性,=0,=1=14,=12,所以a +b =1或a +b =34.13.若全集U ={-2,-1,0,1,2},A ={-2,2},B ={x |x 2-1=0},则图中阴影部分所表示的集合为()A.{-1,0,1}B.{-1,0}C.{-1,1}D.{0}答案D解析B={x|x2-1=0}={-1,1},阴影部分所表示的集合为∁U(A∪B).又A∪B ={-2,-1,1,2},全集U={-2,-1,0,1,2},所以∁U(A∪B)={0}. 14.(2020·浙江卷)设集合S,T,S⊆N+,T⊆N+,S,T中至少有2个元素,且S,T 满足:①对于任意的x,y∈S,若x≠y,则xy∈T;②对于任意的x,y∈T,若x<y,则yx∈S.下列命题正确的是()A.若S有4个元素,则S∪T有7个元素B.若S有4个元素,则S∪T有6个元素C.若S有3个元素,则S∪T有5个元素D.若S有3个元素,则S∪T有4个元素答案A解析由题意,①令S={1,2,4},则T={2,4,8},此时,S∪T={1,2,4,8},有4个元素;②令S={2,4,8},则T={8,16,32},此时,S∪T={2,4,8,16,32},有5个元素;③令S={2,4,8,16},则T={8,16,32,64,128},此时,S∪T={2,4,8,16,32,64,128},有7个元素.综合①②,S有3个元素时,S∪T可能有4个元素,也可能有5个元素,可排除C,D;由③可知A正确.15.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m=________,n=________.答案-11解析A={x∈R||x+2|<3}={x∈R|-5<x<1},由A∩B=(-1,n),可知m<1,则B={x|m<x<2},画出数轴,可得m=-1,n=1.16.当两个集合有公共元素,且互不为对方的子集时,我们称这两个集合“相交”.对于集合M={x|ax2-1=0,a>0},N={-12,12,1},若M与N“相交”,则a=________.答案1解析M 1a,,由1a=12,得a=4,由1a=1,得a=1.当a=4时,M 12,M⊆N,不合题意;当a=1时,M={-1,1},满足题意.。
2023年高考数学真题分训练 常用逻辑用语(含答案含解析)
专题 02 常用逻辑用语年份题号 考点考查内容2011 课标卷 理 10 命题及其关系 平面向量模与夹角、命题真假推断 2023 新课标理 2 命题及其关系 复数的概念与运算、命题真假的判定卷 1 理 9 全称量词与特称量词 二元一次不等式表示的平面地域、全称命题与特称命题 真假的判定2023卷 2文 3 充分条件与必要条件 导数与极值的关系、充要条件的判定 2023 卷 1 理 3 全称量词与特称量词 特称命题的否认 2023卷 1 理 2 命题及其关系 复数的有关概念与运算卷 2 理 7充分条件与必要条件面面平行的判定与性质、充要条件判定2023卷 3文 11 1. 全称量词与特称量词 2. 简单逻辑联结词二元一次不等式表示的平面地域、全称命题与特称命题 真假推断、含逻辑联结词命题的判定 卷 2文理16 简单逻辑联结词 含逻辑联结词命题真假的推断2023 卷 3理 16命题及其关系命题真假的推断,三角函数图象及其性质考点出现频率2023 年预测考点 5 命题及其关系 4/10 考点 6 简单逻辑联结词 2/10 考点 7 全称量词与特称量词 3/10 考点 8 充分条件与必要条件 2/102023 年仍将与其他知识结合,考查命题及其关系、含简单逻辑连接词的敏体真假推断、特称命题与全称命题真假推断及其否认的书写、充要条件的判定,其中充要条件判定为重点.考点 5 命题及其关系1.(2023 新课标 III 理 16)关于函数 f ( x ) = sin x + 1.sin x① f ( x ) 的图像关于 y 轴对称;② f ( x ) 的图像关于原点对称; ③ f ( x ) 的图像关于 x = π对称;④ f ( x ) 的最小值为2 .2 其中全部真命题的序号是.12(答案)②③(解析)(分析)利用特别值法可推断命题①的正误;利用函数奇偶性的定义可推断命题②的正误;利用对称性的 定义可推断命题③的正误;取-π< x < 0 可推断命题④的正误.综合可得出结论.(详解)对于命题①, f ⎛ π⎫ = 1 + 2 = 5, f ⎛ - π⎫ = - 1 - 2 = - 5 ,则 f ⎛ - π⎫≠f ⎛ π⎫ ,6 ⎪ 2 26 ⎪ 2 2 6 ⎪ 6 ⎪ ⎝ ⎭⎝ ⎭ ⎝ ⎭ ⎝ ⎭∴函数 f ( x ) 的图象不关于 y 轴对称,命题①错误; 对于命题②,函数 f ( x ) 的定义域为{x x ≠ k π, k ∈ Z} ,定义域关于原点对称,f (-x ) = sin (-x )+ 1 = - sin x -1 = - ⎛sin x +1 ⎫= - f(x ) , sin (-x ) sin x sin x ⎪⎝ ⎭∴函数 f ( x ) 的图象关于原点对称,命题②正确;f ⎛ π- x ⎫ = sin ⎛ π- x ⎫ +1= cos x + 1对于命题③, 2⎪ 2⎪⎛ π⎫cosx , ⎝⎭⎝⎭ sin ⎝ - x ⎪⎭f⎛π+ x ⎫ = sin ⎛π+ x ⎫ +1= cos x + 1⎛π ⎫ ⎛π ⎫2 ⎪ 2⎪ ⎛π⎫cos x ,则 f - x = f+ x ,⎝ ⎭ ⎝⎭ sin + x2 ⎪ 2 ⎪ 2 ⎪ ⎝ ⎭ ⎝ ⎭⎝ ⎭∴函数 f ( x ) 的图象关于直线 x = π对称,命题③正确;对于命题④,当 -π< x < 0 时, sin x < 0 ,则2f ( x ) = sin x +1sin x< 0 < 2 ,命题④错误,故答案为:②③. 2.(2023 新课标Ⅰ)设有下面四个命题p 1 :假设复数 z 满足 z∈ R ,则 z ∈ R ;p :假设复数 z 满足 z 2∈ R ,则 z ∈ R ; p 3 :假设复数 z 1 , z 2 满足 z 1 z 2 ∈ R ,则 z 1 = z 2 ; p 4 :假设复数 z ∈ R ,则 z ∈ R .其中的真命题为 A. p 1 , p 3B. p 1 , p 4C. p 2 , p 3D. p 2 , p 4(答案)B (解析)设 z = a + b i ( a , b ∈ R ),则 1= z 1 = (a + b i) a - b i a 2 + b 2∈ R ,得b = 0 ,所以 z ∈ R , p 1 正222⎭确;z 2 = (a + b i)2 = a 2 - b 2+ 2ab i ∈ R ,则 ab = 0 ,即 a = 0 或b = 0 ,不能确定 z ∈ R ,p 不正确;假设 z ∈ R ,则b = 0 ,此时 z = a - b i = a ∈ R , p 4 正确.选 B .3.(2011 新课标)已知a , b 均为单位向量,其夹角为θ,有以下四个命题p :| a + b |> 1 ⇔ θ∈0, 2π 13 p : | a + b |> 1 ⇔ θ∈ (2π,π] 23p 3 :| a - b |> 1 ⇔ θ∈ π0, )3p 4 : | a - b |> 1 ⇔ θ∈ π( ,π3其中真命题是 A. p 1, p 4B. p 1, p 3C. p 2 , p 3D. p 2 , p 4(答案)A (解析)由 a + b 1 得,cos θ> - 1, 2⇒θ∈ ⎡0, 2π⎫。
历年高考数学真题之常用逻辑用语
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
【答案】C
【解析】点 , , 不共线, , ,
当 与 的夹角为锐角时, ,
“ 与 的夹角为锐角” “ ”,
“ ” “ 与 的夹角为锐角”,
设点 , , 不共线,则“ 与 的夹角为锐角”是“ ”的充分必要条件.
18.(2017•天津)设 ,则“ ”是“ ”的
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
19.(2016•浙江)已知函数 ,则“ ”是“ 的最小值与 的最小值相等”的
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
20.(2016•四川)设 :实数 , 满足 , :实数 , 满足 ,则 是 的
25.(2015•四川)设 、 都是不等于1的正数,则“ ”是“ ”的
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件
26.(2014•福建)直线 与圆 相交于 , 两点,则“ ”是“ 的面积为 ”的
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分又不必要条件
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分又非必要条件
23.(2015•福建)“对任意 , ”是“ ”的
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
24.(2015•陕西)Байду номын сангаас ”是“ ”的
A.充分不必要条件B.必要不充分条件
新高考地区专用2024_2025三年高考数学真题分项汇编专题01集合与常用逻辑用语
专题01 集合与常用逻辑用语1.【2024年新高考1卷】若集合M ={x ∣√x <4}, N ={x ∣3x ≥1},则M ∩N =( )A .{x |0≤x <2 }B .{x |13≤x <2 }C .{x |3≤x <16 }D .{x |13≤x <16 }【答案】D【分析】求出集合M,N 后可求M ∩N .【解析】M ={x ∣0≤x <16},N ={x ∣x ≥13},故M ∩N ={x|13≤x <16},故选:D.2.【2024年新高考2卷】已知集合A ={−1,1,2,4},B ={x ||x −1|≤1 },则A ∩B =( )A .{−1,2}B .{1,2}C .{1,4}D .{−1,4} 【答案】B【分析】求出集合B 后可求A ∩B .【解析】B ={x|0≤x ≤2},故A ∩B ={1,2},故选:B. 3.【2024年新高考1卷】设集合{}24A x x =-<<,{}2,3,4,5B =,则A B =( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4 【答案】B【分析】利用交集的定义可求A B .【解析】由题设有{}2,3A B ⋂=,故选:B .4.【2024年新高考2卷】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B =( )A .{3}B .{1,6}C .{5,6}D .{1,3} 【答案】B【分析】依据交集、补集的定义可求()U A B ⋂.【解析】由题设可得{}U 1,5,6B =,故(){}U 1,6A B ⋂=,故选:B.5.【2024年新高考1卷(山东卷)】设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C【分析】依据集合并集概念求解.【解析】[1,3](2,4)[1,4)A B ==,故选:C.【点睛】本题考查集合并集,考查基本分析求解实力,属基础题.6.【2024年新高考2卷(海南卷)】设集合A={2,3,5,7},B ={1,2,3,5,8},则A B =( )A .{1,3,5,7}B .{2,3}C .{2,3,5}D .{1,2,3,5,7,8}【答案】C【分析】依据集合交集的运算可干脆得到结果.【解析】因为A {2,3,5,7},B ={1,2,3,5,8},所以{}2,3,5A B =,故选:C.【点睛】本题考查的是集合交集的运算,较简洁.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国高考数学试题分类汇编:常用逻辑用语1.(安徽理科)命题“所有能被2整除的数都是偶数”的否定..是( D ) (A )所有不能被2整除的数都是偶数 (B )所有能被2整除的数都不是偶数(C )存在一个不能被2整除的数是偶数 (D )存在一个不能被2整除的数不是偶数2.(北京文科)若p 是真命题,q 是假命题,则( D )(A )p q ∧是真命题 (B)p q ∨是假命题(C)p ⌝是真命题 (D)q ⌝是真命题3.(福建理科)若R a ∈,则2=a 是0)2)(1(=--a a 的( A )A.充分而不必要条件 B 必要而不充分条件C.充要条件D.既不充分又不必要条件4.(福建文科)若a ∈R ,则“a=1”是“|a|=1”的( A )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分又不必要条件5.(湖北理科)若实数b a ,满足0,0≥≥b a ,且0=ab ,则称a 与b 互补,记()b a b a b a --+=22,ϕ,那么()0,=b a ϕ是a 与b 互补( C )A. 必要而不充分条件B. 充分而不必要条件C. 充要条件D. 既不充分也不必要的条件6.(湖南理科)设{1,2}M =,2{}N a =,则“1a =”是“N M ⊆”则( A ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分又不必要条件7.(湖南文科)”“1>x 是”“1||>x 的( A ) A .充分不必要条件 B.必要不充分条件 C .充分必要条件 D .既不充分又不必要条件8.(四川文科)“3=x ”是“x 2=9”的( A )(A )充分而不必要的条件 (B )必要而不充分的条件 (C )充要条件 (D )既不充分也不必要的条件9.(浙江理科)若b a ,为实数,则“10<<ab ”是“b a 1<或ab 1>”的( A ) (A)充分而不不要条件 (B )必要而不充分条件 (C)充分不要条件 (D) 既不充分也不必要条件10.(山东文)已知a ,b ,c ∈R ,命题“若a b c ++=3,则222a b c ++≥3”,的否命题是( A )(A)若a +b +c ≠3,则222a b c ++<3 (B)若a +b +c =3,则222a b c ++<3(C)若a +b +c ≠3,则222a b c ++≥3 (D)若222a b c ++≥3,则a +b +c =311.(辽宁文)已知命题P :∃n N ∈,10002>n,则⌝p 为( A )(A )∀n N ∈,10002≤n (B )∀n N ∈,10002>n(C )∃n N ∈,10002≤n (D )∃n N ∈,10002<n 12.(天津理)设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的( A )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件13.(天津文)设集合{}{}|20,|0A x R x B x R x =∈->=∈<,{}|(2)0C x R x x =∈->,则“x A B ∈ ”是“x C ∈”的( C )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件14.(全国大纲理、文)下面四个条件中,使a b >成立的充分而不必要的条件( A )(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >15.(陕西理、文)设a ,b 是向量,命题“若a b =- ,则||||a b = ”的逆命题是 ( D )(A )若a b ≠- ,则||||a b ≠ (B )若a b =- ,则||||a b ≠ (C )若||||a b ≠ ,则a b ≠- (D )若||||a b = ,则a b =-16.(陕西理、文)设n N +∈,一元二次方程240x x n -+=有整数..根的充要条件是n = 3或4 . 17.(重庆理)“x <-1”是“x 2-1>0”的( A )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要18.【四川】设x Z ∈,集合A 是奇数集,集合B 是偶数集。
若命题:,2p x A x B ∀∈∈,则( D )(A ):,2p x A x B ⌝∀∈∉ (B ):,2p x A x B ⌝∀∉∉ (C ):,2p x A x B ⌝∃∉∈ (D ):,2p x A x B ⌝∃∈∉19.【山东】给定两个命题,.p q若⌝p 是q 的必要不充分条件,则p 是⌝q 的( B ) (A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件20.“φ=π”是“曲线y=sin(2x +φ)过坐标原点的”( A )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件21.[福建理]已知集合{}a A ,1=,{}3,2,1=B ,则”“3=a 是”“B A ⊆的 ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D. 既不充分也不必要条件22.[重庆]命题“对任意x R ∈,都有20x ≥”的否定为( D )A 、对任意x R ∈,都有20x <B 、不存在x R ∈,都有20x <C 、存在0x R ∈,使得200x ≥D 、存在0x R ∈,使得200x <23.【2012高考辽宁理】已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是( C )(A) ∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (B) ∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0(C) ∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 (D) ∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<024.【2012高考湖南理】命题“若α=4π,则tan α=1”的逆否命题是( C ) A.若α≠4π,则tan α≠1 B. 若α=4π,则tan α≠1 C. 若tan α≠1,则α≠4π D. 若tan α≠1,则α=4π 25.【2012高考湖北理】命题“0x ∃∈R Q ð,30x ∈Q ”的否定是( D )A .0x ∃∉R Q ð,30x ∈QB .0x ∃∈R Q ð,30x ∉QC .x ∀∉R Q ð,3x ∈QD .x ∀∈R Q ð,3x ∉Q26.【2012高考福建理】下列命题中,真命题是( D )A. 0,00≤∈∃x e R xB. 22,x R x x >∈∀C.a+b=0的充要条件是a b=-1 D.a>1,b>1是ab>1的充分条件 27.(2012山东青岛市期末)命题“∈∃x R,0123=+-x x ”的否定是( D )A .∈∃x R,0123≠+-x xB .不存在∈x R, 0123≠+-x xC .∈∀x R,0123=+-x xD .∈∀x R, 0123≠+-x x28.(2012天津文)设x R ∈,则“12x >”是“2210x x +->”的 ( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件29.(2012·福州模拟)下列结论错误的是( C )()命题“若p ,则q ”与命题“若⌝q,则⌝p ”互为逆否命题()命题p:∀x ∈[0,1],e x ≥1,命题q:∃x 0∈R,x 02+x 0+1<0,则p ∨q 为真()“若am 2<bm 2,则a<b ”的逆命题为真命题 ()若p ∨q 为假命题,则p 、q 均为假命题30.(2012·大连模拟)下列四个命题中的真命题为( D )()∃x 0∈R ,使得sinx 0-cosx 0=-1.5 ()∀x ∈R ,总有x 2-2x-3≥0()∀x ∈R ,∃y ∈R ,y 2<x ()∃x 0∈R ,∀y ∈R ,y ·x 0=y31.(2012·厦门模拟)“lnx>1”是“x>1”的( A )()充分不必要条件 ()必要不充分条件 ()充要条件 ()既不充分也不必要条件32.已知a >0,设p:存在a ∈R ,使y=a x 是R 上的单调递减函数; q:存在a ∈R ,使函数g(x)=lg(2ax 2+2x+1)的值域为R ,如果“p ∧q ”为假,“p ∨q ”为真,则a 的取值范围是( A )()(12,1) ()(12,+∞) ()(0, 12]∪[1,+∞) ()(0, 12) 33.若a ∈R ,则a=2是(a-1)(a-2)=0的( A ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 C .既不充分又不必要条件34.设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的 ( A )A. 充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .即不充分也不必要条件35.命题“所有能被2整除的数都是偶数”的否定..是(D ) (A )所有不能被2整除的数都是偶数 (B )所有能被2整除的数都不是偶数(C )存在一个不能被2整除的数是偶数(D )存在一个能被2整除的数不是偶数36.设集合M={1,2},N={a 2},则“a=1”是“N ⊆M ”的( A )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件 37.“14m <”是“一元二次方程20x x m ++=”有实数解的( A ) A .充分非必要条件 B.充分必要条件 C .必要非充分条件 D.非充分必要条件38.下列命题中的假命题是( B )A .∀x R ∈,120x ->2x-1>0 B. ∀*x N ∈,2(1)0x -> C .∃ x R ∈,lg 1x < D. ∃x R ∈,tan 2x =39.命题“存在0x ∈R ,02x ≤0”的否定是( D ) (A )不存在0x ∈R, 02x >0 (B )存在0x ∈R, 02x ≥0 (C )对任意的x ∈R, 2x ≤0 (D )对任意的x ∈R, 2x >0 40.已知,a b 是实数,则“0a >且0b >”是“0a b +>且0ab >”的( C )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件41.已知命题:p 所有有理数都是实数,命题:q 正数的对数都是负数,则下列命题中为真命题的是( D )A .()p q ⌝∨B .p q ∧C .()()p q ⌝∧⌝D .()()p q ⌝∨⌝42.已知命题:p x ∀∈R ,sin 1x ≤,则(C )A.:p x ⌝∃∈R ,sin 1x ≥B.:p x ⌝∀∈R ,sin 1x ≥ C.:p x ⌝∃∈R ,sin 1x > D.:p x ⌝∀∈R ,sin 1x >43.以下有关命题的说法错误的是( C )A.命题”若2320x x -+=,则x =1”的逆否命题为”若x ≠1,则2320x x -+≠”B.”x =1”是”2320x x -+=”的充分不必要条件C.若p ∧q 为假命题,则p q 、均为假命题D.对于命题p :x ∃∈R ,使得210x x ++<,则p ⌝:x ∀∈R ,则210x x ++≥44.”x >1”是”|x |>1”的( A )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件45.给出命题:p :3>1,q :4∈{2,3},则在下列三个复合命题:”p 且q ”“p 或q ”“非p ”中,真命题的个数为 ( B )A.0B.1C.2D.346.下列命题中的假命题是( B )A.x ∀∈R 120x -,>B.x ∀∈N 2(1)0x *,->C.0x ∃∈R ,lg 01x <D.0x ∃∈R ,t a n 02x =47.已知命题p :0x ∃∈R ,使20023x x +=,则p ⌝是x ∀∈R 223x x ,+≠ . 48.已知命题p :|4-x |6q ≤,:22210(x x a a -+-≥>0),若p ⌝是q 的充分不必要条件,求a 的取值范围.解:46102p x x x ⌝:|-|>,><-,解得或记A ={x |x >10或x <-2},q :22210x x a -+-≥,解得1x a ≥+或x ≤1-a ,记B ={x |x ≥1+a 或1x a ≤-}.而⌝p q q ⇒,/⇒ p ⌝,∴A ⊂≠B,即 121100a a a -≥-,⎧⎪+≤,⎨⎪>.⎩∴03a <≤. 49.命题q :函数2(3)y x a x =+-+1的图象与x 轴有公共点. 若命题”p ∨q ”为真命题,而命题”p ∧q ”为假命题,则实数a 的取值范围是 .解析:命题p 为真,即2214(6)060a a a a ∆⎧=-->,⎨-<,⎩得0<a <6. 命题q 为真,即2(3)40a ∆=--≥,得1a ≤或5a ≥. ”p ∨q ”为真,”p ∧q ”为假,即p 、q 一真一假. p 真q 假时,有 0615a a <<,⎧⎨<<,⎩ 故1<a <5.p 假q 真时,有 0615a a a a ≤≥,⎧⎨≤≥,⎩或或 故0a ≤或6a ≥. 综上,有(0](15)[6)a ∈-∞,⋃,⋃,+∞.50.已知p :方程210x mx ++=有两个不等的负根;q :方程244(2)x m +-x +1=0无实根.若p 或q 为真,p 且q 为假,求m 的取值范围.解:若方程210x mx ++=有两个不等的负根,则2400m m ⎧∆=->,⎨>.⎩ 解得m >2,即p :m >2. 若方程244(2)x m +-x +1=0无实根,则∆=2216(2)1616(43)0m m m --=-+<,解得1<m <3, 即q :1<m <3.∵p 或q 为真,p 且q 为假,因此,p 、q 两命题应一真一假,即p 为真、q 为假或p 为假、q 为真.∴213m m m >,⎧⎨≤≥⎩或 或213m m ≤,⎧⎨<<.⎩解得3m ≥或12m <≤.51.设p:函数y=log a (x+1)(a >0且a ≠1)在(0,+∞)上单调递减; q:曲线y=x 2+(2a-3)x+1与x 轴交于不同的两点.如果p ∧q 为假,p ∨q 为真,求实数a 的取值范围.【解析】∵函数y=log a (x+1)在(0,+∞)上单调递减,∴0<a <1,即p:0<a <1,∵曲线y=x 2+(2a-3)x+1与x 轴交于不同的两点,∴Δ>0,即(2a-3)2-4>0,解得a <12或a >52.即q:a <12或a >52. ∵p ∧q 为假,p ∨q 为真,∴p 真q 假或p 假q 真,即0a 115a 22⎧⎪⎨≤≤⎪⎩<<或⎧⎪⎨⎪⎩a >115a <或a >22.解得12≤a <1或a >52.52.(2012·三明模拟)已知命题p:“∀x ∈[1,2],x 2-a ≥0”,命题q:“∃x 0∈R,x 02+2ax 0+2-a=0”,若命题“p 且q ”是真命题,求实数a 的取值范围.【解析】由“p 且q ”是真命题,则p 为真命题,q 也为真命题.若p 为真命题,a ≤x 2恒成立,∵x ∈[1,2],∴a ≤1.若q 为真命题,即x 2+2ax+2-a=0有实根,Δ=4a 2-4(2-a)≥0,即a ≥1或a ≤-2,综上,实数a 的取值范围为a ≤-2或a=1. 则有12412m 03x x 0m∆=-⎧⎪⎨=⎪⎩>>.∴0<m <13. 综合(1)(2)可知,方程mx 2-2x+3=0有两个同号且不相等的实根的充要条件是0<m <13.。