简单线性规划课件

合集下载

线性规划PPT课件

线性规划PPT课件

线性规划的基本定理
线性规划的解存在性
对于任何线性规划问题,都存在至少一个最优解。
最优解的唯一性
在某些情况下,线性规划问题的最优解是唯一的,这取决于目标函 数和约束条件的形状和位置。
解的稳定性
线性规划问题的最优解是稳定的,即使目标函数或约束条件略有变 化,最优解也不会发生大的变化。
03
线性规划的求解方法
优缺点:内点法具有全局收敛性和对初始点不敏 感的优点,但计算量较大,需要较高的计算资源 。
椭球法
01
总结词:几何方法
02
03
04
详细描述:椭球法是一种基 于几何方法的线性规划算法。 它将可行解的边界表示为椭 球,通过迭代移动椭球中心
来逼近最优解。
算法步骤:椭球法的基本步 骤包括初始化、构建椭球和 迭代更新。在每次迭代中, 根据当前椭球的位置和方向 来更新中心和半径,直到满
运输问题
总结词
运输问题是线性规划在物流和供应链管理中的重要应用,旨在优化运输成本、 运输时间和运输量等目标。
详细描述
运输问题通常需要考虑多个出发地、目的地、运输方式和运输成本等因素。通 过线性规划方法,可以找到最优的运输方案,使得总运输成本最低、运输时间 最短,同时满足运输量和运输路线的限制。
投资组合优化问题
03
单纯形法
单纯形法是线性规划的标 准算法,通过迭代和优化, 找到满足约束条件的最大 或最小目标函数值。
初始解
在应用单纯形法之前,需 要先找到一个初始解,这 可以通过手动计算或使用 软件工具来实现。
迭代过程
单纯形法通过不断迭代和 优化,逐步逼近最优解, 每次迭代都需要重新计算 目标函数值和最优解。
线性规划的几何意义

简单线性规划最终版课件

简单线性规划最终版课件
【解题回顾】要能从实际问题中, 建构有关线 性规划问题的数学模型.关键求出 约束条件和目标函数.
32
解: 设投资方对甲、乙两个项目各投资x、y万元
依题意线性约束条件为: x y 10 目标函数为:Z x 0.5 y
3 x y 18
x
0
y 0
作出可行域
可知直线Z=x+0.5y通过点A时利润最大
而且还与直线 Z=Ax+By的斜率有关.
19
把问题1的有关数据列表表示如下:
资源
A种配件 B种配件 所需时间 利润(万元)
甲产品 乙产品 资源限额 (1件) (1件)
4
0
16
0
4
12
1
2
8
2
3
设甲,乙两种产品分别生产x,y件,
20
y
4 3
4
0
8x
21
y
4 3
o
22
M
4
8
y
4 3
0
M(4, 2)

x y 3x
10 y 18
x y
4 6
A4,6
Zmax 4 6 0.5 7(万元) 答:
33
练习题
1、某厂拟生产甲、乙两种适销产品,每件销售 收入分别为3000元、2000元,甲、乙产品都需 要在A.B两种设备上加工,在每台A.B上加工1件 甲所需工时分别为1h、2h,加工1件乙所需工时 分别为2h,1h.A.B两种设备每月有效使用台时数 分别为400h和500h。如何安排生产可使收入最 大解?: 设每月生产甲产品x件,生产乙产品y件,每
规格类型 钢板类型
第一种钢板
A规格
2
B规格

0051数学课件:简单的线性规划

0051数学课件:简单的线性规划

坐标即为最优整解.
2.调整优解法:即先求非整数条件下的最优解,
调整Z的值使不定方程Ax+By=Z存在最大(小) 的整点值,最后筛选出整点最优解.
巩固练习一
设每天应配制甲种饮料x杯,乙种饮料y杯,则
咖啡馆配制两种饮料.甲种饮料每杯含奶粉9g 、咖啡4g、糖 9 x 4 y 3600 4 x 5 y 2000 3g,乙种饮料每杯含奶粉4g 、咖啡5g、糖10g.已知每天原料 的使用限额为奶粉3600g ,咖啡2000g 糖3000g,如果甲种饮 3x 10 y 3000 料每杯能获利0.7元,乙种饮料每杯能获利1.2元,每天在原料 x 0 的使用限额内饮料能全部售出,每天应配制两种饮料各多少 目标函数为:z =0.7x +1.2y y 0 杯能获利最大? 练习一.gsp 解:将已知数据列为下表:
直线x+y=12经过的整点是B(3,9)和C(4,8),它们是最优解. 答(略) 你能否猜测一下Z的最小值可能是多少?
3.最优解的几何意义是什么 (最优解可以转化为什么几何意义)?
结论2:
线性规划求最优整数解的一般方法:
1.平移找解法: 即先打网格,描出可行域内的
整点,平移直线,最先经过或最后经过的整点
9 x + 4 y = 3600 _
得点C的坐标为(200,240)
小结
答:每天配制甲种饮料200杯,乙种饮料240杯可获取最大利润.
巩固练习 二
某货运公司拟用集装箱托运甲.乙两种货物,一个大集装箱所装托 3 运货物的总体积不能超过24 m ,总重量不能超过1500kg,甲.乙 两种货物每袋的体积.重量和可获得的利润,列表如下:
原 料 奶粉(g) 咖啡(g) 糖(g) 利 润(元) 每配制1杯饮料消耗的原料 甲种饮料 x 乙种饮料 y 9 4 3 0.7 4 5 10 1.2 原 料限 额 3600 2000 3000

课件—简单线性规划

课件—简单线性规划
首页 向上 向下 快退 快进
快速定位
产品 生产甲种产品 1工时 生产乙种产品 1工时
原料A数量 原料B数量 (kg) (kg) 3 2 1 2
利润 (元) 30
限额数量
1200
800
40 复习提问 问题导入 例01解析 例02解析 例03解析 课堂小结 布置作业
快速定位
首页
向上
向下
快退
快进
解析:设计划生产甲种产品x工时,乙种产品y工时, 3x 2 y 1200 x 2 y 800 则x, y满足线性约束条件 : x 0 y 0
货物 甲 每袋体积 每袋重量 每袋利润 (单位:m3) (单位:百千克) (单位:百元) 复习提问 5 1
20 问题导入 例01解析 乙 4 2.5 10 例02解析 例03解析 问:在一个大集装箱内,这两种货物各装多少袋(不一定 都是整袋)时,可获得最大利润? 课堂小结 布置作业
首页 向上 向下 快退 快进
首页 向上 向下 快退 快进
快速定位
即 : M 200,300
3x 2 y 1200 x 200 解方程组 x 2 y 800 y 300
zmax 30 200 40 300 18000 答 : 用200工时生产甲种产品用300工时生产 , 复习提问
快速定位
解析:设购买甲种食物x千克,乙种食物y千克,则购 买丙种食物 10 x y 千克.x, y满足线性约束条件 : 400 x 600 y 400 10 x y 4400 y 2 2 x y 4 800 x 200 y 400 10 x y 4800 复习提问 x 0, y 0 x y 10 10 x y 0 注意考虑问题的实际意义. x 0 问题导入

3.3.2hao简单线性规划(第1课时)_课件

3.3.2hao简单线性规划(第1课时)_课件

五、课堂作业
P86 练习2 P93 A组4 B组 3
(3)求:通过解方程组求出最优解; (4)答:作出答案。
体 验:
一、先定可行域和平移方向,再找最优解. 二、最优解一般在可行域的顶点处取得.
三、在哪个顶点取得不仅与B的符号有关,而且 还与直线 Z=Ax+By的斜率有关.
四、本课小结
本节主要学习了线性约束下如何求目 标函数的最值问题; 正确列出变量的不等关系式,准确作出 可行域是解决目标函数最值的关健; 线性目标函数的最值一般都是在可行 域的顶点或边界取得; 把目标函数转化为某一直线,其斜率与 可行域边界所在直线斜率的大小关系一定 要弄清楚.
二、概念学习
1.线性约束条件
x 2 y 8, 4 x 16, 4 y 12, x 0, y 0.
象这样关于x,y二元一次不等式组 的约束条件称为线性约束条件.
2.线性目标函数 3.线性规划
Z=2x+3y称为目标函数,(因这里目标函数 为关于x,y的一次式,又称为线性目标函数). 在线性约束下求线性目标函数的最值问题, 统称为线性规划.
x
问题:求利润2x+3y的最大值. 若设利润为z,则z=2x+3y,这样上述问题转化为: 当x,y在满足上述约束条件时,z的最大值为多少?
2 z 2 把z =2x +3y变形为y =- x + ,这是斜率为- , 3 3 3 z z 在y轴上的截距为 的直线(x 0时,y = ), 3 3 当点P在可允 z 的最值 求 求 z的最值. 许的取值范 3 围内
4
N(2,3)
x
3
0
4
1 x4 2 1 z y x 3 3 y

3.3.2-简单的线性规划问题-课件

3.3.2-简单的线性规划问题-课件

[例4] 某人有楼房一幢,室内面积共180 m2,拟分隔成两类 房间作为旅游客房.大房间每间面积为18 m2,可住游客5名,每 名游客每天住宿费为40元;小房间每间15 m2,可住游客3名,每 名游客每天住宿费为50元;装修大房间每间需1000元,装修小房 间每间需600元.如果他只能筹款8000元用于装修,且游客能住满 客房,他应隔出大房间和小房间各多少间,才能获得最大收益?
x≥0
迁移变式 3 已知点 P(x,y)满足条件y≤x
(k
2x+y+k≤0
为常数),若 x+3y 的最大值为 8,则 k=________.
解:作出可行域如图 7 所示, 作直线 l0:x+3y=0, 平移 l0 知当 l0 过点 A 时,x+3y 最大, 由于 A 点坐标为(-3k,-3k). ∴-3k-k=8,从而 k=-6.
[例3] 已知变量x,y满足约束条件1≤x+y≤4,-2≤x-y≤2.若 目标函数z=ax+y(其中a>0)仅在点(3,1)处取得最大值,则a的取值 范围为________.
[分析] 由题目可获取以下主要信息: ①可行域已知; ②目标函数在(3,1)处取得最大值. 解答本题可利用逆向思维,数形结合求解.
解方程组-4x+4x+3y=3y=361. 2, 得 D 点坐标为(3,8) ∴zmax=2x+3y=30 当直线经过可行域上的点 B 时,截距3z最小,即 z 最 小.由已知得 B(-3,-4) ∴zmin=2x+3y=2×(-3)+3×(-4)=-18. (2)同理可求 zmax=40,zmin=-9.
3.3.2 简单的线性规划问题
线性规划问题的有关概念:
1.线性约束条件:不等式组是一组对变量x、y的约束条件, 这组约束条件都是关于x、y的 一次不等式 .

3.4.2《简单线性规划》课件(北师大版必修5)

3.4.2《简单线性规划》课件(北师大版必修5)

所以 zmin=4+3=7.
x+3y≥12 线性约束条件x+y≤10 3x+y≥12 最小值.
下, z=2x-y 的最大值和 求
• 先画出可行域,利用直线z=2x-y的平移来
寻求最优解,最先或最后通过的可行域顶点 坐标即为最优解,它可以使目标函数取得最 大值或最小值.
[解题过程] 如图作出线性约 x+3y≥12 束条件 x+y≤10 3x+y≥12
2 3 =ax+by(a>0,b>0)的最大值为12,求a+b的最小值.
解析: 不等式组表示的平面区域如图 所示阴影部分. 作直线l:ax+by=0(a>0,b>0)向 上平移直线l,目标函数z=ax+by(a>0, b>0)的值随之增大.由图可知当直线l过 直线x-y+2=0与直线3x-y-6=0的交点A(4,6)时,目标函 数z=ax+by(a>0,b>0)取得最大值为12,
1 1--2
7 2 7 kQA= = = . 1--1 2 4
3 7 故z=2k∈4,2.
1 3--2
y-b [题后感悟] 若目标函数为形如z= ,可考虑(a,b) x-a 与(x,y)两点连线的斜率. 若目标函数为形如z=(x-a)2+(y-b)2,可考虑(x,y)与 (a,b)两点距离的平方.
x-y-2=0, 2y-3=0,
得C
7 3 , 2 2
7 3 ,所以当x= 2 ,y= 2
7 3 29 2 + 2= . 时,目标函数z取最大值,zmax= 2 2 2
3 13 综上,当x=1,y=2时,z的最小值为 4 . 7 3 29 当x=2,y=2时,z的最大值为 2 .
• [题后感悟] 这是一道线性规划的逆向思维
问题.解答此类问题必须明确线性目标函 数的最值一般在可行域的顶点或边界取得, 运用数形结合的思想方法求解.边界直线 斜率与目标函数斜率间的关系往往是解题 的关键.

线性规划完整ppt课件

线性规划完整ppt课件
设变量 x、 y 满足 | x|| y|1,则 x 2 y 的最大值和式训练(三)
若 x、 y 满足
y 1
y
2 x -1
x y m
若目标函数 zxy最小值-1,则m的值.
可编辑课件
15结束
变式训练(四)
x y 1
若 x、 y 满足 x y 4
x
y
2
x y 2
可编辑课件
6
问题(四)
用什么方法解决这个问题呢? 根据什么判断这是一个线性规划问题呢?
可编辑课件
7
解:设每天吃x百克苹果,y百克桔子,花 钱z元,则 50x 25y 75
0.2x 0.4y 1 x0 y0
z 0.75x y
可编辑课件
8
M
M
可编辑课件
9
当直线z=0.75x+y经过可行域上的点M时,z有最小值
巩固练习
x y 1
若点M( x , y ) 在平面区域 x y 4 上
x
y
2
x y 2
向量a (1, 2),则 OM a 的最大值.
可编辑课件
12
变式训练(一)
x y 1
若 x、 y
满足
x
x
y y
4 2
x y 2
则 z | x2y| 最大值.
可编辑课件
13
变式训练(二)
解方程组500.2xx++205.y4=y=751
得M的坐标为(1,7) 33
所以,zmin
0.75x
y
31 12
2.6
答:最少可以花约2.6元.
可编辑课件
10
问题(五)
解决线性规划实际问题的步骤:

高中数学第三章不等式2简单线性规划课件必修5高一必修5数学课件

高中数学第三章不等式2简单线性规划课件必修5高一必修5数学课件

意义.
(1)截距型:形如z=Ax+By(B≠0),即y=-AB
x+Bz

z 为该 B
直线在y轴上的截距,z的几何意义就是该直线在y轴上截距的B
倍,至于z与截距能否同时取到最值,还要看B的符号.
12/13/2021
(2)距离型:形如z=(x-a)2+(y-b)2,z表示平面区域内的 动点(x,y)与定点(a,b)的距离的平方.
12/13/2021
(1)若直线y=2x上存在点(x,y)满足约束条件
x+y-3≤0 x-2y-3≤0 x≥m,
A.-1
则实数m的最大值为( B )
B.1
3 C.2
D.2
12/13/2021
x≥1 (2)已知a>0,x,y满足约束条件 x+y≤3 y≥ax-3,
y的最小值为1,则a=( B )
12/13/2021
规律方法 上述三个问题都是非线性目标函数模型,第一个 是两点间的距离模型,第二个是斜率模型,第三个是点到直线 的距离模型,但其本质还是二元函数的最值问题.熟悉这些模 型有助于更好地解决问题.
12/13/2021
x+y-3≥0 已知实数x,y满足 x-y+1≥0
9
x≤2,
__2_.
12/13/2021
【解析】 作出可行域如图阴影部分所示,直线ax+2y=z 仅在点(1,0)处取得最小值,由图像可知-1<-a2<2,即-4<a<2.
12/13/2021
规律方法 对于线性规划的逆向思维问题,解答时必须明确 线性目标函数的最值一般在可行域的顶点或边界取得,运用数 形结合的思想方法求解.同时,要注意边界直线斜率与目标函 数斜率的关系.
则z=x2+y2的最小值为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性目 标函数
线性约 束条件
x − 4 y ≤ −3 z=2x+y,求满足 设z=2x+y,求满足 3 x + 5 y ≤ 25 x ≥ 1 最优解
的最大值和最小值. 时,求z的最大值和最小值 求 的最大值和最小值 线性规 划问题
所有的
任何一个满足 不等式组的 x,y) (x,y) 可行解
P = 2x + y
何时达到最大? 何时达到最大?
利润
三、当堂检测 已知
x - y ≥ 0 x + y - 1 ≤ 0 y + 1 ≥ 0
(1)求z=2x+y的最大值和最小值。 ) 的最大值和最小值。 的最大值和最小值 的最优解。 (2)求z=2x+y的最优解。 ) 的最优解
2x+y=0
x-4y=-3 -

解线性规划问题的步骤: 解线性规划问题的步骤:
画出线性约束条件所表示的可行域; 画 画出线性约束条件所表示的可行域; 2、 移 在线性目标函数所表示的一组平行线 1、
中,用平移的方法找出与可行域有公 共点且纵截距最大或最小的直线; 共点且纵截距最大或最小的直线;
通过解方程组求出最优解; 求 通过解方程组求出最优解; 作出答案。 4、 答 作出答案。 3、
可行域
有关概念
的不等式(或方程 组成的不等式组称为x 或方程)组成的不等式组称为 由x,y 的不等式 或方程 组成的不等式组称为 , y 的约束条件。关于 ,y 的一次不等式或方程组 约束条件。关于x 成的不等式组称为x 线性约束条件。 成的不等式组称为 ,y 的线性约束条件。欲达到 最大值或最小值所涉及的变量x, 最大值或最小值所涉及的变量 ,y 的解析式称为 目标函数。关于x, 的一次目标函数称为线性目 目标函数。关于 ,y 的一次目标函数称为线性目 标函数。 标函数。求线性目标函数在线性约束条件下的最 大值或最小值问题称为线性规划问题 线性规划问题。 大值或最小值问题称为线性规划问题。满足线性 可行解。 约束条件的解( , )称为可行解 约束条件的解(x,y)称为可行解。所有可行解 组成的集合称为可行域 可行域。 组成的集合称为可行域。使目标函数取得最大值 最优解。 或最小值的可行解称为最优解 或最小值的可行解称为最优解。
y
y-x=0
5
1
O
1 A(2,-1) 5
x
y+1=0
B(-1,-1) -1
z max = 3
zmin = −3
x+y-1=0
知识小结
1.线性规划问题的有关概念; 2. 用图解法解线性规划问题的一般步骤: 1)设出未知数,列出约束条件,确定目标函 数 2)作出可行域 3)作平行线 使直线与可行域有交点 4)求出最优解并作答
x-4y+3=0
C
5
3.作一组与直线 l 0 平行的 直线l : 2 x + y = t , t ∈ R
A B
O
1 5 x=1
2x + y = 0
直线L 直线L越往右平 ,t随之增大 随之增大. 移,t随之增大. x 以经过点A(5,2)的 以经过点A(5,2) t 直线所对应的t值 最大;经过点B(1,1) 最大;经过点B(1,1) 的直线所对应的t 的直线所对应的t 值最小. 值最小. Z max = 2 × 5 + 2 = 12, Z min = 2 × 1 + 1 = 3
典例讲评
式中变量x、 满足下列条件 例1:设z=2x-y,式中变量 、y满足下列条件 : 式中变量 求z的最大值和最小值。 的最大值和最小值。 解:作出可行域如图: 作出可行域如图 当z=0时,设直线 l0:2x-y=0 z= 时 = 平移l 经过可行域上点A时 平移l0,当l0经过可行域上点 时,
y
o
x
知识回顾:
确定二元一次不等式(组)表示区域的方法:
直线定域,特殊点定界。
注意的问题: 1、Ax+By+C≥0表示的平面区域把直线画成 Ax+By+C≥ 实线以表示区域包含边界直线 以表示区域包含边界直线; 实线以表示区域包含边界直线; Ax+By+C>0表示的平面区域把直线画成 2、Ax+By+C>0表示的平面区域把直线画成 虚线以表示区域不包含边界直线 以表示区域不包含边界直线. 虚线以表示区域不包含边界直线.
在关数据列表如下: 在关数据列表如下: A种原料 B种原料 甲种产品 乙种产品 现有库存 4 1 10 12 9 60 利润 2 1
设生产甲、 设生产甲、乙两种产品的吨数 分别为x、 分别为 、y
4 x + y ≤ 10 12 x + 9 y ≤ 60 x ≥ 0 y ≥ 0
问题思考1:
在同一坐标系上作出下列直线: 在同一坐标系上作出下列直线 2x+y=0;2x+y=1;2x+y=-3;2x+y=4;2x+y=7 Y
结论 : 形如 2 x + y = t ( t ≠ 0) 的直线与2 x + y = 0平行 .
x
o
作出下列不等式组的所表 示的平面区域 x-4y≤-3
在该平面区域上 问题 1:x有无最大(小)值?
3x+5y≤25 x≥1
问题2:y有无最大(小)值? 2
y
x=1
C
问题3:2x+y有无最大(小)值? 3
x-4y=-3
A B
3x+5y=25
o
x
二.提出问题 提出问题
把上面两个问题综合起来: 把上面两个问题综合起来
x − 4 y ≤ −3 z=2x+y,求满足 设z=2x+y,求满足 3 x + 5 y ≤ 25 x ≥ 1
的最大值和最小值. 时,求z的最大值和最小值 求 的最大值和最小值
y
A: (5.00, 2.00) B: (1.00, 1.00) C: (1.00, 4.40)
x − 4 y ≤ −3 1.先作出3 x + 5 y ≤ 25 x ≥ 1 所表示的区域 .
2.作直线 l 0 : 2 x + y = 0
例2 某工厂生产甲、乙两种产品,生产 甲 某工厂生产甲、乙两种产品,生产1t甲 种产品需要A种原料 种原料4t、 种原料 种原料12t, 种产品需要 种原料 、 B种原料 ,产 生的利润为2万元 生产1t乙种产品需要 万元; 乙种产品需要A 生的利润为 万元;生产 乙种产品需要 种原料1t、 种原料 种原料9t,产生的利润为1万 种原料 、 B种原料 ,产生的利润为 万 现有库存A种原料 种原料10t、 种原料 种原料60t, 元。现有库存 种原料 、 B种原料 , 如何安排生产才能使利润最大? 如何安排生产才能使利润最大?
-z 最小,即z最大。 最小, 最大。
x -4y≤-3 3x+5y≤25 x≥1
y
3x+5y=25
2x-y=0 =
C (1,4.4)
平移l 当 经过可行域上点C时 平移l0 , l0经过可行域上点 时,
-z最大,即z最小。 最大, 最小。
x-4y=-3
o
B
(5,2)

x=1
x=1
x

点坐标_____; 点坐标_______; 得A点坐标 (5,2) ; 点坐标 由 得C点坐标 (1,4.4) ; 点坐标 3x+5y=25 3x+5y=25 + = + = zmax=2×5-2=8 × = zmin=2×1-4.4= -2.4 ×
相关文档
最新文档