春人教版数学九下第二十六章《反比例函数》word单元导学案
人教版九年级数学下册第二十六章反比例函数复习教学设计
3.鼓励学生提出疑问,针对学生的疑问进行解答,巩固所学知识。
4.布置课后作业,要求学生运用所学知识解决实际问题,提高学生的数学素养。
五、作业布置
为了巩固学生对反比例函数的理解和应用,特布置以下作业:
1.请同学们结合课堂所学,完成课后练习题第1、2、3题,重点掌握反比例函数的定义、性质和图像特点。
3.讲解反比例函数在实际问题中的应用,如速度与时间、物体在水平面上的运动等。
(三)学生小组讨论,500字
1.教师将学生分成若干小组,针对反比例函数的性质、图像和应用进行讨论。
2.各小组分享自己的观点,讨论如何利用反比例函数解决实际问题。
3.教师巡回指导,针对学生的疑问进行解答,引导学生运用所学知识分析问题。
针对九年级学生,他们在之前的学习中已经掌握了函数的基本概念、一次函数、二次函数的性质和应用。在此基础上,学生对反比例函数的学习具备了一定的基础。然而,反比例函数作为函数学习的重要组成部分,其图像、性质和实际应用方面仍存在一定的难度。因此,在本章节的教学过程中,需要关注以下几点:
1.学生在理解反比例函数图像和性质时可能遇到困难,如对双曲线、渐近线等概念的理解。
5.针对课堂所学内容,编写一道反比例函数的应用题,要求题目具有一定的挑战性和趣味性。
6.阅读教材中关于反比例函数的相关内容,总结反比例函数的性质、图像和应用,形成自己的学习笔记。
2.自主探究,合作交流
-引导学生回顾一次函数、二次函数的性质,自主发现反比例函数的性质,组织学生进行小组讨论,共同总结反比例函数的图像特点及其应用。
3.精讲精练,突破难点
-对反比例函数的图像、性质进行详细讲解,结合具体例子,使学生深入理解双曲线、渐近线等概念。
期末复习之+第二十六章+反比例函数k的几何意义(教案)-2024-2025学年人教版数学九年级下册
《反比例函数与图形面积》本专题主要是反比例函数与图形面积的问题,反比例函数是中考考察中的重点也是难点,这一部分内容综合性比较强,要求学生具有数形结合的能力,也需要具有较强的几何分析能力。
因此,在复习的过程中,学生会觉得这一部分内容较综合,产生畏难情绪,在教学中一定要加强方法的引导。
一、教学目标知识与技能目标:理解反比例函数中k的几何意义,并能熟练的解决实际问题。
过程与方法目标:探究反比例函数图象背景下求几何图形面积的过程,培养观察、分析和归纳的能力,发展数学思维。
情感与态度目标:探究反比例函数图象背景下求几何图形面积的过程,体会转化思想、建模思想、数形结合思想以及分类讨论思想在解题中的应用。
教学重难点重点:理解反比例函数中k的几何意义难点:能熟练的应用反比例函数中k的几何意义解决实际问题。
二、教学过程【教学方法】学习方式:学生在教师指导下进行“分析情景→自我探究→合作交流→总结归纳→灵活应用”的一系列活动,积极思考,独立探索,自己发现并掌握相应的规律。
教学方式:通过具体的现实情境,从学生已有的生活经验出发,通过“分析情景→自我探究→合作交流→总结归纳→灵活应用”,经历自主探索、分组实验、合作交流等活动形式,以学生为主体,教师创设和谐,愉悦的环境,辅以适当的引导。
同时利用计算机演示教学内容,提高教学的交互性与直观性,打破教学常规,提高课堂效率。
【教学准备】教师:PPT ;学生:课堂练习本、导学案、作图工具【教学过程】一、合作探究探究1:1. 在反比例函数y =4x 的图象上分别取点P ,Q 向 x 轴、y 轴作垂线,围成面积分别为S 1,S 2的矩形,填写下面表格:2.若在反比例函数y =−4x 中也用同样的方法分别取 P ,Q 两点,填写表格:设计意图:本环节设计两个反比例函数,一个反比例函数的k 为正值,一个为负值。
探索反比例函数上的点向坐标轴作垂线构成的矩形面积和K 的关系,这个环节让学生自己探索,得出猜想,从特殊情况转向一般情况,进入到下一个环节的探索。
反比例函数全章导学案
反比例函数全章导学案一、引入反比例函数是高中数学中的重要内容,对于学生来说理解和掌握反比例函数的性质和应用非常重要。
本章导学案将逐步引导学生了解反比例函数的定义、性质及其在实际问题中的应用。
二、知识点概述本章主要包括以下几个知识点:1. 反比例函数的定义和表示方法。
2. 反比例函数的图像和性质。
3. 反比例函数的应用,例如速度和时间的关系、工作和时间的关系等。
三、研究目标本章研究目标分为以下几个方面:1. 理解反比例函数的定义和表示方法。
2. 掌握反比例函数的图像和性质。
3. 能够在实际问题中应用反比例函数解决相关计算问题。
四、研究任务为了达成上述研究目标,本章研究任务如下:1. 阅读教材相关内容,了解反比例函数的定义和表示方法。
2. 观察并分析反比例函数的图像,总结其特点和性质。
3. 完成教材题和课后作业,加深对反比例函数的理解和应用能力。
4. 结合实际问题,通过解决实际问题的方式掌握反比例函数的应用。
五、研究辅助工具1. 教科书:根据教材中的内容进行研究。
2. 作业本:用于记录和完成课后作业。
3. 计算器:辅助进行计算。
六、研究安排本章内容比较简单明了,以下是研究的具体安排:1. 第一课时:研究反比例函数的定义和表示方法。
2. 第二课时:研究反比例函数的图像和性质。
3. 第三课时:研究反比例函数的应用。
4. 第四课时:复巩固并进行综合训练。
七、研究评价本章研究评价主要通过以下方式进行:1. 上课表现:积极参与课堂讨论和答题。
2. 作业完成情况:及时、准确地完成课后作业。
3. 成绩评定:根据平时表现和考试成绩进行评定。
八、研究反思研究本章知识后,同学们应该能够对反比例函数有更清晰的认识和理解,并能够运用所学知识解决实际问题。
希望同学们能够积极参与研究,提高数学思维和应用能力。
以上是本章的导学案,祝同学们研究顺利!。
最新人教版九年级数学下册第二十六章《反比例函数》教案
问题与情景
师生互动
设计意图
【活动1】复习旧知,导入新课
复习:
1.一次函数y=2x-3的图象是什么?它经过哪些象限?你能画出它的图象吗?
2.说说一次函数y=2x-3具有什么性质?
引入新课:
上节课我们学习了反比例函数,你知道反比例函数 的图象是什么吗?这节课我们就一起来探讨反比例函数的图象和性质。
教材分析
“反比例函数的图象和性质”这一节是在学生学习了一次函数之后的另一种函数形式,学生有了一定的函数学习经验,学生可以用类比的学习方法学习,通过本节的学习学生对数学的本质有进一步的认识和理解(如描点法画函数图象)。
反比例函数的图象是一种曲线型图形,由于受自变量取值范围的限制,其图象被分成两部分(两个分支),这一点是教学的难点,因此让学生踏实的做好画图的每一个步骤(不能简单的描少量几个点,需大量描点),边画图边理性思考是学好本节的关键所在。
《反比例函数的图象和性质》教案2
于都县第三中学蔡家禄
课题
反比例函数的图象和性质
教案说明
简述教案设计思想与特色
通过对一次函数图象的画法及其性质的复习,让学生从已有知识基础之上用类比的思想和方法学习新知识,这符合学生的认知规律和心理特点。反比例函数的图象是曲线型,学生受直线型图象的影响(思维定势),又对所学知识理解不深刻(画图象的三个步骤),很易想当然的把反比例的图象画成折线型,所以本教学设计通过设计一系列的问题串,引导学生步步为营,逐步加深对新知识的认识和理解,另外使用“几何画板”进行辅助教学、通过设计折纸、观察、交流探究等学习活动,使学生经历由浅入深,由朦胧到清晰的一个认识过程。
4.从左向右观察双曲线上的点(1,3)、(2,1.5)、(3,1),横坐标在怎样变化?纵坐标又是怎样变化的?
人教版九年级下册二十六章导学案反比例函数定义导学案(无答案)
反比例函数定义导学案编审人:惠民一实王晓涛惠民二实李雪【学习目标】1.知道反比例函数的定义;2.能判断一个函数是否为反比例函数并能辨别比例系数;3.能根据题目条件确定反比例函数解析式;【学习重点】能根据题目条件确定反比例函数解析式及比例系数;【学习难点】能根据已知条件确定反比例函数解析式;【教学过程】(一)【创设情境,引入新课】1.(1)哪些同学去过济南?你们分别乘坐什么交通工具?分别用了多长时间?(2)从惠民到济南全程120km,为什么路程一样,时间不同?(3)路程一定时,速度和时间是什么关系?2.多媒体展示问题情景(1)京沪线铁路全程为1 463km,某次列车的平均速度v单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化.(2)某住宅小区要种植一个面积为1 000 2m的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化.(3)已知北京市的总面积为1.68×104平方千米,人均占有的土地面积S(单位:平方千米/人)随全市总人口n(单位:人)的变化而变化.(4)上述问题中,变量间的对应关系可用怎样的函数式表示?(二)【探究新知,练习巩固】知识点1.反比例函数的概念(1)上述问题中的函数有什么共同特点?(2)你还能举出一些形如这样的函数解析式吗?(3)这样的例子在我们的日常生活中有好多,你能否根据它们的共同特点写出这种函数的一般形式?(4)其实,这些函数就是本章我们要学习的反比例函数你能尝试给反比例函数下一个定义吗?归纳:.形如y=kx(k是常数,的函数称为,其中x是,y是.自变量x的取值范围是不等于0的全体实数.知识点2.反比例函数的表达式再仔细思考一些,反比例函数还可以表示成哪些形式?、、是反比例函数的三种表现形式.其中k是常数,k≠0.反比例函数中自变量和函数的取值范围是怎样的?跟踪练习:下列函数中,反比例函数是;每一个反比例函数相应的k值是多少?①y =2x +1;②y=22x ;③y=15x;④y=;⑤xy =3;⑥2y=x ;⑦xy =-1.(三)【合作探究,例题讲解】例1 已知y 是x 的反比例函数,当x =2时,y =6.(1)写出y 与x 的函数关系式;(2)求当x =4时y 的值.例2 已知y 与x 2成反比例,并且当x =-2时,y =2,那么当x =4时,y 等于( )A.-2B.2C.12D.-4跟踪练习:1.一个矩形的面积为20 cm 2,相邻的两条边长分别为x cm 、y cm,那么变量y 是变量x 的函数吗?是反比例函数吗?2.某村有耕地346.2公顷,人口数量n 逐年发生变化,那么该村人均占有耕地面积m (公顷/人)是全村人口数n 的函数吗?是反比例函数吗?3.当m 时,y=3x m-7是反比例函数.4.如果y 是z 的反比例函数,z 是x 的反比例函数,那么y 与x 具有怎样的函数关系?(四)【课堂小结】1.根据反比例函数的意义判断是否是反比例函数.2.求反比例函数的解析式.3.对反比例函数后面的学习,准备从哪些方面入手?(五)【当堂达标,拓展延伸】1.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是( )A .两条直角边成正比例B .两条直角边成反比例C .一条直角边与斜边成正比例D .一条直角边与斜边成反比例2.用电器的输出功率P 与通过的电流I 、用电器的电阻R 之间的关系是P =I 2R ,下面说法正确的是( )A .P 为定值,I 与R 成反比例B .P 为定值,I 2与R 成反比例C .P 为定值,I 与R 成正比例D .P 为定值,I 2与R 成正比例3.小华以每分钟x 个字的速度书写,y 分钟写了300个字,则y 与x 的函数关系式为( )A .y =x 300B .y =300xC .y =300-xD .y =300-x x 4.在函数xy 1=中,自变量x 的取值范围是( ) A .x ≠0 B .x >0C .x <0D .一切实数5.下列函数表达式中,y 不是x 的反比例函数的是( )A . xy 3=B .3x y =C .x y 21=D .21=xy 6.若函数y =x 2m +1为反比例函数,则m 的值是( ) A .1B .0 C.12 D .-1 7.反比例函数x y 23-= 中常数k 为( ) A .-3 B .2 C .-12 D .-328.下列函数:①y =2x -1;②x y 5-=;③y =x 2+8x -2;④23m y =;⑤x y 21=;⑥x a y =中,y 是x 的反比例函数的有________.(填序号)9.(汕尾中考)已知反比例函数xk y =的图象经过点M(2,1). (1)求该函数的表达式;(2)当2<x <4时,求y 的取值范围(直接写出结果).10.已知函数y=(5m-3)x2-n+(n+m).(1)当m,n为何值时,为一次函数?(2)当m,n为何值时,为正比例函数?(3)当m,n为何值时,为反比例函数?。
春人教版数学九下26.1《反比例函数》word公开课教案1
科目 教师
1.知识与技能: (1)理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进 而识别反比例函数; (2)能根据已知条件确定反比例函数的表达式; (3)进一步熟悉用描点法作函数图象的主要步骤,会作反比例函数的图象。
数学
课题 班级
反比例函数的概念 时 间
教学 目标
2.过程与方法: 经历从实际问题中概括出反比例函数模型的过程,体会反比例函数来源于实际问 题。 3.情感态度与价值观: (1)经历反比例函数的形成过程,使学生体会到函数是描述变量间对应关系的 重要数学模型; (2)通过学习反比例函数,培养学生合作交流和探索的能力。
创设问题情 境,让学生感受量 与量之间的函数关 系,体会实际问题 中蕴含的函数关 系,激发探究兴 趣。 回顾已学知 识,明确路程一定 时,速度与时间成 反比例关系,再引 导学生从函数角度 分析两个变量之间 的关系,为建立反 比例函数模型奠定 基础。 通过对问题的 讨论分析,让学生 学会用函数的观点 分析生活中变量之 间的关系,并能够 用反比例关系式表 示出来,初步建立 反比例函数的模 型。
教学 重点 教学 难点 教学手 段
理解反比例函数的概念,能根据已知条件利用待定系数法确定函数解析式,会用描点 法画简单的反比例函数图像. 理解反比例函数的概念,确定函数解析式,画函数图象 flash 教学课件,PPT 课件,几何画板
教 学 教学过程 一、复习回顾
设
计 设计说明
学生回顾函数 相关概念和一般形 式,回忆小学所学 两个量之间的反比 例关系.
2.乘法表中乘积为 12 的两个因数之间存怎样的关系?
乘积为定值的两个因数之间成反比关系。
二、情境引入 引例一:京沪线铁路全程为 1463km,乘坐某次列车所用时 间 t(单位:h)随该列车平均速度 v(单位:km/h)的变化而变 化; (1) 平均速度 v,运行时间 t 存在什么数量关系?
人教版九年级数学下第26章《反比例函数》全套教案
26.1.1《反比例函数》教案课标要求结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式.教学目标知识与技能:1.从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解;2.使学生理解并掌握反比例函数的概念;3.能判断一个函数是否为反比例函数,并用待定系数法求函数解析式.过程与方法:1.经历对两个变量之间相依关系的讨论,培养学生的辩证唯物主义观点;2.经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识;3.经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会函数的建模思想.情感、态度与价值观:1.经历抽象反比例概念的过程,体会数学学习的重要性,提高学生学习数学的兴趣;2.通过分组讨论,培养学生合作交流意识和探索精神.教学重点理解反比例函数的概念,能根据已知条件写出函数解析式.教学难点理解反比例函数的概念.教学流程一、情境引入复习:什么是函数?问题:京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化.你能写出关于t的解析式吗?1463vt引出课题:今天,我们就来研究这种形式的函数.二、探究归纳下列问题中,变量间具有函数关系吗?如果有,请直接写出解析式.(1)某住宅小区要种植一块面积为1000m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化.(2)已知北京市的总面积为1.68×104km 2,人均占有面积S (单位:km 2/人)随全市总人口n (单位:人)的变化而变化.1000y x=,41.6810S n ⨯= 归纳概念:一般地,形如ky x=(k 为常数,且k ≠0)的函数,叫做反比例函数,其中x 是自变量,y 是函数.强调:自变量x 的取值范围是不等于0的一切实数. 例题指引:例:已知y 是x 的反比例函数,并且当x =2时,y =6. (1)写出y 关于x 的函数解析式; (2)当x =4时,求y 的值.分析:因为y 是x 的反比例函数,所以设ky x=,把x =2和y =6代入上式,就可求出常数k 的值. 解:(1)设ky x=,因为当x =2 时,y =6, 所以有62=.k 解得:k =2. 因此12=.y x(2)把x =4代入12y x=,得 1234y == 三、应用提高1.用函数解析式表示下列问题中变量间的对应关系:(1)一个游泳池的容积为2000m 3,游泳池注满水所用时间t (单位:h )随注水速度v (单位:m 3/h )的变化而变化;(2)某长方体的体积为1000cm 3,长方体的高h (单位:cm )随底面积S (单位:cm 2)的变化而变化;(3)一个物体重100N ,物体对地面的压强p (单位:Pa )随物体与地面的接触面积S (单位:m 2)的变化而变化.2.下列哪些关系式中的y 是x 的反比例函数?4y x =,3y x =,2y x =-,61y x =+,21y x =-,21y x=,123xy =. 3.已知y 与x 2成反比例,并且当x =3时,y =4.(1)写出y 关于x 的函数解析式; (2)当x =1.5时,求y 的值; (3)当 y =6 时,求x 的值. 四、体验收获 说一说你的收获.1.今天我们学习了哪些知识? 2.我们是如何形成反比例函数概念的? 3.如何根据已知条件确定反比例函数的解析式? 五、拓展提升1.关系式xy +4=0中y 是x 的反比例函数吗?若是,比例系数k 等于多少?若不是,请说明理由. 2.如果y 是z 的反比例函数,z 是x 的反比例函数,那么y 与x 具有怎样的函数关系? 六、课内检测1.在下列函数中,y 是x 的反比例函数的是( ) A .85y x =+ B .37y x =+ C .5xy = D .22y x= 2.已知函数7m y x-=是正比例函数,则m = . 3.已知函数75m y x-=是反比例函数,则m = .4.已知y 是x 的反比例函数,并且当x =3时,y =-8. (1)写出y 与x 之间的函数关系式; (2)求y =2时x 的值. 七、布置作业必做题:教材8页习题26.1第1、2题. 选做题:教材9页习题26.1第7题. 附:板书设计教学反思:26.1.2《反比例函数的图象和性质》教案课标要求能画出反比例函数的图像,根据图像和表达式y =xk(k ≠0)探索并理解k >0和k <0时,图像的变化情况.教学目标知识与技能:1.会用描点法画反比例函数的图象; 2.结合图象分析并掌握其性质;3.能灵活运用反比例函数的图象和性质求函数的解析式,进而解决一些较综合的数学问题. 过程与方法:1.经历画图、观察、猜想、思考等数学活动,向学生渗透数形结合的思想方法,让学生初步认识具体的反比例函数图象的特征;2.经历观察、分析、交流的过程,逐步提高从函数图象中感受其规律的能力; 3.从较综合的题目的解答中学会使用数形结合的方法. 情感、态度与价值观:1.由图象的画法和分析,体验数学活动中的探索和创造性,感受数学美,并通过图象的直观教学激发学习兴趣;2.深刻领会函数解析式与和函数图象之间的联系,体会数形结合及转化的思想方法; 3.通过解决综合题,增强学生的自信心,涵育学生学习数学的兴趣.教学重点正确地进行描点、画出图象,理解并掌握反比例的图象和性质,能灵活运用反比例函数的性质解决一些综合问题.教学难点1.图象的对称性选点,归纳反比例函数的性质.2.利用数形结合思想比较大小以及对反比例函数几何意义的理解学会利用图象分析、解决问题.教学流程一、情境引入问题:我们知道一次函数y =kx +b (k ≠0)的图象是一条直线、二次函数y =ax 2 +bx +c (a ≠0)的图象是一条抛物线,反比例函数(0)=≠ky k x的图象是什么样呢? 我们用什么方法画反比例函数的图象呢? 有哪些步骤?根据k 的取值,应该如何分类讨论呢?引出课题:今天,我们就来研究反比例函数的图象和性质.二、探究归纳例1:画出反比例函数6=y x 和12=y x的图象. 解:列表思考:请观察反比例函数6=y x 与12=y x的图象,它们有哪些特征? (1)每个函数的图象分别位于哪些象限?(2)在每一个象限内,随着x 的增大,y 如何变化?你能由它们的解析式说明理由吗? (3)对于反比例函数(0)=>ky k x,考虑问题(1)(2),你能得出同样的结论吗? 归纳1:当k ﹥0时,反比例函数=ky x的图象: (1)函数图象分别位于第一、第三象限; (2)在每一个象限内,y 随x 的增大而减小. 追问:你能由函数的解析式说明这些结论吗?探究:回顾上面我们利用函数图象,从特殊到一般研究反比例(0)=>ky k x的性质的过程,你能用类似的方法研究反比例(0)=<ky k x的图象和性质吗? 归纳2:当k ﹤0时,反比例函数=ky x的图象: (1)函数图象分别位于第二、第四象限; (2)在每一个象限内,y 随x 的增大而增大.强调:反比例函数的图象由两条曲线组成,它是双曲线.归纳:一般地,反比例函数=kyx的图象是双曲线,它具有以下性质:(1)当k﹥0时,双曲线的两支分别位于第一、第三象限,在每一个象限内,y随x的增大而减小;(2)当k﹤0时,双曲线的两支分别位于第二、第四象限,在每一个象限内,y随x的增大而增大. 例2:已知反比例函数的图象经过点A(2,6).(1)这个函数的图象位于哪些象限?y随x的增大如何变化?(2)点B(3,4),14(24)25,C--,D(2,5)是否在这个函数的图象上?解:(1)∵点A(2,6)在第一象限,∴这个函数的图象位于第一、第三象限,在每一个象限内,y随x的增大而减小;(2)设这个反比例函数的解析式为=kyx.∵点A(2,6)在其图象上,62,k∴=解得:k=12.∴这个反比例函数的解析式为12 =yx.当x=3时,y=4,所以点B在这个函数的图像上;当x=122-时,y=445-,所以点C在这个函数的图像上;当x=2时,y=6≠5,所以点D不在这个函数的图像上.例3:如图,它是反比例函数5-=myx图象的一支,根据图象,回答下列问题:(1)图象的另一支位于哪个象限?常数m的取值范围是什么?(2)在这个函数图象的某一支上任取点A(x1,y1)和点B(x2,y2),如果x1>x2,那么y1和y2有怎样的关系?解:(1)反比例函数的图象只有两种可能:位于第一、第三象限,或者位于第二、第四象限.∵这个函数的图象的一支位于第一象限,∴另一支必位于第三象限.∵这个函数的图象位于第一、第三象限, ∴m -5﹥0, 解得m ﹥5. (2)∵m -5﹥0,∴在这个函数图象的任一支上,y 随x 的增大而减小, ∴当x 1>x 2时,y 1﹤y 2 . 三、应用提高1.下列图象中是反比例函数图象的是( )2.已知反比例函数=ky x的图象如图所示,则k 0,且在图象的每一支上,y 随x 的增大而 .3.已知反比例函数=ky x的图象过点(2,1),则它的图象在________象限,k ___0. 4.点A (x 1,y 1)和点B (x 2,y 2)在反比例函数1y x=的图象上.如果x 1﹤x 2,而且x 1,x 2同号,那么y 1,y 2有怎样的大小关系?为什么?四、体验收获 说一说你的收获.1.反比例函数的图象是怎样得到的?画图时要注意什么问题? 2.反比例函数的性质是怎样的?为什么要强调在每一个象限内的性质? 3.在反比例函数图象及性质的应用中体现了数形结合思想,能否谈谈你的体会? 五、拓展提升1.在同一直角坐标系中,函数=y kx 与(0)=≠ky k x的图象大致是( ). A .(1)(2) B .(1)(3) C .(2)(4) D .(3)(4)2.点A (x 1,y 1)和点B (x 2,y 2)在反比例函数(0)=≠ky k x的图象上,如果x 1>0>x 2,那么y 1和y 2有怎样的关系?六、课内检测1.如图所示的图象对应的函数解析式为( ). A .5y x = B .23y x =+ C .4y x =D .3y x=-2.反比例函数5y x=的图象在第 象限. 3.已知一个反比例函数的图象经过点A (3,-4).(1)这个函数的图象位于哪些象限?在图象的每一支上,y 随 x 的增大如何变化? (2)点B (-3,4),C (-2,6),D (3,4)是否在这个函数的图象上?为什么? 七、布置作业必做题:教材8页习题26.1第3、5题. 选做题:教材9页习题26.1第9题. 附:板书设计教学反思:26.2《实际问题与反比例函数》教案课标要求能用反比例函数解决简单实际问题.教学目标知识与技能:1.能灵活列出表达式解决一些实际问题;2.能综合利用几何、方程、反比例函数的知识解决实际问题.过程与方法:1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题;2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力;3.初步形成自己构建数学模型的能力.情感、态度与价值观:1.积极参与交流,并积极发表自己的见解,相互促进;2.体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具,体验数学的实用性.教学重点综合运用反比例函数的解析式、图象和性质解决实际问题.教学难点综合运用反比例函数的知识解决较复杂的实际问题.教学流程一、情境引入问题:反比例函数kyx=的图象是什么样的?它有什么性质?引出课题:前面我们结合实际问题讨论了反比例函数,看到了反比例函数在分析和解决实际问题中的作用.今天,我们进一步探讨如何利用反比例函数解决实际问题.二、探究归纳例1:市煤气公司要在地下修建一个容积为104 m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500 m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15 m时,公司临时改变计划,把储存室的深度改为15 m.相应地,储存室的底面积应改为多少(结果保留小数点后两位)?解:(1)根据圆柱的体积公式,得Sd =104,所以S关于d的函数解析式为410Sd =.(2)把S=500代入410Sd=,得410 500d=解得:d=20(m)答:如果把储存室的底面积定为500 m2,施工时应向地下掘进20 m深.(3)把d=15代入410Sd=,得41015S=解得:S≈666.67(m2)答:当储存室的深度为15 m时,底面积约为666.67 m2.例2:码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,平均卸货速度v(单位:吨/天)与卸货天数t之间有怎样的函数关系?(2)由于遇到紧急情况,要求船上的货物不超过5天卸载完毕,那么平均每天至少要卸载多少吨?解:设轮船上的货物总量为k吨,根据已知条件得k=30×8=240,所以v关于t的函数解析式为240vt=.(2)把t=5代入240vt=,得240485v==(吨).∴如果全部货物恰好用5天卸载完,那么平均每天卸载48吨.∵对于函数240vt=,当t>0时,t越小,v越大.∴若货物不超过5天卸载完,则平均每天至少要卸载48吨.问题1:公元前 3 世纪,有一位科学家说了这样一句名言:“给我一个支点,我可以撬动地球!”你们知道这位科学家是谁吗?这里蕴含什么样的原理呢?杠杆原理:阻力×阻力臂=动力×动力臂例3:小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1200 N 和0.5 m.(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5 m时,撬动石头至少需要多大的力?(2)若想使动力F不超过题(1)中所用力的一半,则动力臂l至少要加长多少?解:(1)根据“杠杆原理”,得Fl=1200×0.5,所以F关于l的函数解析式为600Fl=.当l=1.5 m时,6004001.5F==(N).对于函数600Fl=,当l=1.5 m 时,F=400N,此时杠杆平衡.因此,撬动石头至少需要400N的力.(2)当14002002F=⨯=时,由600 200l=得6003 200l==(m),3-1.5=1.5(m).对于函数600Fl=,当l>0时,l越大,F越小.因此,若想用力不超过400N的一半,则动力臂至少要加长1.5m.追问:在我们使用撬棍时,为什么动力臂越长越省力?问题2:电学知识告诉我们,用电器的功率P(单位:W)、两端的电压U(单位:V)以及用电器的电阻R(单位:Ω)有如下关系:PR=U2.这个关系也可写为P=2UR,或R=2UP.例4:一个用电器的电阻是可调节的,其范围为110~220 Ω.已知电压为220 V,这个用电器的电路图如图所示.(1)功率P与电阻R有怎样的函数关系?(2)这个用电器功率的范围多少?解:(1)根据电学知识,当U=220时,得2220PR=.(2)根据反比例函数的性质可知,电阻越大,功率越小.把电阻R最小值=110代入2220PR=,得P最大值=2220440110=(W);把电阻R最大值=220代入2220PR=,得P最小值=2220220220=(W);因此用电器功率的范围为220~440W.追问:想一想为什么收音机的音量、某些台灯的亮度以及电风扇的转速可以调节.三、应用提高1.如图,某玻璃器皿制造公司要制造一种容积为1L(1L=1dm3)的圆锥形漏斗.(1)漏斗口的面积S(单位:dm2)与漏斗的深度d有怎样的函数关系?(2)如果漏斗口的面积为100cm2,则漏斗的深为多少?答案:(1)3Sd=(2)30 cm2.一司机驾驶汽车从甲地去乙地,他以80 km/h的平均速度用6 h到达目的地.(1)当他按原路匀速返回时,汽车的速度v与时间t有怎样的函数关系?(2)如果该司机必须在4h之内回到甲地,那么返程时的平均速度不能小于多少?答案:(1)480Vt=(2)120 km/h3.新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5×103m2.(1)所需的瓷砖块数n与每块瓷砖的面积S(单位:m2)有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,建筑师决定采用灰、白和蓝三种颜色的瓷砖,每块瓷砖的面积都是80cm2,且灰、白、蓝瓷砖使用数量的比为2∶2∶1,需要三种瓷砖各多少块?答案:(1)3510nS⨯=(2)250000块,250000块,125000块四、体验收获说一说你的收获.1.我们如何建立反比例函数模型,并解决实际问题?2.在这个过程中要注意什么问题?五、拓展提升1.某校科技小组进行野外考察,途中遇到一片十几米宽的湿地.为了安全、迅速通过这片湿地,他们沿着路线铺了若干块木板,构筑成一条临时通道.你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600 N,那么(1)木板面积S 与人和木板对地面的压强p 有怎样的函数关系?(2)当木板面积为0.2 m2时,压强是多少?(3)要求压强不超过6000 Pa,木板面积至少要多大?答案:(1)600(0)p SS=>(2)3000 Pa(3)至少0.1m22.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)请写出这个反比例函数的解析式.(2)蓄电池的电压是多少?(3)完成下表:范围?答案:(1)36IR=(2)36V(3)12,9,7.2,6,5.14,4.5,4,3.6(4)R≥3.6六、课内检测1.已知甲、乙两地相距s(单位:km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(单位:h)关于行驶速度v(单位:km/h)的函数图象是()答案:C2.在某一电路中,电源电压U 保持不变,电流I (A )与电阻R (Ω)之间的函数关系如图所示. (1)写出I 与R 之间的函数解析式;(2)结合图象回答当电路中的电流不超过12 A 时,电路中电阻R 的取值范围是多少Ω?答案:(1)36I R=(2)电阻R 大于或等于3 Ω 3.密闭容器内有一定质量的二氧化碳,当容器的体积V (单位:m 3)变化时,气体的密度ρ(单位:kg /m 3)也会随之变化.已知密度ρ与体积V 是反比例函数关系,它的图象如图所示.(1)求密度ρ关于体积V 的函数解析式; (2)求V =9 m 3时,二氧化碳的密度ρ.答案:(1)9.9Vρ=(2)1.1 kg /m 3 七、布置作业必做题:教材16页习题26.2第2、3、4、7题. 选做题:教材17页习题26.2第9题. 附:板书设计教学反思:。
人教版九年级数学下册第二十六章26.1.1反比例函数导学案
26.1.1反比例函数【学习目标】1、理解并掌握反比例函数定义;能根据实际问题中的条件确定反比例函数的解析式及自变量的取值范围。
2、从实际问题情景中经历探索、分析和建立两个变量之间的反比例函数关系的过程。
3、用类比的思想方法,发展观察能力、探究能力及交流总结能力。
4、通过探索具体问题中数量关系和变化规律的过程,体验数学来源于生活,又应用于生活,提高应用数学的意识。
【学习重点】1、理解并掌握反比例函数的定义,掌握反比例函数的一般形式;2、能根据已知条件确定反比例函数的解析式。
【学习难点】经历探索和表示反比例函数的过程,体验用反比例函数表示变量之间的关系。
【学习过程】一、想一想:1、我们已经学过哪些函数?这些函数中分别有几个变量?2、我们用什么方法求函数的解析式?二、试一试:问题一、世纪广场的音乐喷泉伴随着音乐节奏,在灯光的照射下忽明忽暗,让乾州古城增添了几分神秘。
这样的效果就是通过改变电阻来控制电流的变化实现的.当电流I较小时,灯光较暗;反之,当电流I较大时,灯光较亮。
我们知道,电流I,电阻R,电压U之间满足关系式U=IR.当U=220V时. 你能用含有R的代数式表示I吗?问题二、在下列实际问题中,变量间的对应关系可用怎样的函数关系式表示? 1、吉首至长沙高速公路全长382公里,一辆汽车的平均速度V(单位:km/h)随该汽车行驶时间t(单位:h)的变化而变化;2、已知吉首市总面积1062平方公里,人均占有面积S(单位:km2/人)随全市总人口n(单位:人)的变化而变化;问题三、上述关系式中有几个变量?它们有什么共同特征?小结:一般的,形如的函数,叫做反比例函数,其中是自变量,是函数。
思考:x的值能不能取0,为什么?三、试一试:问题四、下列关系式中的y是x的反比例函数吗?如果是,比例系数k是多少?(1)x y 3=; (2)xy 32-=; (3)x y -=2; (4)2=xy ; (5)2x y =; (6)2x y =; (7)1-=x y ; (8)11-=x y 小结:反比例函数的三种形式:① ,② ,③ (k 为常数,k ≠0) 问题五、你能求出下列函数的关系式吗? 例题:已知y 是x 的反比例函数,当2=x 时,6=y .(1)求出y 与x 的函数关系式;(2)当4=x 时,求y 的值。
人教版数学九下第二十六章《反比例函数》word单元导学案
26.1反比例函数学习目标、重点、难点【学习目标】1、理解反比例函数的定义;2、用待定系数法确定反比例函数的表达式;3、反比例函数的图象画法,反比例函数的性质;【重点难点】1、用待定系数法确定反比例函数的表达式;2、反比例函数的图象画法,反比例函数的性质;知识概览图反比例函数的定义反比例函数反比例函数的图象与性质新课导引【生活链接】学校课外生物小组的同学准备自己动手,用围栏建一个面积为24m2的矩形饲养场(如右图所示),设它的一边长为x(m),求另一边长y(m)与x(m)之间的函数关系式.【问题探究】这个函数有什么特点?自变量的取值有什么限制?教材精华知识点1反比例函数的定义重点;理解一般地,形如kyx=(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数,y的取值范围也是不等于0的一切实数,k叫做比例系数,另外,反比例函数的关系式也可写成y=kx-1的形式.y是x的反比例函数⇔kyx=(k≠0)⇔xy=k(k≠0) ⇔变量y与x成反比例,比例系数为k.拓展 (1)在反比例函数kyx=(k≠0)的左边是函数y,右边是分母为自变量x的分式,也就是说,分母不能是多项式,只能是x的一次单项式,如1yx=,312yx=等都是反比例函数,但21yx=+就不是关于x的反比例函数.(2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此可以写成y=kx-1或xy=k的形式.(3)反比例函数中,两个变量成反比例关系.知识点2用待定系数法确定反比例函数的表达式难点:运用由于反比例函数kyx=中只有一个待定系数,因此只要有一对对应的x,y值,或已知其图象上一点坐标,即可求出k,从而确定反比例函数的表达式.其一般步骤:(1)设反比例函数关系式kyx=(k≠0).(2)把已知条件(自变量和函数的对应值)代入关系式,得出关于k的方程.(3)解方程,求出待定系数k的值.(4)将待定系数k的值代回所设的关系式,即得所求的反比例函数关系式.知识点3反比例函数图象的画法难点;运用反比例函数图象的画法是描点法,其步骤如下:(1)列表:自变量的限值应以0为中心点,沿0的两边取三对(或三对以上)相反数,分别计算y的值.(2)描点:先描出一侧,另一侧可根据中心对称的性质去找.(3)连线:按从左到右的顺序用平滑的曲线连接各点,双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不能与坐标轴相交.说明:在图象上注明函数的关系式.拓展(1)反比例函数的图象是双曲线,它有两个分支,它的两个分支是断开的.(2)当k>0时,两个分支位于第一、三象限;当k﹤0时,两个分支位于第二、四象限.(3)反比例函数kyx=(k≠0)的图象的两个分支关于原点对称.(4)反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交,这是因为x≠0,y≠0.(1)如图17-2所示,反比例函数的图象是双曲线,反比例函数kyx=的图象是由两支曲线组成的.当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内。
新人教版九年级数学下册《二十六章反比例函数数学活动》教案_18
教学设计学科授课教师授课时间课题第二十六章反比例函数——数学活动教学目标知识与技能:(1)通过活动感受面积为定值的矩形的长与宽与反比例函数的关系.(2)通过活动建立反比例函数模型,解释杠杆平衡原理.数学思考:在实验过程中培养学生的动手操作、分析、归纳能力,使学生感受反比例函数图像与矩形面积之间的关系,更好地理解杠杆原理. 问题解决:通过实验、观察、思考、推理等探索过程,进一步体会和理解反比例函数图像和杠杆平衡原理. 情感态度从实际生活中体现数学与应用数学的关系,激发学生探究、发现数学问题的兴趣和欲望.教学重点、难点教学重点:反比例函数与矩形面积之间的关系教学难点:杠杆平衡原理实验误差的控制教学方法讲授法、试验法教具准备多媒体、实验相关器材一、活动导入问题1:矩形的面积一定时,矩形的长和宽成什么关系?问题2:如果把矩形的一个顶点固定,拖动这个固定顶点的对角顶点,拖动时必须保证矩形的面积不变,猜猜看,这个对角顶点的运动轨迹会是什么图象呢?二、活动过程活动1探索矩形顶点的运动轨迹1.活动指导(1)活动内容:教材P19活动1:探索矩形顶点的运动轨迹.(2)活动时间:10分钟.(3)活动方法:小组合作,画图①下表是10个面积相等的矩形的长与宽,请补齐表格.②设∠A为这10个矩形的公共角,在下面的坐标系中画出这10个矩形(假设每个小正方形的边长都是 1 cm,矩形的长对应横坐标,宽对应纵坐标),然后取∠A的10个对角的顶点,并把这10个点用平滑的曲线连接起来. 这条曲线是反比例函数图象的一支吗?为什么?(是,它是双曲线的一支.)2.自学:学生参考书本进行活动性学习.3.助学(1)师助生:①明了学情:了解学生是否会画图.②差异指导:把全班学生分成几个组,按照课本活动要求画图.(2)生助生:小组内互相交流.4.强化(1)把面积为定值的矩形的一个顶点固定,拖动这个固定顶点的对角顶点,这个对角顶点的运动轨迹是反比例函数图象的一支.(2)反比例函数的k的几何意义.如图,过y=kx的图象上任意一点P作两坐标轴的垂线段,则图中矩形的面积S是定值吗?是多少?(是,k)如图,过y=k x的图象上任意一点P 作某一坐标轴的垂线段,则图中三角形的面积为2k S .基础巩固1.如图是反比例函数y=kx 在第二象限内的图象,若图中的矩形OABC 的面积为2,则k=-2.第1题图第2题图2.如图,若点A 在反比例函数y=kx (k ≠0)的图象上,AM ⊥x 轴于点M ,△AMO 的面积为3,则k=-6.能力提高:如图:李老师家有个边长为4米的正方形院子AOBC ,他想在院子里修建一个矩形水池DOEF ,水池一面DO 靠墙AO ,另一面OE 靠墙OB ,设OD=x (米),OE=y (米).(1)若矩形水池的面积为2平方米,则y 与x 的函数关系式为:2yx ,在图中画出能建水池的F 点的位置,并用l 1标记;(2)若周长为6米(包含两边靠墙的地方),则y 与x 的关系式为y=-x+3,在图中画出满足条件的水池一角F 的所有位置,并用l 2标记;(3)有没有同时满足条件(1)(2)的水池?若有请帮忙找出这一点,并在图中画出来;若没有,请说明理由.解:存在两点M(1,2)和N(2,1)同时满足条件(1)(2).活动2探索力与力到支点距离的关系1.活动指导(1)活动内容:教材P19活动2:探索力与力到支点距离的关系.(2)活动时间:10分钟.(3)活动方法:老师演示共同参与①如图,取一根长100 cm的匀质木杆,用细绳绑在木杆的中点O并将其吊起来.在中点O的左侧距离中点O 25 cm处挂一个重 1.96 N的物体,在中点O右侧用一个弹簧测力计向下拉,使木杆处于水平状态.改变弹簧测力计与中点O的距离L(单位:cm),看弹簧测力计的示数F(单位:N)有什么变化,并填写下表:L/cm 5 10 15 20 25 30 35 40 45F/N 9.8 4.9 3.26 2.45 1.96 1.63 1.4 1.23 1.09②以L的数值为横坐标,以F的数值为纵坐标建立直角坐标系,在坐标系内描出以上表中的数对为坐标的各点,用平滑曲线连接这些点;③这条曲线是反比例函数图象的一支吗?为什么?点(50,0.98)在这条曲线上吗?是,因为它是双曲线的一支,点(50,0.98)在这条曲线上.2.自学:学生参考活动指导进行活动性学习.3.助学(1)师助生:①明了学情:看学生是否能顺利完成表格.②差异指导:让学生观察老师的演示实验,学生收集数据,然后各自完成后续活动任务.(2)生助生:小组内互相交流.4.强化:弹簧秤的示数F与它到点O的距离L成反比.三、评价1.学生学习的自我评价:这节课你有什么收获?有哪些不足?2.教师对学生的评价:从学生回答问题,动手操作能力等方面进行评价.四、作业必做题:复习题26第5、6两题选做题:复习题26第9题板书设计 : 第二十六章数学活动长×宽=面积杠杆平衡原理yx=10 F1L1=F2L2。
数学九年级下册全套导学案(pdf版含答案)(1)
人教版数学九年级下册全套导学案26.1.1反比例函数§26.1 反比例函数1.认识反比例函数是描述具有反比例变化规律的数学模型.2.经历由实际问题抽象反比例函数的过程,掌握反比例函数的概念.3.能够根据已知条件求反比例函数的解析式.试一试反比例函数的概念1.回答下列问题(1)京沪线铁路全程为1463km ,某次列车的平均速度v(单位:km/ h )随此次列车的全程运行时间t (单位:h )的变化而变化.问题中有两个变量与,当一个量变化时,另一个量随着它的变化而变化,而且对于的每一个确定的值,都有唯一确定的值与其对应.因此变量间具有函数关系,它的解析式为 .(2)某住宅小区要种植一块面积为1000m2 的矩形草坪,草坪的长y (单位:m )随宽x(单位:m )的变化而变化. 问题中有两个变量与,当一个量变化时,另一个量随着它的变化而变化,而且对于的每一个确定的值,都有唯一确定的值与其对应.因此变量间具有,它的解析式为.(3)已知北京市的总面积为1.68 104 km2 ,人均占有面积S (单位:km2 / 人)随全市总人口n (单位:人)的变化而变化. 问题中有两个变量与,当一个量变化时,另一个量随着它的变化而变化,而且对于的每一个确定的值,都有唯一确定的值与其对应. 因此变量间具有,它的解析式为.答案:1.(1)t,v,t,v,t,v,v1463;(2)x,y,x,y,x,y,函数关系,y t=1000;x1.68 ⨯104 k(3)n,S,n,S,n,S,函数关系,Sk = ;小结:(1) y = ,非零常数; n x(2)x ,y ,x ,不等于 0 的一切实数;(3)分母,无意义;(4)自变量,函数.根据已知条件求反比例函数解析式 1.已知 y 是 x 的反比例函数,并且当 x = 2 时, y = 6 .(1)写出 y 关于 x 的函数解析式;(2)当 x = 4 时,求 y 的值.解:(1)因为 y 是 x 的 ,所以设 .又因为 x = 2 时, y = 6 ,所以有,解得, 因此 y = .(2)把 x = 4 代入,得 y = . 2. 近视眼镜的度数 y (单位:度)与镜片焦距 x (单位:m )成反比例.已知 200 度近视眼镜的镜片焦距为0.5m ,则 y 与 x 之间的函数解析式是. 答案:1.(1)反比例函数,y= ,6 = x试一试k 12,k=12,2 x;(2)y12,3;2.xy 100.x 题组一1.用函数解析式表示下列问题中变量间的对应关系:(1)某厂现有 300 吨煤,这些煤能烧的天数y(单位:天)随平均每天烧的吨数x(吨/天)的变化而变化.那么y 与x 之间的函数关系式是.(2)一个物体重100N,物体对地面的压强p (单位:Pa)随物体与地面的接触面积S(单位:m2 )的变化而变化.那么p 与S 之间的函数关系式是.2.下列函数:① y做一做2x1;②y4=-;③yx⑤ xy =15;⑥y=2,其中y 是x 的反比例函数的是(填序号). x 23.在xy + 2 = 0 中,y 是x 的()A.一次函数B.反比例函数C. 正比例函数D.既不是正比例函数也不是反比例函数答案:1.(1)y300;(2)p x=300;2. ②④⑤;3. B. S题组二1.在温度不变的条件下,通过一次又一次地对气缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对气缸壁所产生的压强,如下表:体积 x (mL)100 80 60 40 20压强 y(kPa) 60 75 100 150 300则可以反映y 与x 之间的关系的式子是()3000 6000A. y =3000x做一做B. y 6000xC.y =D. y =x x2.已知y 与x2 成反比例,并且当x = 3 时,y = 4 .(1)写出y 关于x2 的函数解析式;(2)当x = 1.5 时,求y 的值;(3)当y = 4 时,求x 的值.答案:1.D;2.(1)因为y 与x2 成反比例,所以设y =k k. 又因为 x = 3 时, y = 4 ,所以x 2 有4 = ,解得k = 36 ,因此 y =3236;(2)将x=1.5代入y = x36得y 16;(3)将x2 y = 6代入 y = 36得 x = ± 6 .x 1. 若 y = (a +1)xa -2 是反比例函数,则 a 的取值为 .2. 已知函数 y = 能力拓展m + 3 x1-m2-3m是反比例函数,则m2 2m = .3.反比例函数y=k在x = 2 处自变量增加 1,函数值相应地减少了2 x 3小结:(1)反比例函数y = 中 k≠0,自变量 x 的指数为;k x (2) y 与 x 成正比例, x 与 z 成反比例,则 y 与 z 成. 6 ,则 k= .4.若 y 与 x 成正比例, x 与 z 成反比例,且当 z = 2 时, y = -3,则 y 与 z 的函数解析式是 .答案:1. 1;2. 0;3. 4;4. y = -6 ;小结:(1)-1;(2)反比例. x 26.1.2 反比例函数的图像和性质1. 会根据解析式画反比例函数的图像,归纳反比例函数的图像特征和性质.2. 灵活运用反比例函数的图像和性质解决问题.3. 感悟反比例函数的解析式与图像之间的联系,体会数形结合及转化的思想方法. 反比例函数的图像和性质 1. 通过描点法画出下列反比例函数的图像.(1) y = (2) y = 12 x x解:列表表示几组 x 与 y 的对应值(填空):x … -12 -6 -4 -3 -2 -1 1 2 3 4 6 12 … y = 6xy = 12 x图26.1-12. 通过描点法画出下列反比例函数的图像.(1) y = - 6x试一试(2)y =-12 x答案:1. 略;小结(2)一、三,一、三,减小;(3)减小;2. 略;小结:(3)二、四,二、四,上升,增大;(4)二、四,增大.反比例函数的图像和性质的运用1.已知反比例函数的图像经过点A(2,6) .(1)这个函数的图像位于哪些象限?y 随x 的增大如何变化?(2)点B(3,4) ,C(-2试一试1, 4 2k k 14) , D (2,5) 是否在这个函数图像上? 5解:(1)因为点 A (2,6) 在 象限,所以这个函数的图像位于 象限,在每一个象限内, y 随 x 的增大而.(2)设这个反比例函数的解析式为 y = ,因为点 A (2,6) 在其图像上,所以点 A 的坐x标满足 y = ,即 ,解得 k=.所以这个反比例函数的解析式为,x因为点满足该解析式,点 不满足该解析式,所以点在这个函数图像上,点 不在这个函数图像上. 2. 下列反比例函数:① y = - 2x②y =③ 7 y =-103x x④ y3 100x(1)图像位于第一、三象限的是 ; (2)图像位于第二、四象限的是 .小结:1. 如果任意一点的坐标满足函数解析式,那么这个点就在其图像上,否则,就不在其图像上.2. 反比例函数图像的位置以及 y 如何随 x 的变化而变化的情况,只与有关.函数 图像位置 图像变化趋势y = kxk > 0 第一、三象限 在每个象限内, y 随 x 的增大而减小 k < 0第二、四象限在每个象限内, y 随 x 的增大而增大3. 如图 26.1-2,它是反比例函数 y =m - 5 图像的一支.根据图像,回答下列问题:x(1)图像的另一支位于哪个象限?常数 m 的取值范围是什么?(2)在这个函数图像的某一支上任取点 A (x 1,y 1) 和点 B (x 2,y 2 ) ,如果 x 1 > x 2 ,那么y 1和 y 2 有怎样的大小关系?图 26.1-2解:(1)反比例函数的图像只有两种可能:位于象限,或者位于象限.因为这个函数的图像的一支位于第 象限,所以另一支必位于第象限. 因为这个函数位于象限,所以 m-5,解得.(2)因为 m-5 ,所以在这个函数图像的任一支上,y 都随 x 的增大而,因此当 x 1 > x 2 时,.4. A (-1, y ) , B (1, y ) , C (3, y ) 是反比例函数 y = - 1图像上的三点,请你正确排出123xy 1,y 2,y 3 的大小顺序.k 12 答案:1.(1)第一,第一、三,减小;(2) 6 =,12, y =,B 、C ,D ,B 、C ,D ;2.2x(1)②④;(2)①③;小结:2. k 的正负;3,(1)第一、三,第二、四,一,三,一、三, >0,m >5;(2)>0,减小, y 1 < y 2 ;4. y 2 < y 3 < y 1 ;小结:(2)原点.反比例函数的几何意义k1. 如图 26.1-3 所示,反比例函数 y =试一试(k ≠ 0) 的图像上任取一点P(x, y) ,过这一点分别x作x 轴、y 轴的垂线PM ,PN ,垂足分别为点M 、N ,所得的矩形PMON 的面积为多少?图 26.1-3k解:矩形PMON 的面积S = ,因为y =,所以xy =k ,所以S= ,即过x双曲线上任意一点作x 轴、y 轴的垂线,所得的矩形面积为.k2.如图 26.1-3 所示,反比例函数y =k (k ≠ 0) 的图像上任取一点 E (x , y ) ,过 E 作 xEF ⊥ y 轴于点 F ,连接OE ,所得三角形 EOF 的面积为多少? 解:三角形 EOF 的面积 S= ,因为 y = ,所以 xy = k ,所以 S=, x即过双曲线上任意一点作坐标轴的垂线,并将该点与原点相连,所得的三角形的面积为 .答案:1. PM ⋅ PN =y ⋅x =xyk k, , ,k ,k ;2. 1 EF ⋅ OF =1x ⋅ y = 1xy1 1.22 22 2题组一1. 下列图像中是反比例函数图像的是( )(A )(B )2. 填空学习迁移做一做k (C )(D ) 5(1)反比例函数 y =的图像在第象限.x(2)反比例函数 y = 的图像如图 26.1-4 所示,则k0;在图像的每一支上,y 随 xx的增大而.图 26.1-43. 对于反比例函数 y =3 ,下列说法正确的是( )xA.图像经过点(-1,3)a 2B. 图像位于第二、第四象限C. x > 0 时, y 随 x 的增大而增大D. x < 0 时, y 随 x 的增大而减小4.当a ≠ 0 时,函数 y = ax +1与函数 y = 在同一坐标系中的图象可能是()x答案:1.C ;2.(1)一、三;(2)>,减少;3.D ;4.C.题组二k1. 若点 P 1(-1,m ) P 2 (-2, n ) 在反比例函数 y = x(k > 0) 的图像上,则m n (填“>”“<”或“=”) 2. 已知点 A (x 1, y 1) , B (x 2 , y 2 ) , C (x 3, y 3 ) 是函数 y = - xx 1 < 0 < x 2 < x 3 ,则 y 1, y 2 , y 3 的大小关系是3 + 2m图 像 上 的 三 点 , 且3. 已知 A (-1, y 1) , B (2, y 2 ) 两点在双曲线 y = ( )做一做,且y1 >y2 ,则m 的取值范围是xA.m >0B.m 0C.m >-3 2D.m <-3 2答案:1.<;2. y2 <y3 <y1 ;3.D.题组三k1.如图26.1-5 所示,M 为反比例函数y =的图像上的一点,MA⊥y轴,垂足为A,△MAOx的面积为2,则k 的值为.2.如图26.1-6,点A 在函数y =做一做4 4 ( x > 0) 的图象上,且OA = 4 ,过点 A 作 AB ⊥ x 轴于x点 B ,则△ ABO 的周长为.图26.1-5 图26.1-6 3. 如图 26.1-7 所示,A 、B 两点在双曲线 y = ,分别经过 A 、B 两点向坐标轴作垂线段,x已知 S 阴影 = 1,则 S 1+ S 2 等于( ) A. 3B. 4C. 5D.6图 26.1-7图 26.1-84 4. 如图 26.1-8 所示,函数 y = -x 与函数 y = -x6 的图像相交于 A ,B 两点,过 A ,B 两点 分别作 y 轴的垂线,垂足分别为点 C ,D ,则四边形 ACBD 的面积为( ) A. 2 B. 4 C. 6 D. 8 答案:1.4;2. 2 + 4 ;3.D ;4.D. 1. 如图 26.1-9,P 是双曲线 y =4( x > 0) 的一个分支上的一点,以点P 为圆心,1 个点位x长度为半径作⊙P,当⊙P与直线y = 3相切时,点P 的坐标为. 图26.1-9 图26.1-102.如图26.1-10,在平面直角坐标系中,反比例函数y =k( x> 0) 的图像上有一点A(m,4),x过点 A 作AB⊥x轴于点 B,将点 B 向右平移 2 个单位长度得到点 C,过点 C 作y 轴的平行线4交反比例函数的图像于点D,CD =.3(1)点D 的横坐标为(用含m 的式子表示);(2)求反比例函数的解析式.3.如图 26.1-11,四边形ABCO 是平行四边形,OA = 2 ,AB = 6 ,点C 在x 轴的负半轴上,将□ABCO 绕点A 逆时针旋转得到□ADEF,AD 经过点O ,点F 恰好落在x 轴的正半轴k上,若点 D 在反比例函数y =( x< 0) 的图像上,则k 的值为.x图 26.1-11答案:1.(1,4)或(2,2);2.(1)m+2;(2) CD =4,∴点 D 的坐标为(m + 2, 34) . 3点 A (m ,4) ,点 D (m + 2, 4 ) 在函数 y = k 的图像上,∴4m = 4(m + 2) ,解得 m=1,3 x 3∴k = 4m = 4 .∴反比例函数的解析式为 y = 4;3. 4 x§26.2 实际问题与反比例函数1.运用反比例函数的概念、图像、性质解决实际问题.2.经历“实际问题——建立模型——拓展应用”的过程,进一步体会数学建模思想,培养学生的数学应用意识,激发学生学习兴趣.几何问题与反比例函数1.已知矩形面积为36cm 2,相邻的两条边长分别为 x cm 和 y cm ,则 y 与 x 之间的函数图像大致是( )A BC D2.市煤气公司要在地下修建一个容积为104 m 3的圆柱形煤气储存室.(1)储存室的底面积 S (单位: m 2)与其深度d (单位: m )有怎样的函数关系?(2)公司决定把储存室的底面积 S 定为500m 2,施工队施工时应该向地下掘进多深? (3)当施工队按(2)中的计划掘进到地下15m 时,公司临时改变计划,把储存室的深度改为15m .相应地,储存室的底面积应改为多少?(结果保留小数点后两位) 解:(1)根据圆柱的体积公式,得,所以 S 关于d 的函数解析式为 ,其中是常量,是变量, S 是d 的函数.(2)由题意,把储存室的底面积 S 定为500m 2,也即 S = 500 ,将其代入 S 关于d 的函数解析式得,解得d =.因此,如果把储存室的底面积 S 定为500m 2,施工时应向地掘进深.(3)由题意,把储存室的深度改为15m ,也即d = 15 ,将其代入 S 关于d 的函数解析式得,解得 S ≈ .因此,如果把储存室的深度改为15m ,储存室的底面积应改为.4104104 答案:1.A ;2.(1) Sd = 10 , S =,容积, S 、d ,反比例;(2) 500 =,dd3知识建构试一试。
人教版九年级数学下册第二十六章反比例函数大单元教学设计
3.引出反比例函数:通过以上问题,引导学生发现,当两个量的乘积为定值时,这两个量之间的关系就是反比例关系。从而引出反比例函数的定义。
(二)讲授新知
1.反比例函数的定义:y = k/x(k为常数,k≠0)。
3.学会运用数形结合的思想,将反比例函数与实际问题相结合,培养创新意识和实践能力。
4.通过对反比例函数的学习,掌握研究函数的一般方法,为学习其他函数打下基础。
(三)情感态度与价值观
1.增强对数学学科的兴趣和热情,认识到数学在日常生活和科学研究中的重要性。
2.培养勇于探究、积极思考的良好学习习惯,形成主动学习的态度。
2.选做题:
(1)课本习题26.3第1、2题,鼓励学有余力的学生挑战更高难度的题目,提高学生的数学思维;
(2)结合生活实际,自编一道反比例函数的应用题,并与同学分享解题思路。
3.探究性作业:
(1)研究反比例函数图像的对称性,探索其在实际生活中的应用;
(2)以小组为单位,总结反比例函数的解题技巧,形成小组学习报告。
(2)运用情境教学法,创设生活情境,让学生在实际问题中感受反比例函数的应用,提高学生的实际问题解决能力;
(3)利用信息技术手段,如几何画板等,动态展示反比例函数图像的变化,帮助学生形象地理解反比例函数的性质;
(4)组织小组合作学习,培养学生的团队协作能力和沟通能力。
2.教学过程:
(1)导入:通过一个简单的实际例子,如“一块固定面积的田地,耕种宽度与长度成反比,如何选择宽度与长度才能使耕种效率最高”,引起学生对反比例函数的兴趣;
2.反比例函数的性质:
第26章 反比例函数导学案
第26章反比例函数一教材分析函数是在探索具体问题中数量关系和变化规律的基础上抽象出的重要数学概念,是研究现实世界变化的重要内容和数学模型,学生曾经学过一次函数等内容,对函数有了初步认识,在此基础上讨论反比例函数及其图像和性质可以进一步领悟函数的概念并积累研究函数性质的方法及用函数观点处理实际问题的经验,为了后继学习打下基础。
本单元通过对具体情境的分析,概括出发比例函数的解析式,明确反比例函数的概念,通过例子和学生列举的实例可以丰富对反比例函数的认识,理解反比例函数的意义,结合实例经历列表、描点作图等活动,理解函数的三种表示方法,逐步明确研究函数的一般要求,反比例函数的图象具体展现了反比例函数的整体直观形象,为学生探索反比例函数的性质提供了思维的空间,通过对反比例函数的图象全面观察和比较,发现函数自身的规律,进行语言表述,在相互交流中发展从函数中获取信息的能力,同时可以使学生更牢固地掌握由他们自己发现的反比例函数的性质。
本单元最后讨论了反比例函数的某些应用,包括在实际中的应用和在数学内部的应用,在这些数学活动中,注意用函数观点来处理问题和对问题的解决用函数作出某种解释,用以加深对函数的认识,并突出知识之间的内在联系。
二:教学目标1﹒知识与技能会画出反比例函数的图象,,根据图象和解析式探索并理解反比例函数的主要性质,能依据已知条件确定反比例函数,领悟用函数观点解决某些实际问题的基本思路。
2.过程和方法经历在具体问题中探索数量关系和变化规律的过程,抽象出反比例函数的概念,并结合具体情境领会反比例函数作为一种数学模型的意义。
3.情感、态度、价值观逐步提高观察和归纳分析能力,体验数形结合思想,感悟其应用价值。
三;重难点和关键1.重点;掌握反比例函数的图象及其性质,依据已知条件确定反比例函数。
2难点;理解反比例函数性质。
3关键;充分利用观察比较发现反比例函数的自身规律,结合数形来突破难点。
四课时划分26 1 反比例函数 3课时26 2 实际问题和反比例函数 2课时复习与交流 1课时九年级数学下册教案备课人:例2.(补充)如图,过反比例函数xy 1=(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( )(A )S 1>S 2 (B )S 1=S 2(C )S 1<S 2 (D )大小关系不能确定分析:从反比例函数xky =(k ≠0)的图象上任一点P (x ,y )向x 轴、y 轴作垂线段,与x 轴、y 轴所围成的矩形面积k xy S ==,由此可得S 1=S 2 =21,故选B随堂练习1.已知反比例函数xky -=3,分别根据下列条件求出字母k 的取值范围 (1)函数图象位于第一、三象限(2)在第二象限内,y 随x 的增大而增大 2.函数y =-ax +a 与xay -=(a ≠0)在同一坐标系中的图象可能是( )3.在平面直角坐标系内,过反比例函数xky =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数解析式为 课后练习1.若函数x m y )12(-=与xmy -=3的图象交于第一、三象限,则m 的取值范围是2.反比例函数xy 2-=,当x =-2时,y = ;当x <-2时;y 的取值范围是 ;当x >-2时;y 的取值范围是3. 已知反比例函数y a x a=--()226,当x >0时,y 随x 的增大而增大,求函数关系式九年级数学下册教案备课人:难点构建反比例函数的数学模型.教学准备教师准备课件或导学案是否需要课件是学生准备学案教学过程设计(一)创设情境,导入新课一位司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用6•小时到达目的地.(1)当他按原路匀速反回时,汽车的速度v与时间t有怎样的函数关系?(2)若该司机必须在4个小时内回到甲地,则返程的速度不能低于多少?(二)合作交流,解读探究探究(1)原路返回,说明路程不变,则80×6=480千米,因而速度v和时间t满足:vt=480或v=480t的反比例函数关系式.(2)若要在4小时内回到甲地(原路),则速度显然不能低于4804=120(千米/时).归纳常见的与实际相关的反比例(1)面积一定时,矩形的长与宽成反比例;(2)面积一定时,三角形的一边长与这边上的高成反比例;(3)体积一定时,柱(锥)体的底面积与高成反比例;(4)工作总量一定时,工作效率与工作时间成反比例;(5)总价一定时,单价与商品的件数成反比例;(6)溶质一定时,溶液的浓度与质量成反比例.(三)应用迁移,巩固提高例1近视眼镜的度数y(度)与焦距x(m)成反比例,已知400•度近视眼镜镜片的焦距为0.25m.(1)试求眼镜度数y与镜片焦距x之间的函数关系式;(2)求1 000度近视眼镜镜片的焦距.【分析】把实际问题转化为求反比例函数的解析式的问题.解:(1)设y=kx,把x=0.25,y=400代入,得400=0.25k,所以,k=400×0.25=100,即所求的函数关系式为y=100x.(2)当y=1 000时,1000=100x,解得=0.1m.例2如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的解析式;(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是5 000m3,那么水池中的水将要多少小时排完?留白:(供教师个性化设计)【分析】当蓄水总量一定时,每小时的排水量与排水所用时间成反比例.解:(1)因为当蓄水总量一定时,每小时的排水量与排水所用时间成反比例,•所以根据图象提供的信息可知此蓄水池的蓄水量为:4 000×12=48 000(m3).(2)因为此函数为反比例函数,所以解析式为:V=48000t;(3)若要6h排完水池中的水,那么每小时的排水量为:V=480006=8000(m3);(4)如果每小时排水量是5 000m3,那么要排完水池中的水所需时间为:t=480006=8000(m3)备选例题(中考·四川)制作一种产品,需先将材料加热到达60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x完成一次函数关系;停止加热进行操作时,温度y与时间x•成反比例关系(如图所示).已知该材料在操作加工前的温度为15℃,加热5•分钟后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?【答案】(1)将材料加热时的关系式为:y=9x+15(0≤x≤5),•停止加热进行操作时的关系式为y=300x(x>5);(2)20分钟.(四)总结反思,拓展升华1.学会把实际问题转化为数学问题,•充分体现数学知识来源于实际生活又服务于实际生活这一原理.2.能用函数的观点分析、解决实际问题,•让实际问题中的量的关系在数学模型中相互联系,并得到解决.备课人:九年级数学下册教案教学过程设计(一)创设情境,导入新课公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:若两物体与支点的距离反比于其重量,则杠杆平衡.也可这样描述:阻力×阻力臂=动力×动力臂.为此,他留下一句名言:给我一个支点,我可以撬动地球!(二)合作交流,解读探究问题:小伟想用撬棍撬动一块大石头,已知阻力和阻力臂不变,•分别是1200N 和0.5m.(1)动力F和动力臂L有怎样的函数关系?当动力臂为1. 5m时,•撬动石头至少要多大的力?(2)若想使动力F不超过第(1)题中所用力的一半,则动力臂至少要加长多少?【分析】(1)由杠杆定律有FL=1200×0.5,即F=600l,当L=1.5时,F=6001.5=400.(2)由(1)及题意,当F=12×400=200时,L=600200=3(m),∴要加长3-1.5=1.5(m).思考你能由此题,利用反比例函数知识解释:为什么使用撬棍时,•动力臂越长越省力?联想物理课本上的电学知识告诉我们:用电器的输出功率P(瓦)两端的电压U(伏)、用电器的电阻R(欧姆)有这样的关系PR= u2,也可写为P=2uR.(三)应用迁移,巩固提高例1在某一电路中,电源电压U保持不变,电流I(A)与电阻R(Ω)之间的函数关系如图所示.(1)写出I与R之间的函数解析式;(2)结合图象回答:当电路中的电流不超过12A时,电路中电阻R•的取值范围是什么?【分析】由物理学知识我们知道:当电压一定时,电流强度与电阻成反比例关系.解:(1)设,根据题目条件知,当I=6时,R=6,所以,所以K=36,所以I与R的关系式为:I=36R.(2)电流不超过3A,即I=36R≥12,所以R≥3(Ω).注意因为R>0,所以由36R≤12,可得R≥3612.留白:(供教师个性化设计)例2某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气球体积V(m3)的反比例函数,其图象如图所示(•千帕是一种压强单位).(1)写出这个函数的解析式;(2)当气球体积为0.8m3时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了完全起见,•气球的体积应不小于多少?【分析】在此题中,求出函数解析式是关键.解:设函数的解析式为P=kV,把点A(1.5,64)的坐标代入,得k=96,•所以所求的解析式为P=96V;(2)V=0.8m3时,P=960.8=120(千帕);(3)由题意P≤144(千帕),所以96V≤144,所以V≥96144=23(m3)即气体的体积应不小于23m3.备选例题1.(中考变式·荆州)在某一电路中,电流I、电压U、电阻R三者之间满足关系I=UR.(1)当哪个量一定时,另两个量成反比例函数关系?(2)若I和R之间的函数关系图象如图,试猜想这一电路的电压是______伏.2.(中考·扬州)已知力F对一个物体作的功是15焦,则力F•与此物体在力在方向上移动的距离S之间的函数关系式的图象大致是()【答案】1.(1)当电压U一定时,电流I与电阻R成反比例函数关系,(2)10;2.B(四)总结反思,拓展升华1.把实际问题中的数量关系,通过分析、转化为数学问题中的数量关系.2.利用构建好的数学模型、函数的思想解决这类问题.3.注意学科之间知识的渗透.反比例函数复习教案学科: 任课教师: 授课时间: 年 月 日 时到 时 学生姓名: 年级: 学管师:教学目标 知识点:1.反比例函数意义;反比例函数 反比例函数图象; 考点: 2.反比例函数性质;方法 : 3. 待定系数法确定函数解析式.重点难点教学内容1.反比例函数的概念反比例函数y=k x 中的k x 是一个分式,自变量x ≠0,函数与x 轴、y 轴无交点,y=k x也可写成y=kx -1(k ≠0),注意自变量x 的指数为-1, 在解决有关自变量指数问题时应特别注意系数k ≠0这一限制条件. 2.反比例函数的图象在用描点法画反比例函数y=kx的图象时,应注意自变量x 的取值不能为0,应从1或-1开始对称取点. 3.反比例函数y=kx中k 的意义 注意:反比例函数y=k x (k ≠0)中比例系数k 的几何意义,即过双曲线y=kx(k ≠0)上任意一点引x 轴、y轴垂线,所得矩形面积为│k │.1. 反比例函数的图象和性质k 的符号k >0 k <0 图像的大致位置经过象限 第 象限 第 象限性质在每一象限内y 随x 的增大而在每一象限内y 随x 的增大 而oyxyxo2.k 的几何含义:反比例函数y =kx(k ≠0)中比例系数k 的几何意义,如图17-37所示,若点A (x ,y )为反比例函数ky x=图象上的任意一点,过A 作AB ⊥x 轴于B ,作AC ⊥y 轴于C ,则 S △AOB =S △AOC =12S 矩形ABOC =1||2k .考点一:反比例函数的概念、图像和性质【例题1】已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 . 【例题2】已知点(,)P a b 在反比例函数2y x=的图象上,若点P 关于y 轴对称的点在反比例函数 ky x=的图象上,则k 的值为 . 【例题3】点A (2,1)在反比例函数y kx=的图像上,当1﹤x ﹤4时,y 的取值范围是 .【例题4】点A(x 1,y 1)、B(x 2,y 2)、C(x 3,y 3)都在反比例函数3y=x-的图象 上,且x 1<x 2<0<x 3,则y 1、y 2、y 3的大小关系是 【 】 A .y 3<y 1<y 2 B .y 1<y 2<y 3 C .y 3<y 2<y 1 D .y 2<y 1<y 3 【例题5】函数y = 2|x |的图象是 【 】【例题6】过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数y =k x(x >0)的图像与△ABC 有公共点,则k 的取值范围是 【 】 A .2≤k ≤9 B .2≤k ≤8 C .2≤k ≤5 D .5≤k ≤8 考点二:关于k 的几何意义【例题7】如图,点A 、B 在反比例函数)0,0(>>=x k xky 的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、N ,延长线段AB 交x 轴于点C ,若OM=MN=NC,△AOC 的面积为6,则k 的值为________.O O O O x x x xyyyyA .B .C .D .ABCOxy 例题6图例题9图【例题8】如图,□ABCD 的顶点A 、B 的坐标分别是A(-1,0),B(0,-2),顶点C 、D 在双曲线y=xk上,边AD 交y 轴于点E,且四边形BCDE 的面积是△ABE 面积的5倍,则k=__________【例题9】(2011•陕西)如图,过y 轴上任意一点P ,作x 轴的平行线,分别与反比例函数xy 4-=和 xy 2=错误!未找到引用源。
初三数学九年级下册《反比例函数》导学案
第26章 反比例函数26.1.1反比例函数的意义【学习目标】1、 经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。
2、 理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式3、 让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用 【学习重点】理解反比例函数的意义,确定反比例函数的解析式 【学习难点】反比例函数的解析式的确定 【学法指导】自主、合作、探究【自主学习,基础过关】 一、自主学习: (一)复习巩固1.在一个变化的过程中,如果有两个变量x 和y ,当x 在其取值范围内任意取一个值时, y ,则称x 为 ,y 叫x 的 .2.一次函数的解析式是: ;当 时,称为正比例函数.3.一条直线经过点(2,3)、(4,7),求该直线的解析式. 以上这种求函数解析式的方法叫: . (二)自主探究提出问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?(1)京沪线铁路全程为1463km ,乘坐某次列车所用时间t (单位:h )随该列车平均速度v (单位:km/h )的变化而变化;(2)某住宅小区要种植一个面积为1000m 2的矩形草坪,草坪的长为y 随宽x 的变化; (3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S (单位:平方千米/人)随全市人口n (单位:人)的变化而变化.1、上面问题中,自变量与因变量分别是什么?三个问题的函数表达式分别是什么? (1) (2) (3)2、这三个函数关系式可以叫正比例函数吗?可以叫一次函数吗? (三)归纳总结:1、三个函数表达式:v t 1262=、xy 1000=、S =n 41068.1⨯有什么共同特征?你能用一个一般形式来表示吗?2、对于函数关系式xy 1000=,完成下表:3、类比一次函数的概念给上述新的函数下一个恰当的定义 讨论:1、反比例函数xky =中自变量x 在分式的什么位置?自变量的取值范围是什么?2、你能再举出两个反比例函数关系的实例吗?写出函数表达式,与同伴进行交流。
人教版九年级数学下册第二十六章26.1.1反比例函数(教案)
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《反比例函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个变量的乘积为常数的情况?”(如:汽车以固定速度行驶,行驶时间与路程的关系)。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索反比例函数的奥秘。
举例:
-难点一:在绘制反比例函数图像时,学生可能难以理解为何x轴和y轴没有截距,需详细解释k值对图像的影响;
-难点二:在理解反比例函数性质时,学生可能对渐近线的概念模糊,需通过图像和实例明确渐近线的作用;
-难点三:针对实际问题,如“速度与时间的关系”,学生可能不知道如何将问题转化为反比例函数,需教授如何从问题中提炼关键信息,建立函数模型。
1.讨论主题:学生将围绕“反比例函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
三、教学难点与重点
1.教学重点
-函数表达式的理解与应用:重点讲解反比例函数的定义,即y=k/x(k≠0),使学生对函数表达式有清晰的认识,并能熟练运用;
-图像与性质的记忆与运用:强调反比例函数图像为双曲线,熟悉其对称性、渐近线、单调性等性质,并能应用于解题;
-实际应用问题求解:结合实际情境,教授如何建立反比例函数模型,求解实际问题。
举例:讲解如何利用反比例函数的性质解决图像交点、单调区间等问题。
人教版九年级下册第26章反比例函数 26.1 反比例函数教案
反比例函数的图象与性质(一)一、学情分析针对九年级学生的心理特点和年龄特征及现有的知识水平,本节课准备采用激发诱导,探索交流,讲练结合三位一体的教学方式,充分体现老师的主导作用和学生的主体地位.通过"设疑——讨论,探索——解惑"的过程,再加上多媒体手段的应用,最大限度的调动学生的积极性和主动性.根据学生的认知规律,在学法上,通过学生动手,动口,动脑,采用自主,合作,探究的学习方法,提高学生解决问题的能力.二、教学任务分析教学目标(一)教学知识点1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。
2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。
3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。
(二)能力训练要求通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,,训练学生的概括总结能力.(三)情感与价值观要求让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。
教学重点:画反比例函数图象并认识图象的特点.教学难点:画反比例函数图象.三、教学过程分析本节课设计了六个教学环节:第一环节:回顾交流,问题牵引;第二环节:合作交流;第三环节:探求新知;第四环节:归纳与概括:第五环节:随堂练习; 第六环节布置作业第一环节回顾交流,问题牵引活动目的 复习上节主要内容活动过程回顾:1.什么叫做反比例函数;2.反比例函数的定义中需要注意什么?第二环节 合作交流活动目的 运用类比研究一次函数性质的方法,来研究反比例函数的性质 活动过程问题1:对于一次函数 y = kx + b ( k ≠ 0 )的性质,我们是如何研究的? 问题2:对于反比例函数 y=k/x ( k 是常数,k ≠ 0 ),我们能否象一次函数那样进行研究呢?第三环节 探求新知活动目的 引导学生正确画出反比例函数图象,并能归纳反比例函数图象的有关性质.活动过程 学生思考、交流、回答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016春人教版数学九下第二十六章《反比例函数》w o r d单元导学案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN26.1反比例函数学习目标、重点、难点【学习目标】1、理解反比例函数的定义;2、用待定系数法确定反比例函数的表达式;3、反比例函数的图象画法,反比例函数的性质;【重点难点】1、用待定系数法确定反比例函数的表达式;2、反比例函数的图象画法,反比例函数的性质;知识概览图反比例函数的定义反比例函数反比例函数的图象与性质新课导引【生活链接】学校课外生物小组的同学准备自己动手,用围栏建一个面积为24m2的矩形饲养场(如右图所示),设它的一边长为x(m),求另一边长y(m)与x(m)之间的函数关系式.【问题探究】这个函数有什么特点自变量的取值有什么限制教材精华知识点1反比例函数的定义重点;理解一般地,形如kyx(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数,y的取值范围也是不等于0的一切实数,k叫做比例系数,另外,反比例函数的关系式也可写成y=kx-1的形式.y是x的反比例函数⇔kyx=(k≠0)⇔xy=k(k≠0) ⇔变量y与x成反比例,比例系数为k.拓展 (1)在反比例函数kyx=(k≠0)的左边是函数y,右边是分母为自变量x的分式,也就是说,分母不能是多项式,只能是x的一次单项式,如1yx=,312yx=等都是反比例函数,但21yx=+就不是关于x的反比例函数.(2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此可以写成y=kx-1或xy=k的形式.(3)反比例函数中,两个变量成反比例关系.知识点2用待定系数法确定反比例函数的表达式难点:运用由于反比例函数kyx=中只有一个待定系数,因此只要有一对对应的x,y值,或已知其图象上一点坐标,即可求出k,从而确定反比例函数的表达式.其一般步骤:(1)设反比例函数关系式kyx=(k≠0).(2)把已知条件(自变量和函数的对应值)代入关系式,得出关于k的方程.(3)解方程,求出待定系数k的值.(4)将待定系数k的值代回所设的关系式,即得所求的反比例函数关系式.知识点3反比例函数图象的画法难点;运用反比例函数图象的画法是描点法,其步骤如下:(1)列表:自变量的限值应以0为中心点,沿0的两边取三对(或三对以上)相反数,分别计算y的值.(2)描点:先描出一侧,另一侧可根据中心对称的性质去找.(3)连线:按从左到右的顺序用平滑的曲线连接各点,双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不能与坐标轴相交.说明:在图象上注明函数的关系式.拓展 (1)反比例函数的图象是双曲线,它有两个分支,它的两个分支是断开的.(2)当k>0时,两个分支位于第一、三象限;当k﹤0时,两个分支位于第二、四象限.(3)反比例函数kyx=(k≠0)的图象的两个分支关于原点对称.(4)反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交,这是因为x≠0,y≠0.(1)如图17-2所示,反比例函数的图象是双曲线,反比例函数kyx=的图象是由两支曲线组成的.当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内。
它们关于原点对称,限图象是以坐标原点为对称中心的中心对称图形.(2)由反比例函数kyx=的图象可知,当k>0时,在每一象限内,y值随x的增大而减小;当k<0时,在每一象限内,y值随x的增大而增大.(3)因为x≠0,所以图象与y轴不可能有交点,国此,不论x取值何值时,y 的值永不为0,同理,图象与x轴也不可能有交点.拓展 (1)反比例函数图象的位置和函数的增减性都是由比例系数k 的符号决定的,反过来,由双曲线所在的位置或函数的增减性,也可以判断出k 的符号. (2)反比例函数的增减性,只能在每个象限内讨论,当k >0时,在每一象限(第一、三象限)y 随着x 的增大而减小,但不能笼统地说:当k >0,y 随着x 的增大而减小.同样当k <0时,也不能笼统地说:y 随x 的增大而增大. 【规律方法小结】正比例函数与反比例函数的区别与联系. 函数正比例函数反比例函数关系式 y =kx (k ≠0) ky x(k ≠0) 图象 过原点的直线 与坐标轴没有交点的双曲线自变量的取值范围全体实数x ≠0的全体实数图象位置当k >0时,图象经过第一、三象限当k <0时,图象经过第二、四象限当k >0时,图象在第一、三象限当k <0时,图象在第二、四象限性质当k >0时,y 随x 的增大而增大 当k <0时,y 随x 的增大而减小 当k >0时,在每一象限内,y随x 的增大而减小当k <0时,在每一象限内,y随x 的增大而增大知识点5 反比例函数表达式中k 的几何意义 拓展;理解如图17-3所示,过双曲线kyx=上的任意一点P(x,y)作x轴、y轴的垂线PM,PN,垂足分别为M,N,所得矩形PMON的面积S=PM·PN=|y|·|x|=|xy|.因为kyx=,所以xy=k,所以S=|xy|=|k|.即过双曲线上任意一点作x轴、y轴的垂线,所得矩形的面积为|k|.已知反比例函数可求矩形面积,反之,已知矩形面积可求反比例函数.课堂检测基础知识应用题1、若变量y与x成正比例变量x与z成反比例,则 ( )A.y与z成反比例函数关系B.y与z成正比例函数关系C.y与z2成正比例函数关系D.y与z2成反比例函数关系2、已知反比例函数的图象经过点(-2,4),则它的表达式是 .综合应用题3、已知正比例函数y=kx和反比例函数3yx=的图象都过点A(m,1).求此正比例函数的关系式及另一个交点的坐标.探索创新题4、一定质量的氧气,它的密度ρ(kg/m3)是它的体积V(m3)的反比例函数,当V=10时,ρ=1.43.(1)求ρ与V的函数关系式;(2)求当V=2时,氧气的密度ρ.体验中考1、点P(1,3)在反比例函数kyx=(k≠0)的图象上,则k的值是()A.13B.3C.13- D.-32、已知正比例函数y=kx的图象与反比例函数5kyx-=(k为常数)的图象有一个交点,交点的横坐标是2.(1)求两个函数图象的交点坐标;(2)若点A(x1,y1), B(x2,y2)是反比例函数5kyx-=图象上两点,且x1<y1,试比较y1,y2的大小.学后反思【解题方法小结】1)求反比例函数解析式的一般方法是待定系数法.由于解析式中只有一个系数k ,故只需给出一对x ,y 的对应值或一个点的坐标即可.(2)从函数ky x=(k ≠0)的图象上任意一点向x 轴、y 轴作垂线,与与两坐标轴构成的矩形的面积均为|k|,一条垂线段与坐标轴及该点与原点的连线构成的直角三角形的面积为1||.2k附: 课堂检测及体验中考答案 课堂检测1、A 分析 本题意在考查对反比例函数的理解和灵活运用,由题竟可设y =k 1x (k 1≠0),2k x z =(k 2≠0),把2k x z =代入y = k 1x 中,得y = k 1·212k k kz z=.因为k 1≠0,k 2≠0,所以k 1k 2≠0,所以12k ky z =是反反函数.【解题策略】 要注意正比例函数的比例系数和反比例函数的比例系数不一定是同一个.2、8y x =-分析 反比例函数ky x=中的k 等于其图象上某一点的横、纵坐标的积,设反比例函数的表达式为k y x =,函数图象过点(-2,4),所以42k=-,所以k =-8,所以函数表达式为8y x=-.3、分析 点A 的坐标(m,1)同时满足函数y=kx 和3y x =,所以可以求出m 的值,进而求出A 点坐标,将其代入y=kx 中求得k ,再令两个关系式相等,从而求得另一个交点的坐标.解:因为3y x =的图象经过点A(m ,1),则31m=, 所以m=3.把A(3,1)代入y=kx 中,得1=3k ,所以13k =.所以正比例函数关系式为13y x =.由1,33,y y x ⎧=⎪⎪⎨⎪=⎪⎩得x=±3. 当x=3时,y=1;当x=-3时,y=-1. 所以另一个交点的坐标为(-3,-1).【解题策略】 确定解析式的方法是待定系数法,由于正比例函数y=kx 只有一个待定系数,因此只需要一对对应值即可.4、分析 设ρ=kV,代入数值,求出k ,再代入V=2,即可求ρ. 解:(1)设ρ=kV(k ≠0), 当V=10时,ρ=1.43,所以1.43=10k,所以k=14.3. 所以ρ与V 之间的函数关系式是ρ=14.3V.(2)当V=2时,ρ=14.32=7.15.所以当V=2时,氧气的密度为7.15kg/m 3.【解题策略】 了解密度与体积的关系是解决此题的关键.体验中考1、B. 分析 把x=1,y=3代入ky x=,k=3.故选B. 2、分析 求两图象交点坐标的实质是解两函数的解析式组成的方程组,根据函数性质可比较当x 1<x 2,时的函数值的大小.解:(1)由题意,得522kk -=,解得k=1, 所以正比例函数的表达式为y=x , 反比例函数的表达式为4y x=. 解4x x=,得x=±2.代入y=x ,得y=±2. 所以两函数图象的交点坐标为(2,2),(-2,-2). (2)因为反比例函数4y x=的图象在第一、三象限内,在每一象限内,y 的值随x 值的增大而减小,所以当x 1<x 2<0时,y 1<y 2.当0<x 1<x 2时,y 1>y 2. 当x 1<0<x 2时,因为114y x =<0,224y x =>0,所以y 1<y 2. 【解题策略】 本题考查正比例函数与反比例函数的解析式及其性质,注意对x 1,x 2要分类讨论.26.2实际问题与反比例函数学习目标、重点、难点【学习目标】1、理解反比例函数的定义;2、用待定系数法确定反比例函数的表达式;3、反比例函数的图象画法,反比例函数的性质;【重点难点】1、用待定系数法确定反比例函数的表达式;2、反比例函数的图象画法,反比例函数的性质;知识概览图(1)解决问题时常用待定系数法实际问题与反比例函数(2)考查函数图象及其性质、考查读图能力,使我们能从函数图象上得到有价值的信息新课导引【生活链接】在压力不变的情况下,某物体承受的压强p(Pa)是受力面积S(m2)的反比例函数,其图象如右图所示.【问题探究】这个反毙命函数应如何表示?教材精华知识点反比例函数在实际问题中的应用难点;应用应用反比例函数解决实际问题,我们应抽象概括它的本质特征,将其数学化、形式化,形成数学模型.例如池路程一定时,时间与速度成反比.根据已知条件写出反比例函数的关系式,并能把实际问题反映在函数的图象上,结合图象和性质解决实际.因此利用反比例函数解决实际问题的关键是求出函数的关系式.一般地,建立反比例函数关系式有以下两种方法:(1)待定数法:若题目提供的信息中明确此函数为反比例函数,则可设出反比例函数关系式为kyx=(k≠0),然后求出k的值即可.(2)列方程法:若题目信息中变量之间的函数关系不明确,在这种情况下,通常是列出关于函数(y)和自变量(x)的二元一次方程,进而解出函数,便得到函数关系式.生活中有许许多多成反比例关系的实例.如当路程s一定时,时间t与速度v成反比例关系,可以写成stv=(s是常数);当矩形面积S一定时,长a与宽b成反比例关系,写成Sab=(S的常数);当面积是常数S时,三角形的底边长y与这一底上的高x成反比例关系,写成2Syx=(S是常数).在物理学上,当功是常数W时,力F与物体在力的方向上通过的位移s成反比例关系,写成WFs(W的常数);当压力F一定时,压强p与受力面积S之间成反比例关系,写成FpS=(F为常数);在某一电路中,保持电压U不变,,电流I与电阻R成反比例关系,写成UIR=(U的常数).在利用反比例函数解决实际问题时,一定要注意kyx=中k为常数且k≠0这一条件,结合图象说出性质,根据性质大致画出图象及求函数的表达式.知识拓展在利用反比例函数解决实际问题时,要根据题目中的实际意义,找到基本的函数关系,再根据需要进行变形或计算.课堂检测基础知识应用题1、一定质量的二氧化碳,当它的体积V=10m3时,它的密度ρ=3.96kg/m3.(1)求ρ与V的函数关系式;(2)求当V=5m3时二氧化碳的密度ρ.综合应用题2、你吃过拉面吗?实际上,在做拉面的过程中就渗透着数学知识,一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面面积)S(mm2)的反比例函数,其图象如17-24所示.(1)写出y与S的函数关系式;(2)当面条粗1.6mm2时,求面条的总彻底是多少.3、消费者对于取消市场上使用杆秤的呼声越来越高,原因在于一些不法商贩在卖货时将秤砣挖空,或更换小秤砣,使秤砣较轻,从而欺骗顾客.(1)如图17-25所示,对于同一个物体,哪个用的是标准秤砣,哪个用的是较轻的秤砣?(2)写出在称同一物体时,所称得的物体质量y(千克)与所用秤砣质量x(千克)之间满足的关系;(3)当秤砣较轻时,称得的物体变重,这正好符合哪个函数的哪些性质?探索创新题4、小伟欲用撬棍手书撬动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿0.5米.(1)动力F和动力臂l有怎样的函数关系式当动力臂为0.5米时,撬动石头至少需要多大的力(2)若想使动力F不超过(1)中手忙脚乱力的一半,则动力臂至少要加长多少?体验中考1、水产公司有一种海产品共2104千克,为寻求合适销售价格,进行了8天试销,试销情况如下表:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都江堰市满足这一关系.(1)写出这个反比例函数的解析式,并实例表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?学后反思【解题方法小结】(1)深刻理解反比例函数的定义及认真观察总结生活中的数学知识是解决实际问题的关键.(2)解决跨学科的综合题目,要准确领会相关学科的知识.附:课堂检测及体验中考答案课堂检测1、分析由物理知识可知,质量m、体积V、密度ρ之间的关系为mVρ=,所以求ρ与V之间的函数关系式,只需确定m的值即可.解:(1)将V=10,ρ=3.96代入mVρ=,得m=3.96×10=39.6,所以ρ与V 的函数关系式为39.6.V ρ=(2)当V =5时,39.67.925ρ==(kg/m 3). 2、分析 解答此题是关键是正确运用所给条件确定反比例函数的关系式,运用图象信息求函数关系式,点P (4,32)在函数图象上,运用待定系数法求出k 值即可.解:(1)设y 与S 的函数关系式为k y S =,由图象可知,池S =4时,y =32,所以k=4×32=128,所以y 与S 的函数关系式为128.y S =(2)当S =1.6mm 2时,128801.6y ==(m ),所以面条的总长度为80m. 【解题策略】 首先用待定系数法求出k (有时可根据题意来设)的值,然后根据关系式确定其他的值.3、解:(1)根据物理中的杠杆原理可知,对于质量一定的物体,力臂L 与秤砣的重量G 成反比例,图17-25①中的力臂比图17-25②中的力臂长,因此图17-25①中的秤砣重量小于图17-25②中的秤砣重量,即图17-25②中使用的是标准秤砣,图17-25①中使用的是较轻的秤砣.(2)在称同一物体时,所称得的物体质量y (千克)与所用秤砣质量x (千克)成反比例函数关系.(3)y 与x 之间的函数关系式是(0)k y k x=>,当0x >时,y 随x 的增大而减小,即使用较轻的秤砣称物体时,显示物体的质量比实际质量大,这正好符合反比例函数的性质,当0k >时,在每个象限内,y 随x 的增大而减小.【解题策略】 这是一道学科间综合题,利用物理知识中的杠杆原理可解此题.4、分析在物理学上有茂名的“杠杆定律”,若两物体与支点的距离反比于其重量,则杠杆平衡,如图17-26所示,即阻力×阻力臂=动力×动力臂.解:(1)根据“杠杆定律”,有F·l=1200×0.5,所以600. Fl =当l=1.5时,600400.1.5F==所以动力F与动力臂l的函数关系式是600. Fl =当动力臂为1.5米时,撬动石头至少需要400牛顿的力.(2)由(1)得600. Fl =当14002002F=⨯=时,6006003.200lF===3-1.5=1.5(米)所以若想用力不超过400牛顿的一半,则动力臂至少要加长1.5米. 体验中考1、分析(1)由x=400时,y=30得xy=12000,所以12000yx=;(2)当x=150时,y=80,已经销售了30+40+48+50+60+80+96+100=504(千克),还有2104-504=1600(千克),由(2104-504)÷80可求;(3)由反比例函数的性质可求.解:(1)12000yx=,补充数据从左到右依次填300,50.(2)(2104-30-40-48-50-60-80-96-100)÷80-8=20-8=12(天). 答:预计再用12天可以全部售出.(3)y=(1600-80×15)÷2=200(千克),则x=60.答:新确定的价格最高不超过每千克60元才能完成销售任务.。