1.4.2正弦函数、余弦函数的性质(三)

合集下载

高中数学第一章1.4.1正弦函数余弦函数的图象1.4.2正弦函数余弦函数的性质学案含解析新人教A版必修4

高中数学第一章1.4.1正弦函数余弦函数的图象1.4.2正弦函数余弦函数的性质学案含解析新人教A版必修4

1.4.1 正弦函数、余弦函数的图象1.4.2 正弦函数、余弦函数的性质考试标准知识导图学法指导1.本节内容以三角函数的图象及其性质为主,因此在学习过程中应先学会作图,然后利用图象研究函数的性质.2.深刻理解五点的取法,特别是非正常周期的五点.3.注意所有的变换是图象上的点在移动,是x 或y 在变化而非ωx .4.运用整体代换的思想,令ωx +φ=t ,借助y =sin t ,y =cos t 的图象和性质研究函数y =sin(ωx +φ),y =cos(ωx +φ)的图象和性质.第1课时 正弦函数、余弦函数的图象正弦曲线与余弦曲线及其画法状元随笔 1.关于正弦函数y =sin x 的图象(1)正弦函数y =sin x ,x∈[2k π,2(k +1)π],k∈Z 的图象与x ∈[0,2π]上的图形一致,因为终边相同角的同名三角函数值相等.(2)正弦函数的图象向左、右无限延伸,可以由y =sin x ,x ∈[0,2π]图象向左右平移得到(每次平移2π个单位).2.“几何法”和“五点法”画正、余弦函数的比较(1)“几何法”就是利用单位圆中正弦线和余弦线作出正、余弦函数图象的方法. 该方法作图较精确,但较为烦琐.(2)“五点法”是画三角函数图象的基本方法,在要求精度不高的情况下常用此法. 提醒:作图象时,函数自变量要用弧度制,自变量与函数值均为实数,因此在x 轴、y 轴上可以统一单位,这样作出的图象正规便于应用.[小试身手]1.判断下列命题是否正确. (正确的打“√”,错误的打“×”)(1)“五点法”作正、余弦函数的图象时的“五点”是指图象上的任意五点.( )(2)正弦函数在⎣⎢⎡⎦⎥⎤-3π2,π2和⎣⎢⎡⎦⎥⎤π2,5π2上的图象相同.( )(3)正弦函数、余弦函数的图象分别向左、右无限延伸.( ) 答案:(1)× (2)√ (3)√2.以下对正弦函数y =sin x 的图象描述不正确的是( )A .在x ∈[2k π,2(k +1)π](k ∈Z )上的图象形状相同,只是位置不同B .介于直线y =1与直线y =-1之间C .关于x 轴对称D .与y 轴仅有一个交点解析:画出y =sin x 的图象,根据图象可知A ,B ,D 三项都正确. 答案:C3.下列图象中,是y =-sin x 在[0,2π]上的图象的是( )解析:函数y =-sin x 的图象与函数y =sin x 的图象关于x 轴对称,故选D. 答案:D4.用“五点法”作函数y =cos 2x ,x ∈R 的图象时,首先应描出的五个点的横坐标是________________.解析:令2x =0,π2,π,3π2和2π,得x =0,π4,π2,34π,π.答案:0,π4,π2,34π,π类型一 用“五点法”作三角函数的图象例1 用“五点法”作出下列函数的简图: (1)y =sin x +12,x ∈[0,2π];(2)y =1-cos x ,x ∈[0,2π]. 【解析】 (1)按五个关键点列表:(2)列表:作函数图象需要先列表再描点,最后用平滑曲线连线. 方法归纳作形如y =a sin x +b (或y =a cos x +b ),x ∈[0,2π]的图象的三个步骤跟踪训练1 画出函数y =3+2cos x 的简图. 解析:(1)列表,如下表所示(2)利用五点作图法画简图.类型二 正、余弦函数曲线的简单应用 例2 根据正弦曲线求满足sin x ≥-32在[0,2π]上的x 的取值范围. 【解析】 在同一坐标系内作出函数y =sin x 与y =-32的图象,如图所示.观察在一个闭区间[0,2π]内的情形,满足sin x ≥-32的x ∈⎣⎢⎡⎦⎥⎤0,43π∪⎣⎢⎡⎦⎥⎤53π,2π,所以满足sin x ≥-32在[0,2π]上的x 的范围是{x 0≤x ≤43π或5π3≤x ≤2π}.或⎣⎢⎡⎦⎥⎤0,43π∪⎣⎢⎡⎦⎥⎤53π,2π在同一坐标系内作y =sin x 与y =-32的图象,利用图象求x 的范围. 方法归纳利用三角函数图象解sin x >a (或cos x >a )的三个步骤 (1)作出直线y =a ,y =sin x (或y =cos x )的图象. (2)确定sin x =a (或cos x =a )的x 值. (3)确定sin x >a (或cos x >a )的解集.[注意] 解三角不等式sin x >a ,如果不限定范围时,一般先利用图象求出x ∈[0,2π]范围内x 的取值范围,然后根据终边相同角的同名三角函数值相等,写出原不等式的解集.跟踪训练2 根据余弦曲线求满足cos x ≤12的x 的取值范围.解析:作出余弦函数y =cos x ,x ∈[0,2π]的图象,如图所示,由图象可以得到满足条件的x 的集合为[π3+2k π,5π3+2k π],k ∈Z .在同一坐标内作y =cos x 与y =12的图象,利用图象求x 的范围.1.4.1-2.1[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.下列对函数y =cos x 的图象描述错误的是( ) A .在[0,2π]和[4π,6π]上的图象形状相同,只是位置不同 B .介于直线y =1与直线y =-1之间 C .关于x 轴对称 D .与y 轴只有一个交点解析:观察余弦函数的图象知:y =cos x 关于y 轴对称,故C 错误. 答案:C2.下列各点中,不在y =sin x 图象上的是( ) A .(0,0) B.⎝ ⎛⎭⎪⎫π2,1C.⎝⎛⎭⎪⎫3π2,-1 D .(π,1) 解析:y =sin x 图象上的点是(π,0),而不是(π,1). 答案:D3.不等式sin x >0,x ∈[0,2π]的解集为( ) A .[0,π] B .(0,π)C.⎣⎢⎡⎦⎥⎤π2,3π2D.⎝ ⎛⎭⎪⎫π2,3π2解析:由y =sin x 在[0,2π]的图象可得. 答案:B 4.点M ⎝⎛⎭⎪⎫π2,-m 在函数y =sin x 的图象上,则m 等于( )A .0B .1C .-1D .2解析:点M 在y =sin x 的图象上,代入得-m =sin π2=1,∴m =-1.答案:C5.在同一平面直角坐标系内,函数y =sin x ,x ∈[0,2π]与y =sin x ,x ∈[2π,4π]的图象( )A .重合B .形状相同,位置不同C .关于y 轴对称D .形状不同,位置不同解析:根据正弦曲线的作法过程,可知函数y =sin x ,x ∈[0,2π]与y =sin x ,x ∈[2π,4π]的图象位置不同,但形状相同.答案:B二、填空题(每小题5分,共15分) 6.下列叙述正确的有________.(1)y =sin x ,x ∈[0,2π]的图象关于点P (π,0)成中心对称; (2)y =cos x ,x ∈[0,2π]的图象关于直线x =π成轴对称; (3)正弦、余弦函数的图象不超过直线y =1和y =-1所夹的范围.解析:分别画出函数y =sin x ,x ∈[0,2π]和y =cos x ,x ∈[0,2π]的图象,由图象观察可知(1)(2)(3)均正确.答案:(1)(2)(3)7.关于三角函数的图象,有下列说法: (1)y =sin|x |与y =sin x 的图象关于y 轴对称; (2)y =cos(-x )与y =cos|x |的图象相同;(3)y =|sin x |与y =sin(-x )的图象关于x 轴对称; (4)y =cos x 与y =cos(-x )的图象关于y 轴对称. 其中正确的序号是________.解析:对(2),y =cos(-x )=cos x ,y =cos|x |=cos x ,故其图象相同; 对(4),y =cos(-x )=cos x ,故其图象关于y 轴对称,由作图可知(1)(3)均不正确. 答案:(2)(4)8.直线y =12与函数y =sin x ,x ∈[0,2π]的交点坐标是________.解析:令sin x =12,则x =2k π+π6或x =2k π+56π,又∵x ∈[0,2π],故x =π6或56π.答案:⎝ ⎛⎭⎪⎫π6,12,⎝ ⎛⎭⎪⎫56π,12三、解答题(每小题10分,共20分)9.利用“五点法”作出函数y =1-sin x (0≤x ≤2π)的简图. 解析:(1)取值列表:(2)10.根据y =cos x 的图象解不等式:-32≤cos x ≤12,x ∈[0,2π]. 解析:函数y =cos x ,x ∈[0,2π]的图象如图所示:根据图象可得不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪π3≤x ≤5π6或7π6≤x ≤5π3. [能力提升](20分钟,40分)11.已知函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积为( )A .4B .8C .2πD .4π解析:依题意,由余弦函数图象关于点⎝ ⎛⎭⎪⎫π2,0和点⎝ ⎛⎭⎪⎫3π2,0成中心对称,可得y =2cosx (0≤x ≤2π)的图象和直线y =2围成的封闭图形的面积为2π×2=4π.答案:D12.函数y =2cos x -2的定义域是________. 解析:要使函数有意义,只需2cos x -2≥0,即cos x ≥22.由余弦函数图象知(如图),所求定义域为⎣⎢⎡⎦⎥⎤-π4+2k π,π4+2k π,k ∈Z .答案:⎣⎢⎡⎦⎥⎤-π4+2k π,π4+2k π,k ∈Z 13.利用“五点法”作出y =sin ⎝⎛⎭⎪⎫x -π2⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤π2,52π的图象.解析:列表如下:14.利用图象变换作出下列函数的简图:(1)y=1-cos x,x∈[0,2π];(2)y=|sin x|,x∈[0,4π].解析:(1)首先用“五点法”作出函数y=cos x,x∈[0,2π]的简图,再作出y=cos x,x∈[0,2π]的简图关于x轴对称的简图,即y=-cos x,x∈[0,2π]的简图,将y=-cos x,x∈[0,2π]的简图向上平移1个单位即可得到y=1-cos x,x∈[0,2π]的简图,如图所示.(2)首先用“五点法”作出函数y=sin x,x∈[0,4π]的简图,再将该简图在x轴下方的部分翻折到x轴的上方,即得到y=|sin x|,x∈[0,4π]的简图,如图所示.。

1.4.2 正弦函数、余弦函数的性质

1.4.2 正弦函数、余弦函数的性质

1.4.2 正弦函数、余弦函数的性质知识点一 正弦函数、余弦函数的周期性函数的周期性1、(1)对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数叫做f (x )的最小正周期.2、A sin[(ωx +φ)+2π]=A sin(ωx +φ),A sin ⎣⎢⎡⎦⎥⎤ω⎝⎛⎭⎪⎫x +2πω+φ=A sin(ωx +φ),即f ⎝ ⎛⎭⎪⎫x +2πω=f (x ),所以f (x )=A sin(ωx +φ)(Aω≠0)是周期函数,2πω就是它的一个周期.3、由sin(x +2k π)=sin_x ,cos(x +2k π)=cos_x (k ∈Z )知,y =sin x 与y =cos x 都是周期函数,2k π(k ∈Z 且k ≠0)都是它们的周期,且它们的最小正周期都是2π.知识点二 正弦函数、余弦函数的奇偶性(1)对于y =sin x ,x ∈R ,恒有sin(-x )=-sin x ,所以正弦函数y =sin x 是奇函数,正弦曲线关于原点对称. (2)对于y =cos x ,x ∈R ,恒有cos(-x )=cos x ,所以余弦函数y =cos x 是偶函数,余弦曲线关于y 轴对称.知识点三 正弦、余弦函数的单调性[-1,1][-1,1]对于形如函数y =A sin(ωx +φ),Aω≠0时的最小正周期的求法常直接利用T =2π|ω|来求解,对于y =|A sin ωx |的周期情况常结合图象法来求解. 1、求下列函数的最小正周期. (1)y =sin ⎝ ⎛⎭⎪⎫2x +π3(x ∈R );(2)y =|sin x |(x ∈R ).2、下列函数是以π为周期的函数是( )A .y =sin xB .y =sin x +2C .y =cos2x +2D .y =cos3x -13.函数f (x )是周期函数,10是f (x )的一个周期,且f (2)=2,则f (22)=________.4.函数y =sin ⎝ ⎛⎭⎪⎫ωx +π4的最小正周期为2,则ω的值为________.类型二 三角函数的奇偶性对于三角函数奇偶性的判断,有时可根据诱导公式先将函数式化简后再判断. 判断函数奇偶性应把握好两个关键点关键点一:看函数的定义域是否关于原点对称; 关键点二:看f (x )与f (-x )的关系.1、判断下列函数的奇偶性.(1) f (x )=sin(-x )(2)f (x )=cos ⎝ ⎛⎭⎪⎫32π+2x +x 2sin x ; (3)f (x )=1-2cos x +2cos x -1.2、若函数y =cos(ωx +φ)是奇函数,则( )A .ω=0B .φ=k π(k ∈Z )C .ω=k π(k ∈Z )D .φ=k π+π2(k ∈Z )3、已知函数f (x )=ax +b sin x +1,若f (2018)=7,则f (-2018)=________.类型三 三角函数的奇偶性与周期性的综合应用1.设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π2,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数2、定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,求f ⎝ ⎛⎭⎪⎫5π3的值.2、已知函数f (x )=cos π3x ,求f (1)+f (2)+f (3)+…+f (2020)的值.3、设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2018)=________.类型四 求正弦、余弦函数的单调区间用整体替换法求函数y =A sin(ωx +φ)或y =A cos(ωx +φ)的单调区间时,如果式子中x 的系数为负数,先利用诱导公式将x 的系数变为正数再求其单调区间.求单调区间时,需将最终结果写成区间形式.1.函数y =sin2x 的单调递减区间。

专题1.4.1-2 正弦函数与余弦函数的图象与性质重难点题型(举一反三)(解析版)

专题1.4.1-2 正弦函数与余弦函数的图象与性质重难点题型(举一反三)(解析版)

1.4.1-2正、余弦函数的图象与性质重难点题型【举一反三系列】【知识点1 正弦函数、余弦函数图象的画法】1.描点法:按照列表、描点、连线三步法作出正弦函数、余弦函数图象的方法。

2.几何法:利用三角函数线作出正弦函数和余弦函数在]2,0[π内的图象,再通过平移得到x y sin =和cos y x =的图象。

3.五点法:先描出正弦曲线和余弦曲线的波峰、波谷和三个平衡位置这五个点,再利用光滑曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。

要点诠释:(1)熟记正弦函数、余弦函数图象起关键作用的五点。

(2)若x R ∈,可先作出正弦函数、余弦函数在]2,0[π上的图象,然后通过左、右平移可得到x y sin =和cos y x =的图象。

(3)由诱导公式cos sin()2y x x π==+,故cos y x =的图象也可以将x y sin =的图象上所有点向左平移2π个单位长度得到。

【知识点2 正弦曲线、余弦曲线】1.定义:正弦函数sin ()y x x R =∈和余弦函数cos ()y x x R =∈的图象分别叫做正弦曲线和余弦曲线。

2.图象要点诠释:(1)由正弦曲线和余弦曲线可以研究正弦函数、余弦函数的性质。

(2)运用数形结合的思想研究与正弦函数、余弦函数有关的问题,如[]0,2x π∈,方程lg sin x x =根的个数。

【知识点3 函数图象的变换】图象变换就是以正弦函数、余弦函数的图象为基础通过对称、平移而得到。

sin sin()sin()y x y x y A x ϕωϕ=→=+→=+【知识点4 周期函数的定义】函数)(x f y =,定义域为I ,当I x ∈时,都有)()(x f T x f =+,其中T 是一个非零的常数,则)(x f y =是周期函数,T 是它的一个周期.1.定义是对I 中的每一个x 值来说的,只有个别的x 值满足)()(x f T x f =+或只差个别的x 值不满足)()(x f T x f =+都不能说T 是)(x f y =的一个周期.2.对于周期函数来说,如果所有的周期中存在一个最小的正数,就称它为最小正周期,三角函数中的周期一般都指最小正周期.【知识点5 正弦函数、余弦函数的图象和性质】【知识点6 正弦型函数和余弦型函数的性质】函数sin()y A x ωϕ=+与函数cos()y A x ωϕ=+可看作是由正弦函数sin y x =,余弦函数cos y x =复合而成的复合函数,因此它们的性质可由正弦函数sin y x =,余弦函数cos y x =类似地得到: (1)定义域:R ; (2)值域:[],A A -;(3)单调区间:求形如sin()y A x ωϕ=+与函数cos()(,0)y A x A ωϕω=+>的函数的单调区间可以通过解不等式的方法去解答,即把x ωϕ+视为一个“整体”,分别与正弦函数sin y x =,余弦函数cos y x =的单调递增(减)区间对应解出x ,即为所求的单调递增(减)区间.比如:由)(2222Z k k x k ∈+≤+≤-ππϕωππ解出x 的范围所得区间即为增区间,由)(23222Z k k x k ∈+≤+≤+ππϕωππ解出x 的范围,所得区间即为减区间.(4)奇偶性:正弦型函数sin()y A x ωϕ=+和余弦型函数cos()(,0)y A x A ωϕω=+>不一定具备奇偶性.对于函数sin()y A x ωϕ=+,当()k k z ϕπ=∈时为奇函数,当()2k k z πϕπ=±∈时为偶函数;对于函数cos()y A x ωϕ=+,当()k k z ϕπ=∈时为偶函数,当()2k k z πϕπ=±∈时为奇函数.要点诠释:判断函数sin()y A x ωϕ=+,cos()y A x ωϕ=+的奇偶性除利用定义和有关结论外,也可以通过图象直观判断,但不能忽视“定义域关于原点对称”这一前提条件.(5)周期:函数sin()y A x ωϕ=+及函数cos()y A x ωϕ=+的周期与解析式中自变量x 的系数有关,其周期为2T πω=.(6)对称轴和对称中心与正弦函数sin y x =比较可知,当()2x k k z πωϕπ+=±∈时,函数sin()y A x ωϕ=+取得最大值(或最小值),因此函数sin()y A x ωϕ=+的对称轴由()2x k k z πωϕπ+=±∈解出,其对称中心的横坐标()x k k z ωϕπ+=∈,即对称中心为,0()k k z πϕω-⎛⎫∈⎪⎝⎭.同理,cos()y A x ωϕ=+的对称轴由()x k k z ωϕπ+=∈解出,对称中心的横坐标由()2x k k z πωϕπ+=±∈解出.【考点1 正、余弦函数的定义域】【例1】(2019春•南湖区校级月考)已知函数()f x 的定义域为 .【分析】根据根式满足的条件,解三角不等式即可. 【答案】解:∵2sin (2x ﹣)﹣1≥0⇒sin (2x ﹣)≥,∴2k π+≤2x ﹣≤2k π+,k ∈Z ,∴k π+≤x ≤k π+,k ∈Z .故答案是{x|kπ+≤x≤kπ+,k∈Z}【点睛】本题考查函数的定义域及其求法,解三角不等式.【变式1-1】(2019秋•黄冈期末)函数y的定义域是.【分析】由题意可得sin x≥0,cos x≥0,故2kπ+0≤x≤2kπ+,k∈z,解出x的范围,即得所求.【答案】解:由题意可得sin x≥0,cos x≥0,∴2kπ+0≤x≤2kπ+,k∈z,故函数的定义域为(2kπ,2kπ+),k∈z,故答案为:(2kπ,2kπ+),k∈z.【点睛】本题考查求函数的定义域,以及三角函数在各个象限中的符号,得到2kπ+0≤x≤2kπ+,k∈z,是解题的关键,属于基础题.【变式1-2】函数1sin21sin2xyx+=-的定义域为.【分析】此为一分式函数,令分母不为0即可解出函数的定义域来.【答案】解:令﹣sin x≠0,即sin x≠,如图x≠2kπ+,x≠2kπ+=(2k﹣1)π﹣,k∈z,故其形式可以统一为x≠kπ+(﹣1)k,k∈z.所以函数的定义域为{x|x≠kπ+(﹣1)k,k∈z.}应填{x|x≠kπ+(﹣1)k,k∈z.}【点睛】考查定义域的求法与解三角方程,本题中把两种情况的答案合二为一是一个技巧,答题者应细心体会其中的规律.【变式1-3】(2019秋•安福县校级期中)函数(2cos 21)y lg x =+的定义域为 .【分析】由题意可得 ,化简可得 ,由此求出x 的范围,即得函数的定义域. 【答案】解:∵函数,∴,即 .化简可得 ,解得﹣<x <.故函数的定义域为(﹣,),故答案为(﹣,).【点睛】本题主要考查求余弦函数的定义域和值域,求对数函数的定义域,属于基础题. 【考点2 正、余弦函数的值域】【例2】(2018秋•启东市校级月考)函数()sin(2)4f x x π=-在区间[0,]2π上的值域为 .【分析】由题意利用正弦函数的定义域和值域,求得函数f (x )=sin 在区间上的值域.【答案】解:在区间上,2x ﹣∈[﹣,],sin (2x ﹣)∈[﹣,1],故函数f (x )=sin 在区间上的值域为[﹣,1],故答案为:[﹣,1].【点睛】本题主要考查正弦函数的定义域和值域,属于基础题.【变式2-1】(2019秋•射阳县校级期中)函数2()2cos 3sin 2f x x x =++,[6x π∈,2]3π的值域 . 【分析】根据同角公式化简函数解析式,得到关于sin x 的二次函数,根据二次函数的图象和性质,可得函数的值域.【答案】解:y =2cos 2x +3sin x +2=2(1﹣sin 2x )+3sin x +2=﹣2(sin x ﹣)2+,x ∈[,],∴sin x ∈[,1],∴当sin x =时,函数f (x )取最大值,当sin x =或sin x =1时,函数f (x )取最小值5, 故函数f (x )=2cos 2x +3sin x +2,x ∈[,]的值域为[5,],故答案为:[5,]【点睛】此题考查学生灵活运用同角公式化简求值,会利用二次函数的图象及增减性求出函数的值域.做题时注意余弦函数的值域.【变式2-2】(2019春•淄博校级月考)函数3sin 3sin xy x-=+的值域为 .【分析】先换元t =sin x ,t ∈[﹣1,1],,利用凑分母分离常数,然后逐一求式子的范围,即可求函数的值域.【答案】解:令t =sin x ,t ∈[﹣1,1], 所以:,∵﹣1≤t ≤1, ∴2≤t +3≤4, ∴, ∴, ∴, 函数的值域为. 故答案为:.【点睛】本题重点考查分式函数求值域问题,用到换元,利用凑分母分离常数.【变式2-3】(2019秋•西城区期末)已知函数()sin()6f x x π=+,其中[3x π∈-,]a .当2a π=时,()f x 的值域是 ;若()f x 的值域是1[2-,1],则a 的取值范围是 .【分析】当a =时,由x ∈[﹣,]利用正弦函数的定义域和值域可得f (x )的值域.若f (x )的值域是[﹣,1],则由正弦函数的图象可得≤a +≤,由此解得a 的取值范围. 【答案】解:当a =时,由x ∈[﹣,]可得﹣≤x +≤,∴﹣≤sin (x +)≤1,∴f (x )的值域是[﹣,1]. 若f (x )的值域是[﹣,1],则≤a +≤,解得≤a +≤π,即a 的取值范围是[,π],故答案为[﹣,1]、[,π].【点睛】本题主要考查正弦函数的定义域和值域,属于基础题. 【考点3 正、余弦函数作图】【例3】(2019春•郑州期末)已知函数()sin()(04f x x πωω=->,)x R ∈的最小正周期为π.(Ⅰ)求3()4f π; (Ⅱ)在给定的平面直角坐标系中,画出函数()y f x =在区间[2π-,]2π上的图象.【分析】(1)根据T =,求出周期,得到函数的解析式,代入值计算即可;(2)利用五点作图法作图即可. 【答案】解:(1)依题意得,T ==π,解得ω=2,所以f (x )=sin (2x ﹣),所以 f (π)=sin (2×﹣)=sin (π+)=﹣sin=﹣,(2)画出函数在区间上的图象如图所示:【点睛】本题考查了三角函数的周期性质,以及三角函数值的求法和函数图象的做法,属于基础题.【变式3-1】画出下列函数的简图:π;(1)1sinx∈,2]=-,[0y xπ.(2)3cos1x∈,2]y x=+,[0【分析】根据五点做出函数的简图,即可得到结论.【答案】解:(1)列表如下:画出图形,如图:(2)列表为函数图象如下:【点睛】本题主要考查三角函数的图象和性质,要求熟练掌握五点法作图以及图象之间的关系,属于基本知识的考查.【变式3-2】画出下列函数的图象.π(1)13cosy x=+,[0x∈,2]π.(2)2sin1x∈,2]=-,[0y x【分析】(1)用五点法作出函数y=1+3cos x在一个周期上的简图.(2)用五点法作出函数y=2sin x﹣1在一个周期上的简图.【答案】解:(1)列表:如图:(2)列表:如图:【点睛】本题主要考查用五点法作函数 y =A sin (ωx +φ)的图象、y =A cos (ωx +φ)的图象,属于基础题.【变式3-3】用多种方法在同一坐标系中画出下列函数. (1)sin y x =,[0x ∈,2]π (2)sin 1y x =+,[0x ∈,2]π (3)cos y x =,[2x π∈-,]2π (4)cos y x =-,[2x π∈-,3]2π. 【分析】利用五点作图法和图象的平移即可得到各个函数的图象. 【答案】解:同一坐标系中各个函数的图象如下:【点睛】本题主要考查三角函数的图象和性质,考察作图能力,属于基础题. 【考点4 正、余弦函数的最小正周期】 【例4】求下列函数的最小正周期. (1)sin(3)2y x π=+;(2)|cos |y x =【分析】(1)由条件根据函数y =A sin (ωx +φ)的周期为,可得结论. (2)由条件根据函数y =|A cos (ωx +φ)|的周期为•,可得结论. 【答案】解:(1)y =sin (x +3)的最小正周期为=4,(2)y =|cos x |的最小正周期为•=π.【点睛】本题主要考查三角函数的周期性,利用了函数y =A sin (ωx +φ)的周期为,函数y =|A cos(ωx +φ)|的周期为•,属于基础题.【变式4-1】求下列函数的最小正周期 (1)cos2y x =; (2)sin 2xy =;(3)1sin y x =+.【分析】利用三角函数的周期性及其求法即可得解. 【答案】解:(1)∵y =cos2x ,∴最小正周期T ==π;(2)∵y =sin ,∴最小正周期T ==4π;(3)∵y =1+sin x ,∴最小正周期T ==2π;【点睛】本题主要考查了三角函数的周期性及其求法,属于基础题. 【变式4-2】求下列函数的最小正周期(1)2sin()32xy π=-(2)1cos(2)36y x π=-(3)|sin |y x =【分析】分析:(1)利用了y =A sin (ωx +φ )的周期等于,即可求值;(2)利用了y =A cos (ωx +φ )的周期等于,即可求值;(3)根据y =|A sin (ωx +φ )|、y =|A sin (ωx +φ )|的周期等于,得出结论.【答案】解:(1)∵y =2sin (﹣)=﹣2sin (),∴T ==4π;(2)∵y =cos (2x ﹣),∴T ==π;(3)根据y =|sin x |的周期等于y =sin x 的周期的一半,故y =|sin x |的周期为×2π=π.【点睛】本题主要考查三角函数的周期性及其求法,利用了y =A sin (ωx +φ )、y =A cos (ωx +φ )的周期等于,y =|A sin (ωx +φ )|、y =|A sin (ωx +φ )|的周期等于,属于基础题.【变式4-3】求下列函数的最小正周期. (1)1cos(2)33y x π=-;(2)cos ||y x =.【分析】(1)由条件利用y =A cos (ωx +φ)的周期等于 T =,可得结论.(2)根据y =cos|x |=cos x ,而且y =A cos (ωx +φ)的周期等于 T =,可得结论.【答案】解:(1)y =cos (2x ﹣)的最小正周期为=π,(2)y =cos|x |=cos x 的最小正周期为=2π.【点睛】本题主要考查余弦函数的周期性,利用了y =A cos (ωx +φ)的周期等于 T =,属于基础题.【考点5 正、余弦函数的奇偶性】 【例5】判断下列函数的奇偶性: (1)cos2y x =,x R ∈; (2)cos(2)2y x π=-;(3)2sin()3y x π=+;(4)cos()4y x π=-.【分析】分别化简函数后根据正弦函数、余弦函数的图象和性质逐一判断即可. 【答案】解:(1)由余弦函数的图象和性质可知y =cos2x ,x ∈R 为偶函数; (2)∵y =cos (2x ﹣)=sin2x ,∴由正弦函数的图象和性质可知y =sin2x ,为奇函数;(3)∵y =sin (x +π)=﹣sin x ,∴由正弦函数的图象和性质可知y =﹣sin x ,为奇函数; (4)∵y =cos (x ﹣),且f (﹣x )=cos (﹣x ﹣)=cos (x +),∴由余弦函数的图象和性质可知y =cos (x ﹣),为非奇函数,非偶函数.【点睛】本题主要考察了正弦函数、余弦函数的图象和性质,属于基本知识的考查. 【变式5-1】判断下列函数的奇偶性 (1)()sin()f x x x π=+; (2)1cos ()sin xf x x-=. 【分析】(1)利用诱导公式化简函数的解析式,再根据函数的奇偶性的定义,得出结论. (2)利用半角公式化简函数的解析式,再根据函数的奇偶性的定义,得出结论. 【答案】解:(1)∵f (x )=x sin (π+x )=﹣x sin x ,它的定义域为R , 且满足f (﹣x )=﹣x •sin (﹣x )=x sin x =f (x ),故该函数为偶函数. (2)对于函数 f (x )==tan ,它的定义域为{x |x ≠k π,k ∈Z },关于原点对称,且满足f (﹣x )=tan (﹣)=﹣tan =﹣f (x ), 故该函数为奇函数.【点睛】本题主要考查三角公式,三角函数的奇偶性的判断方法,属于基础题.【变式5-2】判断下列函数的奇偶性:(1)()2f x x ; (2)33()sin()42x f x π=+;(3)()f x =.【分析】求出定义域,判断是否关于原点对称,注意运用诱导公式,定义域化简函数式,再计算f (﹣x ),与f (x )比较即可判断其偶性.【答案】解:(1)定义域为R ,f (﹣x )=sin (﹣2x )=﹣sin2x =﹣f (x ),则f (x )为奇函数; (2)f (x )=sin (+)=﹣cos,定义域为R ,f (﹣x )=﹣cos (﹣)=﹣cos=f (x ), 则f (x )为偶函数;(3)由1﹣cos x ≥0且cos x ﹣1≥0,则cos x =1, 解得,x =2k π,k ∈Z ,则定义域关于原点对称,由于f (x )=0,则f (﹣x )=f (x ),且f (﹣x )=﹣f (x ), 则f (x )既是奇函数,也是偶函数.【点睛】本题考查函数的奇偶性的判断,注意运用定义,考查运算能力,属于基础题. 【变式5-3】判断下列函数的奇偶性. (1)1sin cos ()1sin cos x xf x x x--=++;(2)44()sin cos cos 2f x x x x =-+.【分析】(1)容易判断f (x )的定义域包含x =,不包含,即定义域不关于原点对称,从而得出f (x )为非奇非偶函数;(2)容易得出f (﹣x )=f (x ),从而得出f (x )为偶函数. 【答案】解:(1)∵;∴时,f (x )有意义,时,f (x )没意义;∴f (x )的定义域关于原点不对称; ∴f (x )为非奇非偶函数;(2)f (﹣x )=sin 4(﹣x )﹣cos 4(﹣x )+cos (﹣2x )=sin 4x ﹣cos 4x +cos2x =f (x ); 即f (﹣x )=f (x ); ∴f (x )为偶函数.【点睛】考查奇函数、偶函数的定义,奇函数、偶函数定义域的特点. 【考点6 正、余弦函数的对称轴及对称中心】【例6】(2019春•资阳区校级月考)求函数12sin()26y x π=-的对称轴和对称中心.【分析】由条件根据正弦函数的对称性,求得函数y =2sin (x ﹣)的对称轴和对称中心. 【答案】解:对于函数y =2sin (x ﹣),令x ﹣=k π+,k ∈z ,求得x =2k π+,故函数的对称轴方程为 x =2k π+,k ∈z .令x ﹣=k π,k ∈z ,求得x =2k π+,故函数的对称中心为 (2k π+,0)k ∈z .【点睛】本题主要考查正弦函数的对称性,属于基础题. 【变式6-1】求2cos(2)6y x π=-单调性对称轴对称中心.【分析】对于函数y =2cos (2x ﹣),令2k π﹣π≤2x ﹣≤2k π,求得x 的范围,可得函数的增区间;令2k π≤2x ﹣≤2k π+π,求得x 的范围,可得函数的减区间.令2x ﹣=k π,求得x 的值,可得函数的图象的对称中心. 【答案】解:对于y =2cos (﹣2x )=2cos (2x ﹣), 令2k π﹣π≤2x ﹣≤2k π,求得k π﹣≤x ≤k π+,可得函数的增区间为[k π﹣,k π+],k ∈z . 令2k π≤2x ﹣≤2k π+π,求得k π+≤x ≤k π+, 可得函数的减区间为[k π+,k π+],k ∈z . 令2x ﹣=k π,求得x =+, 可得函数的图象的对称中心为(+,0).【点睛】本题主要考查余弦函数的单调性、余弦函数的图象的对称中心,属于基础题.【变式6-2】变式训练1:求函数的对称轴,对称中心(1)1())4f x x π=+;(2)1()2cos()123f x x π=-+.【分析】直接根据正余弦函数的图象及性质求解即可. 【答案】解:(1)f (x )=sin (2x +π);令2x +π=,k ∈Z 可得:x =,∴对称轴方程为:x =,k ∈Z 令2x +π=k π,k ∈Z 可得:x =,∴对称中心(,0).k ∈Z(2)f (x )=2cos (x ﹣)+1.令x ﹣=,k ∈Z可得:x =2k π ∴对称中心(2k π,1).k ∈Z令x =k π,k ∈Z可得:x =,∴对称轴方程为:x =,k ∈Z【点睛】本题考查了正余弦函数的图象及性质的应用.属于基础题. 【变式6-3】求下列函数图象的对称轴、对称中心. (1)sin()24x y π=-;(2)2sin(2)3y x π=++.【分析】由条件利用正弦函数的图象的对称性,得出结论.【答案】解:对于(1)y =sin (﹣),令﹣=k π+,求得x =2k π+,可得函数的图象的对称轴为x =2k π+,k ∈Z .令﹣=k π,求得x =2k π+,可得函数的图象的对称中心为(2k π+,0),k ∈Z .(2)对于y =2+sin (+2x ),令2x +=k π+,求得x =k π+,可得函数的图象的对称轴为x =k π+,k ∈Z .令2x +=k π,求得x =k π﹣,可得函数的图象的对称中心为(k π﹣,0),k ∈Z .【点睛】本题主要考查正弦函数的图象的对称性,属于基础题. 【考点7 正、余弦函数的单调性】【例7】(2019•上城区校级模拟)设函数()3sin()(0)4f x x πωω=+>,且以23π为最小正周期.(1)求()f x 的解析式;(2)求()f x 的对称轴方程及单调递增区间.【分析】(1)由题意利用正弦函数的周期性,求得ω的值,可得函数的解析式.(2)由题意利用正弦函数的图象的对称性,求得它的对称轴方程;再利用正弦函数单调性求得它的单调递增区间.【答案】解:(1)由于函数,且以为最小正周期,∴=,∴ω=3, f (x )=3sin (3x +).(2)令3x +=k π+,求得x =+,故函数的图象的对称轴方程为 x =+,k ∈Z .令 2k π﹣≤3x +≤2k π+,求得﹣≤x ≤+,可得函数的增区间为[﹣,+],k ∈Z .【点睛】本题主要考查正弦函数的周期性,正弦函数单调性以及它的图象的对称性,属于基础题. 【变式7-1】(2018秋•嘉兴期末)已知函数()2sin(2)()6f x x m m R π=-+∈的最小值为1. (Ⅰ)求m 的值及取此最小值时的x 值;(Ⅱ)求函数()f x 的最小正周期和单调递增区间.【分析】(Ⅰ)由题意利用正弦函数的最值,求出m 的值及取此最小值时的x 值.(Ⅱ)利用正弦函数的周期性以及单调性,求得函数f (x )的最小正周期和单调递增区间. 【答案】解:(Ⅰ)函数 f (x )=2sin (2x ﹣)+m (m ∈R )的最小值为﹣2+m =1,∴m =3. 取取此最小值时,2sin (2x ﹣)=﹣1,2x ﹣=2k π﹣,求得x =k π﹣,k ∈Z .(Ⅱ)由(Ⅰ)可得 f (x )=2sin (2x ﹣)+3,它的最小正周期为=π,令2k π﹣≤2x ﹣≤2k π+,求得k π﹣≤x ≤k π+,可得函数的增区间为[k π﹣,k π+],k ∈Z .【点睛】本题主要考查正弦函数的最值,周期性以及单调性,属于中档档题. 【变式7-2】(2019春•靖远县期末)已知函数1()2cos()212f x x π=+.(1)求()f x 的单调递增区间; (2)求不等式()1f x >的解集.【分析】(1)根据余弦函数的单调增区间可得,然后解出x 的范围即可;(2)由f (x )>1可得,则,k ∈Z ,解出x 的范围即可. 【答案】解:(1), 由, ∴,∴f (x )的单调递增区间为;(2)∵f (x )>1,∴,∴,∴,k ∈Z , ∴,k ∈Z ,∴不等式的解集为,k ∈Z .【点睛】本题考查了余弦函数的单调性和解三角不等式,考查了运算能力,属基础题.【变式7-3】(2019秋•福建月考)已知函数())4f x x π=-,[,]82x ππ∈-(1)求函数()f x 的单调区间.(2)求函数()f x 在区间[,]82ππ-上的最小值和最大值,并求出取得最值时x 的值.【分析】(1)x ∈[﹣,]⇒2x ﹣∈[﹣,],利用余弦函数的单调性即可求得f (x )=cos (2x ﹣)的单调区间;(2)利用(1)f (x )=cos (2x ﹣)在区间[﹣,]上为增函数,在区间[,]上为减函数,即可求得其最小值和最大值及取得最值时x 的值. 【答案】解:(1)∵f (x )=cos (2x ﹣),x ∈[﹣,],∴2x ﹣∈[﹣,],由﹣≤2x ﹣≤0得:﹣≤x ≤,∴当x ∈[﹣,]时,函数f (x )的单调递增区间为[﹣,];由0≤2x ﹣≤得,≤x ≤,∴当x ∈[﹣,]时,函数f (x )的单调减区间为[,];(2)∵f (x )=cos (2x ﹣)在区间[﹣,]上为增函数,在区间[,]上为减函数,又f =0, f =, f=cos=﹣cos =﹣1,∴函数f (x )在区间[﹣,]上的最大值为,此时x =,最小值为﹣1,此时x =.【点睛】本题考查余弦函数的单调性,考查余弦函数的定义域和值域,考查运算能力,属于中档题. 【考点8 正、余弦函数的综合应用】【例8】(2019春•延吉市校级期中)已知函数()12sin(2)3f x x π=+-.(1)求对称轴,对称中心(2)求()f x 在[,]42x ππ∈的最大值和最小值;(3)若不等式|()|2f x m -<在[,]42x ππ∈上恒成立,求实数m 的取值范围【分析】(1)令2x ﹣=可得对称轴,令2x ﹣=k π可得对称中心;(2)由x ∈[],可求,结合正弦函数的图象及性质可求;(3)由|f (x )﹣m |<2可得m ﹣2<f (x )<m +2恒成立,从而有m >f (x )max ﹣2且m <f (x )min +2可求.【答案】解:(1)令2x ﹣=可得对称轴x =,k ∈z , 令2x ﹣=k π可得,x =,k ∈z 可得对称中心为(,1),k ∈z ,(2)∵f (x )=1+2sin (2x ﹣),∵x ∈[],∴,∴,∴f (x )在x ∈[]的最大值3,最小值2,(3)∵|f (x )﹣m |<2在x ∈[]上恒成立,∴m ﹣2<f (x )<m +2,∴m >f (x )max ﹣2且m <f (x )min +2, ∴1<m <4,即m 的取值范围是(1,4).【点睛】本题主要考查了正弦函数的图象与性质的综合应用,解题 的关键是性质的熟练掌握并能灵活应用.【变式8-1】已知函数()2sin(2)26f x a x a b π=-+++的定义域为[0,]2π,值域为[5-,1].(1)求实数a ,b 的值;(2)求函数()4sin()3g x a bx π=--的最小值并求出对应x 的集合.【分析】(1)由x 的取值范围,求出2x +的取值范围,从而求出2sin (2x +)的取值范围;讨论a>0、a <0时,函数f (x )的最值问题,从而求出a 和b 的值.(2)根据(1)的结论,分两种情况讨论,根据正弦函数的性质即可求出. 【答案】解:(1)∵0≤x ≤,∴≤2x +≤, ∴≤sin (2x +)≤1, ∴﹣1≤2sin (2x +)≤2,当a >0时,解得a =2,b =﹣7, 当a <0时,,解得a =﹣2,b =1,(2)当a =2,b =﹣7时,g (x )=﹣8sin (﹣7x ﹣)=8sin (7x +),其最小值为﹣8,7x +=﹣+2k π,k ∈Z ,即x =﹣+,k ∈Z ,对应x 的集合为{x |x =﹣+,k ∈Z },当a =﹣2,b =1时,g (x )=﹣8sin (x ﹣)=﹣8sin (x ﹣),其最小值为﹣8,x ﹣=+2k π,k ∈Z ,即x =π+2k π,k ∈Z ,对应x 的集合为{x |x =π+2k π,k ∈Z }.【点睛】本题考查了三角函数的图象与应用问题,解题时应根据三角函数的最值与值域的关系,利用分类讨论的方法,求出a 和b 的值. 【变式8-2】已知函数23()sin cos 2f x x a x =+-,a R ∈. (1)当1a =时,求函数()f x 的最大值;(2)对于区间[0,)2π上的任意x ,都有1)(≤x f 成立,求实数a 的取值范围.【分析】(1)把a =1代入函数解析式,利用平方关系化正弦为余弦,平方后求最值; (2)f (x )=sin 2x +a cos x ﹣=,令t =cos x 换元,则原函数化为y =.由f (x )≤1,得≤1在t ∈(0,1]上成立,分离参数a ,由对勾函数的单调性求得g (t )=t +在t ∈(0,1]上的最小值,则答案可求.【答案】解:(1)当a =1时,f (x )=sin 2x +cos x ﹣ ==.当cos x =时,f (x )取最大值为;(2)f (x )=sin 2x +a cos x ﹣=,令t =cos x ,∵x ∈[0,),∴t =cos x ∈(0,1].则原函数化为y =.由f (x )≤1,得≤1在t ∈(0,1]上成立,即,也就是a ≤t +在t ∈(0,1]上成立,令g (t )=t +,由对勾函数的单调性可得在t ∈(0,1]上g (t )的最小值为g (1)=.∴a.即实数a 的取值范围是(﹣∞,].【点睛】本题考查三角函数中的恒等变换应用,训练了利用分离参数法求解恒成立问题,考查利用对勾函数的单调性求最值,是中档题.【变式8-3】(2019春•鹤壁期末)已知函数()sin(2)3f x x π=-.(Ⅰ)当1(2x π∈-,)3π-,2(0,)6x π∈时12()()0f x f x +=,求12x x -的值; (Ⅱ)令()()3F x f x =-,若对任意x 都有2()(2)()20F x m F x m -+++…0≤m 恒成立,求m 的最大值. 【分析】(Ⅰ)运用正弦函数的诱导公式,解方程即可得到所求值;(Ⅱ)令t =F (x ),可得t ∈[﹣4,﹣2],转化为二次不等式恒成立问题解法,结合图象可得m 的最大值. 【答案】解:(Ⅰ)f (x 1)+f (x 2)=0, 即为sin (2x 1﹣)+sin (2x 2﹣)=0, 即有sin (2x 1﹣)=﹣sin (2x 2﹣)=sin (﹣2x 2),可得2x 1﹣=2k π+﹣2x 2,或2x 1﹣=2k π+π﹣+2x 2,k ∈Z ,即有x 1+x 2=k π+或x 1﹣x 2=k π﹣,k ∈Z , 由x 1∈(﹣,﹣),x 2∈(0,),可得x 1﹣x 2∈(﹣,﹣),可得x 1﹣x 2=﹣; (Ⅱ)F (x )=f (x )﹣3即F (x )=sin (2x ﹣)﹣3,令t =F (x ),可得t ∈[﹣4,﹣2],对任意x都有F2(x)﹣(2+m)F(x)+2+m≤0恒成立,即为t2﹣(2+m)t+2+m≤0,则16+4(2+m)+2+m≤0,4+2(2+m)+2+m≤0,即m≤﹣.且m≤﹣,.解得m≤﹣,即m的最大值为﹣.【点睛】本题考查正弦函数的图象和性质,考查换元法和二次函数的性质,以及化简运算能力,属于中档题.。

三角函数正弦余弦正切的定义与性质

三角函数正弦余弦正切的定义与性质

三角函数正弦余弦正切的定义与性质三角函数是数学中的重要概念之一。

其中,正弦函数、余弦函数和正切函数是最为常见和常用的三角函数。

本文将对正弦函数、余弦函数和正切函数的定义与性质进行详细介绍。

一、正弦函数的定义与性质1. 正弦函数的定义正弦函数(Sine Function)是一个周期函数,可以表示为y = sin(x),其中x为自变量,y为函数值。

正弦函数的定义域为全体实数,值域为[-1,1]。

2. 正弦函数的性质正弦函数有以下几个重要的性质:(1)对称性:正弦函数关于原点对称,即sin(-x) = -sin(x)。

(2)周期性:正弦函数的周期为2π,即sin(x+2π) = sin(x)。

(3)奇偶性:正弦函数是奇函数,即sin(-x) = -sin(x)。

(4)单调性:在一个周期内,正弦函数是先递增后递减的,且在[0,π]上为递增函数,在[π,2π]上为递减函数。

二、余弦函数的定义与性质1. 余弦函数的定义余弦函数(Cosine Function)也是一个周期函数,可以表示为y = cos(x),其中x为自变量,y为函数值。

余弦函数的定义域为全体实数,值域为[-1,1]。

2. 余弦函数的性质余弦函数有以下几个重要的性质:(1)对称性:余弦函数关于y轴对称,即cos(-x) = cos(x)。

(2)周期性:余弦函数的周期为2π,即cos(x+2π) = cos(x)。

(3)奇偶性:余弦函数是偶函数,即cos(-x) = cos(x)。

(4)单调性:在一个周期内,余弦函数在[0,π/2]上为递减函数,在[π/2,2π]上为递增函数。

三、正切函数的定义与性质1. 正切函数的定义正切函数(Tangent Function)可以表示为y = tan(x),其中x为自变量,y为函数值。

正切函数的定义域为全体实数,但在其周期的特殊点(如π/2)处无定义。

2. 正切函数的性质正切函数有以下几个重要的性质:(1)周期性:正切函数的周期为π,即tan(x+π) = tan(x)。

1.4.2 正弦函数、余弦函数的性质(三)单调性

1.4.2 正弦函数、余弦函数的性质(三)单调性

观察图象可知: 当 x∈ 时,曲线逐渐上升,是增函数,cos x 的值由-1 增大到 1; 当 x∈ 时,曲线逐渐下降,是减函数,cos x 的值由 1 减小到-1. 推广到整个定义域可得: 当 x∈ 时,余弦函数 y=cos x 是增函数,函数值由-1 增大到 1; 当 x∈ 时,余弦函数 y=cos x 是减函数,函数值由 1 减小到-1. 【正弦函数、余弦函数的性质】 函数 y=sin x y=cos x
4

18
) _____ sin(

10
)
(2) cos(
23 17 ) _____ cos( ) 5 4
3. y sin( x ), (0 )是R上的偶函数,则 的值是 _______ π x+ 的一个递减区间是 4. 函数 f(x)=sin 6 5. 求y sin x sin x的值域 是
鸡西014 年( )月( )日 班级 姓名
1.4.2 学习 目标 重点 难点
正弦函数、余弦函数的性质(三)单调性
1.掌握 y=sin x,y=cos x 的最大值与最小值,并会求简单三角函数的值域和最 值.2.掌握 y=sin x,y=cos x 的单调性,并能利用单调性比较大小. 3.会求函数 y=Asin(ωx+φ)及 y=Acos(ωx+φ)的单调区间. 在研究正弦、余弦函数的性质时,要充分借助正弦、余弦曲线,注意 数形结合 思想方法的运用.
【正、余弦函数的定义域、值域】 在下图中利用平移画出正弦曲线
在下图中利用平移画出余弦曲线
观察图像填下列各空: 由正、余弦曲线很容易看出正弦函数、余弦函数的定义域都是实数集 R ,值域都 是 .对于正弦函数 y=sin x,x∈R 有: 当且仅当 x= 时,取得最大值 1; 当且仅当 x= 时,取得最小值-1. 对于余弦函数 y=cos x,x∈R 有: 当且仅当 x= 时,取得最大值 1; 当且仅当 x= 时,取得最小值-1. 【正、余弦函数的单调性】 正弦函数和余弦函数都是周期函数,且周期都是 2π,首先研究它们在一个周期区间上函 数值的变化情况,再推广到整个定义域. π 3π 如图补全函数 y=sin x,x∈ -2, 2 的图象:

021正弦函数、余弦函数的性质(3)

021正弦函数、余弦函数的性质(3)

高一数学021 高一 年级 班 教师 方雄飞 学生课题 §1.4正弦函数、余弦函数的性质(3)学习目标:1.结合正弦函数、余弦函数图像理解正、余弦函数的性质.2.会运用正、余弦函数的图像及性质解决相关问题. 一、 正弦、余弦、正切函数的图象和性质R [-1,1]二、例题分析例1、将下列三角函数值按从小到大的顺序排列.45325sin, cos ,sin , cos 54512ππππ-_________________________________________________________例2、已知函数3)62sin(5)(-+-=πx x f ,求 (1)函数的周期; (2)最值及取最值时自变量x 的取值集合; (3)对称轴和对称中心; (4)单调增区间.练习2.已知函数()2sin(2)4f x x π=-.(1)求函数的周期;(2)求函数的最值及相应的x 值集合; (3)求函数的单调区间;(4)若3[0,]4x π∈,求()f x 的取值范围; (5)求函数()f x 的对称轴与对称中心; (6)若()f x ϕ+为奇函数,[0,2)ϕπ∈,求ϕ;若()f x ϕ+为偶函数,[0,2)ϕπ∈,求ϕ.三、小结四、课后作业一、选择题1.y =sin(x -π3 )的单调增区间是( )A. [k π-π6 ,k π+5π6 ] (k ∈Z)B. [2k π-π6 ,2k π+5π6 ](k ∈Z) C. [k π-7π6 , k π-π6 ] (k ∈Z) D. [2k π-7π6 ,2k π-π6 ] (k ∈Z) 2.下列函数中是奇函数的是( )A. y =-|sin x |B. y =sin(-|x |)C. y =sin|x |D. y =x sin|x | 3.在 (0,2π) 内,使 sin x >cos x 成立的x 取值范围是( )A .(π4 ,π2 )∪( π, 5π4 ) B. ( π4 ,π) C. ( π4 ,5π4 ) D.( π4 ,π)∪( 5π4 ,3π2 ) 4.函数sin(2)3y x π=+图象的一条对称轴方程为( )(A )2x π=-(B )2x π=(C )4x π=(D )512x π=-5. ()f x 是以2π为周期的奇函数,若()12f π-=则5()2f π的值为( ) (A )1 (B )-1 (C )2π (D )-2π 二、填空题1.cos1,cos2,cos3的大小关系是______________________. 2.y=sin(3x -π2 )的周期是__________________. 3. 若,)6sin(a =-απ则=-)32cos(απ4. (1)函数)4sin()(π+=x x f 图象的对称轴是____ _ ;对称中心是 __. (2)函数1)216cos(2)(--=x x f π图象的对称轴是 __;对称中心是 __. 三、解答题1. 求下列函数的定义域(1)xy sin 11+= (2)x y cos 21-= (3))3sin 2lg(-=x y2. 已知)23sin()(x x f -=π. 求(1) ()f x 的最小正周期;(2)()f x 的最值及相应的x 值;(3)()f x 的单调增区间.(4) ()f x 的对称轴方程和对称中心3.已知函数f (x )=⎩⎨⎧>≥.sin cos cos cos sin sin )(),(x x x x x x(1)画出f (x )的图象,并写出其单调区间、最大值、最小值; (2)判断f (x )是否为周期函数. 如果是, 求出最小正周期.。

1.4.2正弦函数、余弦函数的性质(习题课)

1.4.2正弦函数、余弦函数的性质(习题课)

专题一、对称性和周期性综合题
5、f ( x) sin x的一条对称轴x

2
, 一个对称中心(0, 0)
f ( x) sin x的周期T =4

2
-0
f (2a x) f ( x)
f (2b x) f ( x)
一般的,若f ( x)对任意的x, 都有
f ( x)有一个对称轴 x a和一个对称中心 (b, 0)
2、 x) sin x, sin(2
f ( x) sin x的一个对称中心 ( ,0) cos( x) cos x, f ( x) cos x的一个对称中心 ( , 0)
2
一般的,若对函数f ( x), 对任意x都有
f (2a x) f ( x), f ( x)的一个对称中心 ( a, 0)
2


2
O

2

1
3 2
2
5 2
3
x
最大值: 当
x

2
有最大值 y 1 2k 时, 有最小值 y 1 2k 时,
最小值:当x

2
重要复习2:余弦函数的最大值和最小值 y
1
3 5 2
2 3
2


2
O

2

1
3 2
2
5 2
2013-5-8 王山喜-1.4.2正余弦函数的性质习 题课 10
专题一、对称性和周期性综合题
周期函数的定义及变式
(1) x, f ( x a) f ( x), T a
(2) x, f ( x a) f ( x), T

1.4.2 正弦函数、余弦函数的性质(二)

1.4.2 正弦函数、余弦函数的性质(二)

跟踪训练
2.判断下列函数的奇偶性: 2x+5π; (1)f(x)= 2sin 2 (2)f(x)= 2sin x-1.
解析: (1)∵函数的定义域为(-∞,+∞),即定义域关于 原点对称, 2x+5π= 2cos 2x, 且 f(x)= 2sin 2 显然有 f(-x)= 2cos(-2x)= 2cos 2x=f(x), 2x+5π是偶函数; ∴函数 f(x)= 2sin 2
-π+2kπ,π+2kπ ,(k∈Z) 增函数 2 2 (k∈Z) 减函数 增函数 减函数
π+2kπ,3π+2kπ, 2 2
思考应用 1.正弦函数、余弦函数是单调函数吗?能否说“正弦
函数在第一象限是增函数”?
解析:正弦函数、余弦函数都不是定义域上的单调函
数.“正弦函数在第一象限是增函数”也是错误的,因为
2.使 y=sin x 和 y=cos x 均为减函数的一个区间是( 0,π π,π A. B. 2 2 π,3π 3π,π C. D. 2 2
)
解析:由y=sinx,x∈[0,2π]
与y=cos x,x∈[0,2π]的图象知:y
=sin x和y=cos x的均为减函数的
三角函数的奇偶性 判断下列函数的奇偶性:
(1)f(x)=sin4x-cos4x+cos 2x;
1-sin x-cos x (2)f(x)= . 1+sin x+cos x
分析:本题考查函数的奇偶性问题. 解析: (1)∵函数的定义域为(-∞,+∞),即定义域关 于原点对称, 且f(-x)=sin4(-x)-cos4(-x)+cos(-2x)=sin4x-cos4x +cos 2x=f(x),
基础梳理 一、正弦函数和余弦函数的单调性

1.4.2 正弦 余弦函数的性质(单调性、最值)

1.4.2  正弦 余弦函数的性质(单调性、最值)

3 5 对称中心: ( ,0),( ,0),( ,0),( ,0) 2 2 2 2

2
k ,0) k Z
1 例5:求函数 y sin( x ) 的单调递增区间: 2 3
解:

2
1 y sin x 3 2
y sin z

2k z
余弦函数的单调性
y
1 -3
5 2
-2
3 2
-


2
o
-1

2

3 2
2
5 2
x
3
7 2
4
x
cosx
-
-1



2

0
1

2


-1
0
0
y=cosx (xR) 增区间为 [ +2k, 2k],kZ + ], kZ 减区间为 [2k, 2k, 其值从-1增至1 其值从 1减至-1
y cos x
3 5 2
2


y
1
任意两相邻对称轴 ( 或对称中心 ) 的间距为 3 2 O 5 x 3 半个周期;
2
2
1
2

2
3
2
对称轴与其相邻的对称中心的间距为
对称轴:x
,0, , 2
四分之一个周期.
(
x k , k Z

o
-1

2
3
4
5
6
x
sin(-x)= - sinx (xR) cos(-x)= cosx (xR)

1.4.2正弦函数余弦函数的性质(三)应用举例

1.4.2正弦函数余弦函数的性质(三)应用举例
§1.4 .2正弦余弦函数的性 质(三) ——应用举例
y
正弦曲线 1 y sinx , x R
x
-2
-
o
2 3
4
-1
余弦曲线 y 1 y cosx , x R
-2
-
o
2
3
x
-1
正弦函数的性质:y=sinx
1、定义域:R
2、值 域: 1, 1
3、周 期:2π
4、奇偶性:偶函数
5、对称性:对称轴: ,
对称中心


2

,0


6、单调性:单调增区间
2,2
单调减区间
2, 2
例1、下列函数有最大值、最小值吗?如果有,请写出取最大 值、最小值时的自变量x的集合,并说出最大值、最小值分别
4、奇偶性:奇函数
5、对称性:对称轴:


2




对称中心,0
6、单调性:单调增区间


2

2,
2

2

单调减区间

2
2,3
2

2

余弦函数的性质:y=cosx
1、定义域:R
2、值 域: 1, 1
3、周 期:2π
(2)
cos- 23π cos 23π cos 3π 5 5 5
cos - 17π cos17π cosπ 4 4 4
因为0<π< 3π<π, 45
且函数y cosx,x 0,π是减函数
(2) y sin z 的对称中心为 (k ,0) , k Z

正弦函数余弦函数的性质(单调性)

正弦函数余弦函数的性质(单调性)

正弦函数余弦函数的性质(单调性)正弦函数和余弦函数是高中数学中常见的函数,它们具有许多重要的性质。

单调性是其中之一。

本文将重点介绍正弦函数和余弦函数的单调性,希望能对读者加深对这两个函数的理解。

我们先来介绍一下正弦函数和余弦函数的定义。

正弦函数记作y=sin(x),其中x表示自变量,y表示函数值。

余弦函数记作y=cos(x),同样x表示自变量,y表示函数值。

这两个函数都是周期函数,其周期为2π。

下面我们分别来介绍它们的单调性。

正弦函数的单调性:正弦函数在每一个周期内都是先增后减或者先减后增的。

具体来说,当自变量x增大时(在0到π/2之间),y=sin(x)也逐渐增大,当自变量x继续增大(在π/2到π之间),y=sin(x)逐渐减小,当自变量x继续增大(在π到3π/2之间),y=sin(x)又逐渐增大,以此类推。

从图上来看,正弦函数的图像会呈现出一种周期性的波动,这体现了正弦函数的周期性。

我们可以得出结论,正弦函数在每一个周期内都是先增后减或者先减后增的。

正弦函数和余弦函数在各自的周期内的单调性是不同的。

正弦函数是先增后减或者先减后增的,而余弦函数是先减后增或者先增后减的。

这也是因为正弦函数和余弦函数的定义和性质不同所导致的。

通过对这两个函数的单调性进行分析,可以帮助我们更好地理解它们的规律和特点。

除了单调性以外,正弦函数和余弦函数还有许多其他重要的性质,比如周期性、奇偶性、图像特点等。

这些性质都是我们在学习和应用这两个函数时需要重点关注的内容。

希望通过本文的介绍,读者能够对正弦函数和余弦函数的单调性有更清晰的认识,并能够更好地应用这些知识解决实际问题。

1.4.2正弦函数余弦函数的性质-(必修四-数学-优秀课件)

1.4.2正弦函数余弦函数的性质-(必修四-数学-优秀课件)

第15页,共26页。
归纳总结
一般地,函数 y Asin(x )及 y Acos(x ) (其中 A,,为常数,且 A 0, 0 )的周期是
T 2
若 0 则 T 2
第16页,共26页。
练习. 求下列函数的周期:
(1) y sin 3x, x R;(2) y cos x ;
1
-4 -3
-2
- o
-1
2
3
4
5 6 x
y cos x(x R)
第25页,共26页。
函数 图形
y
1
2
0
-1
y=sinx
3
2
2
2
5 2
x
定义域 值域
最值
xR
y [1,1]
xx2222kk时时,,yymmaxin
1 1
单调性
x[-
2
2k
,
2
2k
]
增函数
x[2
2k
,
3
2
2k ]
减函数
奇偶性
奇函数
4
x
2

0

2
sinx -1
0
1

0

3 2
-1
y=sinx (xR)
增区间为
[[
2+22k,,
22
+2] k],kZ
其值从-1增至1
Байду номын сангаас
减区间为
[
2
+22k,,
33
2
+]2k],kZ
其值从 1减至-1
第20页,共26页。
余弦函数的单调性

正余弦函数的性质(最值与单调性)

正余弦函数的性质(最值与单调性)

k = −1, k = 0, k = 1,
17π 11π − 3 , − 3 5π π − 3 , 3 7π 11π 3 , 3

变式二
• 求函数的单调增区间
π 1 y = sin − x + 3 2

y = sin z 减
上时,曲线逐渐下降, 上时,曲线逐渐下降, sinα的值由1减小到 −1 。 α
探究: 探究:正弦函数的单调性
y
1
−3 5 π π − 2
−2π −3π
2
−π

π
2
O
π
2
π
−1
3π 2

5π 2

x
正弦函数在每个闭区间[− + 2kπ , + 2kπ ](k ∈ Z) 2 2 都是增函数,其值从- 增大到 增大到1; 都是增函数,其值从-1增大到 ; π 3π 而在每个闭区间[ + 2kπ , + 2kπ ](k ∈ Z)上都是 2 2 减函数,其值从1减小到 减小到- 。 减函数,其值从 减小到-1。




例2:利用三角函数的单调性பைடு நூலகம்比较下列各组数的大小: :利用三角函数的单调性,比较下列各组数的大小:
π π 23π 17π (1)sin − 与sin − ; (2)cos − 与cos − ; 18 10 5 4 23π 23π 3π 解:

y = cos z y = cos z
y = A sin(ω x + ϕ ) → y = A sin z
增 (1)化未知为已知 增

正弦函数、余弦函数的性质(经典)

正弦函数、余弦函数的性质(经典)
倍角恒等式用于计算一个角的两倍角的三角函数值,例如
sin2x=2sinxcosx,cos2x=cos²x-sin²x。
半角恒等式用于计算一个角的一半角的三角函数值,例如
sin(x/2)=±√[(1-cosx)/2],cos(x/2)=±√[(1+cosx)/2]。
三角函数的积分
三角函数的积分是数学中一类特殊的积分,主要涉及到三角函数的积分计算。通过三角函数的积分, 可以求得三角函数值的面积、体积和其他物理量。
三角函数与复数
三角函数与复数之间有着密切的联系 ,复数可以用三角函数的形式表示, 而三角函数也可以用复数进行计算和 分析。
在复平面上,复数可以用极坐标形式表 示为z=r(cosθ+i sinθ),其中r是模长, θ是辐角。这个表示方法与三角函数的 定义非常相似,因此可以将复数的运算 转化为三角函数的运算。
奇偶性
总结词
正弦函数是奇函数,而余弦函数是偶 函数。
详细描述
正弦函数满足$f(-x) = -f(x)$,即对于 任何实数x,都有$sin(-x) = -sin(x)$。 相反,余弦函数满足$f(-x) = f(x)$, 即对于任何实数x,都有$cos(-x) = cos(x)$。
最值和零点
总结词
正弦函数图像是一个周期函数,其基本周期为$2pi$。
在一个周期内,正弦函数图像呈现先上升后下降的趋势,且在$[0, pi]$区间内是单调递增的。
正弦函数的最大值为1,最小值为-1,且在$x=frac{pi}{2}+2kpi$($k in Z$)处取得最大 值,在$x=2kpi$($k in Z$)处取得最小值。
三角函数在复数域中有许多重要的性 质和应用,例如:傅里叶变换、拉普 拉斯变换、Z变换等。这些变换在信 号处理、控制系统等领域有着广泛的 应用。

1.4.2 正弦函数、余弦函数的性质 课件(人教A版必修4)

1.4.2 正弦函数、余弦函数的性质 课件(人教A版必修4)
栏目 导引
第一章 三角函数
单调减区间为[34π+2kπ,74π+2kπ](k∈Z). 所以原函数 y=2sin(π4-x)的单调增区间为[34π +2kπ,74π+2kπ](k∈Z); 单调减区间为[-π4+2kπ,34π+2kπ](k∈Z).
栏目 导引
第一章 三角函数
变式训练
3.求函数 y=2sin(x+π4)的单调区间. 解:y=sinx 的单调增区间为[-π2+2kπ,π2+ 2kπ],k∈Z;单调减区间为[π2+2kπ,32π+2kπ], k∈Z. 由-π2+2kπ≤x+π4≤π2+2kπ,k∈Z,
栏目 导引
第一章 三角函数
由-π2+2kπ≤x-π4≤π2+2kπ,k∈Z, 得-π4+2kπ≤x≤34π+2kπ,k∈Z; 由π2+2kπ≤x-π4≤32π+2kπ,k∈Z, 得34π+2kπ≤x≤74π+2kπ,k∈Z. 所以函数 y=sin(x-π4)的单调增区间为[-π4 +2kπ,34π+2kπ](k∈Z);
∴y=sin12x 的周期是 4π.
(2)∵2sinx3-π6+2π=2sinx3-π6, 即 2sin13(x+6π)-π6
栏目 导引
=2sinx3-π6, ∴y=2sinx3-π6的周期是 6π.
(3)y=|sinx|的图象如图所示.
第一章 三角函数
∴周期T=π.
∴|φ|的最小值|φ|min=2π+π2-83π=π6.
栏目 导引
归纳总结
第一章 三角函数
栏目 导引
函 数 y= sinx (k∈z)
性质
y= cosx 第(k一∈章z) 三角函数
定义域 值域
最值及相应的 x的 集合
单调性
对称轴 对称中心

高中数学必修4(1.4.2正弦函数、余弦函数的性质)PPT课件

高中数学必修4(1.4.2正弦函数、余弦函数的性质)PPT课件

∴函数 y2sin1x(),x.正弦函数、余弦函数的性质
例1) 3y.求s下in列( x函数的)周期:
3 2) y cos 3x
3) y 3 sin ( 1 x ), x R 一般
35
结论:
函 数 yAsin(x)及 yAcos(x),xR (A,,为 常 数 ,A0,. 0)的 周 期 T2 8
.
15
结论:正弦函数是奇函数,余弦函数是偶 函数
.
9
正弦、余弦函数的图象和性质
-4 -3
-2
y
1
- o
-1
2
3
4
y=sinx (xR) 定义域 xR
值 域 y[ - 1, 1 ]
y=cosx (xR) 周期性 T = 2
y
1
-4 -3
-2
- o
-1
2
3
4
.
5 6 x
5 6 x
10
正弦、余弦函数的奇偶性
对于函数f(x),如果存在一个非零常数T, 使得当x取定义域内的每一个值时,都有
f(x+T)=f(x)
那么函数f(x)就叫做周期函数.非零常数T 叫做这个函数的周期.
注意:如果在周期函数f(x)的所有周期中
存在一个最小的正数,那么这个最小正数
就叫做f(x)的最小正周期.
.
6
例:求下列函数的周期 ( 1 ) y 3 cx ,o x R s( 2 ) y s2 x i ,x n R ( 3 ) y 2 s1 i x n ) 26 解:(1)∵cos(x+2π)=cosx, ∴3cos(x+2π)=3cosx ∴函数y= 3cosx,x∈R的周期为2π

必修四第一章《正弦函数余弦函数的性质》教学设计(王卫)

必修四第一章《正弦函数余弦函数的性质》教学设计(王卫)

§1.4.2正弦函数余弦函数的性质评1节.二、教学目标及解析目标:1、通过图象理解正弦函数、余弦函数的周期性、奇偶性、单调性、最值和对称性,体会数形结合方法;2、会求简单正弦函数、余弦函数的周期、单调区间、最值等。

解析:1、目标1在于让学生体会到数形结合、归纳的数学思想,能独立归纳出的正弦函数、余弦函数的性质。

2、目标2在于让学生学会运用性质对简单正弦函数、余弦函数的奇偶性、单调性、最值等的求解。

三、问题诊断分析本节课的教学中,学生可能出现如下几个问题:①函数周期性的定义是什么?②如何求出正弦函数、余弦函数的周期?③不理解正弦函数、余弦函数的单调区间?不能正确写出正弦函数、余弦函数的单调区间?学生出现这几个问题的原因是不理解正弦函数、余弦函数的本质,对函数的周期性、单调性理解不透彻。

学生运用数学知识解决实际问题的能力还不强;在处理问题时学生考虑问题不深入,往往会造成错误的结果。

解决这些问题的关键是结合图像变化趋势加以理解;结合定义,通过例题加以模仿。

在此过程中,需要学生感受归纳的数学思想,找出函数之间的共同点和规律,通过讨论、合作交流、辩论得到正确的知识。

四、教学条件支持本节课的教学中需要用到几何画板和智能黑板,因为使用几何画板有利于展示函数的图像,能够给学生直观的认识。

五、教学过程1、自学问题1:周期函数的概念是什么?问题2:正、余弦函数有怎样的奇偶性和单调性?问题3:正、余弦函数的最值与对称性分别是什么?2、互学导学问题1:周期函数的概念是什么?设计意图:让学生观察函数的图像,了解函数的变化规律,培养学生的归纳能力。

师生活动:学生思考并回答,教师指导。

小问题1:如何作出正弦函数、余弦函数的图象?答:描点法(几何法、五点法),图象变换法。

并要求学生回忆哪五个关键点。

小问题2:研究一个函数的性质从哪几个方面考虑?答:定义域、值域、奇偶性、单调性、周期性、对称性等小问题3:正弦函数和余弦函数的图象分别是什么?二者有何相互联系?给出正弦、余弦函数的图象,让学生观察,并思考下列问题:世界上有许多事物都呈现“周而复始”的变化规律,如年有四季更替,月有阴晴圆缺.这种现象在数学上称为周期性,在函数领域里,周期性是函数的一个重要性质.小问题4:由正弦函数的图象可知, 正弦曲线每相隔2π个单位重复出现,这一规律的理论依据是什么?sin(2)sin ()x k x k Z π+=∈小问题5:为了突出函数的这个特性,我们把函数f(x)=sinx 称为周期函数,2k π为这个函数的周期.一般地,如何定义周期函数?由inx k x s 2sin =+π)(知: 知:最小正周期是π2.小问题8:就周期性而言,对正弦函数有什么结论?对余弦函数呢?由x k x cos )2cos(=+π知: 正、余弦函数是周期函数,2k π(k ∈Z, k ≠0)都是它的周期,最小正周期是2π.例1 求下列函数的周期: (1)y=3cosx,x ∈R ; (2)y=sin2x,x ∈R ;(3)y=2sin(2x -6π),x ∈R .(1) 因为3cos(x+2π)=3cosx,根据周期函数的定义可知,原函数的周期为2π.有的学生可能会提出π是不是呢?让学生自己试一试,加深对概念的理解.因为3cos(x+π)=-3cosx ≠3cosx,所以π不是周期.(2) 教师引导学生观察2x,可把2x 看成一个新的变量u,那么cosu 的最小正周期是2π,就是说,当u 增加到u+2π时,函数cosu 的值重复出现,而u+2π=2x+2π=2(x+π),所以当自变量x 增加到x+π且必须增加到x+π时函数值重复出现.因为sin2(x+π)=sin(2x+2π),所以由周期函数的定义可知,原函数的周期为π.(3)因为2sin [21(x+4π)-6π]=2sin [(2x -6π)+2π]=2sin(2x -6π).所以由周期函数的定义可知,原函数的周期为4π.解:(1)周期为2π; (2)周期为π; (3)周期为4π.变式1、P36练习第2题.小问题9:周期性是正、余弦函数所具有的一个基本性质,此外,正、余弦函数还具有哪些性质呢?我们将对此作进一步探究.问题2:正、余弦函数有怎样的奇偶性和单调性?设计意图:让学生观察函数的图像,了解函数的变化规律,数形结合,扫清了学生的思维障碍,更好地突破了教学的重难点,培养学生的归纳能力。

1.4.2正弦函数、余弦函数的性质(全)上课用

1.4.2正弦函数、余弦函数的性质(全)上课用

最大值: 当
x 0 2 k 时, 有最大值 y 1
最小值:当
x 2 k
有最小值 y 时,
1
四、正弦、余弦函数的最值
y
1 -4 -3 -2 -
y sin x( x R)
2 3 4 5 6
o
-1
当且仅当 x 2 k ,( k Z )时, (sin x ) max 1; 2 当且仅当 x 2 k,( k Z )时, (sin x ) min 1 . 2
| sin x |≤ 1 | cos x |≤ 1
练习
下列等式能否成立?
(1)2cos x 3
(2)sin 2 x 0.5
3 1 cos x 2
×

sin x 0.5 [1,1]
例1.求下列函数的定义域和值域。
定义域
值域
[2,4]
(1) y 3 sin x
三.定义域和值域
y
1
3 5 2
2 3
2


2
O

2

1
3 2
2
5 2
3
x
正弦函数 y sin x
定义域:R 值域:[-1,1] y
1
2
O

2
3 5 2
2 3
2



1
3 2
2
5 2
3
x
余弦函数 y cos x 定义域:R 值域:[-1,1]
x
当且仅当 x 2 k , ( k Z ) 时 , (cos x ) max 1;
当且仅当 x 2 k , ( k Z ) 时 , (cos x ) min 1 .

三角函数 新课程1.4.2正弦函数、余弦函数的性质QQ

三角函数 新课程1.4.2正弦函数、余弦函数的性质QQ

思考1:由正弦函数的图象可知, 正弦曲 线每相隔2π个单位重复出现, 这一规 律的理论依据是什么?
.
sin( x + 2kπ ) = sin x ( k ∈ Z )
思考2:设f(x)=sinx,则sin( x + 2kπ ) = sin x 可以怎样表示?其数学意义如何?
思考3:为了突出函数的这个特性,我们 把函数f(x)=sinx称为周期函数,2kπ为 这个函数的周期.一般地,如何定义周期 函数? 对于函数f(x),如果存在一个非零 常数T,使得当x取定义域内的每一个 值 时 , 都 有 f(x+T)=f(x), 那 么 函 数 f(x)就叫做周期函数,非零常数T就叫 做这个函数的周期.
4.周期求法: 1)定义法:f(x+t)=f(x) 2)公式法:函数 y = A sin( wx + j ) 和
y = A cos(wx + j ) (A
的 最 小 2p 正周期都是 w ,这是正、余弦函数的 周期公式,解题时可以直接应用.
? 0, w 0)
作业:P36练习:1,2,3 作业: 36练习: 练习 做在书上 不用交
ห้องสมุดไป่ตู้
问题提出
2.正弦函数和余弦函数的图象分别是什么?二者
有何相互联系?
-6π -4π -5π -3π -1
9π − 2
1 -π
O
y π
y=sinx
3π 2π 4π 5π 6π x
-2π
5π − 2
7π − 2
π − 1 2
3π − 2 -1
O
y
π 2
3π 2
y=cosx
5π 2
7π 2
9π 2

1.4.2正弦函数余弦函数的性质(周期性)公开课

1.4.2正弦函数余弦函数的性质(周期性)公开课
结论: 周期T与w有关,|w|越大T越小, |w| 越小T越大。
看图像
y Asin(wx c)
思考:w与
T之间存在什 么关系呢?
函数 w值 周期T w×T
y=sinx 1 2 2
y=sin2x 2
2
y 2sin(1 x - ) 26
1 2
4
2
结论:w与T的积是常数2
即wT 2
T 2
w
一般地,函数 y Asin(x ) 及 y Acos(x )
最小正周期是: T 2
A 0, 0
求下列函数的最小正周期 (1)y sin 3 x,x R (2)y cos(4x 2),x R
4 (3)y cos( 1 x),x R
2
解:(1) T
2
2
3
8
3ห้องสมุดไป่ตู้
4
(3)
T
2
2
|1
|
4
2
(2)T 2 2 42
基础达标
一、选择题
(2)因为sin( ) sin ,所以 y sin x 的周期是 ( )
42
4
2
判断正误
提示:只需判断对每一个x,是 否都有f(x+T)=f(x)成立。
(1)因为sin(x 2 ) sin x,所以 y sin x 的周期是2( )
(2)因为sin(
)
sin
,所以
y
sin
x 的周期是 (
§1.4.2 正弦函数、余弦函数 的性质 ----周期性
1.终边相同的角的三角函数值有何关系?
角与角 2k 的终边相同,同名函数值相
等,即
sin( 2k ) sin cos( 2k ) cos tan( 2k ) tan
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


3
)的单调区间
学生练习:教材 41 页 6 课堂总结:
作 教材 46 页 4,5 ; 业 71 页 8
课 后 反 思
4
了解从特殊到一般, 从一般到特殊的辩证思想方法和分析、 探索、 化归、类比的科学研究方法在解决数学问题中的应用。 数形结合思想的渗透;化归思想的渗透;提高数学素质.
教 学 重 点 教 学 难 点
函数单调性的应用
求函数的单调区间
板 书 设 计 计
1
教学 环节 复习提问:




个 性 设 计
1.正、余弦函数的最值
2.正弦函数的单调性
3.余弦函数的单调性
新课讲解: 题型一:利用三角函数的单调性比较大小。
(1)(sin( )与 sin( ) 8 10


(2) cos(
23 17 )与 cos( ) 5 4
学生练习:教材 41 页第 5 题
2
教学 环节




个 性 设 计
题型二:求三角函数的单调区间
吉林二中 数学 学科 高一 年级教学案
课题 课型 新课 主备 1.4.2 正弦函数、余弦函数的性质(三) 田晓萍 审核 申晓晶 授课时间
No.
教 学 目 标
知识 与 能力 过程 与 方法 情感 态度 价值观
1、掌握正弦函数和余弦函数的性质; 2、能够利用函数的单调性比较大小; 3、会求简单函数的单调区间。
1 1.求函数y sin( x ) 2 3 x R的单调递增区间
变式 1. x R的单调递减区间 .
变式2. x - 2 ,2 的单调递增区间 .
3
教学 环节




个 性 设 计 1 变源自3.求函数y sin( - x) 3 2 x R的单调递增区间
变式 4.求函数 y cos( 2 x
相关文档
最新文档