【全国通用-2018高考推荐】高三数学(文科)高考模拟试题一及答案解析
2018年普通高等学校招生全国统一考试文科数学模拟试题及答案
2018年普通高等学校招生全国统一考试文科数学模拟注意事项:1、答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2340A x x x =∈--≤Z ,{}0ln 2B x x =<<,则A B =()A .{}1,2,3,4B .{}3,4C .{}2,3,4D .{}1,0,1,2,3,4-【答案】C【解析】{}{}{}2340141,0,1,2,3,4A x x x x x =∈--≤=∈-≤≤=-Z Z ,{}{}20ln 21e B x x x x =<<=<<,所以{}2,3,4AB =.2.设复数1z =(i 是虚数单位),则z z+的值为()A.B .2C .1D.【答案】B【解析】2z z +=,2z z +=.3.“p q ∧为假”是“p q ∨为假”的()条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要 【答案】B【解析】由“p q ∧为假”得出p ,q 中至少一个为假.当p ,q 为一假一真时,p q ∨为真,故不充分;当“p q ∨为假”时,p ,q 同时为假,所以p q ∧为假,所以是必要的,所以选B .4.已知实数x ,y 满足约束条件222020x x y x y ≤⎧⎪-+≥⎨⎪++≥⎩,则3x z y =-+的最大值为()A .143- B .2- C .43 D .4【答案】C【解析】作出的可行域为三角形(包括边界),把3x z y =-+改写为3xy z =+,当且仅当动直线3x y z =+过点()2,2时,z 取得最大值为43. 5.据有关文献记载:我国古代一座9层塔共挂了126盏灯,且相邻两层中的下一层灯数比上一层灯数都多n (n 为常数)盏,底层的灯数是顶层的13倍,则塔的底层共有灯()盏. A .2 B .3 C .26 D .27 【答案】C【解析】设顶层有灯1a 盏,底层共有9a 盏,由已知得,则()91991132691262a a a a a =⎧⎪⇒=⎨+=⎪⎩, 所以选C .6.如图是一个算法流程图,若输入n 的值是13,输出S 的值是46,则a 的值可以是() A .8 B .9 C .10 D .11【答案】C 【解析】依次运行流程图,结果如下:13S =,12n =;25S =,11n =;36S =,10n =;46S =,9n =,此时退出循环,所以a 的值可以取10.故选C .7.设双曲线()2222:10,0x y C a b a b-=>>的两条渐近线互相垂直,顶点到一条渐近线的距离为1,则双曲线的一个焦点到一条渐近线的距离为() A .2BC.D .4【答案】B【解析】因为双曲线2222:1x y C a b-=的两条渐近线互相垂直,所以渐近线方程为y x =±,所以a b =.因为顶点到一条渐近线的距离为1,所以12a =,所以a b ==,双曲线C 的方程为22122x y -=,所以双曲线的一个焦点到一条渐近线的距离为b =8.已知数据1x ,2x ,,10x ,2的平均值为2,方差为1,则数据1x ,2x ,,10x 相对于原数据() A .一样稳定 B .变得比较稳定 C .变得比较不稳定 D .稳定性不可以判断 【答案】C【解析】因为数据1x ,2x ,,10x ,2的平均值为2,所以数据1x ,2x ,,10x 的平均值也为2,因为数据1x ,2x ,,10x ,2的方差为1,所以()()102211222111i i x =⎡⎤-+-=⎢⎥⎣⎦∑,所以()10212=11i i x =-∑,所以数据1x ,2x ,,10x 的方差为()102112=1.110i i x =-∑,因为1.11>,所以数据1x ,2x ,,10x 相对于原数据变得比较不稳定.9.设n a 表示正整数n 的所有因数中最大的奇数与最小的奇数的等差中项,数列{}n a 的前n 项和为n S ,那么21n S -=()A .122n n +-- B .11222433n n --+⋅- C .2nn - D .22nn +-【答案】B【解析】由已知得,当n 为偶数时,2n n a a =,当n 为奇数时,12n na +=. 因为12342121n n S a a a a a --=+++++,所以1112342121n n S a a a a a ++--=+++++()()111352462122+n n a a a a a a a a ++--=++++++++()1123211113151212222n n a a a a +-⎛⎫++++-=+++++++++ ⎪⎝⎭()()123211232n n a a a a -=+++++++++()211222n nnS -+=+()211242n nn S -=++, 即()121211242n n n n S S +--=++,所以()()()1112211112121111224242422422233n n n n n n nS S --------=+++++++=+⋅-.10.过抛物线2y mx =()0m >的焦点作直线交抛物线于P ,Q 两点,若线段PQ 中点的横坐标为3,54PQ m =,则m =() A .4B .6C .8D .10【答案】C【解析】因为2y mx =,所以焦点到准线的距离2mp =,设P ,Q 的横坐标分别是1x ,2x ,则1232x x +=,126x x +=,因为54PQ m =,所以125+4x x p m +=,即5624m m +=,解得8m =.11.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为2,1,12,则此三棱锥外接球的表面积为()A .174π B .214π C .4π D .5π【答案】B【解析】由已知条件及三视图得,此三棱锥的四个顶点位于长方体1111ABCD A BC D -的四个顶点,即为三棱锥11A CB D -,且长方体1111ABCD A BC D -的长、宽、高分别为2,1,12, 所以此三棱锥的外接球即为长方体1111ABCD A BC D -的外接球,半径4R ==,所以三棱锥外接球的表面积为22214444S R ⎛π=π=π= ⎝⎭.12.已知点P 是曲线sin ln y x x =+上任意一点,记直线OP (O 为坐标系原点)的斜率为k ,则下列一定成立的为() A .1k <- B .0k < C .1k < D .1k ≥ 【答案】C【解析】任意取x 为一正实数,一方面sin ln ln 1y x x x =+≤+,另一方面容易证ln 1x x +≤成立,所以sin ln y x x x =+≤,因为sin ln ln 1y x x x =+≤+与ln 1x x +≤中两个等号成立条件不一样,所以sin ln y x x x =+<恒成立,所以1k <,所以排除D ;当2x π≤<π时,sin ln 0y x x =+>,所以0k >,所以排除A ,B .所以选C .第Ⅱ卷本卷包括必考题和选考题两部分。
2018届全国数学高考全真模拟卷1(文科)答案
2018年数学(文科)试题参考答案说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分. 一、选择题:本大题主要考查基本知识和基本运算.共12小题,每小题5分,满分60分.6.【解析】∵OA →+13AB →+13AC →=0,∴OA →+13(OB →-OA →)+13(OC →-OA →)=0,∴OA →+OB →+OC →=0,所以O 为△ABC 的重心,又O 为△ABC 的外心,所以△ABC 为正三角形.设△ABC 的边长为a ,则23×32a =4,∴a =4 3.所以CA →在CB →上的投影为43cos π3=23,故答案选A .7.【解析】由已知的三视图可得:该几何体是一个底面为直角边为2的等腰直角三角形,高为1的三棱锥,故该几何体的体积为V =23,故答案为C.8.【解析】方程x 2-px +3p -8=0有两个正根,则有⎪⎩⎪⎨⎧>>+≥∆0002121x x x x即解得p ≥8或83<p ≤4,又p ∈[0,4],则所求概率为p =13,故答案选A .11.【解析】由三角形PF 1F 2三边关系可知⎩⎨⎧>>+cc c 2101022,∴52<c<5,∴e 1e 2+1=2c 10+2c ·2c10-2c+1=c 225-c 2+1=2525-c 2>43,因此e 1e 2+1的取值范围是4(,)3+∞,故答案选B . 12.【解析】设F ()x =f ()x -12x ,F ′(x )=f ′(x )-12,∵f ′(x )>12.∴F ′(x )=f ′(x )-12>0,即函数F (x )在R 上单调递增.∵f (x 2)>x 22+12,∴f (x 2)-x 22>f (1)-12,∴F (x 2)>F (1).而函数F (x )在R 上单调递增,x 2>1,∴x>1或x <-1,故答案选C.二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分. 13.521033+ 14.n3n -1 15.5% 16.(4,2017)16.【解析】作出函数f (x )的图象,令直线y =t 与f (x )的图象交于四个点,其横坐标由左到右依次为a ,b ,c ,d ,则由图象可得,b +c =2,log 2015(d -1)=a)21(-1=t ,由于0<t <1,则得到-1<a <0,2<d <2016,则2<a +d <2015,即有4<a +b +c +d <2017,故答案为:(4,2017).三、解答题:本大题共5小题,满分60分.解答须写出文字说明、证明过程和演算步骤. 17.(本小题满分12分)解:(Ⅰ)f (x )=32sin2x -12(cos 2x -sin 2x )-1=32sin2x -12cos2x -1=sin ⎝⎛⎭⎫2x -π6-1, ........1分 f (C )=sin ⎝⎛⎭⎫2C -π6-1=0,所以sin ⎝⎛⎭⎫2C -π6=1,因为2C -π6∈⎝⎛⎭⎫-π6,11π6,所以2C -π6=π2,所以C =π3, ....... 3分由余弦定理知:a 2+b 2-2ab cos π3=7,因为sin B =3sin A ,由正弦定理知:b =3a , ......... 5分 解得:a =1,b =3.6分(Ⅱ)由条件知g (x )=sin ⎝⎛⎭⎫2x +π6-1,所以g (B )=sin ⎝⎛⎭⎫2B +π6-1=0,所以sin ⎝⎛⎭⎫2B +π6=1,因为2B +π6∈⎝⎛⎭⎫π6,13π6,所以2B +π6=π2,即B =π6,m =⎝⎛⎭⎫cos A ,32,n =(1,sin A -33cos A ),于是m·n =cos A +32⎝⎛⎭⎫sin A -33cos A =12cos A +32sin A =sin ⎝⎛⎭⎫A +π6, ........ 8分∵B =π6,∴A ∈⎝⎛⎭⎫0,56π,得A +π6∈⎝⎛⎭⎫π6,π, ..........10分 ∴sin ⎝⎛⎭⎫A +π6∈(0,1],即m·n ∈(0,1]. ................. 12分18.(本小题满分12分)解:(Ⅰ)证明:取AD 的中点G ,连接OG ,FG . ∵对角线AC 与BD 的交点为O ,∴OG ∥DC ,OG =12DC ,..............2分∵EF ∥DC ,DC =2EF ,∴OG ∥EF ,OG =EF ,∴OGFE 为平行四边形, ∴OE ∥FG , ..............4分 ∵FG ⊂平面ADF ,OE ⊄平面ADF ,∴OE ∥平面ADF ; ..................5分 (Ⅱ)证明:∵四边形ABCD 为菱形,∴OC ⊥BD ,∵FD =FB ,O 是BD 的中点, ∴OF ⊥BD , ∵OF ∩OC =O ,∴BD ⊥平面AFC ,.................7分 ∵BD ⊂平面ABCD ,∴平面AFC ⊥平面ABCD ;..........................8分 (Ⅲ)解:作FH ⊥AC 于H .∵平面AFC ⊥平面ABCD ,∴FH ⊥平面ABCD ,∴∠F AH 为AF 与平面ABCD 所成角,.........................10分 由题意,△BCD 为正三角形,OA =3,BD =AB =2, ∵FD =FB =2,∴△FBD 为正三角形,∴OF = 3.△AOF 中,由余弦定理可得cos ∠AOF =3+3-92·3·3=-12,∴∠AOF =120°,∴∠F AH =∠F AO =30°,∴AF 与平面ABCD 所成角为30°...............................12分19.(本小题满分12分) 解:(1)由表格数据可知视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的学生有()10a +人.记“视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上”为事件A ,则102()405a P A +==, ………………………………………………4分 解得6a =. …………………………………………………………5分因为3240a b ++=,所以2b =.答:a 的值为6,b 的值为2.……………………………………………7分(2)由表格数据可知,听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的学生有()11b +人,由(1)知,2b =,即听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的学生共有13人.…9分记“听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上”为事件B , 则()11134040b P B +==. 答:听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的概率为1340.…12分20.(本小题满分12分)解:(Ⅰ)依题意,椭圆Γ:x 22+y 2=1中,a 2=2,b 2=1,故c 2=a 2-b 2=1,故F ()1,0,故p2=1,则2p =4,故抛物线C 的方程为y 2=4x ,将M ()x 0,2代入y 2=4x ,解得x 0=1,故||MF =1+p2=2 .........................4分(Ⅱ)(法一)依题意,F ()1,0,设l :x =ty +1,设A ()x 1,y 1,B ()x 2,y 2,联立方程⎩⎪⎨⎪⎧y 2=4x x =ty +1,消去x ,得y 2-4ty -4=0.∴⎩⎪⎨⎪⎧y 1+y 2=4t y 1y 2=-4 ①且⎩⎪⎨⎪⎧x 1=ty 1+1x 2=ty 2+1,又AF →=λFB → 则()1-x 1,-y 1=λ()x 2-1,y 2,即y 1=-λy 2,代入 ① 得⎩⎨⎧()1-λy 2=4t -λy 22=-4, ................6分 消去y 2得4t 2=λ+1λ-2,且H ()-1,0, ................8分则|HA |2+|HB |2=()x 1+12+y 21+()x 2+12+y 22=x 21+x 22+2()x 1+x 2+2+y 21+y 22=()ty 1+12+()ty 2+12+2()ty 1+ty 2+2+2+y 21+y 22=()t 2+1()y 21+y 22+4t ()y 1+y 2+8=()t 2+1()16t 2+8+4t ·4t +8=16t 4+40t 2+16.由16t 4+40t 2+16=854, ...............10分解得t 2=18或t 2=-218(舍),故λ=2或12...............................12分(法二)若设直线斜率为k ,讨论k 存在与不存在,酌情给分21.(本小题满分12分)解:(Ⅰ)当b =1时,f (x )=12ax 2-(1+a 2)x +a ln x ,f ′(x )=ax -(1+a 2)+a x =(ax -1)(x -a )x...................1分讨论:1°当a ≤0时,x -a >0,1x>0,ax -1<0⇒f ′(x )<0,此时函数f (x )的单调递减区间为(0,+∞),无单调递增区间........................2分2°当a >0时,令f ′(x )=0⇒x =1a或a ,①当1a =a (a >0),即a =1时, 此时f ′(x )=(x -1)2x≥0(x >0),此时函数f (x )单调递增区间为(0,+∞),无单调递减区间;...........................3分②当0<1a<a ,即a >1时,此时在⎝⎛⎭⎫0,1a 和(a ,+∞)上函数f ′(x )>0, 在⎝⎛⎭⎫1a ,a 上函数f ′(x )<0,此时函数f (x )单调递增区间为⎝⎛⎭⎫0,1a 和(a ,+∞); 单调递减区间为⎝⎛⎭⎫1a ,a ; .....................4分③当0<a <1a,即0<a <1时,此时函数f (x )单调递增区间为(0,a )和⎝⎛⎭⎫1a ,+∞; 单调递减区间为⎝⎛⎭⎫a ,1a ................................................6分 (Ⅱ)证明:(法一)当a =-1,b =0时,f (x )+e x >-12x 2-x +1,只需证明:e x -ln x -1>0,设g (x )=e x-ln x -1(x >0), 问题转化为证明∀x >0,g (x )>0.令g ′(x )=e x -1x , g ″(x )=e x +1x2>0,∴g ′(x )=e x -1x 为(0,+∞)上的增函数,且g ′)21(=e -2<0,g ′(1)=e -1>0,........8分∴存在惟一的x 0∈⎝⎛⎭⎫12,1,使得g ′(x 0)=0,e x 0=1x 0, ∴g (x )在(0,x 0)上递减,在(x 0,+∞)上递增.......................................10分∴g (x )min =g (x 0)=e x 0-ln x 0-1=1x 0+x 0-1≥2-1=1,∴g (x )min >0∴不等式得证......................................................12分 (法二)先证:x -1≥ln x (x >0)令h (x )=x -1-ln x (x >0),∴h ′(x )=1-1x =x -1x=0⇒x =1,∴h (x )在(0,1)上单调递减,在(1,+∞)上单调递增∴h (x )min =h (1)=0,∴h (x )≥h (1)⇒x -1≥ln x .............................8分 ∴1+ln x ≤1+x -1=x ⇒ln(1+x )≤x ,∴e ln(1+x )≤e x ,10分∴e x ≥x +1>x ≥1+ln x ,∴e x >1+ln x ,故e x -ln x -1>0,证毕.............................12分22.(本小题满分10分)解:(Ⅰ)曲线⎩⎨⎧x =3cos α+sin α,y =3sin α-cos α,可得:⎩⎨⎧x 2=3cos 2α+23sin αcos α+sin 2α,y 2=3sin 2α-23sin αcos α+cos 2α, 曲线C 的普通方程:x 2+y 2=4 ................................3分直线l :ρsin ⎝⎛⎭⎫θ+π6=1=32ρsin θ+12ρcos θ,直线l 的直角坐标方程:x +3y -2=0 ...................................5分(Ⅱ)∵圆C 的圆心(0,0)半径为2,,圆心C 到直线的距离为1,∴这三个点在平行直线l 1与 l 2上,如图:直线l 1与 l 2与l 的距离为1. l 1:x +3y =0,l 2:x +3y -4=0. ⎩⎨⎧x 2+y 2=1,x +3y =0,可得⎩⎨⎧x =3,y =-1,⎩⎨⎧x =-3,y =1 两个交点(-3,1)、(3,-1); ⎩⎨⎧x 2+y 2=1,x +3y -4=0,解得(1,3), ...................8分 这三个点的极坐标分别为:⎝⎛⎭⎫2,11π6、⎝⎛⎭⎫2,5π6、⎝⎛⎭⎫2,π3 ...........................10分23.(本小题满分10分)解:(Ⅰ)当a =0时,g (x )=-||x -1 ∴-||x -1≤||x -2+b ⇒-b ≤||x -1+||x -2∵x -1+x -2≥x -1+2-x =1∴-b ≤1,∴b ≥-1 ..................5分 (Ⅱ)当a =1时,g (x )=⎩⎪⎨⎪⎧2x -1,0<x <11x -x +1,x ≥1 ......................6分可知g (x )在(0,1)上单调递增,在(1,+∞)单调递减8分 ∴g (x )max =g (1)=1 ....................10分。
2018年高考模拟卷数学(文)试题Word版含答案
2018年高考模拟卷数学(文)试题Word版含答案2018年高中毕业班教学质量检测高考模拟数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数z满足(1-i)z=1+3i(i为虚数单位),则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知全集U=Z,A={x∈Z|x^2-x-2≥0},B={-1,0,1,2},则(C∩A)∩B=()A.{-1,2}B.{-1,0}C.{0,1}D.{1,2}3.若-1<sinα+cosα<1,则()A.sinα<cosαB.cosα<sinαC.tanα<cosαD.cos2α<14.已知点(2,3)在双曲线x^2/a^2-y^2/b^2=1(a>0)的一条渐近线上,则a=()A.3B.4C.2D.235.“a^2=1”是“函数f(x)=lg((2+x)/(1-x))+(a^2-1)/2为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.执行以下程序框架,则输出A的值是()int A=0;for(int i=1;i<=6;i++){A=A*10+i;XXX<<A<<endl;A.B.xxxxxxxxC.D.xxxxxxx7.边长为4的正三角形ABC中,点D在边AB上,AD=DB,M是BC的中点,则AM×CD=()A.16B.12√3C.-8/3D.-88.等比数列{a_n}共有2n+1项,其中a_1=1,偶数项和为170,奇数项和为341,则n=()A.3B.4C.7D.99.函数f(x)=x^2cos(x)在(-π/2,π/2)的图象大致是()A。
B。
C。
D。
10.抛物线x^2=4y的焦点为F,过F作斜率为-3的直线l 与抛物线在y轴右侧的部分相交于点A,过A作抛物线准线的垂线,垂足为H,则△AHF的面积是()A.4B.3/3C.4/3D.811.将函数f(x)=sin(ωx)(ω>0)的图象向左平移π/4个单位得到函数g(x)的图象,若函数g(x)的图象关于直线x=ω对称且在区间(-ω,ω)内单调递增,则ω的值为()A.3π/2B.2π/3C.3π/4D.π/212.若函数f(x)={-x-e^(x+1),x≤a。
2018年普通高等学校招生全国统一考试仿真卷 文科数学
绝密 ★ 启用前2018年普通高等学校招生全国统一考试仿真卷文科数学(一)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2018·晋城一模]已知集合(){},2M x y x y =+=,(){},2N x y x y =-=,则集合M N =( )A .{}0,2B .()2,0C .(){}0,2D .(){}2,0【答案】D【解析】解方程组22x y x y +=-=⎧⎨⎩,得20x y =⎧⎨=⎩.故(){}2,0MN =.选D .2.[2018·台州期末](i 为虚数单位)) 班级 姓名 准考证号 考场号 座位号此卷只装订不密封A .2B .1C .12D.2【答案】C11i 22z ∴=-=,选C . 3.[2018·南宁二中]为考察A ,B 两种药物预防某疾病的效果,进行动物实验,分别得到如下等高条形图:根据图中信息,在下列各项中,说法最佳的一项是( ) A .药物B 的预防效果优于药物A 的预防效果 B .药物A 的预防效果优于药物B 的预防效果 C .药物A 、B 对该疾病均有显著的预防效果 D .药物A 、B 对该疾病均没有预防效果 【答案】B【解析】由A 、B 两种药物预防某疾病的效果,进行动物试验,分别得到的等高条形图,知:药物A 的预防效果优于药物B 的预防效果.故选B .4.[2018·滁州期末])A .4-B .4C .13-D .13【答案】C药物A 实验结果患病未患病服用药没服用药0.10.20.30.40.50.60.70.80.91药物B实验结果患病未患病服用药没服用药0.10.20.30.40.50.60.70.80.91【解析】sin2cos tan2ααα-=-⇒=,C.5.[2018·陕西一模]《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为()A.2 B.4+C.4+D.4+【答案】C【解析】根据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三2,且侧棱与底面垂直,侧棱长是2,∴几C.6.[2018·滁州期末]设变量x,y满足约束条件2202202x yx yy+--+⎧⎪⎨⎪⎩≥≤≤,则目标函数z x y=+的最大值为()A.7 B.6 C.5 D.4 【答案】D【解析】画出不等式组表示的可行域(如图阴影部分所示).由z x y =+,得y x z =-+.平移直线y x z =-+,结合图形可得,当直线(图中的虚线)经过可行域内的点A 时,直线在y 轴上的截距最大,此时z 取得最大值.由2 220y x y =-+=⎧⎨⎩,解得22x y ==⎧⎨⎩,故点A 的坐标为(2,2).∴max 224z =+=,即目标函数z x y =+的最大值为4.选D .7.[2018·蚌埠一模]已知()201720162018201721f x x x x =++++,下列程序框图设计的是求()0f x 的值,在“ ”中应填的执行语句是( )A .2018n i =-B .2017n i =-C .2018n i =+D .2017n i =+【答案】A【解析】不妨设01x =,要计算()120182017201621f =+++++,首先201812018S =⨯=,下一个应该加2017,再接着是加2016,故应填2018n i =-.8.[2018·达州期末]若函数()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则a 的取值范围为( ) A .()0,4B .()0,+∞C .()3,4D .()3,+∞开始i =1,n =2018结束i ≤2017?是否输入x 0S =2018输出SS =Sx 0S =S+ni =i +1【答案】C【解析】如图,若()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则()34a ∈,,故选C .9.[2018·朝阳期末]阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k (0k >且1k ≠)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 与A ,B当P ,A ,B 不共线时,PAB △面积的最大值是( ) A.BCD【答案】A【解析】如图,以经过A ,B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系;则:()10A -,,()10B ,,设()P x y ,,PA PB=两边平方并整理得:()222261038x y x x y +-+=⇒-+=.∴PAB △面积的最大值是122⨯⨯=A .10.[2018·孝感八校]已知双曲线E :22221x y a b-=(0,0)a b >>的右顶点为A,右焦点为F ,B 为双曲线在第二象限上的一点,B 关于坐标原点O 的对称点为C ,直线CA 与直线BF 的交点M 恰好为线段BF 的中点,则双曲线的离心率为( )A .12B .15C .2D .3【答案】D【解析】不妨设2,b B c a ⎛⎫- ⎪⎝⎭,由此可得(),0A a ,2,b C c a ⎛⎫- ⎪⎝⎭,(),0F c ,20,2b M a ⎛⎫ ⎪⎝⎭,由于A ,C ,M 三点共线,故222b b a a a a c =--,化简得3c a =,故离心率3e =.11.[2018·昆明一中]设锐角ABC △的三个内角A ,B ,C 的对边分别为a ,b ,c ,且1c =,2A C =,则ABC △周长的取值范围为( ) A.(0,2 B.(0,3C.(2 D.(2+【答案】C【解析】因为ABC △为锐角三角形,所以cos 22C <<;又因为2A C =,所以sin 2sin cos A C C =,又因为1c =,所以2cos a C =;由sin sin b cB C=, 即2sin sin34cos 1sin sin c B Cb C C C ===-,所以24cos 2cos a b c C C ++=+,令cos t C =,则t ∈⎭,又因为函数242y t t =+在⎭上单调递增,所以函数值域为(2+,故选:C .12.[2018·菏泽期末]()2f x mx =+有一个零点,则实数m 的取值范围是( ) A ]{64-+B ]{0,64-+C ]{}632-D ]{0,63-【答案】B【解析】由题意函数()f x 的图象与直线2y mx =+有一个交点.如图是()f x 的图象,1x >时,()21f x x =-设切点为()00,x y ,则切线为()()02002211y x x x x -=----,把()0,2代入,02x =;1x ≤时,()2e x f x =-,()e x f x '=-,设切点为()00,x y ,则切线为()()0002e e x x y x x --=--,把()0,2代入,解得01x =,又()12ef =-,()11e e f '=-=-,]{0,42-满足题意,故选B .第Ⅱ卷本卷包括必考题和选考题两部分。
2018年高考数学模拟试卷(文科)
2018年高考数学模拟试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. (5 分)已知集合A={X|X2W 1} , B={x|0v x v 1},则A H B=()A. [ - 1, 1)B・(0, 1) C. [ - 1, 1] D. (- 1,1)2. (5分)若i为虚数单位,则复数z= _在复平面上对应的点位于()丄*A.第一象限B.第二象限C第三象限D.第四象限3. (5分)已知等差数列{a n}前3项的和为6, a5=8,则a20=()A. 40B. 39 C 38 D . 374 . (5分)若向量的夹角为一,且|打|=4, |.・|=1,则「41-|=()A . 2B . 3 C. 4 D . 52 25. (5分)已知双曲线C: ———(a>0, b>0)的渐近线与圆(X+4)2+y2=8a2b2无交点,则双曲线离心率的取值范围是()A. (1,二)B. (一,1■'■')C. (1, 2)D. (2, +x)6. (5分)已知实数x,y满足约束条件\ i-2y+4>0,则z=x+2y的最大值为A . 6B . 7 C. 8 D . 97. (5分)函数y=log 〔(X2-4X+3)的单调递增区间为()TA. (3, +x)B. (-X, 1)C. (-X, 1)U(3, +x) D . (0, +x)8. (5分)宜宾市组织歌颂党,歌颂祖国”的歌咏比赛,有甲、乙、丙、丁四个单位进入决赛,只评一个特等奖,在评奖揭晓前,四位评委A, B, C, D对比赛预测如下:A说:是甲或乙获得特等奖”B说:丁作品获得特等奖”C说:丙、乙未获得特等奖”D说:是甲获得特等奖”比赛结果公布时,发现这四位评委有三位的话是对的,则获得特等奖的是()A .甲 B.乙 C.丙 D . 丁9. (5分)某几何组合体的三视图如图所示,则该几何组合体的体积为(A . 4 B. 5 C. 6 D . 711. (5分)分别从写标有1, 2, 3, 4, 5, 6, 7的7个小球中随机摸取两个小 球,则摸得的两个小球上的数字之和能被 3整除的概率为()A•寻B 寻C 骨D.寺12. (5分)已知函数f (x )是定义在R 上的奇函数,当x v 0时,f (x ) =e x (x+1), 给出下列命题:① 当 x >0 时,f (x ) =e x (x+1);10.(5分) 若输入S=12 A=4, B=16, n=1,执行如图所示的程序框图,则输出的结果为(②? X I, X2€ R,都有| f (X1)— f (X2)| V2;③f (x)> 0 的解集为(—1, 0)u, (1, +x);④方程2[f (x) ]2-f (x) =0有3个根.其中正确命题的序号是( )A.①③ B •②③C•②④ D •③④二、填空题:本大题共4个小题,每小题5分,共20分.13. (5分)在等比数列{a n}中,若a2+a4丄,a3丄,且公比q V1,则该数列的通项公式a n= ______ .14. (5 分)已知y=f (x)是偶函数,且f (x) =g (x)- 2x, g (3) =3,则g (3) = ______ .15. (5分)三棱锥P- ABC中,底面△ ABC是边长为.二的等边三角形,PA=PB=PC PB丄平面PAC则三棱锥P- ABC外接球的表面积为_______ .16. (5 分)在厶ABC中,D 为AC上一点,若AB=AC AD*D, BD=4 ,则厶ABCu-n面积的最大值为_______ .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤•第17〜21题为必考题,每个试题考生都必须答•第22、23题为选考题,考生根据要求作答.(一)必做题:共60分.17. (12分)在厶ABC中,a, b, c分别为A, B, C的对边,且sinA=2sinB(1)若C^—, △ ABC的面积为「,求a的值;4 4(2)求亟竽■—沁迥嗚的值.SLED 218. (12分)每年4月15至21日是全国肿瘤防治宣传周,全国每天有超 1万人确诊为癌症,其中肺癌位列发病首位,吸烟人群是不吸烟人群患肺癌的10倍•某 调查小组为了调查中学生吸烟与家庭中有无成人吸烟的关系,发放了 500份不记名调查表,据统计中学生吸烟的频率是0.08,家庭中成人吸烟人数的频率分布条 形图如图.(1) 根据题意,求出a 并完善以下2X 2列联表;家中有成人吸烟家中无成人吸烟合计学生吸烟人数 28学生不吸烟人数合计(2) 能否据此判断有97.5%的把握认为中学生吸烟与家庭中有成人吸烟有关? 附表及公式: P (K 2>k 0)0.100 0.050 0.025 0.010 0.005 k 02.7063.8415.0246.6357.879Q= Ca+b) (c+d) Ca-Fc) (b+d)'19. ( 12分)如图,四棱锥P -ABCD 的底面ABCD 是直角梯形,AD // BC, / ADC=90 , 平面PAD 丄平面ABCDQ 是AD 的中点,M 是棱PC 上的点,PA=PD=2AD=2BC=2n=a+b+c+dCD=:(1)求证:平面BMQ丄平面PAD;(2)当M是PC的中点时,过B,M,Q的平面去截四棱锥P-ABCD求这个截面的面积.20. (12分)已知抛物线C的焦点在x轴上,顶点在原点且过点p (2,1),过点(2,0)的直线I交抛物线C于A,B两点,M是线段AB的中点,过点M作y 轴的垂线交C于点N.(1)求抛物线C的方程;(2)是否存在直线I,使得以AB为直径的圆M经过点N?若存在,求出直线I 的方程;若不存在,说明理由.21. (12 分)已知函数f (x) =e x+x- 2, g (x) =alnx+x.(1)函数y=g (x)有两个零点,求a的取值范围;(2)当a=1 时,证明:f (x)> g (x).(二)选做题:共10分•请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22. (10分)在直角坐标系xOy中,圆C的参数方程为—,(参数©[y=2sin$€ R).以坐标原点为极点,x轴非负半轴为极轴建立极坐标系,(I)求圆C的极坐标方程;(II)直线I,射线OM的极坐标方程分别是旦)二还,。
2018届全国高考模拟试卷(一)数学(文)试题
2018届全国高考模拟试卷(一)文科数学试卷本试题卷共10页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数131iz i-=-,则zz =( )A . D .52.已知集合{}(){}10,20A x x B x x x =+>=+>,则下列结论正确的是( )A .AB ⊆ B .B A ⊆ C. {}0A B x x ⋂=> D .{}1A B x x ⋃=>- 3.2017年年终,某IT 公司对20名优秀员工进行表彰,这20名员工工龄的众数与平均数相等,则实数a 的值为( )A .0B .1 C.40 D .414.已知等差数列{}n a 的前n 项和为n S ,若数列{}n a 的公差0d ≠,且存在a R ∈,使得2n S an =,则5a d=( ) A .5 B .9 C.52 D .925.已知双曲线()2222:10,0a x y C a b b >->=的右支上的点到直线1b y x a =+的距离恒大于12,则双曲线C 的离心率的取值范围为( )A .(]1,2B .()1,2 C.()2,+∞ D .[)2,+∞6.已知函数()()2231,32,3x a x a x f x a x -⎧-++≤⎪=⎨>⎪⎩(0a >且1a ≠),若()f x 有最小值,则实数a 的取值范围是( )A .50,6⎛⎤ ⎥⎝⎦B .51,4⎛⎫ ⎪⎝⎭ C.550,1,64⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦ D .()50,1,4⎡⎫⋃+∞⎪⎢⎣⎭7.我国东汉时期的数学名著《九章算术》中有这样个问题:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?设总人数为x ,鸡的总价为y ,如图的程序框图给出了此问题的一种解法,则输出的,x y 的值分别为( )A .7,58B .8,64 C.9,70 D .10,768.函数()x x f x e ae -=+与()2g x x ax =+在同一坐标系内的图象不可能是( )A .B . C.D .9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则这几何体的表面积为( )A .32B .16+.48+10.已知圆锥的侧面展开图是一个半径为的半圆,若该圆锥的顶点及底面圆周在球O 的表面上,则球O 的体积为( )A .323π B .163π C. 12516π D 11.已知抛物线2:4C y x =的焦点为F ,过点F 且斜率为1的直线与抛物线C 交于点,A B ,以线段AB 为直径的圆E 上存在点,P Q ,使得以PQ 为直径的圆过点()2,D t -,则实数t 的取值范围为( )A .(][),13,-∞-⋃+∞B .[]1,3- C. (),22⎡-∞⋃+∞⎣D .2⎡⎣12.已知()()2212ln 22f x x ax x x ax =+--在()0,+∞上是增函数,则实数a 的取值范围是( )A .{}1B .{}1- C. (]0,1 D .[)1,0-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知菱形ABCD 中,3AC =,则AB AC ⋅= _ .14.设,x y 满足约束条件33123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则()()()22x a y a a R -++∈的最小值是_ .15.某校为保证学生夜晚安全,实行教师值夜班制度,已知,,,,A B C D E 共5名教师每周一到周五都要值一次夜班,每周如此,且没有两人同时值夜班,周六和周日不值夜班,若A 昨天值夜班,从今天起,B C 至少连续4天不值夜班,D 周四值夜班,则今天是周_ . 16.已知数列{}n a 满足当()1**2121,k k n k N n N --<≤-∈∈时2n kka =,若数列{}n a 的前n 项和为n S ,则满足10n S >的n 的最小值为_ .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,且99cos c a b A -=. (1)求cos B ;(2)若角B 的平分线与AC 交于点D ,且1BD =,求11a c+的值. 18. 如图,在四棱锥A BCDE -中,底面BCDE是平行四边形,2330ED EA EB AC ADE ====∠=︒,,,平面ACD ⊥平面AED ,F 为AD 中点.(1)求证:AC BF ⊥; (2)求四棱锥A BCDE -的体积.19.前几年随着网购的普及,线下零售遭遇挑战,但随着新零售模式的不断出现,零售行业近几年呈现增长趋势,下表为20142017年中国百货零售业销售额(单位:亿元,数据经过处理,14分别对应20142017):(1)由上表数据可知,可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明; (2)建立y 关于x 的回归方程,并预测2018年我国百货零售业销售额;(3)从20142017年这4年的百货零售业销售额及2018年预测销售额这5个数据中任取2个数据,求这2个数据之差的绝对值大于200亿元的概率. 参考数据:4411800,2355i i i i i y x y ====∑∑2.236≈参考公式:相关系数()()nii xx y yr --∑y a bx =+中斜率和截距的最小二乘估计公式分别为()()()121nii i nii xx y yb xx==--=-∑∑,a y bx =-.20.已知椭圆()2222:10x y C a b a b +=>>及点()2,1D,若直线OD 与椭圆C 交于点,A B ,且AB ( O 为坐标原点),椭圆C . (1)求椭圆C 的标准方程; (2)若斜率为12的直线l 交椭圆C 于不同的两点,M N ,求DMN ∆面积的最大值. 21.已知函数()xxe f x x a=-.(1)若曲线()y f x =在2x =处的切线过原点,求实数a 的值; (2)若12a <<,求证当(),1x a a ∈+时,()32f x x x >+. 参考数据: 2.7e ≈.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系中,曲线1C 的参数方程为2cos sin x r y r ϕϕ=+⎧⎨=⎩(0,r ϕ>为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 经过点2,3P π⎛⎫⎪⎝⎭,曲线2C 的极坐标方程为()22cos26ρθ+=.(1)求曲线1C 的极坐标方程;(2)若()12,,,2A B πραρα⎛⎫+ ⎪⎝⎭是曲线2C 上两点,求2211OA OB+的值. 23.选修4-5:不等式选讲已知函数()()2,1f x x a g x bx =-=+.(1)当1b =时,若()()12f xg x +的最小值为3,求实数a 的值; (2)当1b =-时,若不等式()()1f x g x +<的解集包含1,12⎡⎤⎢⎥⎣⎦,求实数a 的取值范围.2018届全国高考模拟试卷(一)参考答案一、选择题1-5: DCADA 6-10: CCCDA 11、12:DB 二、填空题 13.92 14. 1215.四 16.58 三、解答题17.(1)方法一:由99cos c a b A -=及余弦定理得222992b c a c a b bc+--=⋅,整理得22229a c b ac +-=,所以2221cos 29a cb B ac +-==.方法二:由99cos c a b A -=及正弦定理得為9sin 9sin cos sinC A B A -=, 又()sinC sin A B sinAcosB cosAsinB =+=+,所以1909sinAcosB sinA cosB -=⇒=.(2)由(1)可知21cos cos212sin 9ABC ABD ABD ∠=∠=-∠=,且sin 0ABD ∠>,所以2sin 3ABD ∠=,同理可得2sin 3CBD ∠=, 设,ABC ABD CBD ∆∆∆,的面积分别为12,,S S S ,则111sin 222S ac ABC =∠==,111sin 23S c BD ABD c =⋅∠=,211sin 23S a BD CBD a =⋅∠=,由12S S S +=得1133c a +=,所以11a c +=.18.(1)如图,连接EF ,由2,30ED EA ADE ==∠=︒,易得AD = 因为四边形BCDE 是平行四边形,所以3DC EB ==,又AC ACD ∆中22212DC AC AD +==, 所以AC DC AC BE ⊥⊥,,由F 为AD 中点,ED EA =可得EF AD ⊥,因为平面ACD ⊥平面AED ,且平面ACD ⋂平面AED AD =, 所以EF ⊥平面ACD ,因为AC ⊂平面ACD ,所以EF AC ⊥, 因为EF EB E ⋂=,所以AC ⊥平面BEF , 因为BF ⊂平面BEF ,所以AC BF ⊥.(2)如图,连接,CE EF ,因为四边形BCDE 是平行四边形, 所以22A BCDE A CDE E ACD V V V ---==,由(1)知CD AC ⊥,且3,CD AC =所以132ACD S ∆=⨯=, 又112EF DE ==,且EF ⊥平面ACD ,所以11133E ACD ACD V EF S -∆=⨯⨯=⨯=,所以A BCDE V -,即四棱锥A BCDE -19.(1)由表中的数据和参考数据得2.5,200x y ==,()421158.9i i x x=-=∑,()()4441112355 2.5800355ii i i i i i i xx y y x y x y ===--=-=-⨯=∑∑∑,∴3550.9992.236158.90r ≈≈⨯.因为y 与x 的相关系数近似为0.999,说明y 与x 的线性相关程度相当高,从而可以用线性回归模型拟合y 与x 的关系.(2)由200y =及(1)得()()()41421355715ii i i i xx y y b x x==--===-∑∑, 20071 2.522.5a y bx =-=-⨯=, 所以y 关于x 的回归方程为22.571y x =+.将2018年对应的5x =代入回归方程得22.5715377.5y =+⨯=. 所以预测2018年我国百货零售业销售额为377.5亿元. (3)从这5个数据中任取2个数据,结果有:()()()()()()()95,165,95,230,95,310,95,377.5,165,230,165,310,165,377.5,()()()230,310,230,377.5,310,377.5共 10个.所取2个数据之差的绝对值大于200亿元的结果有:()()()95,310,95,377.5,165,377.5,共3个,所以所求概率310P =. 20.(1)由椭圆C =,所以224a b =.设点A在第一象限,由椭圆的对称性可知OA OB =,所以2OA OD =, 因为点D 坐标为()2,1,所以点A 坐标为⎭, 代入椭圆C 的方程得222112a b+=,与224a b =联立, 可得224,1a b ==,所以椭圆C 的标准方程为2214x y +=.(2)设直线l 的方程为()102y x t t =+≠,由221214y x t x y ⎧=+⎪⎪⎨⎪+=⎪⎩得222220x tx t ++-=.由题意得,()2244220t t ∆=-->,整理得22t ->0,所以0t <<或0t <<设()()1122,,,M x y N x y ,则212122,22x x t x x t +=-=-, 所以12MN x =-==又由题意得,()2,1D 到直线12y x t =+的距离d =DMN ∆的面积221121222t t S d MN -+===当且仅当222t t -=,即1t =±时取等号,且此时满足0∆>, 所以DMN ∆面积的最大值为1.21.(1)因为()xxe f x x a=-,所以()()()()()()2221xx x x ax a e x e x a xe f x x a x a --+⋅--'==--,由题意知,曲线()y f x =在2x =处的切线过原点, 则切线斜率()()20220f k f -'==-,即()()22220432202e a e a a ---=--,整理得4312aa -=-,所以1a =. (2)由12a <<,且(),1x a a ∈+,得0x >,所以()3220xe f x x x x x x a>+⇔-->-.设()2x e g x x x x a =---,则()()()2121x e x a g x x x a --'=---, 由0x >且1a x a <<+,可知()0g x '<, 所以()g x 在(),1a a +上单调递减,所以当(),1x a a ∈+时,1()(2)()1a g x e a a +>-++. 设1t a =+,则()2,3t ∈,设()()1t h t e t t =-+,则()21t h t e t '=--,令()21t t e t ϕ=--,则()2t t e ϕ'=-,易知当()2,3t ∈时,()0t ϕ'>, 所以()h t '在()2,3上单调递増,所以()2212210t h t e t e '=-->-⨯->,- 11 - 所以()h t 在()2,3上单调递増,所以()260h t e >->, 所以()01 t e t t -+>,即11()()20a e a a +-++>, 所以当(),1x a a ∈+时,()0g x >,即当(),1x a a ∈+时,32()f x x x >+.22.(1)将曲线1C 的参数方程2cos sin x r y r ϕϕ=+⎧⎨=⎩化为普通方程为()2222x y r -+=, 即222440x y x r +-+-=,由222,cos x y x ρρθ=+=,可得曲线1C 的极坐标方程为224cos 40r ρρθ-+-=,因为曲线1C 经过点2,3P π⎛⎫ ⎪⎝⎭,所以22242403cos r π-⨯⨯+-=, 解得2r =(负值舍去),所以曲线1C 的极坐标方程为4cos ρθ=.(2)因为()12,,,2A B πραρα⎛⎫+ ⎪⎝⎭在曲线()22:2cos26C ρθ+=上, 所以()212cos26ρα+=,()222cos 22cos 262παρα⎡⎤⎛⎫++=+= ⎪⎢⎥⎝⎭⎣⎦, 所以22221211112cos 22cos 22663OA OB ααρρ+-+=+=+=. 23.(1)当1b =时,()()11112222a a a f x g x x x x x +=-++≥---=+, 因为()()12f xg x +的最小值为3,所以132a +=,解得8a =-或4. (2)当1b =-时,()()1f x g x +<即211x a x -+-<, 当1,12x ⎡⎤∈⎢⎥⎣⎦时,211x a x -+-<2112x a x x a x ⇔-+-<⇔-<,即3a x a <<, 因为不等式()()1f x g x +<的解集包含1,12⎡⎤⎢⎥⎣⎦,所以1a >且132a <, 即312a <<,故实数a 的取值范围是31,2⎛⎫ ⎪⎝⎭.。
2018届普通高等学校招生全国统一考试高三数学模拟试题(一)文
普通高等学校招生全国统一考试模拟试题文科数学(一)本试卷满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上.2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题纸上,写在本试卷上无效.3.考试结束后,将本试卷和答题纸一并交回.一、选择题:本题共12小题。
每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,420,A x x B x x =>=-≤则A .{}1AB x x ⋂=>B .A B ⋂=∅C .{}1A B x x ⋃=>D .A B R ⋃=2.已知数据12340,,,x x x x ⋅⋅⋅,是某班40名同学某次月考的化学成绩(单位:分),现将这40名同学的化学成绩的平均数x 与这40个数据合在一起,并将这41个数据的平均数、中位数、众数分别与原来的平均数、中位数、众数相比较,则下列说法中正确的是A .平均数不变,中位数、众数变大B .平均数变大,中位数、众数可能不变C .平均数变小,中位数、众数可能不变D .平均数不变,中位数、众数可能不变3.下列各式的运算结果中,在复平面内对应的点位于第二象限的是A .()1i i -+B .i(1+i)2C .()()2211i i -+D .1i i-4.剪影是我国剪纸艺术中的一种古老形式,通过外轮廓表现人物和物象的形状,由于受轮廓造型的局限,一般以表现人物或其他物体的侧面居多.如图是一幅长50cm 、宽40cm 的矩形剪影,为估算剪影中美女图案的面积,现向剪影内随机投掷1200粒芝麻(假设芝麻均落在剪影内),其中恰有300粒芝麻落在美女图案内,据此估计美女图案的面积为A .250cm 2B .500cm 2C .1000cm 2D .20003cm 2 5.已知双曲线22:14x C y -=的左、右焦点分别为12,F F ,点A 在双曲线C 上,且2AF x ⊥轴,点B 与点A 关于原点O 对称,则四边形12AF BF 的面积为ABCD6.已知实数,x y 满足约束条件10,40,20,x y y x y z x y --≤⎧⎪+-≥≤⎨⎪-≤⎩若恒成立,则实数z 的最大值为 A .35 B .23 C .1 D .537.如图,在正方体ABCD —A 1B 1C 1D 1中,P 为线段AD 的中点,Q 为线段B 1C 1上的动点,则下列说法中错误的是A .线段PQ 与平面CDD 1C 1可能平行B .当Q 为线段B 1C 1的中点时,线段PQ 与DD 1所成的角为4π C.PQ ≥D .1CD PQ 与不可能垂直8.函数()2cos sin 2x x f x x-=的部分图像大致为9.已知函数()ln 4x f x x =-,则下列说法中正确的是 A .()f x 在区间(),0-∞内单调递增 B .()f x 在区间(4,+∞)内单调递增C .()f x 的图像关于点(2,0)对称D .()f x 的图像关于直线x =2对称 10.执行如图所示的程序框图,若输出的S 的值为负数,则①②中可以分别填入A .“S=1”“n <9?”B .“S=1”“n <8?”C .“S=2”“n <99?”D .“S=2”“n<100?”11.如图,在平面四边形ABCD 中,AD=2,sin sin 14CAD BAC ∠=∠+ cos 2,BC B BC B D ABC π=+=∆且,则的面积的最大值为A B C .7 D .1412.已知椭圆()2221024x y C b b+=<<:的左焦点为F ,点()4,0M -,斜率不为0的直线l 经过点F 与椭圆C 交于A ,B 两点,若直线MA 与直线MB 关于x 轴对称,则椭圆C 的离心率是A .14B .12C .34D 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量()()1,1,3,a b x ==,若a b a -在方向上的投影是0,则x 的值为_________.14.曲线()24f x x x=-在点()()1,1f 处的切线l 与坐标轴围成的三角形的面积为_________. 15.已知()3,,tan 20183,cos 24ππαππαα⎛⎫⎛⎫∈-=+= ⎪ ⎪⎝⎭⎝⎭则___________. 16.已知菱形ABCD 的边长为2,A=60°,将△ABD 沿对角线BD 折起,使得AC=3,则四面体ABCD 的外接球的表面积为__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题.每个试题考生都必须作答.第22,23题为选考题。
【全国通用-2018高考推荐】高三数学(文科)高考综合模拟试题及答案解析
2017-2018学年高三(下)第一次综合模拟数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.在复平面内,复数z=﹣2i3(i为虚数单位)表示的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.己知命题p:“a>b”是“2a>2b”的充要条件;q:∃x∈R,|x+l|≤x,则()A.¬p∨q为真命题B.p∧¬q为假命题C.p∧q为真命题D.p∨q为真命题3.执行如图所示的程序框图,输出S的值为()A.10 B.﹣6 C.3 D.124.函数的图象如图所示,为了得到g(x)=cos2x的图象,则只需将f(x)的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度5.能够把圆O:x2+y2=9的周长和面积同时分为相等的两部分的函数f(x)称为“亲和函数”,则下列函数:,其中是圆O:x2+y2=9的“亲和函数”的个数为()A.1 B.2 C.3 D.46.已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为()A.B.C.D.7.如图,F1,F2是双曲线C:(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为()A. B. C.2 D.8.等比数列{a n}中,若a1+a2=3,a5+a6=48,则a3+a4=()A.12 B.±12 C.6 D.±69.200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速的众数,中位数的估计值为()A.62,62.5 B.65,62 C.65,62.5 D.62.5,62.510.在四面体S﹣ABC中,SA⊥平面ABC,△ABC是边长为3的正三角形,SA=2,则该四面体的外接球的表面积为()A.8πB.12πC.16πD.32π11.已知,f(x)在x=x0处取得最大值,以下各式中正确的序号为()①f(x0)<x0;②f(x0)=x0;③f(x0)>x0;④;⑤.A.①④ B.②④ C.②⑤ D.③⑤12.抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线y2=2px(p>0),弦AB过焦点,△ABQ为其阿基米德三角形,则△ABQ的面积的最小值为()A.B.p2C.2p2D.4p2二、填空题:本题共4个小题,每小题5分,共20分.13.在平面直角坐标系xOy中过定点Q(1,1)的直线l与曲线C:y=交与M,N点,则•﹣•= .14.如果不等式组表示平面区域是一个直角三角形,则k= .15.已知a为常数,若曲线y=ax2+3x﹣lnx存在与直线x+y﹣1=0垂直的切线,则实数a的取值范围是.16.各项都为正数的数列{a n},其前n项的和为S n,且S n=(+)2(n≥2),若b n=+,且数列{b n}的前n项的和为T n,则T n= .三、解答题:本大题共6个小题,共70分,解答题应写出文字说明、证明过程或演算步骤.17.已知向量=(sin,1),=(cos,cos2),函数f(x)=.(1)若f(x)=1,求cos(﹣x)的值;(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足acosC+c=b,求f(B)的取值范围.18.调查某初中1000名学生的肥胖情况,得下表:偏瘦正常肥胖女生(人)100 173 y男生(人)x 177 z已知从这批学生中随机抽取1名学生,抽到偏瘦男生的概率为0.15.(Ⅰ)求x的值;(Ⅱ)若用分层抽样的方法,从这批学生中随机抽取50名,问应在肥胖学生中抽多少名?(Ⅲ)已知y≥193,z≥193,肥胖学生中男生不少于女生的概率.19.如图,PA⊥平面ABCD,ABCD是矩形,PA=AB=,AD=,点F是PB的中点,点E是边BC上的动点.(Ⅰ)求三棱锥E﹣PAD的体积;(Ⅱ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;(Ⅲ)证明:无论点E在边BC的何处,都有PE⊥AF.20.如图,椭圆的左顶点、右焦点分别为A,F,直线l的方程为x=9,N为l上一点,且在x轴的上方,AN与椭圆交于M点(1)若M是AN的中点,求证:MA⊥MF.(2)过A,F,N三点的圆与y轴交于P,Q两点,求|PQ|的范围.21.已知函数f(x)=e x﹣x﹣2(e为自然对数的底数).(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若k为正整数,且当x>0时,,求k的最大值.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B铅笔在答题卡上把所选题目对应的题号涂黑.[选修4-1:几何证明选讲]22.如图,AB是圆O的直径,以B为圆心的圆B与圆O的一个交点为P.过点A作直线交圆O于点Q,交圆B于点M、N.(1)求证:QM=QN;(2)设圆O的半径为2,圆B的半径为1,当时,求MN的长.[选修4-4:坐标系与参数方程]23.以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为(t 为参数),曲线C的极坐标方程为ρ=.(1)求曲线C的直角坐标方程;(2)若直线l与曲线C相交于A、B两点,求|AB|的值.[选修4-5:不等式选讲]24.设函数f(x)=|x+1|+|x﹣5|,x∈R.(1)求不等式f(x)<x+10的解集;(2)如果关于x的不等式f(x)≥a﹣(x﹣2)2在R上恒成立,求实数a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.在复平面内,复数z=﹣2i3(i为虚数单位)表示的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简复数z,求出z在复平面内对应的点的坐标,则答案可求.【解答】解:∵z=﹣2i3=,∴z在复平面内对应的点的坐标为:(1,3),位于第一象限.故选:A.2.己知命题p:“a>b”是“2a>2b”的充要条件;q:∃x∈R,|x+l|≤x,则()A.¬p∨q为真命题B.p∧¬q为假命题C.p∧q为真命题D.p∨q为真命题【考点】复合命题的真假.【分析】由指数函数的性质可知P真命题,¬p为假命题;q:由|x+l|≤x,可得,可得x不存在,则q为假命题,¬q为真命题,则根据复合命题的真假关系可判断【解答】解:P:“a>b”是“2a>2b”的充要条件为真命题,¬p为假命题q:由|x+l|≤x,可得可得x不存在,则q为假命题,¬q为真命题则根据复合命题的真假关系可得,¬p∨q为假;p∨q为真;p∧q为假;p∧¬q为真故选D3.执行如图所示的程序框图,输出S的值为()A.10 B.﹣6 C.3 D.12【考点】程序框图.【分析】模拟程序框图的运行过程,得出该程序的功能是计算并输出S=﹣12+22﹣32+42的值,得出数值即可.【解答】解:模拟程序框图的运行过程,得;该程序的功能是计算并输出S=﹣12+22﹣32+42的值,所以S=﹣12+22﹣32+42=10.故选:A.4.函数的图象如图所示,为了得到g(x)=cos2x的图象,则只需将f(x)的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得f (x)的解析式,再利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.【解答】解:根据函数的图象,可得A=1,•=﹣,∴ω=2.再根据五点法作图可得2•+φ=π,求得φ=,∴f(x)=sin(2x+).故把f(x)=sin(2x+)的图象向左平移个单位,可得g(x)=sin[2(x+)+]=cos2x的图象,故选:C.5.能够把圆O:x2+y2=9的周长和面积同时分为相等的两部分的函数f(x)称为“亲和函数”,则下列函数:,其中是圆O:x2+y2=9的“亲和函数”的个数为()A.1 B.2 C.3 D.4【考点】函数的图象.【分析】由“亲和函数”的定义知,若函数为“亲和函数”,则该函数必为过原点的奇函数,由此判断即可得出结论.【解答】解:由“亲和函数”的定义知,若函数为“亲和函数”,则该函数为过原点的奇函数;①中,f(0)=0,且f(x)为奇函数,故f(x)=x3+x为“亲和函数”;②中,f(0)=ln1=0,且f(﹣x)=f(x),所以f(x)为奇函数,所以f(x)=ln为“亲和函数”;③中,f(0)=tan0=0,且f(﹣x)=f(x),f(x)为奇函数,故f(x)=tan为“亲和函数”.④中,f(0)=e0+e﹣0=2,所以f(x)=e x+e﹣x的图象不过原点,故f(x))=e x+e﹣x不为“亲和函数”;综上,以上为“亲和函数”的个数是3个.故选:C.6.已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为()A.B.C.D.【考点】由三视图求面积、体积.【分析】先由三视图还原成原来的几何体,再根据三视图中的长度关系,找到几何体中的长度关系,进而可以求几何体的体积.【解答】解:由三视图可得该几何体的上部分是一个三棱锥,下部分是半球,所以根据三视图中的数据可得:V=××=,故选C.7.如图,F1,F2是双曲线C:(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为()A. B. C.2 D.【考点】双曲线的简单性质.【分析】根据双曲线的定义可求得a=1,∠ABF2=90°,再利用勾股定理可求得2c=|F1F2|,从而可求得双曲线的离心率.【解答】解:∵|AB|:|BF2|:|AF2|=3:4:5,不妨令|AB|=3,|BF2|=4,|AF2|=5,∵|AB|2+=,∴∠ABF2=90°,又由双曲线的定义得:|BF1|﹣|BF2|=2a,|AF2|﹣|AF1|=2a,∴|AF1|+3﹣4=5﹣|AF1|,∴|AF1|=3.∴|BF1|﹣|BF2|=3+3﹣4=2a,∴a=1.在Rt△BF1F2中,=+=62+42=52,又=4c2,∴4c2=52,∴c=.∴双曲线的离心率e==.故选A.8.等比数列{a n}中,若a1+a2=3,a5+a6=48,则a3+a4=()A.12 B.±12 C.6 D.±6【考点】等比数列的通项公式.【分析】利用等比数列{a n}的性质可得:a1+a2,a3+a4,a5+a6,成等比数列,且a3+a4>0.解出即可得出.【解答】解:由等比数列{a n}的性质可得:a1+a2,a3+a4,a5+a6,成等比数列,且a3+a4>0.∴=(a1+a2)(a5+a6)=3×48,解得a3+a4=12.故选:A.9.200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速的众数,中位数的估计值为()A.62,62.5 B.65,62 C.65,62.5 D.62.5,62.5【考点】众数、中位数、平均数;频率分布直方图.【分析】选出直方图中最高的矩形求出其底边的中点即为众数;求出从左边开始小矩形的面积和为0.5对应的横轴的左边即为中位数【解答】解:最高的矩形为第三个矩形,所以时速的众数为65前两个矩形的面积为(0.01+0.03)×10=0.4由于0.5﹣0.4=0.1,则,∴中位数为60+2.5=62.5故选C10.在四面体S﹣ABC中,SA⊥平面ABC,△ABC是边长为3的正三角形,SA=2,则该四面体的外接球的表面积为()A.8πB.12πC.16πD.32π【考点】球的体积和表面积.【分析】由已知结合三棱锥和正三棱柱的几何特征,可得此三棱锥外接球,即为以△ABC 为底面以SA为高的正三棱柱的外接球,分别求出棱锥底面半径r,和球心距d,得球的半径R,然后求解表面积.【解答】解:根据已知中底面△ABC是边长为3的正三角形,SA⊥平面ABC,SA=2,可得此三棱锥外接球,即为以△ABC为底面以SA为高的正三棱柱的外接球,∵△ABC是边长为3的正三角形,∴△ABC的外接圆半径r=,球心到△ABC的外接圆圆心的距离d=1,故球的半径R==2.三棱锥S﹣ABC外接球的表面积为:4π×4=16π.故选:C.11.已知,f(x)在x=x0处取得最大值,以下各式中正确的序号为()①f(x0)<x0;②f(x0)=x0;③f(x0)>x0;④;⑤.A.①④ B.②④ C.②⑤ D.③⑤【考点】导数在最大值、最小值问题中的应用.【分析】求导函数,可得令g(x)=x+1+lnx,则函数有唯一零点,即x0,代入验证,即可得到结论.【解答】解:求导函数,可得令g(x)=x+1+lnx,则函数有唯一零点,即x0,∴﹣x0﹣1=lnx0∴f(x0)==x0,即②正确=∵﹣x0﹣1=lnx0,∴=x=时,f′()=﹣<0=f′(x0)∴x0在x=左侧∴x0<∴1﹣2x0>0∴<0∴∴④正确综上知,②④正确故选B.12.抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线y2=2px(p>0),弦AB过焦点,△ABQ为其阿基米德三角形,则△ABQ的面积的最小值为()A.B.p2C.2p2D.4p2【考点】抛物线的应用.【分析】法一:直接计算比较复杂,我们可以取几个特殊的位置,可得解.法二:由于若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上,且△PAB 为直角三角型,且角P为直角.又面积是直角边积的一半,斜边是两直角边的平方和,故可求.【解答】解:法一:取倾斜角为:450,600,900,经计算可知,当倾斜角为900时,△ABQ的面积的最小,此时AB=2p,又焦点到准线的距离=p,此时三角形的面积最小为p2故选B.法二:由于若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上,且△PAB为直角三角型,且角P为直角.,由于AB是通径时,AB最小,故选B.二、填空题:本题共4个小题,每小题5分,共20分.13.在平面直角坐标系xOy中过定点Q(1,1)的直线l与曲线C:y=交与M,N点,则•﹣•= 4 .【考点】平面向量数量积的运算.【分析】将曲线C变形为y=1+,明确与y=的关系,知道其对称中心为Q(1,1),则•﹣•=.【解答】解:将曲线C变形为y=1+,则可知对称中心为Q(1,1),∴•﹣•=.故答案为:4.14.如果不等式组表示平面区域是一个直角三角形,则k= ﹣或0 .【考点】二元一次不等式(组)与平面区域.【分析】分两种情况加以讨论:(1)直线y=2x与直线kx﹣y+1=0互相垂直,可得k=﹣,从而得到三角形;(2)直线x=0与直线kx﹣y+1=0互相垂直,可得k=0,从而得到三角形.【解答】解:有两种情形:(1)直角由y=2x与kx﹣y+1=0形成(如图),则∵2×k=﹣1,∴k=﹣,y=2x与﹣x﹣y+1=0的交点坐标为(,),三角形的三个顶点为(0,0),(0,1),(,);(2)直角由x=0与kx﹣y+1=0形成(如图),则k=0,∴由x=0与﹣y+1=0交于点(,1)三角形的三个顶点为(0,0),(0,1),(,1).综上所述,则k=﹣或 0.故答案为:﹣或 0.15.已知a 为常数,若曲线y=ax 2+3x ﹣lnx 存在与直线x+y ﹣1=0垂直的切线,则实数a 的取值范围是 [﹣,+∞) .【考点】利用导数研究曲线上某点切线方程.【分析】根据题意,曲线y=ax 2+3x ﹣lnx 存在与直线x+y ﹣1=0垂直的切线,转化为f ′(x )=1有正根,分离参数,求最值,即可得到结论. 【解答】解:令y=f (x )=ax 2+3x ﹣lnx 由题意知,x+y ﹣1=0斜率是﹣1,则与直线x+y ﹣1=0垂直的切线的斜率是1. ∴f ′(x )=1有解,∵函数的定义域为{x|x >0}. ∴f ′(x )=1有正根, ∵f (x )=ax 2+3x ﹣lnx ,∴f'(x )=2ax+3﹣=1有正根 ∴2ax 2+2x ﹣1=0有正根,∴2a=﹣=(﹣1)2﹣1,∴2a ≥﹣1,∴a ≥﹣.故答案为:[﹣,+∞).16.各项都为正数的数列{a n },其前n 项的和为S n ,且S n =(+)2(n ≥2),若b n =+,且数列{b n }的前n 项的和为T n ,则T n =.【考点】数列的求和;数列递推式.【分析】由题意可得,,结合等差数列的通项可求,进而可求S n,然后利用n≥2时,a n=s n﹣s n﹣1式可求a n,然后代入后,利用裂项求和即可求解【解答】解:由题意可得,s n>0∵∴即数列{}是以为公差以为首项的等差数列∴∴,∴当n≥2时,a n=s n﹣s n﹣1==(2n﹣1)a1当n=1时,适合上式∴==1++1﹣=2+2()∴T n=2n+2(1﹣)=2n+2(1﹣)=2n+=故答案为:三、解答题:本大题共6个小题,共70分,解答题应写出文字说明、证明过程或演算步骤.17.已知向量=(sin,1),=(cos,cos2),函数f(x)=.(1)若f(x)=1,求cos(﹣x)的值;(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足acosC+c=b,求f(B)的取值范围.【考点】余弦定理;平面向量数量积的运算.【分析】(1)利用两个向量的数量积公式求得函数f(x)=sin()+,由f(x)=1,可得sin()=,再利用二倍角公式求得cos(﹣x)的值.(2)由acosC+c=b利用余弦定理可得cosA==,求出A=,B+C=.再由的范围求出f(B)=sin()+的范围.【解答】解:(1)由题意得:函数f(x)==+=+=sin()+.若f(x)=1,可得sin()=,则cos(﹣x)=2﹣1=2﹣1=﹣.(2)由acosC+c=b可得a•+c=b,即b2+c2﹣a2=bc.∴cosA==,∴A=,B+C=.∴0<B<,0<<,∴<<,<sin()<1,∴f(B)=sin()+∈(1,).18.调查某初中1000名学生的肥胖情况,得下表:偏瘦正常肥胖女生(人)100 173 y男生(人)x 177 z已知从这批学生中随机抽取1名学生,抽到偏瘦男生的概率为0.15.(Ⅰ)求x的值;(Ⅱ)若用分层抽样的方法,从这批学生中随机抽取50名,问应在肥胖学生中抽多少名?(Ⅲ)已知y≥193,z≥193,肥胖学生中男生不少于女生的概率.【考点】分层抽样方法;等可能事件的概率.【分析】(I)根据从这批学生中随机抽取1名学生,抽到偏瘦男生的概率为0.15,列出关于x的式子,解方程即可.(II)做出肥胖学生的人数,设出在肥胖学生中抽取的人数,根据在抽样过程中每个个体被抽到的概率相等,列出等式,解出所设的未知数.(III)本题是一个等可能事件的概率,试验发生包含的事件是y+z=400,且y≥193,z≥193,列举出所有事件数,再同理做出满足条件的事件数,得到结果.【解答】解:(Ⅰ)由题意可知,,∴x=150(人);(Ⅱ)由题意可知,肥胖学生人数为y+z=400(人).设应在肥胖学生中抽取m人,则,∴m=20(人)即应在肥胖学生中抽20名.(Ⅲ)由题意可知本题是一个等可能事件的概率,试验发生包含的事件是y+z=400,且y≥193,z≥193,满足条件的(y,z)有,,…,,共有15组.设事件A:“肥胖学生中男生不少于女生”,即y≤z,满足条件的(y,z)有,,…,,共有8组,∴.即肥胖学生中女生少于男生的概率为.19.如图,PA⊥平面ABCD,ABCD是矩形,PA=AB=,AD=,点F是PB的中点,点E是边BC上的动点.(Ⅰ)求三棱锥E﹣PAD的体积;(Ⅱ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;(Ⅲ)证明:无论点E在边BC的何处,都有PE⊥AF.【考点】棱柱、棱锥、棱台的体积;空间中直线与平面之间的位置关系;直线与平面垂直的性质.【分析】(Ⅰ)由于PA⊥平面ABCD,则V E﹣PAD=V P﹣ADE,运用棱锥的体积公式计算即得;(Ⅱ)运用线面平行的判定定理,即可得证;(Ⅲ)由线面垂直的性质和判定定理,即可得证.【解答】(Ⅰ)解:∵PA⊥平面ABCD,ABCD为矩形,∴V E﹣PAD=V P﹣ADE,=;(Ⅱ)EF与平面PAC平行.理由如下:当E为BC中点时,∵F为PB的中点,∴EF∥PC,∵EF⊄平面PAC,PC⊂平面PAC,∴EF∥平面PAC;(Ⅲ)证明:∵PA=AB,F为PB的中点,∴AF⊥PB,∵PA⊥平面ABCD,∴PA⊥BC,又BC⊥AB,BC⊥平面PAB,又AF⊂平面PAB∴BC⊥AF.又PB∩BC=B,∴AF⊥平面PBC,因无论点E在边BC的何处,都有PE⊂平面PBC,∴PE⊥AF.20.如图,椭圆的左顶点、右焦点分别为A,F,直线l的方程为x=9,N为l上一点,且在x轴的上方,AN与椭圆交于M点(1)若M是AN的中点,求证:MA⊥MF.(2)过A,F,N三点的圆与y轴交于P,Q两点,求|PQ|的范围.【考点】圆与圆锥曲线的综合.【分析】(1)欲证MA⊥MF,只需证明,分别求出,的坐标,再用向量的数量积的坐标运算计算即可.(2)欲求|PQ|的范围,需先将|PQ|用某个参数表示,再求最值,可先找到圆心坐标和半径,再利用圆中半径,半弦,弦心距组成的直角三角形,得到用参数表示的|PQ|,再用均值不等式求范围.【解答】解:(1)由题意得A(﹣6,0),F(4,0),x N=9∴又M点在椭圆上,且在x轴上方,得(2)设N(9,t),其中t>0,∵圆过A,F,N三点,∴设该圆的方程为x2+y2+Dx+Ey+F=0,有解得∴圆心为,半径r=∴,∵t>0∴,当且仅当,即时取“=”∴,∴|PQ|的取值范围是21.已知函数f(x)=e x﹣x﹣2(e为自然对数的底数).(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若k为正整数,且当x>0时,,求k的最大值.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)求导数,确定切线的斜率,切点坐标,即可求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若k为正整数,且当x>0时,,k<+x+1,求出右边最小值的范围,即可求k的最大值.【解答】解:(1)∵f(x)=e x﹣x﹣2,∴f′(x)=e x﹣1,∴f′(0)=e0﹣1=0,∵f(0)=﹣1,∴曲线y=f(x)在点(0,f(0))处的切线方程为y=﹣1;(2)∵当x>0时,,∴k<+x+1,令g(x)=+x+1,则g′(x)=.∵f(x)=e x﹣x﹣2,∴f′(x)=e x﹣1∴当x>0时,f′(x)=e x﹣1>0∴函数f(x)单调递增,∴f(x)>f(0)=﹣1,∴存在x0∈(1,2),使得﹣x0﹣2=0,g(x)在(0,x0)上单调递减,(x0,+∞)上单调递增,∴g(x)min=g(x0)=+x0+1=x0+2∈(3,4),∴k为正整数,∴k的最大值是3.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B铅笔在答题卡上把所选题目对应的题号涂黑.[选修4-1:几何证明选讲]22.如图,AB是圆O的直径,以B为圆心的圆B与圆O的一个交点为P.过点A作直线交圆O于点Q,交圆B于点M、N.(1)求证:QM=QN;(2)设圆O的半径为2,圆B的半径为1,当时,求MN的长.【考点】与圆有关的比例线段;圆与圆的位置关系及其判定.【分析】(1)连接BM、BN、BQ、BP,利用垂径定理,即可得到结论;(2)确定AP为圆B的切线,可得AP2=AM•AN,求出AP的长,结合,可求MN 的长.【解答】(1)证明:连接BM、BN、BQ、BP∵B为小圆的圆心∴BM=BN∵AB为大圆的直径∴BQ⊥MN∴MQ=QN(2)解:∵AB为大圆的直径∴∠APB=90°∴AP为圆B的切线,∴AP2=AM•AN∵AB=4,PB=1∴AP2=AB2﹣PB2=15∵,∴∴[选修4-4:坐标系与参数方程]23.以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为(t 为参数),曲线C的极坐标方程为ρ=.(1)求曲线C的直角坐标方程;(2)若直线l与曲线C相交于A、B两点,求|AB|的值.【考点】参数方程化成普通方程.【分析】(I)用极坐标公式,把曲线C的极坐标方程化为直角坐标方程;(II)将直线l的参数方程代入C的直角坐标方程,A、B两点对应的参数分别为t1、t2,计算|AB|=|t1﹣t2|的值.【解答】解:(I)由曲线C的极坐标方程ρ=,得ρ2sin2θ=2ρcosθ,即y2=2x,∴曲线C的直角坐标方程为y2=2x;(II)将直线l的参数方程代入y2=2x,得t2sin2α﹣2tcosα﹣1=0,设A、B两点对应的参数分别为t1、t2,则t1+t2=,t1•t2=﹣;∴|AB|=|t1﹣t2|===,∴|AB|的值为.[选修4-5:不等式选讲]24.设函数f(x)=|x+1|+|x﹣5|,x∈R.(1)求不等式f(x)<x+10的解集;(2)如果关于x的不等式f(x)≥a﹣(x﹣2)2在R上恒成立,求实数a的取值范围.【考点】带绝对值的函数.【分析】(1)去掉绝对值,化简f(x),求出不等式f(x)<x+10的解集;(2)设g(x)=a﹣(x﹣2)2,求出g(x)max与f(x)min;由f(x)≥g(x)在R上恒成立,得f(x)min≥g(x)max,求出a的取值范围.【解答】解:(1)去掉绝对值,;当x<﹣1时,由﹣2x+4<x+10,解得x>﹣2,∴﹣2<x<﹣1;当﹣1≤x<5时,由6<x+10,解得x>﹣4,∴﹣1≤x<5;当x≥5时,由2x﹣4<x+10,解得x<14,∴5≤x<14;综上,不等式的解集为(﹣2,14);﹣﹣﹣(2)设g(x)=a﹣(x﹣2)2,则g(x)max=g(2)=a,而f(x)=|x+1|+|x﹣5|≥|(x+1)﹣(x﹣5)|=6,即f(x)min=6;∴f(x)≥g(x)在R上恒成立时,应满足f(x)min≥g(x)max,∴a≤6;即a的取值范围是{a|a≤6}.﹣﹣﹣2016年10月19日。
(完整版)2018全国高考1卷文科数学试题及答案(官方)版(最新整理)
5 / 11
20.(12 分)
设抛物线 C:y2 2x ,点 A2 ,0 , B 2 ,0 ,过点 A 的直线 l 与 C 交于 M , N 两点.
⑴当 l 与 x 轴垂直时,求直线 BM 的方程; ⑵证明:∠ABM ∠ABN .
21.(12 分)
已知函数 f x aex ln x 1 . ⑴设 x 2 是 f x 的极值点.求 a ,并求 f x 的单调区间; ⑵证明:当 a ≥ 1 , f x≥ 0 .
,x 0
f
x 1
f
2x 的 x 的取值范围是(
)
A. ,1
B. 0 ,
C. 1,0
D. ,0
二、填空题(本题共 4 小题,每小题 5 分,共 20 分)
13.已知函数 f x log2 x2 a ,若 f 3 1 ,则 a ________.
x 2y 2≤0 14.若 x ,y 满足约束条件 x y 1≥ 0 ,则 z 3x 2 y 的最大值为________.
体的体积为( )
A. 8
B. 6 2
C. 8 2
D. 8 3
2 / 11
11.已知角 的顶点为ቤተ መጻሕፍቲ ባይዱ标原点,始边与 x 轴的非负半轴重合,终边上有两点 A1, a , B 2,b ,且
cos 2
2
,则
ab
(
3
A. 1 5
5 B.
5
) 25
C. 5
D.1
12.设函数
f
x
2x 1
,x ≤ 0 ,则满足
A.0
B. 1 2
C.1
D. 2
3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村 的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:
【高三数学试题精选】2018年高考文科数学押题试卷(一)(带答案和解释)
2018年高考文科数学押题试卷(一)(带答案和解释)5 绝密★ 启用前2018年普通高等学校招生全国统一考试押题卷科数学(一)本试题卷共14页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2、选择题的作答每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,则集合()A. B. c. D.【答案】D【解析】解方程组,得.故.选D.2.设复数(是虚数单位),则在复平面内,复数对应的点的坐标为()A. B. c. D.【答案】A【解析】,所以复数对应的点为,故选A.3.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经四处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的,则一开始输入的的值为()A. B. c. D.【答案】c【解析】,(1),(2),(3),(4),所以输出,得,故选c.4.已知,则()A. B. c. D.【答案】c【解析】因为,所以,所以,故选c.5.已知双曲线的一个焦点为,一条渐近线的斜率为,则该双曲线的方程为()A. B. c. D.【答案】B【解析】令,解得,故双曲线的渐近线方程为.由题意得,解得,∴该双曲线的方程为.选B.6.某家具厂的原材料费支出与销售量(单位万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出与的线性回归方程为,则为()x245682535605575A.5B.15c.12D.20【答案】c【解析】由题意可得,,回归方程过样本中心点,则,.本题选择c选项.7.已知,下列程序框图设计的是求的值,在“ ”中应填的执行语句是()A. B. c. D.【答案】A【解析】不妨设,要计算,首先,下一个应该加,再接着是加,故应填.8.设,则“ ”是“ ”的()A.充分而不必要条B.必要而不充分条c.充分必要条D.既不充分也不必要条【答案】A【解析】作图,,,,可得解集为,解集为,因为,因此选A.9.如图为正方体,动点从点出发,在正方体表面上沿逆时针方向运动一周后,再回到的运动过程中,点与平面的距离保持不变,运动的路程与之间满足函数关系,则此函数图象大致是()A. B.c. D.【答案】c【解析】取线段中点为,计算得.同理,当为线段或的中点时,计算得,符合c项的图象特征.故选c.10.已知双曲线的右顶点为,右焦点为,为双曲线在第二象限上的一点,关于坐标原点的对称点为,直线与直线的交点恰好为线段的中点,则双曲线的离心率为()A. B. c.2D.3【答案】D【解析】不妨设,由此可得,,,,由于,,三点共线,故,化简得,故离心率.11.已知点和点,点为坐标原点,则的最小值为()A. B.5c.3D.【答案】D【解析】由题意可得,,则,结合二次函数的性质可得,当时,.本题选择D选项.12.已知椭圆与双曲线有相同的焦点,若点是与在第一象限内的交点,且,设与的离心率分别为,,则的取值范围是()A. B. c. D.【答案】D【解析】设,令,由题意可得,,据此可得,则,,则,由可得,结合二次函数的性质可得,则,即的取值范围是.本题选择D选项.第Ⅱ卷本卷包括必考题和选考题两部分。
2018届高三招生全国统一考试仿真数学文科试题(十)含答案
B.18
1 , sin(
53
)
,则 cos 的值为(
)
7
14
C. 71或 1
98 2
D. 71或 59
98 98
n 8 x 1 m 2 在区间 2, 1 上单调递减, 那
C.25
D.30
8.某四棱锥的三视图如图所示,其中正视图是长为 1 的正方形,则该四棱锥的高为(
50 项和为( A .49
) B.50
C.99
D.100
11.阿波罗尼斯(约公元前 262-190 年)证明过这样一个命题:平面内到两定点距 离之比为常数 k ( k 0 且 k 1 )的点的轨迹是圆.后人将这个圆称为阿氏圆.若
平面内两定点 A , B 间的距离为 2,动点 P 与 A , B 距离之比为 2 ,当 P , A , B
只有一项是符合题目要求的。
装 号 1.已知集合 M 证
x, y | x, y为实数 , 且 x2 y2 2 ,
考
准 N x, y | x, y为实数 , 且x y 2 ,则 M N 的元素个数为(
)
A.0
B.1
C.2
D.3
只
2.已知甲、乙两组数据的茎叶图如图所示,若它们的中位数相同,则甲组数据的
平均数为( )
月份
1
2
3
4
5
6
7
8
促销费用 x 2
3
6 10 13 21 15 18
产品销量 y 1
1
2
3 3.5 5
4 4.5
(1)根据数据绘制的散点图能够看出可用线性回归模型拟合 y 与 x 的关系,请用
相关系数 r 加以说明 (系数精确到 0.01); (2)建立 y 关于 x 的回归方程 y? b?x a?(系数精确到 0.01);如果该公司计划在 9
2018高考数学模拟考试题及答案解析[全国通用]
2018年高考数学模拟试题及答案本试卷分第一卷(选择题)和第二卷(非选择题)两部分。
第一卷1至2页,第二卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
考试时间120分钟。
第一卷(选择题 共60分)注意事项:1. 作答第一卷前,请考生务必将自己的姓名、考试证号用书写黑色字迹的0.5毫米的签字笔填写在答题卡上,并认真核对监考员所粘贴的条形码上的姓名、考试证号是否正确。
2. 第一卷答案必须用2B 铅笔填涂在答题卡上,在其他位置作答一律无效。
每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
参考公式:三角函数的和差化积公式sin sin 2sincos22a b a ba b +-+= sin sin 2cossin22a b a ba b +--= cos cos 2coscos22a b a ba b +-+=cos cos 2sinsin22a b a ba b +--=- 若事件A 在一次试验中发生的概率是p ,由它在n 次独立重复试验中恰好发生k 次的概率 ()C (1)k k n kn n P k p p -=- 一组数据12,,,n x x x 的方差2222121()()()n S x x x x x x n⎡⎤=-+-++-⎣⎦其中x 为这组数据的平均值一.选择题:本大题共有12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 设集合{}1,2A =,{}1,2,3B =,{}2,3,4C =,则()AB C =(A){}1,2,3(B){}1,2,4(C){}2,3,4(D){}1,2,3,4(2) 函数123()x y x -=+∈R 的反函数的解析表达式为(A)22log 3y x =- (B)23log 2x y -= (C)23log 2xy -= (D)22log 3y x=- (3) 在各项都为正数的等比数列{}n a 中,首项13a =,前三项的和为21,则345a a a ++=(A) 33(B) 72(C) 84(D) 189(4) 在正三棱柱111ABC A B C -中,若2AB =,11AA =,则点A 到平面1A BC 的距离为(A)34(B)32(C)334(D)3(5) ABC △中,3A p=,3BC =,则ABC △的周长为 (A)43sin()33B p ++ (B)43sin()36B p++(C)6sin()33B p ++ (D)6sin()36B p++(6) 抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是(A)1716(B)1516(C)78(D) 0(7) 在一次歌手大奖赛上,七位评委为某歌手打出的分数如下:9.4 8.49.49.99.69.49.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为 (A) 9.4,0.484(B) 9.4,0.016(C) 9.5,0.04(D) 9.5,0.016(8) 设a 、b 、g 为两两不重合的平面,l 、m 、n 为两两不重合的直线,给出下列四个命题:① 若a g ⊥,b g ⊥,则//a b ;② 若m a ⊂,n a ⊂,//m b ,//n b ,则//a b ; ③ 若//a b ,l a ⊂,则//l b ; ④ 若l a b =,m b g =,n ga =,//l g ,则//m n .其中真命题的个数是(A) 1(B) 2(C) 3(D) 4(9) 设1,2,3,4,5k =,则5(2)x +的展开式中k x 的系数不可能...是 (A) 10 (B) 40(C) 50(D) 80(10) 若1sin()63p a -=,则2cos(2)3pa += (A)79-(B)13- (C)13(D)79(11) 点(3,1)P -在椭圆22221(0)x y a b a b+=>>的左准线上.过点P 且方向为(2,5)=-a 的光线,经过直线2y =-反射后通过椭圆的左焦点,则这个椭圆的离心率为(A)33(B)13(C)22(D)12(12) 四棱锥的8条棱分别代表8种不同的化工产品,有公共点的两条棱所代表的化工产品放在同一仓库是危险的,没有公共点的两条棱所代表的化工产品放在同一仓库是安全的.现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为 (A) 96(B) 48(C) 24(D) 0第二卷(非选择题 共90分)注意事项:请用书写黑色字迹的0.5毫米的签字笔在答题卡上指定区域内作答,在试题卷上作答一律无效。
(2021年整理)2018年高考数学模拟试卷(文科)
(完整版)2018年高考数学模拟试卷(文科)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2018年高考数学模拟试卷(文科))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2018年高考数学模拟试卷(文科)的全部内容。
(完整版)2018年高考数学模拟试卷(文科)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望 (完整版)2018年高考数学模拟试卷(文科) 这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈(完整版)2018年高考数学模拟试卷(文科)> 这篇文档的全部内容。
2018年高考数学模拟试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2≤1},B={x|0<x<1},则A∩B=()A.[﹣1,1) B.(0,1) C.[﹣1,1] D.(﹣1,1)2.(5分)若i为虚数单位,则复数z=在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.(5分)已知等差数列{a n}前3项的和为6,a5=8,则a20=()A.40 B.39 C.38 D.374.(5分)若向量,的夹角为,且||=4,||=1,则||=()A.2 B.3 C.4 D.55.(5分)已知双曲线C:(a>0,b>0)的渐近线与圆(x+4)2+y2=8无交点,则双曲线离心率的取值范围是()A.(1,) B.() C.(1,2)D.(2,+∞)6.(5分)已知实数x,y满足约束条件,则z=x+2y的最大值为()A.6 B.7 C.8 D.97.(5分)函数y=log(x2﹣4x+3)的单调递增区间为( )A.(3,+∞) B.(﹣∞,1)C.(﹣∞,1)∪(3,+∞) D.(0,+∞)8.(5分)宜宾市组织“歌颂党,歌颂祖国”的歌咏比赛,有甲、乙、丙、丁四个单位进入决赛,只评一个特等奖,在评奖揭晓前,四位评委A,B,C,D对比赛预测如下:A说:“是甲或乙获得特等奖"; B说:“丁作品获得特等奖”;C说:“丙、乙未获得特等奖"; D说:“是甲获得特等奖”.比赛结果公布时,发现这四位评委有三位的话是对的,则获得特等奖的是( ) A.甲 B.乙 C.丙 D.丁9.(5分)某几何组合体的三视图如图所示,则该几何组合体的体积为( )A. B.C.2 D.10.(5分)若输入S=12,A=4,B=16,n=1,执行如图所示的程序框图,则输出的结果为()A.4 B.5 C.6 D.711.(5分)分别从写标有1,2,3,4,5,6,7的7个小球中随机摸取两个小球,则摸得的两个小球上的数字之和能被3整除的概率为( )A.B.C.D.12.(5分)已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=e x(x+1),给出下列命题:①当x≥0时,f(x)=e﹣x(x+1);②∀x1,x2∈R,都有|f(x1)﹣f(x2)|<2;③f(x)>0的解集为(﹣1,0)∪,(1,+∞);④方程2[f(x)]2﹣f(x)=0有3个根.其中正确命题的序号是( )A.①③B.②③C.②④D.③④二、填空题:本大题共4个小题,每小题5分,共20分.13.(5分)在等比数列{a n}中,若a2+a4=,a3=,且公比q<1,则该数列的通项公式a n= .14.(5分)已知y=f(x)是偶函数,且f(x)=g(x)﹣2x,g(3)=3,则g(﹣3)= .15.(5分)三棱锥P﹣ABC中,底面△ABC是边长为的等边三角形,PA=PB=PC,PB ⊥平面PAC,则三棱锥P﹣ABC外接球的表面积为.16.(5分)在△ABC中,D为AC上一点,若AB=AC,AD=,则△ABC面积的最大值为.三、解答题:共70分。
成都市2018年高考模拟试卷文科数学(一)(解析版)
2018年高考模拟卷(一)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则=( )A. B. C. D.【答案】A【解析】分析:求出集合,即可得到.详解:,选A.点睛:本题考查集合的交集运算,属基础题.2. 在等差数列中,若,则的值为()A. 75B. 50C. 40D. 30【答案】D【解析】分析:根据等差数列的性质可得,可求的值.详解:由差数列的性质可得,故,故.故选D.点睛:本题考查等差数列的性质,属基础题.3. 对于两个复数,有下列四个结论:①;②;③;④,其中正确的结论的个数为( )A. lB. 2C. 3D. 4【答案】C【解析】分析:直接利用复数的乘法、除法、复数的模的除法、复数的乘方运算求出数值,判断结论的正误即可.详解:对于两个复数,,故①不正确;②故正确;③正确;④正确.故选C.点睛:本题考查复数的代数形式的混合运算,命题的真假的判断,基本知识的考查.4. 已知偶函数在单调递增,若,则满足的的取值范围是()A. B.C. D.【答案】B【解析】分析:由题意结合函数的性质脱去符号,求解绝对值不等式即可求得最终结果.详解:由题偶函数在单调递增,若,则,即解得或.故选B.点睛:本题考查函数的奇偶性,函数的单调性等,重点考查学生对基础概念的理解和计算能力,属于中档题.5. 岩,则“”是“”的( )条件A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要【答案】A【解析】分析:利用三角函数的性质易得结论.详解:岩,则由“”可得到“”,但当“”时不一定有“”,故“”是“”的充分不必要.故选A.点睛:本题考查了三角函数的性质、简易逻辑的判定方法,考查了推理能力,属于基础题.6. .一个空间几何体的三视图如图所示,俯视图为正三角形,则它的外接球的表面积为( )A. B. C. D.【答案】B【解析】分析:由三视图可知还几何体是以ABCD为底面的四棱锥,由此可求其外接球的半径,进而得到它的外接球的表面积.详解:由三视图可知还几何体是以为底面的四棱锥,过作,垂足为,易证面,设其外接球半径为,底面ABCD是正方形外接圆,.设圆心与球心的距离为,则由此可得,故其外接球的表面积故选B.点睛:本题考查球的表面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.7. 执行程序框图,假如输入两个数是、,那么输出的=( )A. B. C. 4 D.【答案】C【解析】分析:模拟执行程序框图可知程序框图的功能是求,的值,用裂项法即可得解.详解:模拟执行程序框图,可得是、,,满足条件,满足条件满足条件不满足条件,退出循环,输出的值为4.故选C.点睛:本题主要考查了循环结构的程序框图,考查了数列的求和,属于基础题.8. 已知变量满足,则目标函数的最值是( )A. B.C. ,无最小值D. 既无最大值,也无最小值【答案】C【解析】分析:由约束条件画出可行域,然后求出使目标函数取得最小值的点的坐标,代入目标函数可求最大值,没有最小值.详解:由约束条件,作可行域如图,联立解得:.可知当目标函数经过点A是取得最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣16<0},B={﹣5,0,1},则()A.A∩B=∅B.B⊆A C.A∩B={0,1} D.A⊆B2.如图,在复平面内,复数z1和z2对应的点分别是A和B,则=()A.+i B.+i C.﹣﹣i D.﹣﹣i3.在等差数列{a n}中,a7=8,前7项和S7=42,则其公差是()A.﹣ B.C.﹣ D.4.若x,y满足约束条件,则的最大值为()A.2 B.C.3 D.15.已知=(﹣3,2),=(﹣1,0),向量λ+与﹣2垂直,则实数λ的值为()A.B.﹣ C.D.﹣6.执行如图所示的程序框图,输出的结果为98,则判断框内可填入的条件为()A.n>4?B.n>5?C.n>6?D.n>7?7.函数f(x)=x﹣sinx的图象是()A.B.C.D.8.如图所示,三棱锥P﹣ABC中,PA⊥平面ABC,△ABC为正三角形,PA=AB,E是PC的中点,则异面直线AE和PB所成角的余弦值为()A.B.C.D.9.已知函数f(x)=|log4x|,正实数m,n满足m<n,且f(m)=f(n),若f(x)在区间[m2,n]上的最大值为2,则m,n的值分别为()A.,2 B.,4 C.,2 D.,410.已知一个三棱锥的三视图如图所示,若该三棱锥的四个顶点均在同一球面上,则该求的体积为()A.B.4πC.2πD.11.已知椭圆:,左右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若的最大值为5,则b的值是()A.1 B.C.D.12.函数y=f(x)为定义在R上的减函数,函数y=f(x﹣1)的图象关于点(1,0)对称,x,y满足不等式f(x2﹣2x)+f(2y﹣y2)≤0,M(1,2),N(x,y),O为坐标原点,则当1≤x≤4时,的取值范围为()A.[12,+∞] B.[0,3] C.[3,12] D.[0,12]二、填空题(每题5分,满分20分,将答案填在答题纸上)13.某种产品的广告费支出x与销售额y之间有如表对应数据(单位:百万元).x 2 4 5 6 8y 30 40 60 t 70根据上表提供的数据,求出y关于x的线性回归方程为=6.5x+17.5,则表中t的值为.14.过原点的直线与双曲线﹣=1(a>0,b>0)交于M,N两点,P是双曲线上异于M,N的一点,若直线MP与直线NP的斜率都存在且乘积为,则双曲线的离心率为.15.已知函数f(x)=(x∈R),正项等比数列{a n}满足a50=1,则f(lna1)+f(lna2)+…+f(lna99)等于.16.△ABC中,角A、B、C所对的边分别为a、b、c,下列命题正确的是(写出正确命题的编号).①总存在某内角α,使cosα≥;②若AsinB>BsinA,则B>A;③存在某钝角△ABC,有tanA+tanB+tanC>0;④若2a+b+c=,则△ABC的最小角小于.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数f (x )=2sinxcosx ﹣2cos 2x+1.(1)求函数f (x )的最小正周期;(2)在△ABC 中,若f()=2,边AC=1,AB=2,求边BC 的长及sinB 的值.18.某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100,110),[110,120),[120,130),[130,140),[140,150]分别加以统计,得到如图所示的频率分布直方图.(1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?P (K 2≥k 0)0.100 0.050 0.010 0.001 k 02.7063.841 6.635 10.828 附:K 2=.19.如图甲,圆O的直径AB=2,圆上两点C,D在直径AB的两侧,使∠CAB=,∠DAB=,沿直径AB折起,使两个半圆所在的平面互相垂直(如图乙),F为BC的中点,根据图乙解答下列各题:(1)求点B到平面ACD的距离;(2)如图:若∠DOB的平分线交于一点G,试判断FG是否与平面ACD平行?并说明理由.20.已知椭圆C:(a>b>0)过点A(2,0),离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)过点B(1,0)且斜率为k(k≠0))的直线l与椭圆C相交于E,F两点,直线AE,AF分别交直线x=3 于M,N两点,线段MN的中点为P.记直线PB的斜率为k′,求证:k•k′为定值.21.已知函数f(x)=x﹣﹣alnx(a∈R).(1)当a>0时,讨论f(x)的单调区间;(2)设g(x)=f(x)+2alnx,且g(x)有两个极值点为x1,x2,其中x1∈(0,e],求g(x1)﹣g(x2)的最小值.四、请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.【选修4-1:几何证明选讲】22.如图,AB是⊙O的一条切线,切点为B,直线ADE、CFD、CGE都是⊙O的割线,已知AC=AB.(1)若CG=1,CD=4.求的值.(2)求证:FG∥AC.【选修4-4:坐标系与参数方程】23.已知平面直角坐标系xOy,以O为极点,x轴的非负半轴为极轴建立极坐标系,P点的极坐标为(2,),曲线C的参数方程为(θ为参数).(1)写出点P的直角坐标及曲线C的直角坐标方程;(2)若Q为曲线C上的动点,求PQ中点M到直线l:ρcosθ+2ρsinθ+1=0的距离的最小值.选修4-5:不等式选讲24.已知函数f(x)=|x﹣1|.(1)解不等式f(x)+f(x+4)≥8;(2)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f().参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣16<0},B={﹣5,0,1},则()A.A∩B=∅B.B⊆A C.A∩B={0,1} D.A⊆B【考点】交集及其运算.【分析】根据集合的基本运算进行求解即可.【解答】解:A={x|x2﹣16<0}={x|﹣4<x<4},B={﹣5,0,1},则A∩B={0,1},故选:C2.如图,在复平面内,复数z1和z2对应的点分别是A和B,则=()A.+i B.+i C.﹣﹣i D.﹣﹣i【考点】复数代数形式的乘除运算.【分析】由图形可得:z1=﹣2﹣i,z2=i.再利用复数的运算法则即可得出.【解答】解:由图形可得:z1=﹣2﹣i,z2=i.∴====﹣﹣i,故选:C.3.在等差数列{a n}中,a7=8,前7项和S7=42,则其公差是()A.﹣ B.C.﹣ D.【考点】等差数列的通项公式.【分析】由通项公式和求和公式可得a1和d的方程组,解方程组可得.【解答】解:设等差数列{a n}的公差为d,∵a7=8,前7项和S7=42,∴a1+6d=8,7a1+d=42,解得a1=4,d=故选:D4.若x,y满足约束条件,则的最大值为()A.2 B.C.3 D.1【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用斜率的几何意义结合数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图:的几何意义是区域内的点到点D(0,1)的斜率,由图象知AD的斜率最大,由,得,即A(1,3),此时的最大值为,故选:A.5.已知=(﹣3,2),=(﹣1,0),向量λ+与﹣2垂直,则实数λ的值为()A.B.﹣ C.D.﹣【考点】数量积判断两个平面向量的垂直关系.【分析】根据两向量垂直,数量积为0,列出方程求出λ的值即可.【解答】解:∵=(﹣3,2),=(﹣1,0),∴=13,=1,•=3;又向量λ+与﹣2垂直,∴(λ+)•(﹣2)=λ+(1﹣2λ)•﹣2=0,即13λ+3(1﹣2λ)﹣2=0,解得λ=﹣.故选:B.6.执行如图所示的程序框图,输出的结果为98,则判断框内可填入的条件为()A.n>4?B.n>5?C.n>6?D.n>7?【考点】程序框图.【分析】模拟执行程序框图,依次得到s,n的值,当n=5时,由题意满足条件,退出循环,输出s的值为98,从而可得判断框内可填入的条件.【解答】解:模拟执行程序框图,可得:s=0,n=1执行循环体,s=2,n=2不满足条件,执行循环体,s=10,n=3不满足条件,执行循环体,s=34,n=4不满足条件,执行循环体,s=98,n=5此时,由题意,满足条件,退出循环,输出s的值为98,则判断框内可填入的条件为:n>4?故选:A.7.函数f(x)=x﹣sinx的图象是()A.B.C.D.【考点】函数的图象.【分析】先根据函数的奇偶性排除B,D,再根据特殊值排除C,问题得以解决.【解答】解:∵f(﹣x)=﹣x+sinx=﹣(x﹣sinx)=﹣f(x),∴f(x)为奇函数,即图象关于原点对称,排除B,D,当x=时,f()=﹣1<0,故排除C,故选:A8.如图所示,三棱锥P﹣ABC中,PA⊥平面ABC,△ABC为正三角形,PA=AB,E是PC的中点,则异面直线AE和PB所成角的余弦值为()A.B.C.D.【考点】异面直线及其所成的角.【分析】取BC的中点F,连接EF,AF,得到∠AEF或其补角就是异面直线AE和PB所成角,由此能求出异面直线AE和PB所成角的余弦值.【解答】解:取BC的中点F,连接EF,AF,则EF∥PB,∴∠AEF或其补角就是异面直线AE和PB所成角,∵△ABC为正三角形,∴∠BAC=60°.设PA=AB=2a,PA⊥平面ABC,∴,∴.∴异面直线AE和PB所成角的余弦值为.故选:B.9.已知函数f(x)=|log4x|,正实数m,n满足m<n,且f(m)=f(n),若f(x)在区间[m2,n]上的最大值为2,则m,n的值分别为()A.,2 B.,4 C.,2 D.,4【考点】对数函数的图象与性质.【分析】由题意和对数函数的性质得m<1<n、log4m<0、log4n>0,代入已知的等式由对数的运算性质化简,由f(x)的最大值和对数函数的性质列出方程,求出m、n的值.【解答】解:∵函数f(x)=|log4x|,正实数m,n满足m<n,且f(m)=f(n),∴m<1<n,log4m<0,log4n>0,则﹣log4m=log4n,∴,得mn=1,∵f(x)在区间[m2,n]上的最大值为2,∴f(x)在区间上的最大值为2,∴,则log4m=﹣1,解得,故选B.10.已知一个三棱锥的三视图如图所示,若该三棱锥的四个顶点均在同一球面上,则该求的体积为()A.B.4πC.2πD.【考点】由三视图求面积、体积.【分析】作出棱锥直观图,根据棱锥的结构特征和球的性质找出球心位置计算球的半径.【解答】解:根据三视图作出棱锥D﹣ABC的直观图,其中底面ABC是等腰直角三角形,AC=BC=1,DC⊥底面ABC,DC=,取AB中点E,过E作EH⊥底面ABC,且HE==.连结AH,则H为三棱锥外接球的球心.AH为外接球的半径.∵AE==,∴AH==1.∴棱锥外接球的体积V==.故选D.11.已知椭圆:,左右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若的最大值为5,则b的值是()A.1 B.C.D.【考点】直线与圆锥曲线的综合问题.【分析】利用椭圆的定义,结合∵的最大值为5,可得当且仅当AB⊥x轴时,|AB|的最小值为3,由此可得结论.【解答】解:由题意:+|AB|=4a=8∵的最大值为5,∴|AB|的最小值为3当且仅当AB⊥x轴时,取得最小值,此时A(﹣c,),B(﹣c,﹣)代入椭圆方程可得:∵c2=4﹣b2∴∴b=故选D.12.函数y=f(x)为定义在R上的减函数,函数y=f(x﹣1)的图象关于点(1,0)对称,x,y满足不等式f(x2﹣2x)+f(2y﹣y2)≤0,M(1,2),N(x,y),O为坐标原点,则当1≤x≤4时,的取值范围为()A.[12,+∞] B.[0,3] C.[3,12] D.[0,12]【考点】简单线性规划的应用;平面向量数量积的运算.【分析】判断函数的奇偶性,推出不等式,利用约束条件画出可行域,然后求解数量积的范围即可.【解答】解:函数y=f(x﹣1)的图象关于点(1,0)对称,所以f(x)为奇函数.∴f(x2﹣2x)≤f(﹣2y+y2)≤0,∴x2﹣2x≥﹣2y+y2,∴即,画出可行域如图,可得=x+2y∈[0,12].故选D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.某种产品的广告费支出x与销售额y之间有如表对应数据(单位:百万元).x 2 4 5 6 8y 30 40 60 t 70根据上表提供的数据,求出y关于x的线性回归方程为=6.5x+17.5,则表中t的值为50 .【考点】线性回归方程.【分析】计算样本中心点,根据线性回归方程恒过样本中心点,即可得到结论.【解答】解:由题意,,=40+∵y关于x的线性回归方程为=6.5x+17.5,∴40+=6.5×5+17.5∴40+=50∴=10∴t=50故答案为:50.14.过原点的直线与双曲线﹣=1(a>0,b>0)交于M,N两点,P是双曲线上异于M,N的一点,若直线MP与直线NP的斜率都存在且乘积为,则双曲线的离心率为.【考点】双曲线的简单性质.【分析】设出P,M,N的坐标,根据直线斜率之间的关系建立方程关系进行求解即可.【解答】解:由双曲线的对称性知,可设P(x0,y0),M(x1,y1),则N(﹣x1,﹣y1).由,可得:,即,即,又因为P(x0,y0),M(x1,y1)均在双曲线上,所以,,所以,所以双曲线的离心率为.故答案为:.15.已知函数f (x )=(x ∈R ),正项等比数列{a n }满足a 50=1,则f (lna 1)+f (lna 2)+…+f (lna 99)等于 .【考点】数列的函数特性.【分析】根据等比数列的性质得到:a 49•a 51=a 48•a 52=…=a 1•a 99=1,所以lna 49+lna 51=lna 48+lna 52=…=lna 1+lna 99=0,由题知f (x )+f (﹣x )=1,得f (lna 1)+f (lna 2)+…+f (lna 99)里有49个1和f (lna 50),而f (lna 50)=代入其中得到即可.【解答】解:由f (x )=,f (﹣x )=,可知f (x )+f (﹣x )=1, ∵正项等比数列{a n }满足a 50=1,根据等比数列的性质得到:a 49•a 51=a 48•a 52=…=a 1•a 99=1,∴lna 49+lna 51=lna 48+lna 52=…=lna 1+lna 99=0,lna 50=ln1=0且f (lna 50)=f (ln1)=f(0)=,根据f (x )+f (﹣x )=1得f (lna 1)+f (lna 2)+…+f (lna 99)=[f (lna 1)+f (lna 99)]+[f (lna 2)+f (lna 98)]+…+[f (lna 49)+f (lna 51)]+f (lna 50)=49+=.故答案是:.16.△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,下列命题正确的是 ①④ (写出正确命题的编号).①总存在某内角α,使cos α≥;②若AsinB >BsinA ,则B >A ;③存在某钝角△ABC ,有tanA+tanB+tanC >0;④若2a +b +c =,则△ABC 的最小角小于.【考点】命题的真假判断与应用.【分析】对于①,可先根据三角形内角和定理判断角α的范围,从而确定cos α的值域;对于②,结合式子的特点,可构造函数y=,研究其单调性解决问题;对于③,利用内角和定理结合两角和的正切公式研究tanA+tanB+tanC的符号即可;对于④,可以利用平面向量的运算方法将给的条件转化为三边a,b,c之间的关系,然后找到最小边,利用余弦定理求其余弦值,问题可获解决.【解答】解:对于①,假设三个内角都大于60°,则三内角和必大于180°,与内角和定理矛盾,故必有一内角小于或等于60°,设为α,则cosα≥cos60°=,故①为真命题;对于②,由题意不妨令,因为,因为时,tanx>x>0,所以,所以xcosx﹣sinx<0,所以f′(x)<0,即f(x)在x上为减函数,所以题意得AsinB>BsinA即为,则应有B<A,故②为假命题;对于③,由题意不妨设C,则A,B皆为锐角,且tanA>0,tanB>0,tanC<0.又,整理得tanA+tanB+tanC=tanAtanBtanC<0,故③为假命题;对于④,由2a+b+c=得2a+b+=(2a﹣c)=,即,而不共线,所以2a﹣c=0,b﹣c=0,解得c=2a,b=2a,则a是最小边,所以A为最小角,所以cosA=,故,故④正确.故答案为①④.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数f(x)=2sinxcosx﹣2cos2x+1.(1)求函数f(x)的最小正周期;(2)在△ABC中,若f()=2,边AC=1,AB=2,求边BC的长及sinB的值.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用倍角公式降幂,再由两角差的正弦化积,最后由周期公式求得周期;(2)由f()=2求得角A,再由已知结合余弦定理求得BC,最后由正弦定理求得sinB 的值.【解答】解:(1)f(x)=2sinxcosx﹣2cos2x+1=,∴,即函数f (x )的最小正周期为π; (2)∵,A ∈(0,π), ∴,则. 在△ABC中,由余弦定理得,,即,∴.由正弦定理,可得.18.某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100,110),[110,120),[120,130),[130,140),[140,150]分别加以统计,得到如图所示的频率分布直方图.(1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?P (K 2≥k 0)0.100 0.050 0.010 0.001 k 02.7063.841 6.635 10.828 附:K 2=.【考点】独立性检验;频率分布直方图.【分析】(1)根据分层抽样原理计算抽取的男、女生人数,利用列举法计算基本事件数,求出对应的概率值;(2)由频率分布直方图计算对应的数据,填写列联表,计算K2值,对照数表即可得出概率结论.【解答】解:(1)由已知得,抽取的100名学生中,男生60名,女生40名,分数小于等于110分的学生中,男生人有60×0.05=3(人),记为A1,A2,A3;女生有40×0.05=2(人),记为B1,B2;…从中随机抽取2名学生,所有的可能结果共有10种,它们是:(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2);其中,两名学生恰好为一男一女的可能结果共有6种,它们是:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2);…故所求的概率为P==…(2)由频率分布直方图可知,在抽取的100名学生中,男生60×0.25=15(人),女生40×0.375=15(人);…据此可得2×2列联表如下:数学尖子生非数学尖子生合计男生15 45 60女生15 25 40合计30 70 100所以得K2==≈1.79;…因为1.79<2.706,所以没有90%的把握认为“数学尖子生与性别有关”…19.如图甲,圆O的直径AB=2,圆上两点C,D在直径AB的两侧,使∠CAB=,∠DAB=,沿直径AB折起,使两个半圆所在的平面互相垂直(如图乙),F为BC的中点,根据图乙解答下列各题:(1)求点B到平面ACD的距离;(2)如图:若∠DOB的平分线交于一点G,试判断FG是否与平面ACD平行?并说明理由.【考点】点、线、面间的距离计算;直线与平面平行的判定.【分析】(1)利用等体积方法求点B到平面ACD的距离;(2)BD弧上存在一点G,满足DG=GB,使得FG∥面ACD.通过中位线定理可得面FOG ∥面ACD,再由性质定理,即可得到结论.【解答】解:(1)在图甲中,∵AB是圆O的直径,∴AD⊥BD,AC⊥BC,∵AB=2,∠DAB=,∴AD=1,BD=,∴S△ABD=AD•BD=.∵∠CAB=,∴OC⊥AB,OC=AB=1.在图乙中,∵平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,OC⊥AB,∴OC⊥平面ABD,∴V C﹣ABD==∵△ACD中,AC=,CD=,AD=1,∴S△ACD==,设点B到面ACD的距离为h,则=,∴h=∴点B到面ACD的距离为.(2)FG∥面ACD,理由如下:连结OF,则△ABC中,F,O分别为BC,AB的中点,∴FO∥AC,又∵FO⊄面ACD,AC⊂面ACD,∴FO∥面ACD,∵OG是∠DOB的平分线,且OD=OB,令OG交DB于M,则M是BD的中点,连结MF,则MF∥CD,又∵MF⊄面ACD,CD⊂面ACD,∴MF∥面ACD,且MF∩FO=F,MF,FO⊂面FOG,∴面FOG∥面ACD.又FG⊂面FOG,∴FG∥面ACD.20.已知椭圆C:(a>b>0)过点A(2,0),离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)过点B(1,0)且斜率为k(k≠0))的直线l与椭圆C相交于E,F两点,直线AE,AF分别交直线x=3 于M,N两点,线段MN的中点为P.记直线PB的斜率为k′,求证:k•k′为定值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(I)利用椭圆的离心率计算公式,顶点A(a,0),及其a2=b2+c2即可得出a,b,c,于是得到椭圆的标准方程;(II)设直线l的方程为y=k(x﹣1).与椭圆的方程联立即可得到根与系数的关系,利用直线AE,AF的方程即可得到点M,N,及中点P的坐标,再利用斜率的计算公式即可证明.【解答】解:(Ⅰ)依题得解得a2=4,b2=1.所以椭圆C的方程为.(Ⅱ)根据已知可设直线l的方程为y=k(x﹣1).由得(1+4k2)x2﹣8k2x+4k2﹣4=0.设E(x1,y1),F(x2,y2),则,.直线AE,AF的方程分别为:,,令x=3,则M,N,所以P.所以k•k′====.21.已知函数f(x)=x﹣﹣alnx(a∈R).(1)当a>0时,讨论f(x)的单调区间;(2)设g(x)=f(x)+2alnx,且g(x)有两个极值点为x1,x2,其中x1∈(0,e],求g(x1)﹣g(x2)的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(2)求出g(x)的导数,令g′(x)=0,设出方程的两根为x1,x2,得到,得到,,确定a的符号,求出g(x1)﹣g(x2)的表达式,根据函数的单调性求出其最小值即可.【解答】解:(1)f(x)的定义域(0,+∞),,令f′(x)=0,得x2﹣ax+1=0,①当0<a≤2时,△=a2﹣4≤0,此时,f′(x)≥0恒成立,所以,f(x)在定义域(0,+∞)上单调递增;②当a>2时,△=a2﹣4>0,解x2﹣ax+1=0的两根为:,,当时,f′(x)>0,f(x)单调递增;当时,f′(x)<0,f(x)单调递减;当时,f′(x)>0,f(x)单调递增;综上得,当0<a≤2时,f(x)的递增区间为(0,+∞),无递减区间;当a>2时,f(x)的递增区间为,,递减区间为;(2),定义域为(0,+∞),,令g′(x)=0,得x2+ax+1=0,其两根为x1,x2,且,所以,,,∴a<0.∴=,设,x∈(0,e],则(g(x1)﹣g(x2))min=h(x)min.∵,当x∈(0,e]时,恒有h′(x)≤0,∴h(x)在(0,e]上单调递减;∴,∴.四、请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.【选修4-1:几何证明选讲】22.如图,AB是⊙O的一条切线,切点为B,直线ADE、CFD、CGE都是⊙O的割线,已知AC=AB.(1)若CG=1,CD=4.求的值.(2)求证:FG∥AC.【考点】相似三角形的性质;与圆有关的比例线段.【分析】(1)根据圆内接四边形的性质,证出∠CGF=∠CDE且∠CFG=∠CED,可得△CGF∽△CDE,因此==4;(2)根据切割线定理证出AB2=AD•AE,所以AC2=AD•AE,证出=,结合∠EAC=∠DAC得到△ADC∽△ACE,所以∠ADC=∠ACE.再根据圆内接四边形的性质得∠ADC=∠EGF,从而∠EGF=∠ACE,可得GF∥AC.【解答】解:(1)∵四边形DEGF内接于⊙O,∴∠CGF=∠CDE,∠CFG=∠CED.因此△CGF∽△CDE,可得=,又∵CG=1,CD=4,∴=4;证明:(2)∵AB与⊙O的相切于点B,ADE是⊙O的割线,∴AB2=AD•AE,∵AB=AC,∴AC2=AD•AE,可得=,又∵∠EAC=∠DAC,∴△ADC∽△ACE,可得∠ADC=∠ACE,∵四边形DEGF内接于⊙O,∴∠ADC=∠EGF,因此∠EGF=∠ACE,可得GF∥AC.【选修4-4:坐标系与参数方程】23.已知平面直角坐标系xOy,以O为极点,x轴的非负半轴为极轴建立极坐标系,P点的极坐标为(2,),曲线C的参数方程为(θ为参数).(1)写出点P的直角坐标及曲线C的直角坐标方程;(2)若Q为曲线C上的动点,求PQ中点M到直线l:ρcosθ+2ρsinθ+1=0的距离的最小值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)P点的极坐标为(2,),利用互化公式可得:点P的直角坐标.由,利用平方关系可得普通方程.(2)曲线C的参数方程为(θ为参数),对于直线l的极坐标利用互化公式可得直线l的普通方程.设,则,利用点到直线的距离公式可得点M到直线l的距离,再利用三角函数的值域即可得出.(1)P点的极坐标为(2,),利用互化公式可得:点P的直角坐标,【解答】解:由,得,∴曲线C的直角坐标方程为.(2)曲线C的参数方程为(θ为参数),直线l:ρcosθ+2ρsinθ+1=0可得直线l的普通方程为x+2y+1=0,设,则,则点M到直线l的距离,∴点M到直线l的最小距离为.选修4-5:不等式选讲24.已知函数f(x)=|x﹣1|.(1)解不等式f(x)+f(x+4)≥8;(2)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f().【考点】绝对值不等式的解法;不等式的证明.【分析】(Ⅰ)根据f(x)+f(x+4)=|x﹣1|+|x+3|=,分类讨论求得不等式f(x)+f(x+4)≥8的解集.(Ⅱ)要证的不等式即|ab﹣1|>|a﹣b|,根据|a|<1,|b|<1,可得|ab﹣1|2﹣|a﹣b|2 >0,从而得到所证不等式成立.【解答】解:(Ⅰ)f(x)+f(x+4)=|x﹣1|+|x+3|=,当x<﹣3时,由﹣2x﹣2≥8,解得x≤﹣5;当﹣3≤x≤1时,f(x)≤8不成立;当x>1时,由2x+2≥8,解得x≥3.所以,不等式f(x)+f(x+4)≤4的解集为{x|x≤﹣5,或x≥3}.(Ⅱ)f(ab)>|a|f(),即|ab﹣1|>|a﹣b|.因为|a|<1,|b|<1,所以|ab﹣1|2﹣|a﹣b|2=(a2b2﹣2ab+1)﹣(a2﹣2ab+b2)=(a2﹣1)(b2﹣1)>0,所以|ab﹣1|>|a﹣b|,故所证不等式成立.2016年10月16日。