算法绪论
Algorithms Chapter 1 绪论
怎么处理?
30
The Design and Analysis of Algorithms
Chapter 1 Introduction to Algorithms
What’s an Algorithm?
算法是一系列解决问题的清晰指令,也就是说,能够对 一定规范的输入,在有限时间内获得所要求的输出。
16
The Design and Analysis of Algorithms
算法可以解决哪些问题
找出人类DNA中所有100000种基因,确定构成人类DNA的30亿种化学基 17 对的各种序列。
The Design and Analysis of Algorithms
算法可以解决哪些问题
快速访问和检索互联网数据
The Design and Analysis of Algorithms
例子
• “贝格尔”编排法(Beiger Arrangement) 把参赛队数分一半(参赛队为单数时,最后以“0” 表示形成双数),前一半由1号开始,自上而下写在 左边;后一半的数自下而上写在右边,然后用横线 把相对的号数连接起来。这即是第一轮的比赛。 第二轮将第一轮右上角的编号(“0”或最大的一个代 号数)移到左角上,第三轮又移到右角上,以此类推。 即单数轮次时“0”或最大的一个代号在右上角,双 数轮次时则在左上角。
//使用欧几里得算法计算gcd(m,n) //输入:两个不全为0的非负整数m,n //输出:m,n的最大公约数
28
The Design and Analysis of Algorithms
例子
• “贝格尔”编排法(Beiger Arrangement)
这种编排方法是否完美?
第一讲 数据结构和算法绪论
作者:小甲鱼
让编程改变世界
Change the world by program
数据结构和算法绪论
• 数据结构和算法这门计算机必修课历来无论在哪 个学校,都是无比乏味和催人入睡的。 • 但是,小甲鱼决定要投入大量的精力来将这门课 程打造成有屎以来最为华丽的,最为欢乐地,最 为图文并茂的课程! • 因为,在中国,有一句古训:No picture you say a J8 a ! • 鉴于本节目是向上的,积极地,不被和谐的,所 以小甲鱼就不会说出中文版本了。
数据结构和算法绪论
• 什么是数据结构? • 数据结构是一门研究非数值计算的程序设计问题 中的操作对象,以及它们之间的关系和操作等相 关问题的学科。 • 这样的官方陈词不是小甲鱼的风格哈,如果是小 甲鱼,会告诉你数据结构事实上就是这样子:
– 程序设计 = 数据结构 + 算法 – 再简单的来说数据结构就是关系,没错,就是数据 元素相互之间存在的一种或多种特定关系的集合。
链式存储结构
• 现在如银行、医院等地方,都设置了排队系统。 也就是每个人去了,先领一个号,等着叫号,叫 到你的时候就可以去存一百块给小甲鱼或看病。 • 而在等待的时候,你爱在哪在哪,可以坐着、站 着或者四处看看美眉,只要你及时回来就行。 • 这些情况下,你关注的是前一个号有没有被叫到 ,叫到了,下一个就该轮到你了。 • 链式存储结构就是这样的原理,相比起顺序存储 结构就灵活多了。
链式存储结构
顺序存储结构
• 顺序存储结构:是把数据元素存放在地址连续的 存储单元里,其数据间的逻辑关系和物理关系是 一致的。 • 例如我们编程语言的数组结构就是这样滴。
链式存储结构
• 从顺序存储结构我们想到了日常生活中我们的排 队,有木有?但现实生活中,我们发觉也并不完 全如此。 • 例如有人排着排着她内急,她要被迫离开队伍去 上洗手间,还有人不遵守基本基本道德规范他插 队,这些情况会大破存储存储结构的基本原则。 • 面对这样时常要变化的结构,顺序存储是不科学 的,那么就该让链式存储结构露面了。
计算理论第一章绪论
1.1 计算与计算模型
上世纪初,德国大数学家希尔伯特(Hilbert)提出: 是否存在着一个通用过程,这个过程能用来判
定任意数学命题是否成立,即,输入一个数学命题, 在有限时间内,得到一个证明,如果这个命题成立; 或是一个反例,如果这个命题不成立。
图灵证明了对于平面几何来说,存在这样的过程。 但是,对于一般的数学命题,不存在这样的过程。
图灵机和可计算函数
英国 数学家
1936年,图灵24岁时发表一篇 论文《论数字计算在判决难题 中的应用》,提出著名的“图 灵机”的设想。这一思想奠定 了现代计算机的基础。
美国计算机协会在图灵去世12 年后以他的名字命名了计算机 领域的最高奖“图灵奖”。
艾伦·图灵(1912-1954)
1.1 计算与计算模型
判定。
1.3图灵机
NP完全问题:
NP类中某些问题的复杂性与整个类的复杂 性相关联,这些问题称为NP完全问题。
可计算性与计算复杂性
可计算性computability 是否可解
复杂性 complexity 解的难易程度
1.4 语言与文法
乔姆斯基最初从产生语言的角度研究语言, L*。
问题:考察一个字符串是否是某个语言的句 子。
计算的图灵机定义:
1936年由Turing给出,定义计算为: 输入—执行过程(有限步内结束)—输出
1946年,冯·诺依曼与宾夕法尼亚大学的工程师 采用电子器件物理实现了图灵的计算模型,建成 了世界的第一台计算机。
现在称计算机的体系结构为冯·诺依曼体系结构。
1.1 计算与计算模型
图灵给出了过程的科学定义,区分了可计算 的问题和不可计算的问题。
1.6 计算逻辑与描述逻辑
机器学习基础教程课件:分类与聚类学习算法
图5.6 决策边界为直线
这样,特征空间被决策边界划分成不同的区域,每个区域对应一个类别,称为决策区域。 当我们判定待识别的样本位于某个决策区域时,就判决它可以划归到对应的类别中。需要注意的是,决策区域包含类别中样本的分布区域,但不等于类别的真实分布范围。
数据实际属于类别π1
数据实际属于类别π2
分类操作结果属于类别π1
分类操作结果属于类别π2
表5.1 分类情况表
图5.4 错误分类概率情况图
分类情况的好坏可以使用错误分类代价(简称错分代价) 来进行衡量。由于正确分类没有出现错误,因此正确分类的错分代价为0。而将本来属于类别 的数据错分为类别 的错分代价为 ;同样的,将本来属于类别 的数据错分为类别 的错分代价为 。在两分类的情况下,综合所有的因素,可以使用期望错分代价(ECM)来进行评价: 优良的分类结果应该式(5.5)的错分代价最小。对于图5.4所示的两个分类区域,应该有:对于R2有: 对于 有: 对于 有:
式中, 为两类数据的均值(期望),S为两类数据相同的协方差阵。对式(5.14)有: (5.15) 可得线性分类函数为: (5.16) 对于两类方差不同的总体,其分类域变为: (5.17) (5.18)
式中, (5.19) 可见,当两个总体的方差相同时 ,将其代入式(5.19)。式(5.17)、(5.18)就退化为式(5.12)、(5.13)。 对于多个正态总体的数据集进行分类,可以将两类数据的分类方法进行推广。对于期望错分代价函数来讲,如果有n类数据,且将第一类数据错分为各个n-1类的数据,则借鉴两个总体期望错分代价函数的情况,有:
图5.5 SigmoidБайду номын сангаас数曲线
算法分析设计期末复习
通过解递归方程
logm n1
T (n) nlogm k k j f (n / m j ) j0
学习要点: 理解递归的概念。 掌握设计有效算法的分治策略。 通过下面的范例学习分治策略设计技巧。 (1)二分搜索技术; (2)大整数乘法; (3)Strassen矩阵乘法; (4)棋盘覆盖; (5)合并排序和快速排序; (6)线性时间选择; (7)最接近点对问题; (8)循环赛日程表。
基本运算Oi的执行次数ei分别进行统计分析。 – T(N,I)还需进一步简化,只在某些有代表性的合法输
入中去统计相应的ei来评价其复杂性。 – 一般只考虑三种情况下的时间性:最坏情况、最好
情况和平均情况下的复杂性,分别记为Tmax(N)、 Tmin(N)和Tavg(N)
四种渐近意义下的符号
• 四种渐近意义下的符号 –O –Ω –θ –o
}
----------------------------------------------------------------------------------------
CheckNum( T , p , q , element): ▹计算T[p..q]中element出现的次数
{ cnt ← 0
• 思路二:直接统计各 元素出现的次数,用 某一线性数据结构 存储统计结果(例如 用一个辅助数组存 储统计结果,统计时 用数组下标对应相 应元素)
第三章:动态规划
动态规划算法的基本思想
• 动态规划算法的基本思想
– 其基本思想与分治算法的思想类似——分而治之 – 与分治法的不同之处
• 分解后的子问题往往不互相独立; • 采用记录表的方法来保存所有已解决问题的答案
考虑时间 资源
算法设计与分析基础
2023/12/21
20
LingJie/GDUT
1.2.6 详细表述该算法的方法
• 可以用到的工具有自然语言(nature
language)、伪代码(pseudocode)以及程序 流程图(flow chart)等。
• 当对一个问题有了概要的理解后,下面的工作
就是把这个问题的想法进行细化。所谓的细化 就是把它们表示成算法的步骤。
令执行顺序以及同步等问题。并行算法的设计 有相应的理论,这里仅考虑串行算法。
2023/12/21
17
LingJie/GDUT
1.2.3 选择精确或者近似的算法
• 解决问题下一步要考虑的是使用精确的还是近
似的算法。并不是每一个可解的问题都有精确 的算法,例如求一个数的平方根,求非线性方 程的解等。有时候一个问题有精确的解法但是 算法的执行效率很差,例如旅行家问题。因此 如果待处理的问题涉及到上述那些方面,则要 考虑是选择精确的还是近似的算法。
2023/12/21
10
LingJie/GDUT
-- 2* 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
-- 2 3*
5
7
9
11
13
15
17
19
21
23
25
-- 2 3
5*
7
11
13
17
19
23
25
-- 2 3
5
7
11
13
第一步:找出m的所有质因数。 第二步:找出n的所有质因数。 第三步:从第一步求得的m的质因数分解式和第二步求得的n
的质因数分解式中,找出所有公因数。 第四步:将第三步找到的公因数相乘,结果为所求的
群智能优化算法——遗传算法
第三章 算法流程
开始 初始种群
开始迭代,Nc=1
no Nc<=MaxNc yes 计算个体适应度值 结束 输出最优结果
选择、交叉、变异
产生新种群
记录产生的最好解
Nc=Nc+1
第四章 算法实例分析
实例: 这里以大连市甘井子区诊所层的选址为案例讲解。
Company
LOGO
Company
LOGO
群智能优化算法 遗传算法
目录
1 2 3 4 绪论 算法基本概念 算法流程 算法实例分析
第一章 绪论
遗传算法是一类借鉴生物界的进化规律(适者生存, 优胜劣汰的遗传机制)演化而来的自适应概率性随机化迭 代搜索算法,它是群优化算法的一种,其中模式定理和隐 性并行性是遗传算法的两大基本原理。 类似于生物的进化过程,遗传算法处理的是变量集合 的编码而非变量本身。它直接对结构对象进行操作,不存 在求导和函数连续性的界定;具有内在的隐并行性和更好 的全局寻优能力;采用概率化的寻优方法,能自动获取和 指导优化的搜索空间,自适应的调整搜索方向,不需要确 定规则。遗传算法的这些特点已被人们广泛的应用于组合 优化、机器学习、信号处理、自适应控制和人工生命领域。 它是现代有关智能计算中的关键技术之一。
第二章 算法基本概念
6)选择(Selection):指决定以一定概率从种群中选择若干 个体的操作。一般而言,选择过程是一种基于适应度的优胜 劣汰的过程。 7)交叉(Crossover):有性生物在繁殖下一代时两个同源 染色体之间通过交叉而重组,亦即在两个染色体的某一个相 同的位置处NDA被切断,其前后两串分别交叉组合形成两个 新的染色体。这个过程又称为基因重组,俗称“杂交”。 8)变异(Mutation):在细胞进行复制时可能以很小的概率 产生某些复制差错,从而使DNA发生某种变异,产生新的染 色体,这些新的染色体表现出新的性状。 9)编码(Coding):DNA中遗传信息在一个长链上按照一定 的模式排列,也即进行了遗传编码。遗传编码可以看做从表 现型到遗传子型的映射。 10)解码(Decoding):从遗传子型到表现型的映射。
第1章 绪论-算法与数据结构(第三版)-陈媛-清华大学出版社
例3 :n个城市间铺设光缆的问题 算法: Prim或 Kruskal算法 n个城市间铺设光缆,任意两个城市都可以铺设
只要n-1条光缆即能将这n个城市连成网络,由于
地理位置的不同,所需经费也不同,选择设计方案
使总投资最省
图中“顶点”表示城市,顶点之间的连线及其上
面的数值表示可以铺设的光缆及所需经费。
计算机科学与工程学院《数据结构》课程组
7
1.1学习数据结构意义:小结
数据结构(学科) 研究非数值计算领域的程序设计问题 问题的操作对象 操作对象之间的关系 在操作对象上面施加的操作
算法+数据结构=程序
计算机科学与工程学院《数据结构》课程组
8
习题
判断下列各小题的正误: 数据结构这门学科,研究的是非数值 计算领域问题(√) 数据结构这门学科,只研究问题的操 作对象和操作对象之间的关系
员.人员之间的关系是:经理指导部门经理的工作,部 门经理指导职员的工作.
GROUP=(P,R)
P={M,D1,D2,E11,E12,E13,E21,E23,E23} R={<M,D1>,<M,D2>,<D1,E11>,<D1,E12>…<D2,E23>}
M
D1
D2
E11 E12 E13 E21 E22 E23
计算机科学与工程学院《数据结构》课程组
11
数据的逻辑结构
逻辑结构 数据元素之间的相互逻辑关系
四种基本逻辑结构 集合 不存在关系(没表示出) 线性结构 一对一的关系 树形结构 一对多的关系
图状结构或网状结构 多对多的关系
计算机科学与工程学院《数据结构》课程组
12
数据结构的形式定义
计算方法第一章 绪论
知称道,实为Er际近(x)计似算值时x的通相常对取误差,由于精确值 一般x不*
x* x
Er (x)
作为近似值x的相对误差。
x
若能求出一个正数 ,使r 得
E,r (x则) 称r 为近似r
值x的相对误差限。它是无量纲的数,通常用百分
比表示。
2021/6/26
整理课件
15
例:甲用米尺测量10M长的物体,所产生的绝对 误差为2cm,乙用同一米尺测量1M长的物体,所产 生的绝对误差为1cm,他们谁的测量精度好?
用计算机解决科学计算问题的一般过程,可以概括为:
实际问题→数学模型→计算方法→ 程序设计→上机计算→结果分析
整理课件
由实际问题应用有关科学知识和数学理论建立
数学模型这一过程,通常作为应用数学的任务。 而根据数学模型提出求解的计算方法直到编出程 序上机算出结果,进而对计算结果进行分析,这 一过程则是计算数学的任务,也是数值计算方法 的研究对象。
第二,有可靠的理论分析,能任意逼近并达到精度要 求,对近似算法要保证方法的收敛性和数值稳定性,还要对 误差进行分析,这些都建立在相应数学理论基础上。
第三,要有好的计算复杂性(即时间复杂性和空间复杂 性);时间复杂性好是指节省时间,空间复杂性好是指节省 存储量,这也是建立算法要研究的问题,它关系到算法能否 在计算机上实现。
x x * 0.04 0.05 1 101 2
x 又 (0.3289) 1,故02该不等式又可写为
x x * 1 10 23 2
x 故 有3位有效数字,分别是 3,2,8。 x x 由于 中的数字9不是有效数字,故 不是有效数。
思考: 3.1415有几位有效数字?
2021/6/26
第一章数值计算方法绪论
er ( y )
e ( y ) f(x)f(x) x xx f ( x ) xx f(x) x
x f(x) f(x)
er (x)
相对误差条件数
注:关于多元函数 yf(x1,x2,...xn ,)可类似讨论, 理论工具:Taylor公式
2、向后误差分析法:把舍入误差的累积与导出 A 的已
数值计算方法
第0章 课程介绍
什么是数值计算方法? 数值计算方法特点 数值计算方法重要性 本课程主要内容 本课程要求
什么是数值计算方法?
实际 问题
建立数学模型
近似结果 输
上机
出
计算
设计高效、 可靠的数值 方法
程序 设计
什么是数值计算方法? 数值计算方法是一种研究并解决数学问题的数值
若 x 的每一位都是有效数字,则x 称是有效数。
特别地,经“四舍五入”得到的数均为有效数
5.定理:
将 x 近似值 x 表示为 x 0.a 1a2 ak an 10m,
若 x * 有k位有效数字,则
; | er
|
1 2a1
10(k1)
x 反之,若
er
1 , 10(k1) 则
注:(1)
近似数
x
1
,
x
2
四则运算得到的误差分别为
| e(x1 x2)| |e(x1)e(x2)|,
er ( x1 x2 )
e(x1) x1 x2
e(x2) x1 x2
,
(避免两近似数相减)
e
(
x x
1 2
)
x1e(x2) x2e(x1) x22
计算方法第一章绪论(32学时)-2014.2
教材聂玉峰、王振海等《数值方法简明教程》,高等教育出版社,2011作业计算方法作业集(A、B)参考书¾封建湖,车刚明计算方法典型题分析解集(第三版)西北工业大学出版社,2001¾封建湖,聂玉峰,王振海数值分析导教导学导考(第二版)西北工业大学出版社,2006¾车刚明,聂玉峰,封建湖,欧阳洁数值分析典型题解析及自测试题(第二版)西北工业大学出版社,2003西北工业大学理学院欧阳洁2第一章绪论§1 引言§2 误差的度量与传播§3 选用算法时应遵循的原则西北工业大学理学院欧阳洁3§1 引言科学与工程领域中运用计算机求解问题的一般过程:1 实际问题的提出2 建立数学模型3 设计可靠、高效的数值方法4 程序设计5 上机实践计算结果6 数据处理及结果分析西北工业大学理学院欧阳洁4学习算法的意义科学计算(数值模拟)已经被公认为与理论分析、实验分析并列的科学研究三大基本手段之一。
计算方法课程的研究对象具有广泛的适用性,著名流行软件如Maple、Matlab、Mathematica 等已将其绝大多数内容设计成函数,简单调用之后便可以得到运行结果。
但由于实际问题的具体特征、复杂性, 以及算法自身的适用范围决定了应用中必须选择、设计适合于自己特定问题的算法,因而掌握数值方法的思想和内容至关重要。
西北工业大学理学院欧阳洁5鉴于实际问题的复杂性,通常将其具体地分解为一系列子问题进行研究,本课程主要涉及如下几个方面问题的求解算法:¾非线性方程求根¾线性代数方程组求解¾函数插值¾曲线拟合¾数值积分与数值微分¾常微分方程初值问题的数值解法¾矩阵特征值与特征向量计算西北工业大学理学院欧阳洁6§2 误差的度量与传播一误差的来源与分类模型误差:数学模型与实际问题的误差观测误差:观测结果与实际问题的误差截断误差:数学模型的理论解与数值计算问题的精确解之间的误差舍入误差:对超过某有限位数的数据进行舍入所产生的误差西北工业大学理学院欧阳洁75 使用数值稳定性好的公式一个算法,如果初始数据微小的误差仅使最终结果产生微小的误差,或在运算过程中舍入误差在一定条件下能够得到控制,则称该算法(数值)稳定,否则称其为(数值)不稳定.西北工业大学理学院欧阳洁26总结1.数值运算的误差估计2.绝对误差、相对误差与有效数字3.数值运算中应遵循的若干原则西北工业大学理学院欧阳洁30。
考研数据结构必须掌握的知识点与算法-打印版
考研数据结构必须掌握的知识点与算法-打印版《数据结构》必须掌握的知识点与算法第一章绪论1、算法的五个重要特性(有穷性、确定性、可行性、输入、输出)2、算法设计的要求(正确性、可读性、茁壮性、效率与低存储量需求)3、算法与程序的关系:(1)一具程序别一定满脚有穷性。
例操作系统,只要整个系统别遭破坏,它将永久不可能停止,即使没有作业需要处理,它仍处于动态等待中。
所以,操作系统别是一具算法。
(2)程序中的指令必须是机器可执行的,而算法中的指令则无此限制。
算法代表了对咨询题的解,而程序则是算法在计算机上的特定的实现。
(3)一具算法若用程序设计语言来描述,则它算是一具程序。
4、算法的时刻复杂度的表示与计算(那个比较复杂,具体看算法本身,普通关怀其循环的次数与N的关系、函数递归的计算)第二章线性表1、线性表的特点:(1)存在唯一的第一具元素;(这一点决定了图别是线性表)(2)存在唯一的最终一具元素;(3)除第一具元素外,其它均惟独一具前驱(这一点决定了树别是线性表)(4)除最终一具元素外,其它均惟独一具后继。
2、线性表有两种表示:顺序表示(数组)、链式表示(链表),栈、队列基本上线性表,他们都能够用数组、链表来实现。
3、顺序表示的线性表(数组)地址计算办法:(1)一维数组,设DataType a[N]的首地址为A0,每一具数据(DataType 类型)占m个字节,则a[k]的地址为:A a[k]=A0+m*k(其直截了当意义算是求在数据a[k]的前面有多少个元素,每个元素占m个字节)(2)多维数组,以三维数组为例,设DataType a[M][N][P]的首地址为A000,每一具数据(DataType 类型)占m个字节,则在元素a[i][j][k]的前面共有元素个数为:M*N*i+N*j+k,其其地址为:A a[i][j][k]=A000+m*(M*N*i+N*j+k);4、线性表的归并排序:设两个线性表均差不多按非递减顺序排好序,现要将两者合并为一具线性表,并仍然接非递减顺序。
算法数数据结构 第3版 绪论课后答案
算法与数据结构---C语言描述(第三版)第1章绪论1、解释以下概念:逻辑结构,存储结构,操作,数据结构,数据结构的表示,数据结构的实现,抽象数据类型,算法,算法的时间代价,算法的空间代价,大O表示法,贪心法,回溯法,分治法。
答:(1)逻辑结构(数学模型):①指数据元素之间地逻辑关系。
②具体解释:指数学模型(集合,表,树,和图)之间的关系。
③描述方式:B = <K,R>, K是节点的有穷集合,R是K上的一个关系。
(2)存储结构(物理结构):数据的逻辑结构在计算机存储器中的映射(或表示)。
(3) 操作(行为):指抽象数据类型关心的的各种行为在不同的存储结构上的具体算法(或程序)。
(4) 数据结构:①传统观念:数据结构是计算机中表示(存储)的、具有一定逻辑关系和行为特征的一组数据。
②根据面向对象的观点:数据结构是抽象数据类型的物理实现。
(5) 数据结构的表示:(6) 数据结构的实现:(7) 抽象数据类型:(8) 算法:是由有穷规则构成(为解决某一类问题)的运算序列。
-算法可以有若干输入(初始值或条件)。
-算法通常又有若干个输出(计算结果)。
-算法应该具有有穷性。
一个算法必须在执行了有穷步之后结束。
-算法应该具有确定性。
算法的每一步,必须有确切的定义。
-算法应该有可行性。
算法中国的每个动作,原则上都是能够有机器或人准确完成的。
(9) 算法的时间代价:(10) 算法的空间代价:(11) 大O表示法:-更关注算法复杂性的量级。
-若存在正常数c和n0,当问题的规模n>=c*f(n), 则说改算法的时间(或空间)代价为O(f(n))(12) 贪心法:当追求的目标是一个问题的最优解是,设法把整个问题的求解工作分成若干步来完成。
在其中的每一个阶段都选择都选择从局部来看是最优的方案,以期望通过各个阶段的局部最有选择达到整体的最优。
例如:着色问题:先用一种颜色尽可能多的节点上色,然后用另一种颜色在为着色节点中尽可能多的节点上色,如此反复直到所有节点都着色为止;(13) 回溯法有一些问题,需要通过彻底搜索所有的情况寻找一个满足某些预定条件的最优解。
算法设计与分析-绪论
回溯法的算法框架 实例分析
0-1背包问题 TSP问题 N皇后问题 连续邮资
回溯法的效率分析
基础算法部分教学安排(6/10)
第六章:分支限界法
分支限界法的基本思想 实例分析
单源最短路径问题 装载问题 布线问题
基础算法部分教学安排(7/10)
第七章:概率算法
分析总结阶段
方案是否可行 是否满足预期要求 与其他方案相比,本方案有哪些优点(通过实验数 据说明),有哪些问题?如何进行改进? ——提交工程设计论文
6000字左右 遵照标准科技论文格式 严禁抄袭!
工程论文要求
题目 作者 摘要 文献综述 典型问题 方案设计 实验分析 研究过程中发现的问题总结 结论与感想 参考文献 附件说明
如不交作业,该组同学的该次作业成绩以0分计;
每次上传作业中,除规定的课程作业外,还需注明本次作业 的负责同学姓名,学号 以及作业的分工; 每周四中午12:00前交作业,迟交一律不收
工程设计要求(1/5)
准备阶段
确定要研究的课题; 在组内进行分工; 拟订工作计划; ——提交研究小组组成情况说明,课题名称,分工以 及工作计划
考核方式
平时成绩(40%);
请假以课前书面假条为准
小组汇报、实验+考勤
期末考试或工程设计(60%)
平时作业的分组安排
平时作业的分组安排
按2-3人/组进行分组 自由组合; 每组选出一位同学作为联系人,该联系人在10月10日前将本 组成员名单、联系方式上传到作业目录下; 作业按组上交,成绩按组评定 由联系人负责作业和实验报告。
数据结构(一)绪论
1.3 算法和算法分析 1.3.1 算法:
是对特定问题求解步骤的一种描述,是指令的有限序列,其中 每一条指令表示一个或多个操作。 算法具有以下五个特性: (1)有穷性 一个算法必须总是在执行有穷步之后结束,且每 一步都在有穷时间内完成。 (2)确定性 算法中每一条指令必须有确切的含义。不存在二义 性。 (3)可行性 一个算法是可行的。即算法描述的操作都是可以通 过已经实现的基本运算执行有限次来实现的。 (4)输入 一个算法有零个或多个输入,这些输入取自于某个特 定的对象集合。 (5)输出 一个算法有一个或多个输出,这些输出是同输入有着 某些特定关系的量。
数据元素:
是数据(集合)中的一个“个体” 是数据结构中讨论的基本单位
数据结构主要指逻辑结构和物理结构 数据之间的相互关系称为逻辑结构。通常 分为四类基本结构: 一、集合 结构中的数据元素除了同属于一 种类型外,别无其它关系。 二、线性结构 结构中的数据元素之间存在一 对一的关系。 三、树型结构 结构中的数据元素之间存在一 对多的关系。 四、图状结构或网状结构 结构中的数据元素 之间存在多对多的关系。
求整数n(n>=0)阶乘的算法如下,其时间复杂度, int fact(int n) {if (n<=1) return 1; return n*fact(n-1); }
A ) O(log2 n) B) O(n)
C)
O(n (2分)
作业:
1. 计算时间复杂度 sum=1; for(i=0;sum<n;i++) sum+=i; 2.设给定若干n值,比较两函数n2和50nlog2n的增长 趋势,并确定在什么范围内,函数n2的值大于
例4 for(i=1;i<=n;++i) for(j=1;j<=n;++j) {++x;s+=x;} 语句频度为:n2 其时间复杂度为:O(n2) 即时间复杂度为平方阶。
数据结构(从概念到算法)第一章 绪论
(2)可读性:算法的变量命名、格式符合行业规范,并在关键处给出注释,
以提升算法的可理解性。
(3)健壮性:算法能对不合理的输入给出相应的提示信息,并做出相应处
理。
(4)高执行效率与低存储量开销:涉及算法的时间复杂度和空间复杂度评
判。
算法设计的一般步骤
1.3.1算法定义与性质
算法设计出来后有多种表述方法,一般有如下几种描述工具:第一种是自然语
良好基础,数据结构与算法设计密不可分。算法是对特定问题求解步骤的一种描述。
换言之,算法给出了求解一个问题的思路和策略。
一个算法应该具有以下 5 个特征。
(1)有穷性,即算法的最基本特征,要求算法必须在有限步(或有限时间)
之后执行完成。
(2)确定性,即每条指令或步骤都无二义性,具有明确的含义。
(3)可行性,即算法中的操作都可以通过已经实现的基本运算执行有限次
成的集合,数据对象是数据的一个子集。实例说明如下。
由 4 个整数组成的数据对象: D1={20,- 30,88,45}
由正整数组成的数据对象: D2={1,2,3,…}
数据结构的基本概念
(5)数据结构。数据结构是相互之间存在一种或多种特定关系的数据元素
的集合。数据元素之间的关系称为结构,主要有 4 类基本结构,如下图所示。
址,数据'C'的指针指向数据'D'的结点地址,具体如图所示。
数据结构的基本概念
上图数据元素存储的地址在整体上具有前后次序,但实际对单链表数据元素
所分配的存储空间是随机的。如下图 所示,数据元素'A'在物理存储地址上可能位
于数据元素'B'和'D'存储地址之后。
计算方法_第一章_绪论
第一章绪论1.1 "数值分析"研究对象与特点"数值分析"是计算数学的一个主要部分.而计算数学是数学科学的一个分支,它研究用计算机求解数学问题的数值计算方法及其软件实现.计算数学几乎与数学科学的一切分支有联系,它利用数学领域的成果发展了新的更有效的算法及其理论,反过来很多数学分支都需要探讨和研究适用于计算机的数值方法.因此,"数值分析"内容十分广泛.但本书作为"数值分析"基础,只介绍科学与工程计算中最常用的基本数值方法,包括线性方程组与非线性方程求根、插值与最小二乘拟合、数值积分与常微分方程数值解法等.这些都是计算数学中最基础的内容.近几十年来由于计算机的发展及其在各技术科学领域的应用推广与深化,新的计算性学科分支纷纷兴起,如计算力学、计算物理、计算化学、计算经济学等等,不论其背景与含义如何,要用计算机进行科学计算都必须建立相应的数学模型,并研究其适合于计算机编程的计算方法.因此,计算数学是各种计算性科学的联系纽带和共性基础,是一门兼有基础性、应用性和边缘性的数学学科.计算数学作为数学科学的一个分支,当然具有数学科学的抽象性与严密科学性的特点,但它又具有广泛的应用性和边缘性特点.现代科学发展依赖于理论研究、科学实验与科学计算三种主要手段,它们相辅相成,互相独立,可以互相补充又都不可缺少,作为三种科学研究手段之一的科学计算是一门工具性、方法性、边缘性的新学科,发展迅速,它的物质基础是计算机(包括其软硬件系统),其理论基础主要是计算数学.计算数学与计算工具发展密切相关,在计算机出现以前,数值计算方法只能计算规模小的问题,并且也没形成单独的学科,只有在计算机出现以后,数值计算才得以迅速发展并成为数学科学中一个独立学科--计算数学.当代计算能力的大幅度提高既来自计算机的进步,也来自计算方法的进步,计算机与计算方法的发展是相辅相成、互相促进的.计算方法的发展启发了新的计算机体系结构,而计算机的更新换代也对计算方法提出了新的标准和要求.例如为在计算机上求解大规模的计算问题、提高计算效率,诞生并发展了并行计算机.自计算机诞生以来,经典的计算方法业已经历了一个重新评价、筛选、改造和创新的过程,与此同时,涌现了许多新概念、新课题和能充分发挥计算机潜力、有更大解题能力的新方法,这就构成了现代意义下的计算数学.这也是数值分析的研究对象与特点.概括地说,数值分析是研究适合于在计算机上使用的实际可行、理论可靠、计算复杂性好的数值计算方法.具体说就是:第一,面向计算机,要根据计算机特点提供实际可行的算法,即算法只能由计算机可执行的加减乘除四则运算和各种逻辑运算组成.第二,要有可靠的理论分析,数值分析中的算法理论主要是连续系统的离散化及离散型方程数值求解.有关基本概念包括误差、稳定性、收敛性、计算量、存储量等,这些概念是刻画计算方法的可靠性、准确性、效率以及使用的方便性.第三,要有良好的复杂性及数值试验,计算复杂性是算法好坏的标志,它包括时间复杂性(指计算时间多少)和空间复杂性(指占用存储单元多少).对很多数值问题使用不同算法,其计算复杂性将会大不一样,例如对20阶的线性方程组若用代数中的Cramer法则作为算法求解,其乘除法运算次数需要,若用每秒运算1亿次的计算机计算也要30万年,这是无法实现的,而用"数值分析"中介绍的Gauss消去法求解,其乘除法运算次数只需3 060次,这说明选择算法的重要性.当然有很多数值方法不可能事先知道其计算量,故对所有数值方法除理论分析外,还必须通过数值试验检验其计算复杂性.本课程虽然只着重介绍数值方法及其理论,一般不涉及具体的算法设计及编程技巧,但作为基本要求仍希望读者能适当做一些计算机上的数值试验,它对加深算法的理解是很有好处的.讲解:(1)计算数学是研究用计算机求解数学问题的数值计算方法及其软件实现,"数值分析"是计算数学的主要部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 绪论
1.2 算法问题的求解基础 • • • • • • • 了解计算设备的性能 在精确解和近似解之间取舍 确定合适的数据结构 设计一个确切的算法 证明算法的正确性 分析改进算法 书写代码
第一章 绪论
1.3:各种排序方法; • 查找:穷举,折半,平衡查找等等; • 串处理:串匹配; • 图问题:图的遍历、最短路线、拓扑排序,填色等; • 组合问题:旅行商问题等; • 几何问题:凸包问题,最近对问题等; • 数值问题:方程组求解,函数值求解等;
第一章 绪论
1.4 基本数据结构回顾 • 线性结构:数组和链表; • 图:有向图和无向图、稀疏图和稠密图、邻接矩阵和邻 接链表、加权图、路径和环; • 树:树和森林、有序树、二叉树; • 集合与字典:抽象数据类型、类;
第一章 绪论
1.1 算法的概念 • 算法:是一系列解决问题的清晰指令,它能够对符合一 定规范的输入,在有限时间内获得所要求的输出。 • 算法的特性: 1、确定性——动作清楚,无二义性; 2、可行性——所有运算都是由基本运算构成; 3、输入——有0个或多个输入; 4、输出——有1个或多个输出; 5、有穷性——算法执行步骤应该是“有限”的;