2010第二学期八年级数学下册期中试卷(附答案)

合集下载

八年级下册期中考试数学试题有答案

八年级下册期中考试数学试题有答案

y1x O A B C初二数学第二学期期中试卷考试时间120分钟 总分130分一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将你认为正确的答案填在答题卡相应的位置上)1.下列图形中,既是中心对称图形又是轴对称图形的是………………………………( ▲ )A. B. C. D.2.在代数式21332x xy x yπ++、 、 、1a m +中,分式的个数有………………………( ▲ )A .2个B .3个C .4个D .5个3.若将分式abba +中的字母b a ,的值分别扩大为原来的2倍,则分式的值…………( ▲ ) A .扩大为原来的2倍 B .缩小为原来的21 C .不变 D .缩小为原来的414.若二次根式3-x 有意义,则x 的取值范围是………………………………………( ▲ ) A .3x < B .3x ≠ C .3x ≤ D .3x ≥5.如果12与最简二次根式a 2-7是同类二次根式,那么a 的值是………………( ▲ ) A.-2 B.-1 C.1 D.2 6.已知反比例函数ky x=的图像经过点(-1,2),则这个函数的图像一定经过点……( ▲ ) A.(1,2) B.(2,1) C.(-1,-2) D.(-2,1) 7.若M(12-,)、N(14-,)、P(12,3y )三点都在函数k y x=(k>0)的图象上,则、2y 、3y 的大小关系是……………………………………………………………( ▲ )A.132y y y >>B.312y y y >>C.213y y y >>D.123y y y >> 8.矩形具有而菱形不具有的性质是………………………………………………………( ▲ ) A .对角线互相垂直 B .对角线互相平分C .对角线相等D .每条对角线平分一组对角9.如图,点D 、E 、F 分别是△ABC 三边的中点,则下列判断错误的是……………( ▲ ) A .四边形AEDF 一定是平行四边形 B .若AD 平分∠A ,则四边形AEDF 是正方形 C .若AD ⊥BC ,则四边形AEDF 是菱形 D .若∠A =90°,则四边形AEDF 是矩形10.如图,等腰直角三角形ABC 位于第一象限,AB=AC=2,直角顶点A 在直线y =x 上,其中A 点的横坐标为1,且两条直角边AB 、AC 分 别平行于x 轴、y 轴,若双曲线k y x=(k ≠0)与ABC ∆有交点,则k 的取值范围是………………………………………………( ▲ ) A 、12k << B 、13k ≤≤C 、14k ≤≤D 、14k <≤ 二、填空题(本大题共8题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.当=x 时,242--x x 的值为0.12. 若分式方程244x ax x =+--有增根,则a 的值为 . 13.已知函数()221ay a x -=-是反比例函数,则a14.已知函数5y x =+的图象与反比例函数2y x=-的图象的一个交点为A (),a b , 则11a b-= . 15.如图,□ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点.若AC+BD =24cm ,△OAB 的周长是18cm ,则 EF 的长为 .16.若分式方程2221-=--+x mx x 的解为非负数,则a 的取值范围是 . 17.如图,正方形ABCD 的面积是12,ABE ∆是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PE PD +最小,则这个最小值为18. 如图:两个反比例函数k y x =和1y x=在第一象限内的图象如图所示,点P 在k y x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x =的图象于点B ,当点P 在ky x =的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化; ③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 .(把你认为正确结论的序号都填上)期中试卷 初二数学命题人:谢煜 校对:高东一、选择题:(每题3分,共30分)1 2 3 4 5 6 7 8 9 10二、填空题:(每题3分,共24分)11. 12. 13. 14. 15. 16. 17. 18.三、解答题:(共76分)19. (16分)计算: ①()27-3--2-32②53232b ab a b ba ⎛⎫•-÷ ⎪⎝⎭③21+1x x x -+ ④111a ⎛⎫+ ⎪-⎝⎭÷2111a ⎛⎫+ ⎪-⎝⎭.20.(8分)解方程:①31144x x x --=-- ②23193xx x +=--.21. (5分)先化简,再求值:⎪⎪⎭⎫⎝⎛-+÷-++1211222x x x x x ,其中2x =.22.(6分)如图,E ,F 是四边形ABCD 对角线AC 上的两点,AD ∥BC , DF ∥BE ,AE =CF .求证:(1)△AFD ≅△CEB ;(2)四边形ABCD 是平行四边形.23. (6分) 如图,在平面直角坐标系中,△ABC 和△A 1B 1C 1 关于点E 成中心对称.(1) 画出对称中心E ,并写出点E 的坐标 ; (2) 画出△A 1B 1C 1绕点O 逆时针旋转90°后的△A 2B 2C 2; (3) 画出与△A 1B 1C 1关于点O 成中心对称的△A 3B 3C 3.24.(5分)甲、乙两人每小时共做35个零件,甲做160个零件所用的时间与乙做120个零件所用的时间相等。

八年级下学期期中考试数学试题(含答案)

八年级下学期期中考试数学试题(含答案)

八年级下学期期中考试数学试题(含答案)一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列各式不是分式的是()A.B.C.D.2.(3分)函数y=自变量的取值范围是()A.x≥﹣3B.x<3C.x≤﹣3D.x≤3 3.(3分)在平面直角坐标系中,点(a2+1,﹣1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.5.(3分)平行四边形具有的特征是()A.四个角都是直角B.对角线相等C.对角线互相平分D.四边相等6.(3分)如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD ,BC 于点E ,F ,连接AF ,若△ABF 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .247.(3分)已知a =2﹣2,b =(π﹣2)0,c =(﹣1)3,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a8.(3分)在同一坐标系中(水平方向是x 轴),函数y =和y =kx +3的图象大致是( )A .B .C .D .9.(3分)如图,已知双曲线y =(k <0)经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(﹣8,4),则△AOC 的面积为( )A .6B .12C .18D .2410.(3分)观察下列等式:a 1=n ,a 2=1﹣,a 3=1﹣,…;根据其蕴含的规律可得( )A .a 2013=nB .a 2013=C .a 2013=D .a 2013=二、填空题(共6小题,每小题3分,满分18分)11.(3分)甲型H 1N 1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为.12.(3分)在平行四边形ABCD中,已知∠A﹣∠B=60°,则∠C=.13.(3分)如图,已知▱ABCD中,∠B=50°,依据尺规作图的痕迹,则∠DAE=.14.(3分)将直线y=2x﹣3平移,使之经过点(1,4),则平移后的直线解析式是.15.(3分)若关于x的方程=6+有增根,则m=.16.(3分)如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为.三、解答题(共9小题,满分0分)17.计算:|﹣5|+(π﹣3.1)0﹣()﹣1+.18.先化简,再求值.,其中a=2.19.解方程=+2.20.为了迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务.这样,这两个小组的每个同学就要比原计划多做4面彩旗.如果这3个小组的人数相等,那么每个小组有多少名学生?21.如图,点A、B、C、D在同一条直线上,点E、F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:△ACE≌△DBF;(2)求证:四边形BFCE是平行四边形.22.阅读下列解题过程,然后解题:题目:已知(a、b、c互不相等),求x+y+z的值.解:设,则x=k(a﹣b),y=k(b﹣c),z=k(c﹣a),∴x+y+z=k(a﹣b+b﹣c+c﹣a)=k•0=0,∴x+y+z=0.依照上述方法解答下列问题:已知:,其中x+y+z≠0,求的值.23.如图,一次函数y=k1x+b(k1≠0)与反比例函数y=(k2≠0)的图象交于点A(﹣1,2),B(m,﹣1)(1)求一次函数与反比例函数的解析式;(2)在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.24.某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.(1)求y与x之间的函数表达式,并写出x的取值范围;(2)若该节能产品的日销售利润为w(元),求w与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元(不用说理)25.如图1,已知点A(a,0),B(0,b),且a、b满足+(a+b+3)2=0,▱ABCD的边AD与y轴交于点E,且E为AD中点,双曲线y=经过C、D两点.(1)求k的值;(2)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.2017-2018学年福建省泉州五中八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列各式不是分式的是()A.B.C.D.【分析】根据分式的定义即可求出答案.【解答】解:一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子就叫做分式,故选:C.【点评】本题考查分式的定义,解题的关键是正确理解分式的定义,本题属于基础题型.2.(3分)函数y=自变量的取值范围是()A.x≥﹣3B.x<3C.x≤﹣3D.x≤3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:由y=,得3﹣x<0,解得x<3,故选:B.【点评】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.3.(3分)在平面直角坐标系中,点(a2+1,﹣1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据平方数非负数的性质判断出点的横坐标是正数,再根据各象限内点的坐标特征解答.【解答】解:∵a2≥0,∴a2+1≥1,∴点(a2+1,﹣1)一定在第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.(3分)下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.【分析】根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.故选:C.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.5.(3分)平行四边形具有的特征是()A.四个角都是直角B.对角线相等C.对角线互相平分D.四边相等【分析】根据平行四边形的性质即可判断.【解答】解:平行四边形的对角线互相平分.故选:C.【点评】本题考查平行四边形的性质,解题的关键是记住平行四边形的性质,属于中考常考题型.6.(3分)如图,在▱ABCD中,对角线AC的垂直平分线分别交AD,BC于点E,F,连接AF,若△ABF的周长为6,则▱ABCD的周长为()A.6B.12C.18D.24【分析】根据线段垂直平分线的性质可得AF=FC,那么由△ABF的周长为6可得AB+BC =6,再根据平行四边形的性质可得AD=BC,DC=AB,进而可得答案.【解答】解:∵对角线AC的垂直平分线分别交AD,BC于点E,F,∴AF=CF,∵△ABF的周长为6,∴AB+BF+AF=AB+BF+CF=AB+BC=6.∵四边形ABCD是平行四边形,∴AD=BC,DC=AB,∴▱ABCD的周长为2(AB+BC)=12.故选:B.【点评】此题主要考查了平行四边形的性质和线段垂直平分线的性质,关键是掌握垂直平分线上任意一点,到线段两端点的距离相等,平行四边形对边相等.7.(3分)已知a=2﹣2,b=(π﹣2)0,c=(﹣1)3,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.b>c>a【分析】将各数化简后即可比较大小.【解答】解:由题可知:a =,b =1,c =﹣1∴b >a >c ,故选:B .【点评】本题考查零指数幂以及负整数指数幂的意义,解题的关键是正确理解零指数幂以及负整数指数幂的意义,本题属于基础题型.8.(3分)在同一坐标系中(水平方向是x 轴),函数y =和y =kx +3的图象大致是( )A .B .C .D .【分析】根据一次函数及反比例函数的图象与系数的关系作答.【解答】解:A 、由函数y =的图象可知k >0与y =kx +3的图象k >0一致,故A 选项正确;B 、因为y =kx +3的图象交y 轴于正半轴,故B 选项错误;C 、因为y =kx +3的图象交y 轴于正半轴,故C 选项错误;D 、由函数y =的图象可知k >0与y =kx +3的图象k <0矛盾,故D 选项错误. 故选:A .【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.9.(3分)如图,已知双曲线y =(k <0)经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(﹣8,4),则△AOC 的面积为( )A.6B.12C.18D.24【分析】由点D为线段OA的中点可得出D点的坐标,将点D的坐标代入双曲线解析式中解出k值,即可得出双曲线的解析式,再令x=﹣8可得点C的坐标,根据边与边的关系结合三角形的面积公式即可得出结论.【解答】解:∵点D为线段OA的中点,且点A的坐标为(﹣8,4),∴点D的坐标为(﹣4,2).将点D(﹣4,2)代入到y=(k<0)中得:2=,解得:k=﹣8.∴双曲线的解析式为y=﹣.令x=﹣8,则有y=﹣=1,即点C的坐标为(﹣8,1).∵AB⊥BO,∴点B(﹣8,0),AC=4﹣1=3,OB=8,∴△AOC的面积S=AC•OB=×3×8=12.故选:B.【点评】本题考查了反比例函数系数k的几何意义、中点坐标公式以及三角形的面积公式,解题的关键是找出点C、D的坐标.解决该题型题目时,求出点的坐标由待定系数法求出反比例函数解析式是关键.10.(3分)观察下列等式:a1=n,a2=1﹣,a3=1﹣,…;根据其蕴含的规律可得()A.a2013=n B.a2013=C.a2013=D.a2013=【分析】归纳总结得到一般性规律,即可得到结果.【解答】解:由a1=n,得到a2=1﹣=1﹣=,a3=1﹣=1﹣=﹣=,a4=1﹣=1﹣(1﹣n)=n,以n,,为循环节依次循环,∵2013÷3=671,∴a2013=.故选:D.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为8.1×10﹣8.【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与绝对值大于1数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 081=8.1×10﹣8.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)在平行四边形ABCD中,已知∠A﹣∠B=60°,则∠C=120°.【分析】利用平行四边形的邻角互补,和已知∠A﹣∠B=60°,就可建立方程求出两角.【解答】解:在平行四边形ABCD中,∠A+∠B=180°,又有∠A﹣∠B=60°,把这两个式子相加相减即可求出∠A=∠C=120°,故答案为:120°.【点评】本题考查了平行四边形的性质:邻角互补,对角相等,建立方程组求解.13.(3分)如图,已知▱ABCD中,∠B=50°,依据尺规作图的痕迹,则∠DAE=80°.【分析】依据尺规作图的痕迹,可得EF是AB的垂直平分线,根据线段垂直平分线的性质得出EA=EB,根据等边对等角得到∠EAB=∠B=50°,利用三角形内角和定理求出∠AEB=180°﹣∠EAB﹣∠B=80°,再根据平行四边形的对边平行以及平行线的性质求出∠DAE=∠AEB=80°.【解答】解:∵EF是AB的垂直平分线,∴EA=EB,∴∠EAB=∠B=50°,∴∠AEB=180°﹣∠EAB﹣∠B=80°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB=80°.故答案为80°.【点评】本题考查了平行四边形的对边平行的性质,线段垂直平分线的性质,等边对等角的性质,三角形内角和定理以及平行线的性质.求出∠AEB的度数是解题的关键.14.(3分)将直线y=2x﹣3平移,使之经过点(1,4),则平移后的直线解析式是y=2x+2.【分析】根据平移不改变k的值,可设平移后直线的解析式为y=2x+b,然后将点(1,4)代入即可得出直线的函数解析式.【解答】解:设平移后直线的解析式为y=2x+b.把(1,4)代入直线解析式得4=2×1+b,解得b=2.∴平移后直线的解析式为y=2x+2.故答案为:y=2x+2.【点评】本题考查了一次函数图象与几何变换及待定系数法去函数的解析式,掌握直线y =kx+b(k≠0)平移时,k的值不变是解题的关键.15.(3分)若关于x的方程=6+有增根,则m=6.【分析】把所给方程转换为整式方程,进而把可能的增根代入求得m 的值即可.【解答】解:最简公分母为x ﹣6,当x ﹣6=0时,x =6,去分母得:x =6(x ﹣6)+m ,因为方程有增根,所以增根为x =6当x =6时,m =6,故答案为:6【点评】本题考查增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值. 16.(3分)如图,平面直角坐标系中,已知直线y =x 上一点P (1,1),C 为y 轴上一点,连接PC ,线段PC 绕点P 顺时针旋转90°至线段PD ,过点D 作直线AB ⊥x 轴,垂足为B ,直线AB 与直线y =x 交于点A ,且BD =2AD ,连接CD ,直线CD 与直线y =x 交于点Q ,则点Q 的坐标为 (,) .【分析】过P 作MN ⊥y 轴,交y 轴于M ,交AB 于N ,过D 作DH ⊥y 轴,交y 轴于H ,∠CMP =∠DNP =∠CPD =90°,求出∠MCP =∠DPN ,证△MCP ≌△NPD ,推出DN =PM ,PN =CM ,设AD =a ,求出DN =2a ﹣1,得出2a ﹣1=1,求出a =1,得出D 的坐标,在Rt △DNP 中,由勾股定理求出PC =PD =,在Rt △MCP 中,由勾股定理求出CM =2,得出C 的坐标,设直线CD 的解析式是y =kx +3,把D (3,2)代入求出直线CD 的解析式,解由两函数解析式组成的方程组,求出方程组的解即可.【解答】解:过P 作MN ⊥y 轴,交y 轴于M ,交AB 于N ,过D 作DH ⊥y 轴,交y 轴于H ,∠CMP =∠DNP =∠CPD =90°,∴∠MCP +∠CPM =90°,∠MPC +∠DPN =90°,∴∠MCP =∠DPN ,∵P (1,1),∴OM=BN=1,PM=1,在△MCP和△NPD中∴△MCP≌△NPD(AAS),∴DN=PM,PN=CM,∵BD=2AD,∴设AD=a,BD=2a,∵P(1,1),∴DN=2a﹣1,则2a﹣1=1,a=1,即BD=2.∵直线y=x,∴AB=OB=3,在Rt△DNP中,由勾股定理得:PC=PD==,在Rt△MCP中,由勾股定理得:CM==2,则C的坐标是(0,3),设直线CD的解析式是y=kx+3,把D(3,2)代入得:k=﹣,即直线CD的解析式是y=﹣x+3,即方程组得:,即Q的坐标是(,),②当点C在y轴的负半轴上时,作PN⊥AD于N,交y轴于H,此时不满足BD=2AD,故答案为:(,).【点评】本题考查了用待定系数法求出一次函数的解析式,全等三角形的性质和判定,解方程组,勾股定理,旋转的性质等知识点的应用,主要考查学生综合运用性质进行推理和计算的能力,题目比较好,但是有一定的难度.三、解答题(共9小题,满分0分)17.计算:|﹣5|+(π﹣3.1)0﹣()﹣1+.【分析】分别根据0指数幂及负整数指数幂的计算法则、绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=5+1﹣2+2=6.【点评】本题考查的是实数的运算,熟知0指数幂及负整数指数幂的计算法则、绝对值的性质是解答此题的关键.18.先化简,再求值.,其中a=2.【分析】先把除法运算转化为乘法运算以及把各分式的分子和分母因式分解得到原式=•﹣,约分后得到原式=﹣,再通分得,接着把a=2代入计算.【解答】解:原式=•﹣=﹣=,当a=2时,原式==2.【点评】本题考查了分式的化简求值:先把除法运算转化为乘法运算和把各分式的分子或分母因式分解,然后进行约分得到最简分式或整式,最后把满足条件的字母的值代入进行计算.19.解方程=+2.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3+4x﹣4,移项合并得:2x=1,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.20.为了迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务.这样,这两个小组的每个同学就要比原计划多做4面彩旗.如果这3个小组的人数相等,那么每个小组有多少名学生?【分析】关键描述语是:“这两个小组的每一名学生就要比原计划多做4面彩旗”.等量关系为:实际每个学生做的彩旗数﹣原来每个学生做的旗数=4.【解答】解;设每个小组有x名学生,根据题意得:,解之得x=10,经检验,x=10是原方程的解,且符合题意.答:每组有10名学生.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.21.如图,点A、B、C、D在同一条直线上,点E、F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:△ACE≌△DBF;(2)求证:四边形BFCE是平行四边形.【分析】(1)证出AC=BD,由SAS证明△ACE≌△DBF即可;(2)由全等三角形的性质得出CE=BF,∠ACE=∠DBF,得出CE∥BF,即可得出结论.【解答】(1)证明:∵AB=CD,∴AB+BC=CD+BC,即AC=BD,在△ACE和△DBF中,,∴△ACE≌△DBF(SAS)).(2)证明:∵△ACE≌△DBF,∴CE=BF,∠ACE=∠DBF,∴CE∥BF,∴四边形BFCE是平行四边形.【点评】此题主要考查了平行四边形的判定与性质、全等三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.22.阅读下列解题过程,然后解题:题目:已知(a、b、c互不相等),求x+y+z的值.解:设,则x=k(a﹣b),y=k(b﹣c),z=k(c﹣a),∴x+y+z=k(a﹣b+b﹣c+c﹣a)=k•0=0,∴x+y+z=0.依照上述方法解答下列问题:已知:,其中x+y+z≠0,求的值.【分析】根据提示,先设比值为k,再利用等式列出三元一次方程组,即可求出k的值是2,然后把x+y=2z代入所求代数式.【解答】解:设===k,则:,(1)+(2)+(3)得:2x+2y+2z=k(x+y+z),∵x+y+z≠0,∴k=2,∴原式===.【点评】本题主要考查分式的基本性质,重点是设“k”法.23.如图,一次函数y=k1x+b(k1≠0)与反比例函数y=(k2≠0)的图象交于点A(﹣1,2),B(m,﹣1)(1)求一次函数与反比例函数的解析式;(2)在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.【分析】(1)利用待定系数法即可解决问题;(2)分三种情形讨论①当PA=PB时,可得(n+1)2+4=(n﹣2)2+1.②当AP=AB时,可得22+(n+1)2=(3)2.③当BP=BA时,可得12+(n﹣2)2=(3)2.分别解方程即可解决问题;【解答】解:(1)把A(﹣1,2)代入y=,得到k2=﹣2,∴反比例函数的解析式为y=﹣.∵B(m,﹣1)在y=﹣上,∴m=2,由题意,解得,∴一次函数的解析式为y=﹣x+1.(2)∵A(﹣1,2),B(2,﹣1),∴AB=3,AP2=22+(n+1)2,BP2=12+(n﹣2)2,∵△ABP为等腰三角形①当PA=PB时,(n+1)2+4=(n﹣2)2+1,∴n=0,②当AP=AB时,∴AP2=AB2,∴22+(n+1)2=(3)2,∴n=﹣1±.③当BP=BA时,∴BP2=BA2,∴12+(n﹣2)2=(3)2,∴n=2±.综上所述,P(0,0)或(﹣1+,0)或(﹣1﹣,0)或(2+,0)或(2﹣,0).【点评】本题是反比例函数综合题,主要考查了一次函数的性质、待定系数法、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.24.某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.(1)求y与x之间的函数表达式,并写出x的取值范围;(2)若该节能产品的日销售利润为w(元),求w与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元(不用说理)【分析】(1)这是一个分段函数,利用待定系数法求y与x之间的函数表达式,并确定x的取值范围;(2)根据利润=(售价﹣成本)×日销售量可得w与x之间的函数表达式,并分别根据分段函数计算日销售利润不超过1040元对应的x的值;(3)分别根据5≤x≤10和10<x≤17两个范围的最大日销售利润,对比可得结论.【解答】解:(1)当1≤x≤10时,设AB的解析式为:y=kx+b,把A(1,300),B(10,120)代入得:,解得:,∴AB:y=﹣20x+320(1≤x≤10),当10<x≤30时,同理可得BC:y=14x﹣20,综上所述,y与x之间的函数表达式为:;(2)当1≤x≤10时,w=(10﹣6)(﹣20x+320)=﹣80x+1280,当w=1040元,﹣80x+1280=1040,x=3,∵﹣80<0,∴w随x的增大而减小,∴日销售利润不超过1040元的天数:3,4,5,6,7,8,9,10,一共8天;当10<x≤30时,w=(10﹣6)(14x﹣20)=56x﹣80,56x﹣80=1040,x=20,∵56>0,∴w随x的增大而增大,∴日销售利润不超过1040元的天数:11,12,13,14,15,16,17,18,19,20,一共10天;综上所述,日销售利润不超过1040元的天数共有18天;=﹣80×5+1280=880,(3)当5≤x≤10时,当x=5时,w大=56×17﹣80=872,当10<x≤17时,当x=17时,w大∴若5≤x≤17,第5天的日销售利润最大,最大日销售利润是880元.【点评】本题考查了一次函数的应用、待定系数法一次函数解析式以及解一元一次方程,解题的关键是:(1)利用待定系数法求AB和BC的解析式;(2)熟练掌握一次函数的增减性;(3)分5≤x≤10和10<x≤17时,确定各分段函数的最大值.25.如图1,已知点A(a,0),B(0,b),且a、b满足+(a+b+3)2=0,▱ABCD的边AD与y轴交于点E,且E为AD中点,双曲线y=经过C、D两点.(1)求k的值;(2)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.【分析】(1)先根据非负数的性质求出a、b的值,故可得出A、B两点的坐标,设D (1,t),由DC∥AB,可知C(2,t﹣2),再根据反比例函数的性质求出t的值即可;(2)由(1)知k =4可知反比例函数的解析式为y =,再由点P 在双曲线y =上,点Q 在y 轴上,设Q (0,y ),P (x ,),再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF =NH =NT ,故∠NTF =∠NFT =∠AHN ,∠TNH =∠TAH =90°,MN =HT 由此即可得出结论.【解答】解:(1)∵+(a +b +3)2=0,∴,解得:,∴A (﹣1,0),B (0,﹣2), ∵E 为AD 中点, ∴x D =1, 设D (1,t ), 又∵DC ∥AB , ∴C (2,t ﹣2), ∴t =2t ﹣4, ∴t =4, ∴k =4;(2)∵由(1)知k =4,∴反比例函数的解析式为y =,∵点P 在双曲线上,点Q 在y 轴上,∴设Q (0,y ),P (x ,), ①当AB 为边时:如图1,若ABPQ 为平行四边形,则=0,解得x =1,此时P 1(1,4),Q 1(0,6);如图2,若ABQP为平行四边形,则=,解得x=﹣1,此时P2(﹣1,﹣4),Q2(0,﹣6);②如图3,当AB为对角线时,AP=BQ,且AP∥BQ;∴,解得x=﹣1,∴P3(﹣1,﹣4),Q3(0,2);故P1(1,4),Q1(0,6);P2(﹣1,﹣4),Q2(0,﹣6);P3(﹣1,﹣4),Q3(0,2);(3)的值不发生改变,理由:如图4,连NH、NT、NF,∵MN是线段HT的垂直平分线,∴NT=NH,∵四边形AFBH是正方形,∴∠ABF=∠ABH,在△BFN与△BHN中,,∴△BFN≌△BHN,∴NF=NH=NT,∴∠NTF=∠NFT=∠AHN,四边形ATNH中,∠ATN+∠NTF=180°,而∠NTF=∠NFT=∠AHN,所以,∠ATN+∠AHN=180°,所以,四边形ATNH内角和为360°,所以∠TNH=360°﹣180°﹣90°=90°.∴MN=HT,∴.【点评】此题是反比例函数综合题,主要考查了待定系数法求反比例函数的解析式、正方形的性质、等腰三角形的判定与性质、全等三角形的判定与性质等相关知识,难度较大,解本题(1)的关键是求出a,b的值,解(2)的关键是分类讨论,解(3)的关键是判断出△BFN≌△BHN.八年级下册数学期中考试试题(含答案)一、选择题(本大题共16个小题,1-10小题,每小题3分:11-16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列二次根式中,属于最简二次根式的是()A.B.C.D.2.(3分)若+=0,则x与y()A.同为正数B.相等C.互为相反数D.都等于03.(3分)下列计算正确的是()A.﹣=B.3×2=6C.(2)2=16D.=14.(3分)如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为()A.150°B.130°C.120°D.100°5.(3分)如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于()A.2B.4C.6D.86.(3分)如图所示,A、B、C分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在()A .AB 中点 B .BC 中点C .AC 中点D .∠C 的平分线与AB 的交点7.(3分)在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且(a +b )(a ﹣b )=c 2,则( ) A .∠A 为直角 B .∠C 为直角 C .∠B 为直角D .不是直角三角形8.(3分)如图,4×4的方格中每个小正方形的边长都是1,则S 四边形ABCD与S四边形ECDF的大小关系是( )A .S 四边形ABDC =S 四边形ECDFB .S 四边形ABDC <S 四边形ECDF C .S 四边形ABDC =S 四边形ECDF +1D .S 四边形ABDC =S 四边形ECDF +29.(3分)如图,平行四边形ABCD 的对角线交于点O ,且AB =5,△OCD 的周长为23,则平行四边形ABCD 的两条对角线的和是( )A .18B .28C .36D .4610.(3分)甲、乙、丙、丁四位同学到工厂实习,工人师傅拿一把尺子要他们帮助检测一个四边形构件是否为正方形,他们各自做了如下检测,其中正确的是( ) A .甲量得构件四边都相等B.乙量得构件的两条对角线相等C.丙量得构件的一组邻边相等D.丁量得构件四边相等且两条对角线也相等11.(2分)满足下列条件的△ABC不是直角三角形的是()A.BC=1,AC=2,AB=B.BC:AC:AB=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:512.(2分)如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA与对角线DB 重合,点A落在点A′处,折痕为DE,则A′E的长是()A.1B.C.D.213.(2分)矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为()A.3cm2B.4cm2C.12cm2D.4cm2或12cm214.(2分)如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.3S1=2S2 15.(2分)已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内的一点,且PB=PD=2,则AP的长是()A.2B.3C.4或2D.216.(2分)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.()6B.()7C.()6D.()7二、填空题(本大题共3个小题,共10分.17~18小题各3分;19小题4分.把答案写在题中横线上)17.(3分)写出一个与的积为正整数的数.18.(3分)如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短的直角边长为a,较长的直角边长为b,那么(a+b)2的值为.19.(4分)如图,点E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下面四个结论:(1)AE=BF,(2)AE⊥BF,(3)AO=OE,(4)S△AOB =S四边形DEOF,其中正确结论的序号是.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(9分)计算:①+﹣5②÷﹣+③()(2)21.(9分)在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.22.(9分)阅读材料并解决问题:===﹣1,像上述解题过程中,+1与﹣1相乘的积不含二次根式,我们可以将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化.(1)将下列式子进行分母有理化:①=;②=;(2)化简:+.23.(9分)如图,▱ABCD中,BD⊥AB,AB=12cm,AC=26cm,求AD、BD长.24.(10分)如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC的交点为O,连接DE.(1)求证:△ADE≌△CED;(2)求证:DE∥AC.25.(10分)如图,在▱ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE =CG,AH=CF,且EG平分∠HEF.(1)求证:△AEH≌△CGF;(2)求证:四边形EFGH是菱形.26.(12分)如图,在矩形ABCD中,AB=16cm,AD=6cm,动点P、Q分别从A、C同时出发点P以每秒3cm的速度向B移动,一直达到B止,点Q以每秒2cm的速度向D 移动.(1)P、Q两点出发后多少秒时,四边形PBCQ的面积为36cm2;(2)P、Q两点出发后多少秒时,四边形PBCQ是矩形;(3)是否存在某一时刻,使四边形PBCQ为正方形?。

2010学年第二学期八年级期中测试卷答案

2010学年第二学期八年级期中测试卷答案

2010学年第二学期八年级期中测试卷答案一、 填空题1、22、303、y=3x+64、a>b5、166、0,-3,-127、12310,4,3x x x ==-=- 8、m<1 9、2 10、6y 2-4y+1=0 11、6 12、40 13、8 14、-1或-2 15、2二、选择题16、A 17、B 18、B 19、D 三、解方程20、解:由2220x xy y --=得(x+y )(x-2y )=0......................................1分 原方程组可化为(1){2250x y x y +=+=和(2){22520x y x y +=-=....................................2分 解(1)得{11x y =={22x y ==解(2)得{3321x y =={4421x y =-=-.........................2分 ∴原方程组的解为{11x y =={22x y =={3321x y =={4421x y =-=-...................................1分 21、解:方程两边同时乘以x 2-4,原方程可转化为2(2)(2)8x x x -++=....................................................2分 解整式方程得121440,1080x x ==-....................................................................2分经检验当x=-2时,x 2-4=0为增根.......................................................1分 ∴原方程的解为x=1..............................................................................1分22、解:(x+2)(x-4)(x+3)(x-5)=44(228x x --)(2215x x --)=44.................................................1分令22x x y -=,原方程可转化为(y-8)(y-15)=44.................1分 解得124,19y y ==............................................................................1分当y=4时,解224x x -=得1211x x ==.............................1分当y=19时,解2219x x -=得3411x x =+=-.......................1分∴原方程的解为1211x x ==3411x x =+=-...........1分23、解:23(x 2x-1)+38++=,原方程可转化为23250y y +-=.......................1分 解得1251,3y y ==-............................................................................1分当y=-53时, 53=-无解.....................................................1分当y=1时, 1=解得1211x x =-=-分 经检验1211x x =-=-是原方程的根.................................... 1分 ∴原方程的解为1211x x =-=-.............................................1分24、解:设该厂实际每天生产x 顶帐篷,则原计划每天生产x-720顶......1分 由题意得72007200(120%)4720x x⨯+=+-......................................................2分 解得121440,1080x x ==-(不合题意舍)..............................................3分 答:该厂实际每天生产1440顶帐篷...................................................1分25、解:∵,AE BC AF CD ⊥⊥,30EAF ∠=∴ 60,30G DCG ∠=∠= ................................................................2分 又∵在ABCD 中,30B D DCG ∠=∠=∠= ....................................1分∴ 在Rt AEB 中,AE=3cm ,AB=6cm在Rt AFD 中,AF=2cm ,AD=4cm.......................................2分 C ABCD =2(AB+AD )=2(6+4)=20(cm )............................1分 ∴ABCD 的周长为20cm...............................................................1分26、解:(1)令2112,k y k x y x==...........................................................................1分 将x=8,y=6代入得12348,4y x y x==..................................................1分 (2)由图知令48 1.6x =解得x=30..........................................................1分 ∴至少需要进过30分钟后,学生才能回到教室..........................1分(3)有效................................................................................................1分 ∵当11334y x ==时,解得14x =......................................................1分 当22483y x ==时,解得216x =.....................................................1分 ∴211210x x -=>,有效.................................................................1分27、解:(1)∵点A 在直线y= 12x 上, 将x=4代入解得A (4,2)..............................................1分又∵点A 在双曲线y=k x 上将A 点坐标代入得 2= 4k ∴k=8.......................................................................2分 (2) ∵点C 在双曲线y= k x上, ∴C(1,8)........................................1分 连接AC 延长交y 轴于点D可求得直线AC 的方程为y=-2x+10,则点D 为(0,10) 1分 AOC AOD COD S S S =- =11110(41)15222A C DO x DO x -=⨯-= .............................2分(3)由题意知点P 与Q ,点A 与B 关于原点对称............ 1分 ∴PA QB 且PA=QB ,四边形PAQB 为424APQB AOP S S == ...................................................................1分 同理(2)令P (a ,8a )得直线PA 为282y x a a =-++交y 轴于点E (0,82a +)....................................................................1分 当点P 在点A 左侧时,AOP AOE POE S S S =- 解得P (2,4)当点P 在点A 右侧时,AOP POE AOE S S S =- 解得P (8,1)综上所述,点12(2,4),(8,1)P P ....................................................2分 附加题。

八年级下期中试卷及答案.doc

八年级下期中试卷及答案.doc

2009—2010学年八年级第二学期期中数学、(16—18章)考生注意:1.本卷共6页,总分120分,考试时间90分钟。

2.答题前请将密封线左侧的项目填写清楚。

3.答案请用蓝、黑色钢笔或圆珠笔填写。

一、单项选择题(本大题共12个小题;每小题2分,共24分)1、下面的函数是反比例函数的是( )A 、31y x =+B 、22y x x =+C 、2xy = D 、2y x =2.函数ky x =的图象经过点(1,一2),则k 的值为( )A .0.5B .一0.5C .2D .一23.23(3)2x x -的结果是( )A .56x -B .53x -C .52xD 、56x4.如果把分式中x 和y 都扩大10倍,那么分式52x yx +的值( )A 、扩大10倍B .缩小10倍C .扩大2倍D .不变5、2244xy yx x --+的结果是 ( )A .2x x +B .2x x -C .2y x +D .2yx -6.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是( )A .13B .26C .47D .947.方程11222x x x -+=--的解为 ( )A .x=2B .x=4C .x=3D .无解8.如图,四边形ABCD 中,AB=BC ,∠ABC=∠CDA=90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为16,则BE=( )A .2B .3C .4D .59.已知三角形的面积一定,则它底边a 上的高h 与底边a 之间的函数关系的图象大致是10.如图,正比例函数(0)y kx k =>与反比例函数4y x =的图象相交于A 、C 两点,过点A 作x 轴的垂线交x 轴于点B ,连接BC ,则△ABC 的面积等于 ( )A .2B .4C .6D .811.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度p(单位:kg /m 3)是体积y(单位:m 3)的反比例函数,它的图象如图所示,当V=10m 3时,气体的密度是 ( )A .5kg /m 3B .2kg /m 3C .100k / m 3D .1kg / m 312.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为 ( )A .16040018(120%)x x +=+ B 、16040016018(120%)x x -+=+C .1604001601820%x x -+= D 、40040016018(120%)x x -+=+二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.当x=________时,分式21xx -无意义.14、点P(2m 一3,1)在反比例函数1y x =的图象上,则m=________.15.对于函数7y x =-,y 的值随x 的增大而________.16、如图,等腰△ABC 中,AB=AC ,AD 是底边上的高,若AB=5cm ,BC=6cm .则AD=________cm 。

八年级下数学期中考试题及答案

八年级下数学期中考试题及答案

八年级下册数学期中考试题一、选择题(每小题 2分,共12分) 1.下列式子中,属于最简二次根式的是( .20 D. 2.如图,在矩形 ABCD 中, AD=2AB ,点 M 、 连接BM 、DN.若四边形 MBND 是菱形,则 N 分别在边AD 、BC 上, 如等于() MD 3 A.-8 2 3 B. — C.- 3 5 4 D.- 5 3.若代数式 2题图 —有意义,则实数 X 的取值范围是( X 1 4题图A. X 4如图字母 工 1B. X > 0C. X > 0D. X 且 X B 所代表的正方形的面积是 ( C.144 D.B. 13 ) 194 A. 12 5.如图,把矩形 ABCD 沿EF 翻折,点B 恰好落在 / EFB=60,则矩形 ABCD 的面积是 AD ( 边的 B'处,若 AE=2,DE=6, ) A.12B. 24C. 12 . 3D. 6如图4为某楼梯,测得楼梯的长为 5米,高3米,计划在楼梯表面铺地毯 D7它的最短边上的高为 D.8 7三角形的三边长分别为 6,8,10, A.6 B.4.5 C.2.48. 如图,正方形 ABCD 的边长为4,点E 在对角线 EF 丄AB ,垂足为F ,贝U EF 的长为( :A . 1B . .2C . 4- 9. 在平行四边形 ABCD 中,/ A :/ B :/ C : A.1 : 2: 3 : 4 B.1 : 2 : 2: 1 C.1 : 2:10 已知 x 、y 为正数,且 | X 2-4 | + (y 2-3) 2=0, 个直角三角形的斜边为边长的正方形的面积为( )2 . -' 2 / DBD 上,且/ BAE = 22.5 o ,D . 的值可以是( 1: 2 D.1 : 1 : 2: 2 3 -'2-4 ) B 、25 A 、5 二、填空题:(每小题 3分, 11.在布置新年联欢会的会场时 把拉花挂在高2.4米的墙上 ,地毯的长度至少需要多少米 3米5米如果以x 、y 的长为直角边作一个直角三角形,那么以这 ) C 、7 共24分) ,小虎准备把同学们做的拉花用上,?小虎应把梯子的底端放在距离墙 D 、15 ,?他搬来了一架高为 2.5米的梯子,要想 ________ 米处.12. 若.1 3x 在实数范围内有意义,贝9 X 的取值范围是 13. 如图3,长方体的长 BE=15cm,宽AB=10cm,高AD=20cm,点M 在CH 上,且CM=5cm, 一只蚂蚁如果要沿 着长方体的表面从点 A 爬到点M,需要爬行的最短距离是多少 _____________________ 14. ______________________________________________________________________________________ 如图,口ABCD 与口 DCFE 的周长相等,且/ BAD =60 ° / F=110 °则/ DAE 的度数为 _____________________15..如图,小李准备建一个蔬菜大棚,棚宽4米,高3米,长20米,棚的斜面用塑料布遮盖,不计墙的厚度,请计算阳光透过的最大面积•.16如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件ABCD成为菱形.(只需添加一个即可)17 .如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心边长为2cm,/ A=120,贝U EF= ________________________ .18.如图,矩形ABCD中,AB=3 , BC=4,点E是BC边上一点,连接在点B'处,当△ CEB为直角三角形时,BE的长为___________ .O处,折痕为EF.若菱形ABCD的AE,把/ B沿AE折叠,使点B落,1 5 2 3( 210)20.如图,四边形ABCD是菱形, 对角线AC与BD相交于O,AB=5,AO=4,求BD的长.21.先化简,后计算:1-abb,其中a亠,b亠a(a b) 2 216题图22. 如图,小红用一张长方形纸片小红折叠时,顶点D落在BC边上的点F处(折痕为AE ) •想一想,此时EC有多长??23. 在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F .(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且AB= 2,求BC的长.ABCD进行折纸,已知该纸片宽AB为8cm,?长BC?为10cm •当24.如图,在四边形ABCD中,AB=BC,对角线BD平分ABC,P是BD上一点,过点PN CD,垂足分别为M、N。

八年级数学下册期中试卷及答案【完整版】

八年级数学下册期中试卷及答案【完整版】

八年级数学下册期中试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.一次函数24y x =+的图像与y 轴交点的坐标是( )A .(0,-4)B .(0,4)C .(2,0)D .(-2,0)3.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.已知x 是整数,当30x -取最小值时,x 的值是( )A .5B .6C .7D .85.下列说法中,错误的是( )A .不等式x <5的整数解有无数多个B .不等式x >-5的负整数解集有有限个C .不等式-2x <8的解集是x <-4D .-40是不等式2x <-8的一个解6.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一些蜂蜜,此时一只蚂蚁正好也在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,那么蚂蚁要吃到甜甜的蜂蜜所爬行的最短距离是( )A .13B .14C .15D .167.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BCB .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC8.如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )A .4 cmB .5 cmC .6 cmD .10 cm9.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.下列图形中,是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.若n 边形的内角和是它的外角和的2倍,则n =__________.3.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为____________.4.如图,已知函数y=x+b 和y=ax+3的图象交点为P ,则不等式x+b >ax+3的解集为________.5.如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是AB ,AC 的中点,点F 是AD 的中点.若AB=8,则EF=________.6.如图,AC 平分DCB ∠,CB CD =,DA 的延长线交BC 于点E ,若49EAC ∠=,则BAE ∠的度数为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:(1)2153x x =+ (2)3111x x x =-+-2.化简求值:[4(xy-1)2-(xy+2)(2-xy)]÷14xy,其中x=-2, y=15.3.已知:关于x 的方程2x (k 2)x 2k 0-++=,(1)求证:无论k 取任何实数值,方程总有实数根;(2)若等腰三角形ABC 的一边长a=1,两个边长b ,c 恰好是这个方程的两个根,求△ABC 的周长.4.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF ∥BC交BE的延长线于点F(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.5.如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.(1)求证:AE=CF;(2)求证:四边形EBFD是平行四边形.6.重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?(2)由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、A5、C6、C7、D8、B9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、1002、63、32或424、x>15、26、82.三、解答题(本大题共6小题,共72分)1、(1)x=1(2)x=22、20xy-32,-40.3、(1)略;(2)△ABC的周长为5.4、(1)证明略;(2)证明略;(3)10.5、(1)见详解;(2)见详解6、(1)200元和100元(2)至少6件。

【精品】八年级(下)期中考试数学试题及答案【3套】试题

【精品】八年级(下)期中考试数学试题及答案【3套】试题

八年级(下)期中考试数学试题及答案一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)下列式子是最简二次根式的是()A.B.C.D.2.(4分)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.3.(4分)由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:3:2C.a=2,b=3,c=4D.(b+c)(b﹣c)=a24.(4分)如图,在2×2的正方形网格中,每个小正方形边长为1,点A,B,C均为格点,以点A为圆心,AB长为半径作弧,交格线于点D,则CD的长为()A.B.C.D.2﹣5.(4分)如图,若∠1=∠2,AD=BC,则四边形ABCD是()A.平行四边形B.菱形C.正方形D.以上说法都不对6.(4分)下列说法正确的有几个()①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等的平行四边形是矩形.A.1个B.2个C.3个D.4个7.(4分)如图所示,四边形ABCD为矩形,点O为对角线的交点,∠BOC=120°,AE ⊥BO交BO于点E,AB=4,则BE等于()A.4B.3C.2D.18.(4分)如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为()A.2B.3C.4D.59.(4分)在正方形ABCD的边BC的延长线上取一点E,使CE=AC,AE与CD交于点F,那么∠AFC的度数为()A.105°B.112.5°C.135°D.120°10.(4分)如图,已知直线l1∥l2∥l3∥l4,相邻两条平行线间的距离都是1,正方形ABCD 的四个顶点分别在四条直线上,则正方形ABCD的面积为()A.B.C.3D.5二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)计算:=.12.(4分)若x<0,则的结果是.13.(4分)如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F.若∠EAF=55°,则∠B=.14.(4分)已知直角三角形两边直角边长为1和,则此直角三角形斜边上的中线长是.15.(4分)如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF =2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.16.(4分)如图,在△ABC中,∠C=90°,AC=8,BC=6,P是AB边上的一个动点(异于A、B两点),过点P分别作AC、BC边的垂线,垂足分别为M、N,则MN最小值是.三、解答题(本大题共9小题,共86分)17.(8分)计算:.18.(8分)计算:(2+)(2﹣)+(﹣)÷.19.(8分)如图,在每个小正方形是边长为1的网格中,A,B,C均为格点.(Ⅰ)仅用不带刻度的直尺作BD⊥AC,垂足为D,并简要说明道理;(Ⅱ)连接AB,求△ABC的周长.20.(8分)在甲村至乙村间有一条公路,在C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示,为了安全起见,爆破点C周围半径250米范围内不得进入,问:在进行爆破时,公路AB 段是否有危险?是否需要暂时封锁?请用你学过的知识加以解答.21.(8分)如图,在平行四边形ABCD中,E、F、为对角线BD上的两点,且∠BAE=∠DCF.求证:AE=CF.22.(10分)已知,如图,在△ABC中,D是BC的中点,DE⊥BC,垂足为D,交AB于点E,且BE2﹣EA2=AC2,①求证:∠A=90°.②若DE=3,BD=4,求AE的长.23.(10分)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.24.(12分)定义:我们把对角线相等的四边形叫做和美四边形.(1)请举出一种你所学过的特殊四边形中是和美四边形的例子.(2)如图1,E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,已知四边形EFGH是菱形,求证:四边形ABCD是和美四边形;(3)如图2,四边形ABCD是和美四边形,对角线AC,BD相交于O,∠AOB=60°,E、F分别是AD、BC的中点,请探索EF与AC之间的数量关系,并证明你的结论.25.(14分)如图所示,在等边三角形ABC中,BC=8cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:四边形AFCE是平行四边形;(2)填空:①当t为s时,四边形ACFE是菱形;②当t为s时,△ACE的面积是△ACF的面积的2倍.2018-2019学年福建省龙岩市永定区、长汀县联考八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)下列式子是最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式进行分析即可.【解答】解:A、不是最简二次根式,故此选项错误;B、不是最简二次根式,故此选项错误;C、不是最简二次根式,故此选项错误;D、是最简二次根式,故此选项正确;故选:D.【点评】此题主要考查了最简二次根式,关键是掌握最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.2.(4分)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式,解不等式,把解集在数轴上表示即可.【解答】解:由题意得x+2≥0,解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.3.(4分)由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:3:2C.a=2,b=3,c=4D.(b+c)(b﹣c)=a2【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【解答】解:A、∠A+∠B=∠C,可得∠C=90°,是直角三角形,错误;B、∠A:∠B:∠C=1:3:2,可得∠C=90°,是直角三角形,错误;C、∵22+32≠42,故不能判定是直角三角形,正确;D、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,即a2+c2=b2,故是直角三角形,错误;故选:C.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4.(4分)如图,在2×2的正方形网格中,每个小正方形边长为1,点A,B,C均为格点,以点A为圆心,AB长为半径作弧,交格线于点D,则CD的长为()A.B.C.D.2﹣【分析】由勾股定理求出DE,即可得出CD的长.【解答】解:连接AD,如图所示:∵AD=AB=2,∴DE==,∴CD=2﹣;故选:D.【点评】本题考查了勾股定理;由勾股定理求出DE是解决问题的关键.5.(4分)如图,若∠1=∠2,AD=BC,则四边形ABCD是()A.平行四边形B.菱形C.正方形D.以上说法都不对【分析】根据题意判断出△ACD≌△CAB,故可得出∠3=∠4,由此可得出结论.【解答】解:在△ACD与△CAB中,∵,∴△ACD≌△CAB,∴∠3=∠4,∴AB∥CD,∴四边形ABCD是平行四边形.故选:A.【点评】本题考查的是平行四边形的判定,熟知两组对边分别平行的四边形是平行四边形是解答此题的关键.6.(4分)下列说法正确的有几个()①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等的平行四边形是矩形.A.1个B.2个C.3个D.4个【分析】由平行四边形、矩形、菱形以及正方形的判定定理进行判断即可.【解答】解:①对角线互相平分的四边形是平行四边形,故正确;②对角线互相垂直平分的四边形是菱形,故错误;③对角线互相垂直且相等的平行四边形是正方形,故正确;④对角线相等的平行四边形是矩形,故正确;故选:C.【点评】本题考查了正方形、平行四边形、菱形以及矩形的判定定理.注意菱形与正方形的区别与联系、矩形与正方形的区别与联系.7.(4分)如图所示,四边形ABCD为矩形,点O为对角线的交点,∠BOC=120°,AE⊥BO交BO于点E,AB=4,则BE等于()A.4B.3C.2D.1【分析】由矩形的性质得出OA=OB,证出△AOB是等边三角形,得出OB=AB=4,再由等边三角形的三线合一性质得出BE=OB=2即可.【解答】解:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠BOC=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OB=AB=4,∵AE⊥BO,∴BE=OB=2.故选:C.【点评】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.8.(4分)如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为()A.2B.3C.4D.5【分析】根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【解答】解:根据作图,AC=BC=OA,∵OA=OB,∴OA=OB=BC=AC,∴四边形OACB是菱形,∵AB=2cm,四边形OACB的面积为4cm2,∴AB•OC=×2×OC=4,解得OC=4cm.故选:C.【点评】本题考查了菱形的判定与性质,菱形的面积等于对角线乘积的一半的性质,判定出四边形OACB是菱形是解题的关键.9.(4分)在正方形ABCD的边BC的延长线上取一点E,使CE=AC,AE与CD交于点F,那么∠AFC的度数为()A.105°B.112.5°C.135°D.120°【分析】根据正方形的性质,得∠ACB=∠2=45°,根据等腰三角形的性质和三角形的外角的性质,得∠1=∠E=22.5°,从而根据三角形的内角和定理进行计算.【解答】解:∵四边形ABCD是正方形,∴∠ACB=∠2=45°.∵AC=CE,∴∠1=∠E=22.5°.∴∠AFC=180°﹣45°﹣22.5°=112.5°.故选:B.【点评】此题综合运用了正方形的性质、三角形的内角和定理及其推论、等腰三角形的性质.10.(4分)如图,已知直线l1∥l2∥l3∥l4,相邻两条平行线间的距离都是1,正方形ABCD 的四个顶点分别在四条直线上,则正方形ABCD的面积为()A.B.C.3D.5【分析】过D点作直线EF与平行线垂直,与l1交于点E,与l4交于点F.易证△ADE ≌△DFC,得CF=1,DF=2.根据勾股定理可求CD2得正方形的面积.【解答】解:作EF⊥l2,交l1于E点,交l4于F点.∵l1∥l2∥l3∥l4,EF⊥l2,∴EF⊥l1,EF⊥l4,即∠AED=∠DFC=90°.∵ABCD为正方形,∴∠ADC=90°.∴∠ADE+∠CDF=90°.又∵∠ADE+∠DAE=90°,∴∠CDF=∠DAE.在△ADE和△DCF中∴△ADE≌△DCF(AAS),∴CF=DE=1.∵DF=2,∴CD2=12+22=5,即正方形ABCD的面积为5.故选:D.【点评】此题主要考查了正方形的性质和面积计算,根据平行线之间的距离构造全等的直角三角形是关键.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)计算:=.【分析】分子和分母同时乘,计算即可.【解答】解:==,故答案为:.【点评】本题考查的是二次根式的化简,分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式.12.(4分)若x<0,则的结果是﹣1.【分析】利用x的取值范围,进而化简求出即可.【解答】解:∵x<0,∴==﹣1.故答案为:﹣1.【点评】此题主要考查了二次根式的化简,正确利用二次根式的性质进行化简是解题关键.13.(4分)如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F.若∠EAF=55°,则∠B=55°.【分析】根据四边形内角和定理可求∠C=125°,根据平行四边形的性质可求∠B的度数.【解答】解:∵AE⊥BC于点E,AF⊥CD于点F.∴∠AEC=∠AFC=90°∵∠AEC+∠AFC+∠C+∠EAF=360°,且∠EAF=55°∴∠C=360°﹣90°﹣90°﹣55°=125°∵四边形ABCD是平行四边形∴∠B+∠C=180°∴∠B=55°故答案为55°【点评】本题考查了平行四边形的性质,四边形内角和定理,熟练运用平行四边形的性质解决问题是本题的关键.14.(4分)已知直角三角形两边直角边长为1和,则此直角三角形斜边上的中线长是1.【分析】利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:由勾股定理得,斜边==2,所以,斜边上的中线长=×2=1.故答案为:1.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.15.(4分)如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.【分析】根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D =90°,然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE=∠BGF=90°,从而知GH=BF,利用勾股定理求出BF的长即可得出答案.【解答】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=5、CF=CD﹣DF=5﹣2=3,∴BF==,∴GH=BF=,故答案为:.【点评】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形两锐角互余等知识,掌握三角形全等的判定方法与正方形的性质是解题的关键.16.(4分)如图,在△ABC中,∠C=90°,AC=8,BC=6,P是AB边上的一个动点(异于A、B两点),过点P分别作AC、BC边的垂线,垂足分别为M、N,则MN最小值是.【分析】首先证明四边形PMCN是矩形,推出MN=PC,根据垂线段最短即可解决问题;【解答】解:如图,连接MN,PC.在△ABC中,∵∠C=90°,AC=8,BC=6,∴AB==10,∵PM⊥AC,PN⊥BC,∴∠PMC=∠PNC=∠C=90°,∴四边形PMCN是矩形,∴MN=PC,∴当PC⊥AB时,PC的值最小,最小值==,故答案为.【点评】本题考查矩形的判定和性质、垂线段最短、勾股定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.三、解答题(本大题共9小题,共86分)17.(8分)计算:.【分析】先计算算术平方根、立方根和乘方,再计算加减可得.【解答】解:原式=4﹣﹣3=1﹣=.【点评】本题主要考查实数的运算,解题的关键是熟练掌握实数的混合运算顺序和运算法则.18.(8分)计算:(2+)(2﹣)+(﹣)÷.【分析】根据平方差公式和多项式除以单项式可以解答本题.【解答】解:(2+)(2﹣)+(﹣)÷=4﹣3+2﹣=3﹣.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.19.(8分)如图,在每个小正方形是边长为1的网格中,A,B,C均为格点.(Ⅰ)仅用不带刻度的直尺作BD⊥AC,垂足为D,并简要说明道理;(Ⅱ)连接AB,求△ABC的周长.【分析】(Ⅰ)取线段AC的中点为格点D,则有DC=AD.连BD,则BD⊥AC,(Ⅱ)利用勾股定理求出AC、BC即可解决问题;【解答】解:(Ⅰ)取线段AC的中点为格点D,则有DC=AD.连BD,则BD⊥AC,理由:由图可知BC=5,连接AB,则AB=5,∴BC=AB,又CD=AD,∴BD⊥AC.(Ⅱ)由图可得AB=5,AC==2,BC==5,∴△ABC的周长=5+5+2=10+2.【点评】本题考查作图﹣应用与设计,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(8分)在甲村至乙村间有一条公路,在C处需要爆破,已知点C与公路上的停靠站A 的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示,为了安全起见,爆破点C周围半径250米范围内不得进入,问:在进行爆破时,公路AB 段是否有危险?是否需要暂时封锁?请用你学过的知识加以解答.【分析】过C作CD⊥AB于D.根据BC=400米,AC=300米,∠ACB=90°,利用根=AB•CD=BC•AC得到CD=240米.再根据据勾股定理有AB=500米.利用S△ABC240米<250米可以判断有危险.【解答】解:公路AB需要暂时封锁.理由如下:如图,过C作CD⊥AB于D.因为BC=400米,AC=300米,∠ACB=90°,所以根据勾股定理有AB=500米.=AB•CD=BC•AC因为S△ABC所以CD===240(米).由于240米<250米,故有危险,因此AB段公路需要暂时封锁.【点评】本题考查了勾股定理的应用,解题的关键是构造直角三角形,以便利用勾股定理.21.(8分)如图,在平行四边形ABCD中,E、F、为对角线BD上的两点,且∠BAE=∠DCF.求证:AE=CF.【分析】由题意可证△ABE≌△CDF,可得结论.【解答】证明∵四边形ABCD为平行四边形∴AB∥CD,AB=CD∴∠ABD=∠CDB在△ABE与△CDF中∴△ABE≌△CDF(ASA)∴AE=CF【点评】本题考查了平行四边形的性质,全等三角形的判定和性质,熟练运用这些性质解决问题是本题的关键.22.(10分)已知,如图,在△ABC中,D是BC的中点,DE⊥BC,垂足为D,交AB于点E,且BE2﹣EA2=AC2,①求证:∠A=90°.②若DE=3,BD=4,求AE的长.【分析】(1)连接CE,由线段垂直平分线的性质可求得BE=CE,再结合条件可求得EA2+AC2=CE2,可证得结论;(2)在Rt△BDE中可求得BE,则可求得CE,在Rt△ABC中,利用勾股定理结合已知条件可得到关于AE的方程,可求得AE.【解答】(1)证明:连接CE,如图,∵D是BC的中点,DE⊥BC,∴CE=BE,∵BE2﹣EA2=AC2,∴CE2﹣EA2=AC2,∴EA2+AC2=CE2,∴△ACE是直角三角形,即∠A=90°;(2)解:∵DE=3,BD=4,∴BE==5=CE,∴AC2=EC2﹣AE2=25﹣EA2,∵BC=2BD=8,∴在Rt△BAC中由勾股定理可得:BC2﹣BA2=64﹣(5+EA)2=AC2,∴64﹣(5+AE)2=25﹣EA2,解得AE=.【点评】本题主要考查勾股定理及其逆定理的应用,掌握勾股定理及其逆定理是解题的关键,注意方程思想在这类问题中的应用.23.(10分)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.【分析】(1)根据三角形中位线定理和全等三角形的判定证明即可;(2)利用正方形的性质和矩形的面积公式解答即可.【解答】解:连接EF,(1)∵点F,G,H分别是BC,BE,CE的中点,∴FH∥BE,FH=BE,FH=BG,∴∠CFH=∠CBG,∵BF=CF,∴△BGF≌△FHC,(2)当四边形EGFH是正方形时,连接GH,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=a,∴矩形ABCD的面积=.【点评】此题考查正方形的性质,关键是根据全等三角形的判定和正方形的性质解答.24.(12分)定义:我们把对角线相等的四边形叫做和美四边形.(1)请举出一种你所学过的特殊四边形中是和美四边形的例子.(2)如图1,E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,已知四边形EFGH是菱形,求证:四边形ABCD是和美四边形;(3)如图2,四边形ABCD是和美四边形,对角线AC,BD相交于O,∠AOB=60°,E、F分别是AD、BC的中点,请探索EF与AC之间的数量关系,并证明你的结论.【分析】(1)根据矩形的对角线相等解答;(2)根据三角形的中位线定理得;EH=BD=FG,EF=AC=HG,由菱形EFGH四边相等可得:AC=BD,所以四边形ABCD是和美四边形;(3)作辅助线,构建平行四边形MABD,再证明△AMC是等边三角形,根据三角形中位线定理得:EF=CM=AC.【解答】解:(1)∵矩形的对角线相等,∴矩形是和美四边形;(2)如图1,连接AC、BD,∵E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,∴EH=BD=FG,EF=AC=HG,∵四边形EFGH是菱形,∴EH=EF=FG=GH,∴AC=BD,∴四边形ABCD是和美四边形;(3)EF=AC,证明:如图2,连接BE并延长至M,使BE=EM,连接DM、AM、CM,∵AE=ED,∴四边形MABD是平行四边形,∴BD=AM,BD∥AM,∴∠MAC=∠AOB=60°,∴△AMC是等边三角形,∴CM=AC,△BMC中,∵BE=EM,BF=FC,∴EF=CM=AC.【点评】本题考查的是和美四边形的定义、三角形的中位线定理、平行四边形的判定和性质、矩形和菱形的性质,正确理解和美四边形的定义、作辅助线是解题的关键.25.(14分)如图所示,在等边三角形ABC中,BC=8cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:四边形AFCE是平行四边形;(2)填空:①当t为8s时,四边形ACFE是菱形;②当t为或s时,△ACE的面积是△ACF的面积的2倍.【分析】(1)判断出△ADE≌△CDF得出AE=CF,即可得出结论;(2)①先求出AC=BC=8,进而判断出AE=CF=AC=8,即可得出结论;②先判断出△ACE和△ACF的边AE和CF上的高相等,进而判断出AE=2CF,再分两种情况,建立方程求解即可得出结论.【解答】解:(1)如图1,∵AG∥BC,∴∠EAC=∠FCA,∠AED=∠CFD,∵EF经过AC边的中点D,∴AD=CD,∴△ADE≌△CDF(AAS),∴AE=CF,∵AE∥FC,∴四边形AFCE是平行四边形;(2)①如图2,∵△ABC是等边三角形,∴AC=BC=8,∵四边形ACFE是菱形,∴AE=CF=AC=BC=8,且点F在BC延长线上,由运动知,AE=t,BF=2t,∴CF=2t﹣8,t=8,将t=8代入CF=2t﹣8中,得CF=8=AC=AE,符合题意,即:t=8秒时,四边形ACFE是菱形,故答案为8;②设平行线AG与BC的距离为h,∴△ACE边AE上的高为h,△ACF的边CF上的高为h,∵△ACE的面积是△ACF的面积的2倍,∴AE=2CF,当点F在线段BC上时(0<t<4),CF=8﹣2t,AE=t,∴t=2(8﹣2t),∴t=;当点F在BC的延长线上时(t>4),CF=2t﹣8,AE=t,∴t=2(2t﹣8),∴t=,即:t=秒或秒时,△ACE的面积是△ACF的面积的2倍,故答案为:或.【点评】此题是四边形综合题,主要考查了等边三角形的性质,全等三角形的判定和性质,用方程的思想解决问题是解本题的关键.八年级(下)期中考试数学试题(含答案)一、选择题(本大题共10小题,共20.0分)1.下列根式不是最简二次根式的是()A. B. C. D.2.正方形的面积是4,则它的对角线长是()A. 2B.C.D. 43.能判定四边形ABCD为平行四边形的题设是()A. ,B. ,C. ,D. ,4.下列计算正确的是()A. B.C. D.5.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A. B. C. D.6.矩形具有而一般的平行四边形不一定具有的特征()A. 对角相等B. 对角线相等C. 对角线互相平分D. 对边相等7.若=a,=b,则=()A. B. C. D.8.已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A. B. C. D.9.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A. 34B. 26C.D.10.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A. 7B. 9C. 10D. 11二、填空题(本大题共8小题,共24.0分)11.若有意义,则x的取值范围是______.12.如图,已知OA=OB,那么数轴上点A所表示的数是______.13.如图,▱ABCD中,AB的长为8,∠DAB的角平分线交CD于E,若DE:EC=3:1,则BC的长为______ .14.计算:= ______ .15.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为______.16.如图,矩形ABCD的对角线相交于点O,AB=4cm,∠AOB=60°,则AC= ______ cm.17.如图,菱形ABCD的边长是4cm,E是AB的中点,且DE⊥AB,则菱形ABCD的面积为______cm2.18.观察下列各式:=2,=3,=4,…请你找出其中规律,并将第n(n≥1)个等式写出来______.三、计算题(本大题共2小题,共20.0分)19.计算:(1)(-4)-(3-2)(2).20.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?四、解答题(本大题共4小题,共36.0分)21.请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图甲,请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中的每一个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得x=由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长.于是,画出如图乙所示的分割线,拼出如图丙所示的新的正方形.请你参考小东同学的做法,解决如下问题:现有10个边长为1的小正方形,排列形式如图丁,请把它们分割后拼接成一个新的正方形.要求:在图丁中画出分割线,并在图戊的正方形网格图(图中的每一个小正方形的边长均为1)中用实线画出拼接成的新正方形.说明:直接画出图形,不要求写分析过程.22.如图,▱ABCD中,点E,F分别在BC,AD上,且AF=CE,求证:AE=CF.23.如图所示,在矩形ABCD中,对角线AC,BD相交于点O,∠BOC=120°,AC=6,求:(1)AB的长;(2)矩形ABCD的面积.24.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE=______cm时,四边形CEDF是矩形;②当AE=______cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)答案和解析1.【答案】D【解析】解:=.故选D根据最简二次根式的判断标准即可得到正确的选项.此题考查了最简二次根式,熟练掌握最简二次根式的定义是解本题的关键.2.【答案】C【解析】解:设正方形的对角线为x,∵正方形的面积是4,∴边长的平方为4,∴由勾股定理得,x==2.故选C.设正方形的对角线为x,然后根据勾股定理列式计算即可得解.本题考查了勾股定理,正方形的性质,熟记定理和性质是解题的关键.3.【答案】B【解析】解:A、AB∥CD,AD=BC不能判定四边形ABCD为平行四边形,故此选项错误;B、AB=CD,AD=BC判定四边形ABCD为平行四边形,故此选项正确;C、∠A=∠B,∠C=∠D不能判定四边形ABCD为平行四边形,故此选项错误;D、AB=AD,CB=CD不能判定四边形ABCD为平行四边形,故此选项错误;故选:B.根据两组对边分别平行的四边形是平行四边形,两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形可得答案.此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.4.【答案】C【解析】解:A、2+4不是同类项不能合并,故A选项错误;B、=2,故B选项错误;C、÷=3,故C选项正确;D、=3,故D选项错误.故选:C.A、根据合并二次根式的法则即可判定;B、根据二次根式的乘法法则即可判定;C、根据二次根式的除法法则即可判定;D、根据二次根式的性质即可判定.此题主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.在进行根式的运算时要先化简再计算可使计算简便.5.【答案】C【解析】解:根据勾股定理可以得到:AC=BC=,AB=.∵()2+()2=()2.∴AC2+BC2=AB2.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选:C.根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.本题考查了勾股定理,判断△ABC是等腰直角三角形是解决本题的关键.6.【答案】B解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;平行四边形的性质有:①平行四边形的对边分别相等且平行,②平行四边形的对角分别相等,③平行四边形的对角线互相平分;∴矩形具有而平行四边形不一定具有的性质是对角线相等,故选:B.举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可.本题考查了对矩形的性质和平行四边形的性质的理解和掌握,主要检查学生是否能掌握矩形和平行四边形的性质,此题比较典型,但是一道容易出错的题目.7.【答案】C【解析】解:=====,故ABD错误,C正确.故选C.先将被开方数0.9化成分数,观察四个选项,再化简为,开方,注意要把化为,代入即可.本题考查了二次根式的性质和化简,注意被开方数是小数的要化成分数计算,且保证分母是完全平分数,根据=|a|进行化简..8.【答案】B【解析】解:设菱形的对角线分别为8x和6x,已知菱形的周长为20cm,故菱形的边长为5cm,根据菱形的性质可知,菱形的对角线互相垂直平分,即可知(4x)2+(3x)2=25,。

八年级下学期期中考试数学试题【含答案】

八年级下学期期中考试数学试题【含答案】

八年级下学期期中考试数学试题【含答案】一.选择题(共10题,每小题3分)1.下列式子中,属于最简二次根式的是()1A. 9B. 7C. 20D. 32.x的取值范围是()A、1.5,2,2.5B、3,4,5C、20,30,40D、5,12,134.下列计算正确的是( )A.B.C.D.5.如图,在平行四边形ABCD中,下列各式一定正确的是()A.AC=BDB.AC⊥BDC.AB=CDD.AB=BC6.如图,在矩形ABCD中,对角线AC、BD相交于点O,若OA=2,则BD的长为() A.4 B.3 C.2 D.17.直角三角形两直角边边长分别为6cm和8cm,则斜边的中线为()A.10cm B.3cm C.4cm D.5cm8.矩形具有而菱形不一定具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分 D.两组对角分别相等9.如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是()A.5m B.12m C.13m D.18m10.已知:如图,在矩形ABCD中,E、F、G、H分别为边AB、BC、CD、DA的中点.若AB =2, AD=4,则图中阴影部分的面积为 ( )A.8 B.6 C.4 D.3二.填空题(每小题4分,共24分)11.=(__________-2)212.菱形的两条对角线长分别为6和8,则这个菱形的周长为13、若直角三角形的两条直角边长分别为3cm 、4cm ,则斜边上的高为 .14.顺次连接任意四边形的各边中点,所得图形一定是 .15.如图,△ABC 中,D 、E 分别为AB 、AC 边上的中点,若DE=6,则BC=________.16.若0)1(32=++-n m ,则m -n 的值为三.解答题(每小题6分,共18分)17.(6分)241221348+⨯-÷18.我校要对如图所示的一块地进行绿化,已知AD=4m ,CD=3m , AD ⊥DC ,AB=13m ,BC=12m ,求这块地的面积.19.如图所示,▱ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为E ,F.求证:AE=CF .四.解答题(每小题7分,共21分) 先化简,再求值:x=.21、如图,四边形ABCD 是一个矩形,BC=10cm ,AB=8cm 。

八年级数学下册期中测试卷题及答案精选全文完整版

八年级数学下册期中测试卷题及答案精选全文完整版

八年级(下)期中数学试卷一.选择题(共10小题,每题3分,共30分)1.(3分)下列二次根式中,最简二次根式是()A.B.C.D.2.(3分)下列各式中,运算正确的是()A.=﹣2B.+=C.×=4D.2﹣3.(3分)△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2+b2=c2B.∠A=∠B+∠CC.∠A:∠B:∠C=3:4:5D.a=5,b=12,c=134.(3分)若一个直角三角形的两直角边的长为12和5,则第三边的长为()A.13或B.13或15C.13D.155.(3分)若平行四边形两个内角的度数比为1:2,则其中较大内角的度数为()A.100°B.120°C.135°D.150°6.(3分)如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD7.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为()A.2B.4C.6D.88.(3分)等边三角形的边长为2,则该三角形的面积为()A.4B.C.2D.39.(3分)如果最简二次根式与能够合并,那么a的值为()A.2B.3C.4D.510.(3分)将实数按如图方式进行有规律排列,则第19行的第37个数是()A.19B.﹣19C.D.﹣二.填空题(共7小题,每题4分,共28分)11.(4分)若在实数范围内有意义,则x的取值范围是.12.(4分)计算:=.13.(4分)如图,A,B两点被池塘隔开,在A,B外选一点C,连接AC和BC,并分别找出AC和BC的中点M,N,如果测得MN=20m,那么A,B两点间的距离是.14.(4分)已知菱形的两条对角线长分别是6和8,则这个菱形的面积为.15.(4分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.16.(4分)规定运算:a☆b=﹣,a※b=+,其中a,b为实数,则(3☆5)(3※5)=.17.(4分)如图,四边形ABCD是菱形,AC=8,DB=6,P、Q分别为AC、AD上的动点,连接DP、PQ,则DP+PQ的最小值为.三.解答题(一)(共3小题,每题6分,共18分)18.(6分)(2﹣3)×19.(6分)在△ABC中,AB=13,BC=10,BC边上的中线AD=12,求AC长.20.(6分)如图,在平行四边形ABCD中,E、F是对角线AC所在直线上的两点,且AE =CF.求证:四边形EBFD是平行四边形.四、解答题(二)(共3小题,每题8分,共24分)21.(8分)已知:x=,y=,求+的值.22.(8分)如图,在菱形ABCD中,AC和BD相交于点O,过点O的线段EF与一组对边AB,CD分别相交于点E,F.(1)求证:AE=CF;(2)若AB=2,点E是AB中点,求EF的长.23.(8分)如图,在矩形纸片ABCD中,AB=6,BC=8将矩形纸片ABCD沿对角线BD 折叠,点C落在点E处,BE交AD于点F,连接AE.(1)证明:BF=DF;(2)求AF的值;(3)求△DBF的面积.五、解答题(三)(共2小题,每题10分,共20分)24.(10分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,垂足为F,交直线MN于E,连接CD,BE.(1)求证:CE=AD;(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)在满足(2)的条件下,当△ABC满足什么条件时,四边形BECD是正方形?(不必说明理由)25.(10分)如图1,正方形ABCD的边长为6cm,点F从点B出发,沿射线方向以1cm/秒的速度移动,点E从点D出发,向点A以1cm/秒的速度移动(不到点A).设点E,F 同时出发移动t秒.(1)在点E,F移动过程中,连接CE,CF,EF,请判断△CEF的形状并说明理由;(2)如图2,连接EF,设EF交BD于点M,当t=2时,求AM的长;(3)如图3,点G,H分别在边AB,CD上,且GH=3cm,连接EF,当EF与GH 的夹角为45°,求t的值.参考答案与试题解析一.选择题(共10小题,每题3分,共30分)1.【分析】根据最简二次根式的概念判断即可.【解答】解:A、12=3×22,即被开方数中含有能开得尽方的因数,它不是最简二次根式,故本选项不符合题意.B、48=3×42,即被开方数中含有能开得尽方的因数,它不是最简二次根式,故本选项不符合题意.C、符合最简二次根式的定义,故本选项符合题意.D、被开方数中含有分母,它不是最简二次根式,故本选项不符合题意.故选:C.【点评】本题考查的是最简二次根式,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.2.【分析】根据=|a|,×=(a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可.【解答】解:A、=2,故原题计算错误;B、+=+2=3,故原题计算错误;C、==4,故原题计算正确;D、2和不能合并,故原题计算错误;故选:C.【点评】此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、除法及加减法运算法则.3.【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【解答】解:A、∵a2+b2=c2,∴此三角形是直角三角形,故本选项不符合题意;B、∵∠A+∠B+∠C=180°,∠A=∠B+∠C,∴∠A=90°,∴此三角形是直角三角形,故本选项不符合题意;C、设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°,∴∠C=5×15°=75°,∴此三角形不是直角三角形,故本选项符合题意;D、∵52+122=132,∴此三角形是直角三角形,故本选项不符合题意;故选:C.【点评】本题考查的是勾股定理及三角形内角和定理,熟知以上知识是解答此题的关键.4.【分析】根据在直角三角形中,两个直角边的平方和等于斜边的平方,然后开方即可得出答案.【解答】解:∵一个直角三角形的两直角边的长为12和5,∴第三边的长为=13.故选:C.【点评】此题主要考查了勾股定理,掌握在直角三角形中,两个直角边的平方和等于斜边的平方是解题的关键.5.【分析】设较大内角的度数为2x,较小内角的度数为x,由平行四边形的性质列出等式可求解.【解答】解:∵平行四边形两个内角的度数比为1:2,∴设较大内角的度数为2x,较小内角的度数为x,∵平行四边形的邻角互补,∴2x+x=180°,∴x=60°,∴2x=120°.故选:B.【点评】本题考查了平行四边形的性质,掌握平行四边形的对角相等、邻角互补是解题的关键.6.【分析】菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.∴可添加:AB=AD或AC⊥BD.【解答】解:因为一组邻边相等的平行四边形是菱形,对角线互相垂直平分的四边形是菱形,那么可添加的条件是:AB=BC.故选:C.【点评】本题考查菱形的判定,答案不唯一.有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形.7.【分析】只要证明△AOB是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=2,∴AC=2OA=4,故选:B.【点评】本题考查矩形的性质、等边三角形的判定和性质等知识,解题的关键是熟练掌握矩形的性质,属于中考常考题型.8.【分析】根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.【解答】解:∵等边三角形高线即中点,AB=2,∴BD=CD=1,在Rt△ABD中,AB=2,BD=1,∴AD=,∴S△ABC=BC•AD=×2×=,故选:B.【点评】本题考查的是等边三角形的性质,熟知等腰三角形“三线合一”的性质是解题的关键.9.【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【解答】解:根据题意得,3a﹣8=17﹣2a,移项合并,得5a=25,系数化为1,得a=5.故选:D.【点评】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.10.【分析】观察发现,第n行有(2n﹣1)个数,且每行最后一个数字的绝对值等于行数,奇数行的最后一个为正,偶数行的最后一个为负,据此可求得答案.【解答】解:观察发现,第n行有(2n﹣1)个数,且每行最后一个数字的绝对值等于行数,奇数行的最后一个为正,偶数行的最后一个为负,∴第19行有2×19﹣1=37个数,∴第19行的第37个数是19.故选:A.【点评】本题考查了找规律在平方根中的应用,找到题目中数字的排列规律是解题的关键.二.填空题(共7小题,每题4分,共28分)11.【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【解答】解:∵二次根式在实数范围内有意义,∴被开方数x+2为非负数,∴x+2≥0,解得:x≥﹣2.故答案为:x≥﹣2.【点评】此题主要考查了二次根式中被开方数的取值范围,关键把握二次根式中的被开方数是非负数.12.【分析】根据二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:原式=﹣+=+3.故答案为+3.【点评】本题主要考查二次根式的加减运算,计算时先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.13.【分析】三角形的中位线等于第三边的一半,那么第三边应等于中位线长的2倍.【解答】解:∵M,N分别是AC,BC的中点,∴MN是△ABC的中位线,∴MN=AB,∴AB=2MN=2×20=40(m).故答案为:40m.【点评】本题考查三角形中位线等于第三边的一半的性质,熟记性质是应用性质解决实际问题的关键.14.【分析】因为菱形的面积为两条对角线积的一半,所以这个菱形的面积为24.【解答】解:∵菱形的两条对角线长分别是6和8,∴这个菱形的面积为6×8÷2=24故答案为24【点评】此题考查了菱形面积的求解方法:①底乘以高,②对角线积的一半.15.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.【点评】本题考查勾股定理,熟练运用勾股定理进行面积的转换是解题关键.16.【分析】原式利用题中的新定义计算即可求出值.【解答】解:根据题中的新定义得:原式=(﹣)×(+)=3﹣5=﹣2,故答案为:﹣2【点评】此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.17.【分析】如图作DM⊥AB于M.首先利用面积法求出DM的值,作点Q关于直线AC的对称点Q′,则PQ=PQ′,推出PD+PQ=PD+PQ′,推出当D、P、Q′共线时,且垂直AB时,DP+PQ′的值最小,最小值=DM;【解答】解:如图作DM⊥AB于M.∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=4,OB=OD=3,∴AB==5,∵•AB•DM=•BD•AO,∴DM==,作点Q关于直线AC的对称点Q′,则PQ=PQ′,∴PD+PQ=PD+PQ′,∴当D、P、Q′共线时,且垂直AB时,DP+PQ′的值最小,最小值=DM=,故答案为.【点评】本题考查轴对称﹣最短问题、菱形的性质等知识,解题的关键是学会利用垂线段最短解决最短问题,学会利用面积法求高,属于中考常考题型.三.解答题(一)(共3小题,每题6分,共18分)18.【分析】观察,可以首先把括号内的化简,合并同类项,然后相乘.【解答】解:原式=(4×=3×=9.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.19.【分析】在△ABD中,根据勾股定理的逆定理即可判断AD⊥BC,然后根据线段的垂直平分线的性质,即可得到AC=AB,从而求解.【解答】解:∵AD是中线,AB=13,BC=10,∴BD=BC=5.∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,又∵BD=CD,∴AC=AB=13.【点评】本题主要考查了勾股定理的逆定理与线段的垂直平分线的性质,关键是利用勾股定理的逆定理证得AD⊥BC.20.【分析】连接BD交AC于点O,根据对角线互相平分的四边形是平行四边形,可证四边形EBFD是平行四边形.【解答】证明:如图,连接BD交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形EBFD是平行四边形.【点评】此题主要考查平行四边形的判定,熟练掌握平行四边形的判定是解题的关键.四、解答题(二)(共3小题,每题8分,共24分)21.【分析】利用分母有理化法则分别求出、,计算即可.【解答】解:∵x=,∴===﹣1,∵y=,∴===+1,∴+=﹣1++1=2.【点评】本题考查的是二次根式的化简求值,掌握分母有理化法则是解题的关键.22.【分析】(1)由四边形ABCD是菱形,可得AB∥CD,OA=OC,继而证得△AOE≌△COF,则可证得结论.(2)利用平行四边形的判定和性质解答即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AO=CO,AB∥CD,∴∠EAO=∠FCO,∠AEO=∠CFO.在△OAE和△OCF中,,∴△AOE≌△COF,∴AE=CF;(2)∵E是AB中点,∴BE=AE=CF.∵BE∥CF,∴四边形BEFC是平行四边形,∵AB=2,∴EF=BC=AB=2.【点评】此题考查了菱形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.23.【分析】(1)由折叠的性质可得到△ABD≌△EDB,那么∠ADB=∠EBD,所以BF=DF;(2)根据折叠的性质我们可得出AB=ED,∠A=∠E=90°,又有一组对应角,因此就构成了全等三角形判定中的AAS的条件.两三角形就全等,从而设BF为x,解直角三角形ABF可得出答案;(3)由(1)知BF=DF,由(2)知BF的长,再由三角形的面积公式即可得出结论.【解答】证明:(1)由折叠的性质知,CD=ED,BE=BC.∵四边形ABCD是矩形,∴AD=BC,AB=CD,∠BAD=90°,∴AB=DE,BE=AD,在△ABD与△EDB中,,∴△ABD≌△EDB(SSS),∴∠EBD=∠ADB,∴BF=DF;(2)(2)在△ABD与△EDB中,,∴△ABF≌△EDF(AAS).∴AF=EF,设BF=x,则AF=FE=8﹣x,在Rt△AFB中,可得:BF2=AB2+AF2,即x2=62+(8﹣x)2,解得:x=,∴AF=8﹣=;(3)∵由(1)知BF=DF,由(2)知BF=,∴DF=,∴S△DBF=DF•AB=××6=.【点评】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.五、解答题(三)(共2小题,每题10分,共20分)24.【分析】(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)当∠A=45°,四边形BECD是正方形.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD是菱形;(3)解:当∠A=45°时,四边形BECD是正方形,理由:∵∠ACB=90°,∴∠ABC=45°,由(2)可知,四边形BECD是菱形,∴∠ABC=∠CBE=45°,∴∠DBE=90°,∴四边形BECD是正方形.【点评】本题考查了平行四边形的性质和判定,菱形的判定,正方形的判定、直角三角形的性质的应用,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.【分析】(1)通过证明△CDE≌△CBF得到CF=CE,∠DCE=∠BCF,则易推知△CEF 是等腰直角三角形;(2)过点E作EN∥AB,交BD于点N,∠END=∠ABD=∠EDN=45°,EN=ED=BF.可证△EMN≌△FMB,则其对应边相等:EM=FM.所以在Rt△AEF中,由勾股定理求得EF的长度,则AM=EF;(3)如图3,连接CE,CF,EF与GH交于P.根据四边形GFCH是平行四边形,则其对边相等:CF=GH=3.所以在Rt△CBF中,由勾股定理得到:BF=3,故t=3.【解答】解:(1)等腰直角三角形.理由如下:如图1,在正方形ABCD中,DC=BC,∠D=∠ABC=90°.依题意得:DE=BF=t.在△CDE与△CBF中,,∴△CDE≌△CBF(SAS),∴CF=CE,∠DCE=∠BCF,∴∠ECF=∠BCF+∠BCE=∠DCE+∠BCE=∠BCD=90°,∴△CEF是等腰直角三角形.(2)如图2,过点E作EN∥AB,交BD于点N,则∠NEM=∠BFM.∴∠END=∠ABD=∠EDN=45°,∴EN=ED=BF.在△EMN与△FMB中,,∴△EMN≌△FMB(AAS),∴EM=FM.∵Rt△AEF中,AE=4,AF=8,∴EF===4,∴AM=EF=2;(3)如图3,连接CE,CF,EF与GH交于P,CE与GH交于点Q.由(1)得∠CFE=45°,又∵∠EPQ=45°,∴GH∥CF,又∵AF∥DC,∴四边形GFCH是平行四边形,∴CF=GH=3,在Rt△CBF中,得BF===3,∴t=3.【点评】本题考查了四边形综合题.解题过程中,涉及到了平行四边形的判定与性质,全等三角形的判定与性质以及勾股定理的应用.解答该类题目时,要巧妙的作出辅助线,构建几何模型,利用特殊的四边形的性质(或者全等三角形的性质)得到相关线段间的数量关系,从而解决问题.。

八年级数学(下)期中试卷(含答案)

八年级数学(下)期中试卷(含答案)

八年级数学(下)期中试卷(含答案)一、选择题:将你认为正确的答案选出填入答题表中,每小题3分,共27分1.在代数式,, +,,中,分式有()A.1个B.2个C.3个D.4个2.若分式的值为零,则x的值为()A.0 B.﹣2 C.2 D.﹣2或23.有一种细菌的直径为0.000 000 012米,将这个数用科学记数法表示为()A.12×108B.12×10﹣8C.1.2×10﹣8D.1.2×10﹣94.下列命题是假命题的是()A.平行四边形的对角线互相平分B.平行四边形的对角相等C.平行四边形是轴对称图形D.平行四边形是中心对称图形5.在平面直角坐标系中,在第四象限内有一点P,且点P到x轴的距离是4,到y轴的距离是5,则点P的坐标为()A.(4,﹣5)B.(4,5)C.(﹣5,﹣4)D.(5,﹣4)6.将分式方程=去分母后得到的整式方程,正确的是()A.x﹣2=2x B.x2﹣2x=2x C.x﹣2=x D.x=2x﹣47.对于函数y=(k>0),下列说法正确的是()A.y随x的增大而减小B.y随x的增大而增大C.当x<0时,y随x的增大而减小D.图象在第二、四象限内8.已知正比例函数y=kx(k≠0),函数值随x的增大而增大,则一次函数y=﹣kx+k的图象大致是()A. B.C.D.9.若直线y=2x+1经过点(m,n),则代数式4m﹣2n+1的值是()A.﹣1 B.1 C.2 D.﹣2二、填空题:将下列所需填的答案填入下表,每小题3分,共18分10.根据分式的基本性质填空:=.11.若分式方程=有增根,则这个增根是x=.12.写出同时具备下列两个条件的一次函数表达式(写出一个即可)(1)y随x的增大而减小;(2)图象经过点(0,2)13.直线y=﹣2x+6与两坐标轴围成的三角形面积是.14.点P(﹣5,﹣4)到x轴的距离是单位长度.15.已知如图,点P是反比例函数上的任意一点,过点P作x轴的垂线,垂足为A,连接OP.若△PAO的面积是3,那么该反比例函数在第二象限的表达式为.三、解答题:75分16.计算:(1)﹣(2)()3÷(﹣)2.17.先化简,再求值:(﹣)×,其中x=2.18.解方程(1)(2)+=.19.已知一个一次函数的图象与一个反比例函数的图象交于点P(﹣2,1)、Q(1,m).(1)分别求出这两个函数的表达式.(2)在同一平面直角坐标系中画出这两个函数的图象,根据图象回答,当x取何值时,一次函数的值大于反比例函数的值?20.计算×+1,并从0,1,2三个数中选一个合适的数代入求值.21.已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣3)点,且与x轴平行的直线上.22.甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路匀速驶向C城.已知A、C两城的距离为360km,B、C两城的距离为320km,甲车比乙车的速度快10km/h,结果两辆车同时到达C城.设乙车的速度为xkm/h.(1)根据题意填写下表:行驶的路程(km)速度(km/h)所需时间(h)甲车360乙车320 x(2)求甲、乙两车的速度.23.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?参考答案与试题解析一、选择题:将你认为正确的答案选出填入答题表中,每小题3分,共27分1.在代数式,, +,,中,分式有()A.1个B.2个C.3个D.4个【分析】依据分式的定义进行判断即可.【解答】解:分母中不含字母,故不是分式;分母中含有字母是分式;+分母不含字母,故不是分式;分母中含有字母是分式;中π是数字,不是字母,故不是分式.故选;B.【点评】本题主要考查的是分式的定义,掌握分式的定义是解题的关键.2.若分式的值为零,则x的值为()A.0 B.﹣2 C.2 D.﹣2或2【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【解答】解:由分子x2﹣4=0解得:x=±2.当x=2时分母x2﹣2x=4﹣4=0,分式没有意义;当x=﹣2时分母x2﹣2x=4+4=8≠0.所以x=﹣2.故选B.【点评】要注意分母的值一定不能为0,分母的值是0时分式没有意义.3.有一种细菌的直径为0.000 000 012米,将这个数用科学记数法表示为()A.12×108B.12×10﹣8C.1.2×10﹣8D.1.2×10﹣9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 012=1.2×10﹣8.故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.下列命题是假命题的是()A.平行四边形的对角线互相平分B.平行四边形的对角相等C.平行四边形是轴对称图形D.平行四边形是中心对称图形【分析】根据平行四边形的对角相等,对角线互相平分可判断出A、B正确;再由平行四边形是中心对称图形可对C、D进行判断.【解答】解:A、∵平行四边形的对角线互相平分,∴此命题是真命题;B、∵平行四边形的对角相等,∴此命题是真命题;C、∵平行四边形是中心对称图形,不是轴对称图形,∴此命题是假命题;D、∵平行四边形是中心对称图形,∴此命题是真命题.故选C.【点评】本题考查的是命题与定理,熟知平行四边形的性质是解答此题的关键.5.在平面直角坐标系中,在第四象限内有一点P,且点P到x轴的距离是4,到y轴的距离是5,则点P的坐标为()A.(4,﹣5)B.(4,5)C.(﹣5,﹣4)D.(5,﹣4)【分析】根据第四象限内点的横坐标是正数,纵坐标是负数以及点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【解答】解:∵第四象限的点P到x轴的距离是4,到y轴的距离是5,∴点P的横坐标是5,纵坐标是﹣4,∴点P的坐标为(5,﹣4).故选D.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.6.将分式方程=去分母后得到的整式方程,正确的是()A.x﹣2=2x B.x2﹣2x=2x C.x﹣2=x D.x=2x﹣4【分析】分式方程两边乘以最简公分母x(x﹣2)即可得到结果.【解答】解:去分母得:x﹣2=2x,故选:A.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.对于函数y=(k>0),下列说法正确的是()A.y随x的增大而减小B.y随x的增大而增大C.当x<0时,y随x的增大而减小D.图象在第二、四象限内【分析】根据反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大进行解答.【解答】解:函数y=(k>0),图象是双曲线,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小.故选:C.【点评】此题主要考查了反比例函数的性质,关键是熟练掌握性质.8.已知正比例函数y=kx(k≠0),函数值随x的增大而增大,则一次函数y=﹣kx+k的图象大致是()A. B.C.D.【分析】由于正比例函数y=kx(k≠0)函数值随x的增大而增大,可得k>0,﹣k<0,然后,判断一次函数y=﹣kx+k的图象经过象限即可.【解答】解:∵正比例函数y=kx(k≠0)函数值随x的增大而增大,∴k>0,∴﹣k<0,∴一次函数y=﹣kx+k的图象经过一、二、四象限;故选A【点评】本题主要考查了一次函数的图象,掌握一次函数y=kx+b,当k>0,b>0时,图象过一、二、三象限;当k>0,b<0时,图象过一、三、四象限;k<0,b>0时,图象过一、二、四象限;k<0,b<0时,图象过二、三、四象限.9.若直线y=2x+1经过点(m,n),则代数式4m﹣2n+1的值是()A.﹣1 B.1 C.2 D.﹣2【分析】先把点(m,n)代入函数y=2x+1求出2m﹣n的值,再代入所求代数式进行计算即可.【解答】解:∵点(m,n)在函数y=2x+1的图象上,∴2m+1=n,即2m﹣n=﹣1,∴4m﹣2n+1=2(2m﹣n)+1=2×(﹣1)+1=﹣1.故选A.【点评】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.二、填空题:将下列所需填的答案填入下表,每小题3分,共18分10.根据分式的基本性质填空:=.【分析】根据分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,可得答案.【解答】解:分子除以(a﹣2),分母也除以(a﹣2),得=,故答案为:a﹣2.【点评】本题考查了分式的性质,分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变.11.若分式方程=有增根,则这个增根是x=2.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.【解答】解:∵分式方程=有增根,∴x﹣2=0∴原方程增根为x=2,故答案为2.【点评】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值12.写出同时具备下列两个条件的一次函数表达式(写出一个即可)y=﹣x+2(1)y随x的增大而减小;(2)图象经过点(0,2)【分析】设一次函数的解析式为y=kx+b,由一次函数的单调性即可得出k的取值范围,随便选取一个k值,再将点(0,2)代入一次函数解析式求出b值即可.【解答】解:设一次函数的解析式为y=kx+b,∵y随x的增大而减小,∴k<0.令k=﹣1,则函数解析式为y=﹣x+b,又∵点(0,2)在一次函数y=﹣x+b的图象上,∴2=b,∴一次函数的解析式为y=﹣x+2.故答案为:y=﹣x+2.【点评】本题考查了待定系数法求函数解析式以及一次函数的性质,解题的关键是由点的坐标利用待定系数法求出函数解析式.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的单调性求出一次项系数k的取值范围是关键.13.直线y=﹣2x+6与两坐标轴围成的三角形面积是9.【分析】首先求出直线y=﹣2x+6与x轴、y轴的交点的坐标,然后根据三角形的面积公式,得出结果.【解答】解:∵直线y=﹣2x+6中,﹣=﹣=3,b=6,∴直线与x轴、y轴的交点的坐标分别为A(3,0),B(0,6),∴故S△AOB=×3×6=9.故答案为:9.【点评】本题考查的是一次函数图象上点的坐标特点,即一次函数y=kx+b与x轴的交点为(﹣,0),与y轴的交点为(0,b).14.点P(﹣5,﹣4)到x轴的距离是4单位长度.【分析】求得P的纵坐标绝对值即可求得P点到x轴的距离.【解答】解:∵|﹣4|=4,∴P点到x轴的距离是4,故答案为4.【点评】此题主要考查点的坐标;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值.15.已知如图,点P是反比例函数上的任意一点,过点P作x轴的垂线,垂足为A,连接OP.若△PAO的面积是3,那么该反比例函数在第二象限的表达式为y=﹣(x<0).【分析】设比例函数的解析式为y=(k≠0),再根据反比例函数的图象在第二象限判断出k的符号,由反比例函数系数k的几何意义求出k的值即可.【解答】解:设比例函数的解析式为y=(k≠0),∵反比例函数的图象在第二象限,∴k<0,∵PA⊥x轴,S△PAO=3,∴=3,即k=﹣6,∴该反比例函数在第二象限的表达式为:y=﹣(x<0).故答案为:y=﹣(x<0).【点评】本题考查的是反比例函数系数k的几何意义,即反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.三、解答题:75分16.计算:(1)﹣(2)()3÷(﹣)2.【分析】(1)先通分,然后进行通分母的减法运算;(2)先进行乘方运算,然后把除法运算化为乘法运算,再约分即可.【解答】解:(1)原式=﹣=;(2)原式=÷==.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.(2)最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.17.先化简,再求值:(﹣)×,其中x=2.【分析】先把括号内根据分式的通分法则进行计算,根据约分法则把原式化简,代入已知数据计算即可.【解答】解:原式=×=×=,当x=2时,原式=1.【点评】本题考查的是分式的化简求值,掌握分式的通分法则和约分法则是解题的关键.18.解方程(1)(2)+=.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x2﹣3x=x2﹣8x+12,解得:x=,经检验x=是分式方程的解;(2)去分母得:6+3(x+1)=x+1,去括号得:6+3x+3=x+1,移项合并得:2x=﹣8,解得:x=﹣4,经检验x=﹣4是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.19.已知一个一次函数的图象与一个反比例函数的图象交于点P(﹣2,1)、Q(1,m).(1)分别求出这两个函数的表达式.(2)在同一平面直角坐标系中画出这两个函数的图象,根据图象回答,当x取何值时,一次函数的值大于反比例函数的值?【分析】(1)设出反比例函数关系式,利用代定系数法把P(﹣2,1)代入函数解析式即可.由于Q点也在反比例函数图象上,所以把Q点坐标代入反比例函数解析式中即可得到Q点坐标,求出m的值,利用待定系数法求一次函数解析式;(2)根据图象可得到答案,注意反比例函数图象与y轴无交点,所以分开看.【解答】解:(1)设反比例函数的解析式为y=∵反比例函数经过点P(﹣2,1),∴a=﹣2×1,∴a=﹣2,∴反比例函数的解析式为y=﹣,∵Q(1,m)在反比例函数图象上,∴m=﹣2,设一次函数的解析式为y=kx+b∵P(﹣2,1),Q(1,﹣2)在一次函数图象上∴,∴,∴一次函数的解析式为y=﹣x﹣1;(2)如图所示:由图可知:当0<x<1或x<﹣2时一次函数的值大于反比例函数的值.【点评】此题主要考查了利用待定系数法求反比例函数解析式与一次函数解析式,画函数图象,正确的识别图形是解题的关键.20.计算×+1,并从0,1,2三个数中选一个合适的数代入求值.【分析】把分式的分子分母因式分解,再约分,根据分式有意义的条件,选择x的值,再计算即可.【解答】解:原式=+1=+1=x,∵2x≠0且x(x﹣2)≠0,∴x≠0,2,∴x=1,∴原式=×1=.【点评】本题考查了分式的化简求值,以及分式有意义的条件:分母不为0,掌握分式的通分和约分是解题的关键.21.已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣3)点,且与x轴平行的直线上.【分析】(1)根据横纵坐标的大小关系得出m﹣1﹣(2m+4)=3,即可得出m的值,进而得出P点坐标;(2)根据平行于x轴点的坐标性质得出m﹣1=﹣3,进而得出m的值,进而得出P点坐标.【解答】解:(1)∵点P(2m+4,m﹣1),点P的纵坐标比横坐标大3,∴m﹣1﹣(2m+4)=3,解得:m=﹣8,∴2m+4=﹣12,m﹣1=﹣9,∴点P的坐标为:(﹣12,﹣9);(2)∵点P在过A(2,﹣3)点,且与x轴平行的直线上,∴m﹣1=﹣3,解得:m=﹣2,∴2m+4=0,∴P点坐标为:(0,﹣3).【点评】此题主要考查了坐标与图形的性质,根据已知得出关于m的等式是解题关键.22.甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路匀速驶向C城.已知A、C两城的距离为360km,B、C两城的距离为320km,甲车比乙车的速度快10km/h,结果两辆车同时到达C城.设乙车的速度为xkm/h.(1)根据题意填写下表:行驶的路程(km)速度(km/h)所需时间(h)甲车360 x+10乙车320 x(2)求甲、乙两车的速度.【分析】(1)设乙的速度是x千米/时,那么甲的速度是(x+10)千米/时,根据时间=可求甲、乙两辆汽车所需时间;(2)路程知道,且同时到达,可以时间做为等量关系列方程求解.【解答】解:(1)甲的速度是(x+10)千米/时,甲车所需时间是,乙车所需时间是;行驶的路程(km)速度(km/h)所需时间(h)甲车360 x+10乙车320 x(2)乙的速度是x千米/时,甲的速度是(x+10)千米/时,依题意得:=,解得x=80,经检验:x=80是原方程的解,x+10=90,答:甲的速度是90千米/时,乙的速度是80千米/时.【点评】本题考查理解题意能力,关键是以时间做为等量关系,根据时间=,列方程求解.23.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为15分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?【分析】(1)直接根据图象上所给的数据的实际意义可求解;(2)由图象可知,s是t的正比例函数,设所求函数的解析式为s=kt(k≠0),把(45,4)代入解析式利用待定系数法即可求解;(3)由图象可知,小聪在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n (m≠0)把(30,4),(45,0)代入利用待定系数法先求得函数关系式,再根据求函数图象的交点方法求得交点坐标即可.【解答】解:(1)∵30﹣15=15,4÷15=∴小聪在天一阁查阅资料的时间和小聪返回学校的速度分别是15分钟,千米/分钟.(2)由图象可知,s是t的正比例函数设所求函数的解析式为s=kt(k≠0)代入(45,4),得4=45k解得k=∴s与t的函数关系式s=t(0≤t≤45).(3)由图象可知,小聪在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n (m≠0)代入(30,4),(45,0),得解得∴s=﹣t+12(30≤t≤45)令﹣t+12=t,解得t=当t=时,S=×=3.答:当小聪与小明迎面相遇时,他们离学校的路程是3千米.【点评】主要考查了一次函数的实际运用和读图能力.从图象中获得所需的信息是需要掌握的基本能力,还要会熟练地运用待定系数法求函数解析式和使用方程组求交点坐标的方法.。

(完整版)人教版八年级下册数学期中试卷及答案.docx

(完整版)人教版八年级下册数学期中试卷及答案.docx

彩香中学 2009~2010学年第二学期初二数学期中试卷一、选择题(本大题共有 10 小题,每小题 2 分,共 20 分)1.下列各式中最简分式是( )A .8aB . 2xC .x15a 12b3D .4x 13xa2.下列各式中正确的是 ()A .a a m1 1 a bbb mB .babaC .a 2b 2ba 2b 2a ba b aD .ab3.解分式方程x x 2 ,去分母后正确的是 ()x 1x 211A . x( x 1) x 2 1B . x( x 1) x 2 x 2 1.x( x 1)x 2 1. x( x 1) x 2 x 2 1CD4.下列式子中,一定有意义的是()A .x 2B . xC . x 22D . x 225 .下列各式中,是最简二次根式的是()A . 18B . a 2 bC . a 2b 2D .236 .下列运算正确的是 ()2B . 3222A .3 3 3 C .3 3D .337 .下列四组线段中,不构成比例线段的一组是()A .1cm , 3cm, 3cm , 9cmB . 2cm , 3cm , 4cm , 6cmC . 1cm , 2 cm , 3 cm ,6 cmD . 1cm , 2cm , 3cm , 4cm8.下面图形中一定相似的是()A .两个锐角三角形B .两个直角三角形C .两个等腰三角形D .两个等边三角形9.如图:在打网球时,要使球恰好能打过网,而且落在离网5 米的位置上,则球拍击球的高度 h 应为 ( )A . 2.7mB .1.8mC .0.9mB D .6mPAC(第 9 题图)(第10题图)10.如图, P 是 Rt△ ABC的斜边 BC 上异于 B, C 的一点,过P 点作直线截△ ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有()条.A.1B.2C.3D.4二、填空题(本大题共有10 小题,每空 2 分,共 28 分)11.化简:a 29a b.a3a3,b aa b12.计算:25533 3 =,3a2 b ?8b2 c (a>0,b>0,c>0)=.13.若分式x2的值为0,则x 的值为.x24x 41m2 有增根,则增根是x=, m=.14.若33xx15.如果最简二次根式3a 3与72a 是同类二次根式,那么 a 的值是.16.若 1< x<2,则化简( x2) 2(1 x)2=.17.当 x__________时,式子1有意义.x 3a2a2b.18.若,则a3bb319.如图:已知 DE∥ BC, AD=1, DB= 2, DE= 3,则 BC= ___________,△ ADE和△ ABC的面积之比为.A A DD E FB C B EC (第 19 题图)(第 20 题图)20.如图:已知矩形ABCD中, AB= 2, BC= 3, F 是 CD的中点,一束光线从 A 点出发,通过 BC 边反射,恰好落在 F 点,那么反射点 E 与 C点的距离为.三、解答题(本大题共有10 小题,共82 分)21.(本题满分 6 分)化简分式:2a1( 2)x2( 1)9a3x 1a2x 1a 2 4 a 22.(本题满分 5 分)先化简,再求值:2 a 2 4a 4,其中 a2 .aa 223.(本题满分 14 分)计算:( 1)148 61 3 5 1( 2) 27x - 5 3x + 12x212 3(3 ) (2 12 3 1 ) 6 (4 ) ( 25 3 2) 2- 3(2 5 3 2)( 2 5 3 2)24.(本题满分 8 分)解分式方程:( 1)12 5 ( 2)1x21 xx 1 x 2 x2 xx 225.(本题满分 6 分)对于正数 x ,规定 f ( x x 2,)=x 21( 1)计算 f ( 2)=;f ( 3)=;f ( 2)+ f ( 1)=.; f (3)+ f ( 1)=.23( 2)猜想 f ( x) f ( 1) =;请予以证明.x26.(本分 8 分)下面料:11( 21)2 1 ;12(21)(21)13232;32(3 2 )( 3 2 )1525 2 .52(52)(52)求:(1)1的;( 2)1的;(3)1(n 正整数)的763217n 1n;( 4 )(1+1+⋯⋯ +1+1)·( 1+122320082009200920102010 ).27.(本分 6 分)某加工加工同多的零件就少用了件?1200 个零件后,采用了新工,工作效率是原来的 1.5 倍,10 小.采用新工前、后每小分加工多少个零28.(本分7 分)如,正方形 AD 的延交 EF于 H 点.AEFG的点 E 在正方形ABCD的CD上,A B(1)明:△ AED∽ △ EHD.(2)若 E CD 的中点,正方形 ABCD的 4,G求的 DH .DE CHF29.(本题满分 7 分)如图,是一块三角形土地,它的底边BC长为 100 米,高 AH 为 80 米,某单位要沿着底边BC 修一座底面是矩形DEFG的大楼, D、 G 分别在边AB、 AC 上,若大楼的宽是40 米,求这个矩形的面积.AD M GB E H F C30.(本题满分 7 分)如图,路灯( P 点)距地面 8 米,身高 1.6 米的小明从距离路灯的底部( O 点)20 米的 A 点,沿 AO 所在的直线行走 14 米到 B 点时,身影的长度是变长了还是变短了?变长或变短了多少米?PD CO B N A M31.(本题满分8 分)如图,在矩形ABCD中, AB= 12cm,BC= 6cm,点 P 沿 AB 边从点A 开始向点B 以 2cm/ s 的速度移动,点 Q 沿 DA 边从点 D 开始向点 A 以 1cm/s 的速度移动.如果点 P、Q 同时出发,用t(s)表示移动的时间(0≤ t ≤ 6),那么(1)当 t 为何值时,△ QAP 为等腰三角形?(2)当 t 为何值时,以点 Q、A、P 为顶点的三角形和△ ABC相似 ?D CQA P B彩香中学 2009~2010学年第二学期初二数学期中试卷参考答案及评分建议一、选择题(本大题共有10 小题,每小题 2 分,共 20 分)题号12345678910选项B D D C C B D D A C二、填空题(本大题共有10 小题,每空 2 分,共28 分)11.a- 3, 1;12.54 3 , 2ab6bc ;13.- 2;14.3,- 1;15.2;16.3- 2x;17.>3;18.8;19. 9, 1∶ 9;20.1.7三、解答题(本大题共有10 小题,共 82分.解答必须写出必要的文字说明、推理步骤或证明过程)21.(1)解:原式=2a3)(a a3=2a(a3)=a3=1(3(a3)(a3)(a3)( a 3)( a3)( a3)(a 3)a3分)(2)x2x21=1(3 分 )解:原式=1x1xx122.解:原式=a244a2a(3 分)( a 2) 2( a 2) 2=a 2a当 a 2 时,原式=22(22)22212(2 分)2( 2 2)( 2 2)2223. (1)解:原式=233433(3 分)(2) 解:原式=3 3x53x23x0 (3 分 )(3)解:原式=1223292(4分 ) (4) 解:原式= 20- 1210 +18―2=36-1210(4 分)24.(1)解:最简公分母: x(x-1)(2)解:最简公分母: x- 2去分母得: x-1+ 2x= 5去分母得:x- 1- 2x+ 4= 1x= 2(3 分 )x= 2(3 分 )检验: x= 2 时, x(x-1)≠ 0检验: x= 2 时, x- 2=0∴ x= 2 是原方程的解(1 分 )∴ x=2是增根,原方程无解(1 分 )431x21x21;;1;1.( 4 分) (2)1;证明:x225.(1)4 f ( x) f ( x) 1 x21 1 x2x2 1151x2(2 分)26. (1)76(2分)(2)3217(2分)(3)n 1n(2分)(4)2009(2分)27.解:设采用新工艺前每小时加工x 个零件,根据题意得:1200120010(3 分)x 1.5x解得 x= 40(2 分)经检验 x=40 是原方程的解40× 1.5= 60答:采用新工艺前每小时加工40 个零件,采用新工艺后每小时加工60 个零件.( 1 分)28.(1)证明:∵正方形 AEFG和正方形 ABCD中∠ AEH=∠ ADC=∠ EDH= 90°∴∠ AED+∠ DEH= 90° ∠ AED+∠ DAE=90°∴∠ DEH=∠ DAE∴ △ AED∽ △ EHD(4 分)(2)解:∵正方形 ABCD的边长为 4∴ AD= CD= 4 ∵E 为 CD 的中点∴ DE= 2∵△ AED∽△ EHD ∴ADDE∴42∴ DH=1.( 3 分)DE DH2HD29. 解:∵矩形DEFG 中 DG// EF ∴∠ ADG=∠ B,∠ AGD=∠ C ∴△ ADG∽△ ABC∴DG AM BC ( 2 分)AH若 DE 为宽,则DG8040,∴ DG= 50,此时矩形的面积是 2000 平方米.若 DG 为宽,10080则 4080DE,∴ DE= 48,此时矩形的面积是1920 平方米.(答对一个得 3 分,答对10080两个得 5 分)30. 解:△ MPO 中, CA// PO,得MACA ∴MA1.6∴ MA=5( 3 分)MO PO MA208同理可得NBBD ∴NB1.6∴NB= 1.5( 3 分)NO PO NB 68∴ MA- NB=3.5∴身影的长度是变短了,变短了 3.5 米.( 1 分)31. (1)解:由题意得 t 秒时, AP = 2t cm , DQ = t cm ,∴ AQ =(6- t) cm ,当 AP = AQ 时,即 2t = 6- t ,即 t =2 ,△ QAP 为等腰三角形. (2 分)AQAP 6 t 2t (2)解:∵∠ QAP =∠ B =90°∴当时,即6,即 t = 3,△ PAQ ∽△ ABCBCAB12或者,当AQAP ,即 6 t 2t ,即 t = 1.2, △ QAP ∽ △ ABC . ABBC12 6答: t = 3 或 1.2 时,以点 Q 、 A 、 P 为顶点的三角形和 △ ABC 相似.( 6 分)新安中学 2009 ~ 2010 学年度第二学期期中考试八年级数学试题一、选择题( 10 小题,共 30 分)1. 以下列各组线段的长为边,能够组成直角三角形的是()A.6 8 10B. 15 31 39C. 12 35 37D. 12 18 322. 下列计算正确的是()A.22B. ( 2 )22( 2)C.9 3D.623423. 下列二次根式中,是最简二次根式的是()A.16aB.3bC.bD.0.5a4. 如果 (x 2+y 2) 2+3(x 2+y 2)- 4=0 ,那么 x 2+y 2 的值为()A. 1B. - 4C. 1或- 4D.- 1 或 35.方程 2x 25x 3 0 根的情况是()A. 方程有两个不相等的实根B.方程有两个相等的实根C.方程没有实根D.无法判断6. 某型号的手机连续两次降价, 每台售价由原来的 1185 元降到 580 元,设平均每次的降价的百分率 x ,则列出的方程正确的是( )A. 580(1 x) 21185 B.1185(1 x) 2580C. 580(1 x) 21185D.1185(1 x) 25807. 在△ ABC 中,AB15,AC 13 ,BC 上的高 AD 长为 12,则△ ABC 的面积为()A. 84B. 24C. 24 或 84D. 42 或 848. 如果 x0 ,则化简 1 xx 2 的结果为()A.1 2x B.2x 1 C. 1D. 19.若方程 ax 2bxc 0(a 0) ,满足 a b c 0 ,则方程必有一根为()、A. 0B. 1C.1D.110. 请估计321).20 的运算结果应在(2A . 6到 7 之间B . 7到 8 之间C . 8到 9 之间D . 9到 10 之间二、耐心填一填( 6 小题,共 18 分)11.化简24 =_________。

2010-2011学年第二学期八年级数学学科期中试卷(附答案)

2010-2011学年第二学期八年级数学学科期中试卷(附答案)

(第11题图)FC DEBA 2010学年第二学期八年级数学学科期中试卷(附答案)(本试题满分100分,时间90分钟)一、填空题(本大题共14题,每题2分,满分28分)1.下列函数中:12)1(+=x y,11)2(+=xy ,xy -=)3(,是常数)、b k b kx y()4(+=,一次函数有 (填序号).2.已知直线x kx y +=是一次函数,则k 的取值范围是 . 3.直线42-=x y 的截距是 .4.已知函数1-3-x y =,y 随着x 的增大而 .5.若直线21y x =+向下平移n 个单位后,所得的直线在y 轴上的截距是3-,则n 的值是___________. 6.已知直线3+-=m x y 图像经过第一、三、四象限,则m 的取值范围是_________. 7.已知点A (a ,2),B (b ,4)在直线5-x y =上,则a 、b 的大小关系是a b .8.某市为鼓励市民节约用水和加强对节水的管理,制订了以下每月每户用水的收费标准:(1)用水量不超过83m 时,每立方米收费1元;(2)超出83m 时,在(1)的基础上,超过83m 的部分,每立方米收费2元.设某户一个月的用水量为x 3m ,应交水费y 元. 则当x >8时,y 关于x 的函数解析式是 . 9.八边形的内角和是 度.10. 已知□ABCD 中,已∠A :∠D =3:2,则∠C = 度.11.如图,AC 是□ABCD 的对角线,点E 、F 在AC 上,要使四边形BFDE 是平行 四边形,还需要增加的一个条件是 (只要填写一种情况). 12.菱形的两对角线长分别为10和24,则它的面积为 . 13.填空:CD BC AB ++ = .14.如图,正方形ABCD 中,E 在BC 上,BE =2,CE =1. 点P 在BD 上,则PE 与PC 的和的最小值为 .二、选择题(本大题共4题,每题3分,满分12分)15.已知直线3-x y =,在此直线上且位于x 轴的上方的点,它们的横坐标的取值范围是 ( )学校___________________班级_____________姓名________________学号___________请不要在装订线内答题请不要在装订线内答题请不要在装订线内答题(A )3≥x ; (B )3≤x ; (C )3>x ; (D )3<x . 16.已知一次函数的图像不经过三象限,则k 、b 的符号是 ( ) (A)k <0,b ≥0;(B)k <0,b ≤0 ;(C)k <0,b >0; (D)k <0,b <0.17.已知四边形ABCD 是平行四边形,下列结论中不正确的 ( ) (A )当AB=BC 时,它是菱形; (B )当AC ⊥BD 时,它是菱形; (C )当∠ABC =90︒时,它是矩形; (D )当AC=BD 时,它是正方形.18.如图,在矩形纸片ABCD 中,AB =3cm ,BC =4cm ,现将纸片折叠压平,使A 与C 重合,如果设折痕为EF ,那么重叠部分△AEF 的面积等于( ) (A )873; (B )875; (C )1673; (D )1675.三、解答题:(本大题共5题,每题6分,满分30分)19.已知一次函数b kx y +=的图像平行于直线x y 3-=,且经过点(2,-3). (1)求这个一次函数的解析式;(2)当y =6时,求x 的值.20.已知一次函数图像经过点A (-2,-2)、B (0,-4).(1) 求k 、b 的值;(2)求这个一次函数与两坐标轴所围成的面积.21.若直线221+=x y分别交x 轴、y 轴于A 、C 两点,点P 是该直线上在第一象限内的一点,PB ⊥x 轴,B 为垂足,且S ⊿ABC = 6.(1)求点B 和P 的坐标 .(2)过点B 画出直线BQ ∥AP ,交y 轴于点Q ,并直接写出点Q 的坐标.22.某人因需要经常去复印资料,甲复印社按A 4纸每10页2元计费,乙复印社则按A 4纸每10页1元计费,但需按月付一定数额的承包费. 两复印社每月收费情况如图所示,根据图中提供的信息解答下列问题: (1)乙复印社要求客户每月支付的承包费是 元. (2)当每月复印 页时,两复印社实际收费相同. (3)如果每月复印页在250页左右时, 应选择哪一个复印社?请简单说明理由.23.已知:如图,在梯形A B C D 中,BC AD //,8==DC AB ,︒=∠60B ,12=BC .若F E 、分别是A B D C 、的中点,联结EF ,求线段EF 的长.装FEAB C DO (第24题图)A四、几何证明(本大题共3题, 6分+7分+7分,满分20分)24.已知:如图,矩形ABCD 的对角线AC 和BD 相交于点O , AC =2AB .求证:︒=∠120AOD .25.已知:如图,在⊿ABC 中,AB =AC ,D 、E 、F 分别是BC 、AB 、AC 边的中点.求证:四边形AEDF 是菱形.____请不要在装订线GF EDCBA(第26题图)PMDA26.已知:如图,点E 、G 在平行四边形ABCD 的边AD 上,EG =ED ,延长CE 到点F ,使得EF =EC . 求证:AF ∥BG .五、(本大题共1题,第1小题6分,第2小题4分,满分10分)27.已知:如图,矩形纸片ABCD 的边AD =3,CD =2,点P 是边CD 上的一个动点(不与点C 重合,把这张矩形纸片折叠,使点B 落在点P 的位置上,折痕交边AD 与点M ,折痕交边BC 于点N . (1)写出图中的全等三角形. 设CP =x ,AM =y ,写出y 与x 的函数关系式;(2)试判断∠BMP 是否可能等于90°. 如果可能,请求出此时CP 的长;如果不可能,请说明理由.八年级数学期中答案一、填空题(本大题共14题,每题2分,满分28分)1.(1),(3);2.1-m;>≠k;3.-4;4.减小;5.4;6.3 7.<;8.8y;9.1080°;10.108°;11.AE=CF等;=x2-12.120;13.AD;14.13.二、选择题(本大题共4题,每题3分,满分12分)15.C;16.A;17.D;18.D.三、简答题(本大题共5题,每题6分,满分30分)19.解: (1)由题意 k=-3 ………………………………………1′∴y=-3x+b 把点(2,-3)代入∴-3= -3×2+k ………………………………………1′ b=3 ………………………………………1′∴y=-3x+3 ………………………………………1′(2) 当y=6时-3x+3=6 ………………………………………1′ x =-1 ………………………………………1′ 20.解:(1)设y=kx+b(k≠0) ………………………………………1′ 把A(-2,-2),B(0,-4)代入⎩⎨⎧=-+-=-bb k 422 ………………………………………1′⎩⎨⎧-=-=41b k ………………………………1′+ 1′∴y=-x-4(2)一次函数与x 轴的交点坐标为(-4,0)一次函数与y 轴的交点坐标为(0,-4) ……………………1′ ∴S=21×4×4=8 ………………………………………1′21.解:(1)A (-4,0),C (0,2) ………………………………………1′由题意 设点P 的坐标为(221,+a a )且a >0∵PB ⊥x 轴∴B (a ,0) ∴AB=a +4 ∵S ⊿ABC =662)4(21=⨯+a ………………………………………1′∴a =2∴B(2,0),P(2,3) ……………………………………1′+1′ (2)图略; ………………………………………1′ )1,0(-Q ………………………………………1′ 22.(1) 18; ………………………………………2′(2) 150; ………………………………………2′ (3) 选择乙. ………………………………………1′ 当复印页超过150页时,乙的收费较低. …………………………1′23.解:过点D 作DE ∥AB,交BC 于点G (1)∵AD ∥BC, DE ∥AB∴四边形ABCD 为平行四边形 (平行四边形定义) ………………………1 ∴AD=BG,AB=DG (平行四边形对边相等) ………………………………1 ∵AB=DC=8 ∴DG=8 ∴DG=DC ∵∠B=60°∵∠DGC=∠B=60°∴⊿DGC 是等边三角形 ……………………………………1 ∴GC=8 ∵BC=12 ∴BG=4∴AD=4 ………………………………………1 ∵EF 分别是AB 、DC 的中点 ∴)(21BC AD EF+==8)124(21=+ (1)(梯形的中位线等于两底和的一半)24.证明:∵矩形ABCD∴︒=∠90ABC (矩形的四个角都是直角) (1)中ABC Rt ∆,AC =2AB∴︒=∠30ACB (1)∵AC =BD (矩形的对角线相等) ………………………………………1 ∴BO =BD21,CO =AC21∵AB =CD(矩形的对角线互相平分) (1)∴BO=CO ∴OCB OBC ∠=∠ …………………………………1 ∵︒=∠+∠+∠180OCB OBC BOC∴︒=∠120BOC (1)25.证明:⊿ABC 中,E 、D 分别是AB, BC 的中点∴ED =AC21(三角形的中位线等于第三边的一半) ………………1 同理 FD=AB21 (1)∵ AE=AB21,AF =AC21 (1)∴ AE=AF=ED=FD ....................................1 ∴ 四边形AEDF 是菱形 ....................................1 (四条边相等的四边形是菱形) (1)26.联结FG,FD,GC ………………………………1 ∵EG=ED,EF=EC∴四边形FGCD 是平行四边形 ………………………………1 (对角线互相平分的四边形是平行四边形)……………………………1 ∴FG ∥DC, FG = DC(平行四边形对边相等且平行) ………………………………1 同理AB ∥DC,AB=DC∴AB ∥FG,AB=FG ………………………………1 ∴四边形ABCD 是平行四边形 ………………………………1 (一组对边平行且相等的四边形是平行四边形)∴AF ∥BG (平行四边形的定义) ....................................1 27.(1) ⊿MBN ≌⊿MPN (1)∵⊿MBN ≌⊿MPN ∴MB=MP ,∴22MP MB = ∵矩形ABCD∴AD=CD (矩形的对边相等)∴∠A=∠D=90°(矩形四个内角都是直角) ………………………………1 ∵AD=3, CD=2, CP=x, AM=y∴DP=2-x, MD=3-y ………………………………1 Rt ⊿ABM 中,42222+=+=yAB AM MB同理 22222)2()3(x y PDMDMP-+-=+= (1)222)2()3(4x y y-+-=+ (1)∴6942+-=x xy (1)(3)︒=∠90BMP ………………………………1 当︒=∠90BMP 时,可证DMP ABM ∆≅∆ ………………………………1 ∴ AM=CP ,AB=DM∴1y (1)-=y3,2=∴1=xx (1)-,21=∴当CM=1时,︒BMP∠90=。

八年级(下)期中考试数学试题【含答案】

八年级(下)期中考试数学试题【含答案】

八年级(下)期中考试数学试题【含答案】一、单项选择题(共10个小题,每小题3分,满分30分)1.下列二次根式中,是最简二次根式的是()A. B. C. D.2.下列计算正确的是()3.若△ABC的三边分别为5、12、13,则△ABC的面积是()A. 30B. 40C. 50D. 604.下列各数中,与的积为有理数的是()A. B. C. D.5.在Rt△ABC中,∠C=90°.如果BC=3,AC=5,那么AB=()A. B. 4 C. 4或 D. 以上都不对6.如图,下列哪组条件不能判定四边形ABCD是平行四边形()A. AB∥CD,AB=CDB. AB∥CD,AD∥BCC. OA=OC,OB=ODD. AB∥CD,AD=BC7.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为()cmA. 2B. 3C. 4D. 58.如图,菱形ABCD的对角线相交于点O,若AC=8,BD=6,则菱形ABCD的周长是()A. 32B. 24C. 20D. 409.矩形的对角线一定具有的性质是()A. 互相垂直B. 互相垂直且相等C. 相等D. 互相垂直平分10.如图,把一张正方形纸对折两次后,沿虚线剪下一角,展开后所得图形一定是()A. 三角形B. 菱形C. 矩形D. 正方形二、填空题(共6个小题,每小题4分,满分24分)11.二次根式中字母x的取值范围是________12.定理“对角线互相平分的四边形是平行四边形”的逆命题是________13.如图,△ABC中,若∠ACB=90°,∠B=56°,D是AB的中点,则∠ACD=________°.14.如图,四边形ABCD中,连接AC,AB∥DC,要使AD=BC,需要添加的一个条件是________.15.如图,正方形ABCD的周长为16 cm,则矩形EFCG的周长是________ cm16.如图,已知等边三角形ABC边长为16,△ABC的三条中位线组成△A1B1C1,△A1B1C1的三条中位线组成△A2B2C2,依此进行下去得到△A4B4C4的周长为________.三、解答题(一)(共3个小题,每小题6分,满分18分)17.化简:18.如图,E、F分别为□ABCD的边BC、AD上的点,且∠1=∠2.求证:四边形AECF是平行四边形.19.已知矩形ABCD中,AD= ,AB= ,求这个矩形的的对角线AC的长及其面积四、解答题(二)(共3个小题,每小题7分,满分21分)20.在甲村至乙村的公路有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB 段是否有危险而需要暂时封锁?请通过计算进行说明.21.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.22.如图,在△ABC中,AC=9,AB=12,BC=15,P为BC边上一动点,PG⊥AC于点G,PH⊥AB 于点H.(1)求证:四边形AGPH是矩形;(2)在点P的运动过程中,GH的长度是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.五、解答题(三)(共3个小题,每小题9分,满分27分)23.阅读下面材料,回答问题:(1)在化简的过程中,小张和小李的化简结果不同;小张的化简如下: = = =小李的化简如下: = = =请判断谁的化简结果是正确的,谁的化简结果是错误的,并说明理由.(2)请你利用上面所学的方法化简:① ;② .24.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)判断:四边形ADCF是________形,说明理由;(3)若AC=4,AB=5,求四边形ADCF的面积.25.如图,在Rt△ABC中,∠B=90°,AC=12,∠A=60°.点D从点C出发沿CA方向以每秒2个单位长的速度向A点匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)AB的长是________.(2)在D、E的运动过程中,线段EF与AD的关系是否发生变化?若不变化,那么线段EF 与AD是何关系,并给予证明;若变化,请说明理由.(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.答案解析部分一、单项选择题(共10个小题,每小题3分,满分30分)1.【答案】B【考点】最简二次根式【解析】【解答】A.原式=2,不符合题意,选项错误;B.原式=,符合题意,选项正确;C.原式=2,不符合题意,选项错误;D.原式=,不符合题意,选项错误。

八年级(下)期中考试数学试题(含答案)

八年级(下)期中考试数学试题(含答案)

八年级(下)期中考试数学试题(含答案)一、选择题(本大题共10小题,共20.0分)1.下列根式不是最简二次根式的是()A. B. C. D.2.正方形的面积是4,则它的对角线长是()A. 2B.C.D. 43.能判定四边形ABCD为平行四边形的题设是()A. ,B. ,C. ,D. ,4.下列计算正确的是()A. B.C. D.5.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A. B. C. D.6.矩形具有而一般的平行四边形不一定具有的特征()A. 对角相等B. 对角线相等C. 对角线互相平分D. 对边相等7.若=a,=b,则=()A. B. C. D.8.已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A. B. C. D.9.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A. 34B. 26C.D.10.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A. 7B. 9C. 10D. 11二、填空题(本大题共8小题,共24.0分)11.若有意义,则x的取值范围是______.12.如图,已知OA=OB,那么数轴上点A所表示的数是______.13.如图,▱ABCD中,AB的长为8,∠DAB的角平分线交CD于E,若DE:EC=3:1,则BC的长为______ .14.计算:= ______ .15.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为______.16.如图,矩形ABCD的对角线相交于点O,AB=4cm,∠AOB=60°,则AC= ______ cm.17.如图,菱形ABCD的边长是4cm,E是AB的中点,且DE⊥AB,则菱形ABCD的面积为______cm2.18.观察下列各式:=2,=3,=4,…请你找出其中规律,并将第n(n≥1)个等式写出来______.三、计算题(本大题共2小题,共20.0分)19.计算:(1)(-4)-(3-2)(2).20.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?四、解答题(本大题共4小题,共36.0分)21.请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图甲,请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中的每一个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得x=由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长.于是,画出如图乙所示的分割线,拼出如图丙所示的新的正方形.请你参考小东同学的做法,解决如下问题:现有10个边长为1的小正方形,排列形式如图丁,请把它们分割后拼接成一个新的正方形.要求:在图丁中画出分割线,并在图戊的正方形网格图(图中的每一个小正方形的边长均为1)中用实线画出拼接成的新正方形.说明:直接画出图形,不要求写分析过程.22.如图,▱ABCD中,点E,F分别在BC,AD上,且AF=CE,求证:AE=CF.23.如图所示,在矩形ABCD中,对角线AC,BD相交于点O,∠BOC=120°,AC=6,求:(1)AB的长;(2)矩形ABCD的面积.24.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE=______cm时,四边形CEDF是矩形;②当AE=______cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)答案和解析1.【答案】D【解析】解:=.故选D根据最简二次根式的判断标准即可得到正确的选项.此题考查了最简二次根式,熟练掌握最简二次根式的定义是解本题的关键.2.【答案】C【解析】解:设正方形的对角线为x,∵正方形的面积是4,∴边长的平方为4,∴由勾股定理得,x==2.故选C.设正方形的对角线为x,然后根据勾股定理列式计算即可得解.本题考查了勾股定理,正方形的性质,熟记定理和性质是解题的关键.3.【答案】B【解析】解:A、AB∥CD,AD=BC不能判定四边形ABCD为平行四边形,故此选项错误;B、AB=CD,AD=BC判定四边形ABCD为平行四边形,故此选项正确;C、∠A=∠B,∠C=∠D不能判定四边形ABCD为平行四边形,故此选项错误;D、AB=AD,CB=CD不能判定四边形ABCD为平行四边形,故此选项错误;故选:B.根据两组对边分别平行的四边形是平行四边形,两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形可得答案.此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.4.【答案】C【解析】解:A、2+4不是同类项不能合并,故A选项错误;B、=2,故B选项错误;C、÷=3,故C选项正确;D、=3,故D选项错误.故选:C.A、根据合并二次根式的法则即可判定;B、根据二次根式的乘法法则即可判定;C、根据二次根式的除法法则即可判定;D、根据二次根式的性质即可判定.此题主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.在进行根式的运算时要先化简再计算可使计算简便.5.【答案】C【解析】解:根据勾股定理可以得到:AC=BC=,AB=.∵()2+()2=()2.∴AC2+BC2=AB2.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选:C.根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.本题考查了勾股定理,判断△ABC是等腰直角三角形是解决本题的关键.6.【答案】B解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;平行四边形的性质有:①平行四边形的对边分别相等且平行,②平行四边形的对角分别相等,③平行四边形的对角线互相平分;∴矩形具有而平行四边形不一定具有的性质是对角线相等,故选:B.举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可.本题考查了对矩形的性质和平行四边形的性质的理解和掌握,主要检查学生是否能掌握矩形和平行四边形的性质,此题比较典型,但是一道容易出错的题目.7.【答案】C【解析】解:=====,故ABD错误,C正确.故选C.先将被开方数0.9化成分数,观察四个选项,再化简为,开方,注意要把化为,代入即可.本题考查了二次根式的性质和化简,注意被开方数是小数的要化成分数计算,且保证分母是完全平分数,根据=|a|进行化简..8.【答案】B【解析】解:设菱形的对角线分别为8x和6x,已知菱形的周长为20cm,故菱形的边长为5cm,根据菱形的性质可知,菱形的对角线互相垂直平分,即可知(4x)2+(3x)2=25,故菱形的对角线分别为8cm和6cm,所以菱形的面积=×8×6=24cm2,故选:B.设菱形的对角线分别为8x和6x,首先求出菱形的边长,然后根据勾股定理求出x 的值,最后根据菱形的面积公式求出面积的值.本题主要考查菱形的性质的知识点,解答本题的关键是掌握菱形的对角线互相垂直平分,此题比较简单.9.【答案】D【解析】解:由勾股定理得,斜边==13,所以,斜边上的中线长=×13=6.5.故选:D.利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.10.【答案】D【解析】解:∵BD⊥DC,BD=4,CD=3,由勾股定理得:BC==5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴HG=BC=EF,EH=FG=AD,∵AD=6,∴EF=HG=2.5,EH=GF=3,∴四边形EFGH的周长是EF+FG+HG+EH=2×(2.5+3)=11.故选:D.根据勾股定理求出BC的长,根据三角形的中位线定理得到HG=BC=EF,EH=FG=AD,求出EF、HG、EH、FG的长,代入即可求出四边形EFGH的周长.本题主要考查对勾股定理,三角形的中位线定理等知识点的理解和掌握,能根据三角形的中位线定理求出EF、HG、EH、FG的长是解此题的关键.11.【答案】x≥【解析】解:要是有意义,则2x-1≥0,解得x≥.故答案为:x≥.根据二次根式的定义可知被开方数必须为非负数,列不等式求解.本题主要考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.12.【答案】-【解析】解:由图可知,OC=2,作BC⊥OC,垂足为C,取BC=1,故OB=OA===,∵A在x的负半轴上,∴数轴上点A所表示的数是-.故答案为:-.首先根据勾股定理得:OB=.即OA=.又点A在数轴的负半轴上,则点A对应的数是-.本题主要考查了勾股定理的应用,解题的关键在于熟练运用勾股定理并注意根据点的位置以确定数的符号.13.【答案】6【解析】【分析】利用平行四边形的性质,首先证明△ADE是等腰三角形,求出DE即可解决问题.本题考查平行四边形的性质,等腰三角形的判定、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD=8,AD=BC,∴∠DEA=∠EAB,∵∠DAE=∠EAB,∴∠DAE=∠DEA,∴AD=DE,∵DE:EC=3:1,∴DE=6,∴BC=AD=DE=6.故答案为6.14.【答案】【解析】【分析】除以一个数相当于乘以这个数的倒数,按照顺序运算.主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.【解答】解:=××=.故答案为.15.【答案】25解:由图可看出,A,B的面积和等于其相邻的直角三角形的斜边的平方,即等于最大正方形上方的三角形的一个直角边的平方;C,D的面积和等于与其相邻的三角形的斜边的平方,即等于最大正方形的另一直角边的平方,则A,B,C,D四个正方形的面积和等于最大的正方形上方的直角三角形的斜边的平方即等于最大的正方形的面积,因为最大的正方形的边长为5,则其面积是25,即正方形A,B,C,D的面积的和为25.故答案为25.根据题意仔细观察可得到正方形A,B,C,D的面积的和等于最大的正方形的面积,已知最大的正方形的边长则不难求得其面积.此题结合正方形的面积公式以及勾股定理发现各正方形的面积之间的关系.16.【答案】8【解析】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OD=OB,∴OA=OB,∵∠AOB=60°,∴△ABO是等边三角形,∴OA=AB=4cm,∴AC=2OA=8cm,故答案为8.根据等边三角形的性质首先证明△AOB是等边三角形即可解决问题.本题考查矩形的性质、等边三角形的判定等知识,解题的关键是发现△AOB是等边三角形,属于基础题,中考常考题型.17.【答案】8解:∵四边形ABCD是菱形,∴AD=AB=4,∵AE=EB=2,∵DE⊥AB,∴∠AED=90°在Rt△ADE中,DE==2,∴菱形ABCD的面积=AB•DE=4•2=8,故答案为8.利用勾股定理求出DE,根据菱形ABCD的面积=AB•DE计算即可.本题考查菱形的性质,勾股定理,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于基础题.18.【答案】【解析】解:=(1+1)=2,=(2+1)=3,=(3+1)=4,…,故答案为:.根据所给例子,找到规律,即可解答.本题考查了实数平方根,解决本题的关键是找到规律.19.【答案】解:(1)原式=4--+=3;(2)原式=(2+4)(-2)-(2-2+3)=2(+2)(-2)-(5-2)=2×(2-12)-5+2=-20-5+2=-25+2.【解析】(1)先把各二次根式化为最简二次根式,然后去括号后合并即可;(2)先把各二次根式化为最简二次根式,然后利用平方差公式和完全平方公式计算.本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.【答案】解:设AE=xkm,∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,由勾股定理,得152+x2=102+(25-x)2,x=10.故:E点应建在距A站10千米处.【解析】关键描述语:产品收购站E,使得C、D两村到E站的距离相等,在Rt△DAE和Rt△CBE中,设出AE的长,可将DE和CE的长表示出来,列出等式进行求解即可.本题主要是运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解即可.21.【答案】解:如图所示:.【解析】由10个小正方形拼成的一个大正方形面积为10,边长为,由=画分割线.本题考查了作图的运用及设计作图.根据作图前后,图形的面积保持不变,根据矩形及正方形的面积计算公式,设计作图方法.22.【答案】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴AF∥CE.又∵AF=CE,∴四边形AECF是平行四边形,∴AE=CF.【解析】由四边形ABCD是平行四边形,可得AF∥CE,又AF=CE,所以四边形AECF是平行四边形.则该平行四边形的对边相等:AE=CF.本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.23.【答案】解:(1)∵四边形ABCD是矩形,∴OB=OC,∠ABC=90°,又∵∠BOC=120°,∴∠OBC=∠OCB=30°,∴AB=AC=×6=3;(2)∵AB2+BC2=AC2,∴BC==3,∴矩形ABCD的面积=AB×BC=3×3=9.【解析】(1)根据OB=OC,∠ABC=90°,以及∠BOC=120°,可得出∠OBC=∠OCB=30°,进而得到AB=AC=3;(2)根据勾股定理即可得出BC==3,进而得出矩形ABCD的面积.本题主要考查了矩形的性质以及勾股定理的运用,解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.24.【答案】3.5 2【解析】(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCG=∠EDG,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△FCG≌△EDG(ASA)∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形;(2)①解:当AE=3.5时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=3,∴BM=1.5,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:3.5;②当AE=2时,四边形CEDF是菱形,理由是:∵AD=5,AE=2,∴DE=3,∵CD=3,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:2.(1)证△CFG≌△EDG,推出FG=EG,根据平行四边形的判定推出即可;(2)①求出△MBA≌△EDC,推出∠CED=∠AMB=90°,根据矩形的判定推出即可;②求出△CDE是等边三角形,推出CE=DE,根据菱形的判定推出即可.本题考查了平行四边形的性质和判定,菱形的判定,矩形的判定,等边三角形的性质和判定,全等三角形的性质和判定的应用,注意:有一组邻边相等的平行四边形是菱形,有一个角是直角的平行四边形是矩形.八年级下册数学期中考试试题(答案)一、选择题(每小题3分,共30分)1.化简16的值为(A)A.4 B.-4 C.±4 D.22.要使二次根式4+x有意义,x的取值范围是(D)A.x≠-4 B.x≥4 C.x≤-4 D.x≥-43.下列各组数中,以a,b,c为边的三角形不是直角三角形的是(C)A.a=2 2,b=2 3,c=2 5 B.a=32,b=2,c=52C.a=6,b=8,c=10 D.a=5,b=12,c=13 4.下列二次根式中,化简后不能与3进行合并的是(C)A.13 B.27 C.32 D.125.顺次连接四边形ABCD各边的中点,若得到的四边形EFGH为菱形,则四边形ABCD一定满足(A)A.对角线AC=BD B.四边形ABCD是平行四边形C.对角线AC⊥BD D.AD∥BC6.下列各式计算正确的是(B)A.3 3-3=3 B.8×2=8×2C.323×4 3=6 3 D.215+2 3= 57.如图,在△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=5,AE=8,则BE 的长度是(C)A.5 B.5.5 C.6 D.6.5,第7题图),第9题图),第10题图)8.已知菱形的周长为20,一条对角线长为6,则菱形的面积为(B)A.48 B.24 C.18 D.129.如图,把菱形ABCD沿AH折叠,点B落在BC边上的点E处.若∠BAE=40°,则∠EDC 的大小为(B)A.10°B.15°C.18°D.20°10.如图,点E,G分别是正方形ABCD的边CD,BC上的点,连接AE,AG,分别交对角线BD于点P,Q.若∠EAG=45°,BQ=4,PD=3,则正方形ABCD的边长为(A) A.6 2 B.7 C.7 2 D.5二、填空题(每小题3分,共18分)11.化简:50-72=.12.在Rt△ABC中,∠C=90°,AC=4 cm,BC=3 cm,AB边上的高是______cm.13.计算:(6-2 3)2=.14.如图,点E,F是正方形ABCD内两点,且BE=AB,BF=DF,∠EBF=∠CBF,则∠BEF的度数为__45°__.,第14题图),第15题图),第16题图)15.如图,在矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,CB′的长为.16.如图,在菱形ABCD中,对角线AC=6,BD=8,点E是边AB的中点,点F,P分别是BC,AC上的动点,则PE+PF的最小值是______.三、解答题(共72分)17.(8分)计算:4 12-1318.【解析】原式=22-2= 2.18.(8分)如图,在▱ABCD中,对角线AC与BD交于点O,经过点O的直线交AB于点E,交CD于点F,连接DE,BF.(1)求证:四边形DEBF是平行四边形;(2)当EF与BD满足条件__EF⊥BD__时,四边形DEBF是菱形.【解析】(1)∵四边形ABCD是平行四边形,∴OD=OB,DC∥AB,∴∠FDO=∠EBO,∠DFO=∠OEB,在△DOF和△BOE中.∠FDO=∠EBO,∠DFO=∠BEO,OD=OB,∴△DOF≌△BOE(AAS).∴OE=OF.又∵OD=OB,∴四边形DEBF是平行四边形.19.(8分)计算(7+4 3)(2-3)2-(2+3)(2-3)+3的值.【解析】原式=1-1+3= 3.20.(8分)如图,在▱ABCD中,点E是BC的中点.连接AE并延长,交DC的延长线于点F,且AF=AD,连接BF.求证:四边形ABFC是矩形.【解析】∵四边形ABCD为平行四边形,∴AD=BC,AB∥DC.∴∠ABE=∠ECF.又∵E 为BC的中点,∴BE=CE.在△ABE和△FCE中,∠ABE=∠ECF,BE=CE,∠AEB=∠FEC,∴△ABE≌△FCE(ASA),∴AB=CF.又∵AB∥DC,∴四边形ABFC为平行四边形.∵BC=AD,AF=AD,∴BC=AF.∴四边形ABFC为矩形.21.(8分)如图,在四边形ABCD中,AB=3,BC=4,CD=5,AD=5 2,∠ABC=90°.求对角线BD的长.【解析】连接AC,作DE⊥BC于点E.由勾股定理,得AC=5.由勾股定理逆定理,得△ACD 为直角三角形.易证:△ABC≌△CED,∴AB=CE=3,BC=DE=4.∴BE=7.在Rt△BED中,由勾股定理,得BD=65.22.(10分)如图①,△ACB和△ECD都是等腰直角三角形,其中CA=CB,CE=CD,并且△ACB的顶点A在△ECD的斜边DE上.(1)求证:AE2+AD2=2AC2;(2)如图②,若AE=2,AC=2 5,点F是AD的中点,直接写出CF的长是.【解析】(1)如图,连接BD,∵△DEC与△ABC都是等腰直角三角形,∴∠ECD=∠ACB,∴∠ECA=∠DCB.又∵EC=DC,AC=BC,∴△ECA≌△DCB.∴AE=BD,∠E=∠BDC=45°.∴∠ADB=90°,∴BD2+AD2=AB2,∴AE2+AD2=AB2=2AC2.23.(10分)如图,正方形ABCD中,点E为BC边上一动点,作AF⊥DE分别交DE,DC 于点P,F,连接PC.(1)若点E为BC的中点,求证:点F为DC的中点;(2)若点E为BC的中点,PE=6,PC=4 2,求PF的长;(3)若正方形的边长为4,直接写出PC的最小值为.【解析】(1)易证△ADF≌△DCE,∴DF=CE.∵点E为BC的中点,∴BC=2CE.又∵BC=DC,∴CD=2CE=2DF.∴点F为DC的中点.(2)如图,延长PE到点N,使得EN=PF,连接CN,∵∠AFD=∠DEC,∴∠CFP=∠CEN.又∵E,F分别是BC,DC的中点,∴CE=CF.∵在△CEN和△CFP中,CE=CF,∠CEN=∠CFP,EN=PF,∴△CEN≌△CFP(SAS).∴CN=CP,∠ECN=∠PCF.∵∠PCF+∠BCP=90°,∴∠ECN+∠BCP=∠NCP=90°.∴△NCP是等腰直角三角形.∴PN=PE+NE=PE+PF=2PC,∴PF=2PC-PE=8-6=2.(3)提示:取AD中点M,连接CM,PM,由两点之间线段最短,易得PC≥CM-PM.24.(12分)如图①,在平面直角坐标系中,正方形ABCO的顶点C、A分别在x轴、y轴上,A(0,6),E(0,2),点H、F分别在边AB、OC上,以H,E,F为顶点作菱形EFGH.(1)当点H坐标为(-2,6)时,求证:四边形EFGH为正方形;(2)若点F坐标为(-5,0),求点G的坐标;(3)如图②,点Q为对角线BO上一动点,D为边OA上一点,DQ⊥CQ,点Q从点B出发,沿BO方向移动.若点Q移动的路径长为3,直接写出CD的中点M移动的路径长为________.图①图②【解析】(1)证明:∵H(-2,6),∴AH =OE =2,∠HAE =∠EOF =90°.∵四边形EFGH 为菱形,∴HE =EF.在Rt △HAE 与Rt △EOF 中,EH =EF ,AH =OE ,∴Rt △HAE ≌Rt △EOF(HL),∴∠FEO =∠EHA ,∵∠EHA +∠HEA =90°∴∠FEO +∠HEA =90°,∴∠HEF =90°,∴四边形EFGH 为正方形.(2)如图①,作GT ⊥直线AB 于点T ,连接HF.∵AB ∥OC ,GH ∥EF ,∴∠THF =∠HFO ,∠GHF =∠HFE.∴∠THG =∠EFO.∵∠T =∠EOF =90°,HG =FE ,∴△GTH ≌△EOF(AAS).∴HT =OF ,GT =OE.∵EF =OF 2+OE 2=29,∴EH =EF =29.AE =6-2=4,∴AH =EH 2-AE 2=13.∴G(-5-13,4).(3)提示:如图②,作QG ⊥BC 于点G ,延长GQ 交AO 于点K.当点Q 在点B 处时,点D 与点A 重合,CD 的中点即为CA 的中点,即对角线的交点P ,则CD 的中点M 移动的路径长为PM 的长.连接QA ,如图所示,△BGQ 是等腰直角三角形,∴AK =BG =22BQ =322.由正方形的对称性,得CQ =QA.易证△CQD 是等腰直角三角形,∴CQ =AQ =QD.∴AD =2AK =3 2.∵点P 是AC 的中点,点M 是CD 的中点,∴PM =12AD =322.最新人教版八年级(下)期中模拟数学试卷(含答案)一、选择题(共10小题,每小题3分,共30分)下列各题均有四个备选选项,其中有且只有一个正确,请在答题卷上将正确答案的字母涂黑.1x 的取值范围是A .1x ≥B . 1x > C. 1x ≤ D .1x < 2.下列计算错误..的是A.B.C. ÷D. 3.下列各组数是三角形的三边,不能组成直角三角形的一组数是 A. 3,4,5 B. 6,8,10 C. 1,1,2D.,, 4.点(3,-1)到原点的距离为A .B .3C .1D 5.已知实数x 、y ()210y +=,则x ﹣y 等于A. 3B. ﹣3C. 1D. ﹣16.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠A BE 为EA. 100B.150C.200D. 2507.()21计算的结果为A .28-.10-28-.10-8.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为A 1)B .(2,1)C .(2D.(19.如图,任意四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,对于四边形EFGH 的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A .当E ,F ,G ,H 是各边中点,且AC=BD 时,四边形EFGH 为菱形B .当E ,F ,G ,H 是各边中点,且AC ⊥BD 时,四边形EFGH 为矩形 C .当E ,F ,G ,H 不是各边中点时,四边形EFGH 可以为平行四边形 D .当E ,F ,G ,H 不是各边中点时,四边形EFGH 不可能为菱形10.如图,三个相同的正方形拼成一个矩形ABCD ,点E 在BC 上,BE=2,EC=10,FM ⊥AE 交AB 于F ,交CD的延长线于M ,则FM 的长为A .58B .56C .262D .372二、填空题(共6小题,每小题3分,共18分)11= .12.在实数范围内分解因式:52-x = .13.在菱形ABCD 中,对角线AC =2,BD =4, 则菱形ABCD 的周长是 . 14.如图,在矩形ABCD 中,∠DAC=65°,点E 是CD 上一点,BE 交AC 于点F ,将△BCE 沿BE 折叠,点C 恰好落在AB 边上的点C ′处,则∠AFC ′= .15.AD 是△ABC 的高,AB=4,AC=5,BC=6,则BD= .16.如图,在四边形ABCD 中,AD =CD ,∠D=60°,∠A =105°,∠B =120°,则ADBC 的值为__________.三、解答题(共8小题,共72分) 17.(本题8分)计算:(1) (2))(8381412---.18.(本题8分)已知:1a =,1b =.求:(1)a b -的值;(2)ab 的值;(3)a bb a+的值.19.(本题8分)如图,某港口P 位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行163n mile,“海天”号每小时航行 4n mile.它们离开港口一个半小时后分别位于点Q 、R 处,且相ABCD第15题图距10n mile.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?20.(本题8分)已知:如图,在ABCD 中,延长线AB 至点E ,延长CD 至点F ,使得BE DF =.连接EF ,与对角线AC 交于点O .求证:OE OF =.21.(本题8分)如图,每个小正方形的边长都为1. (1)请直接写出:四边形ABCD 的面积是 ; (2)求点B 到AD 的距离.22.(本题10分)如图,在矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(1)若PCD ∆是等腰三角形时,求AP 的长;CBDAABODFCE(2)求证:PC⊥CF.24.(本题12分)已知点E ,F ,M ,N 分别在矩形ABCD 的边DA ,AB ,BC ,CD 上. (1)如图1,若EM 垂直平分BD ,求证:四边形BMDE 是菱形; (2)如图2,若∠MAN=∠NMC=45°,求证:MC 2=ND 2+BM 2;(3)如图3,若四边形EFMN 是平行四边形,AB=4,BC=8,求四边形EFMN 周长的最小值.2017∼2018学年度下学期八年级期中考试数学参考答案1 .A 2.B 3.D 4.D 5.A 6.B 7.C 8.C 9.D 10.B11.2 12.(x x 13. 14. 40︒ 15.941617.(1)解:原式=2632⨯⨯=. (4分)(2)解:原式=(8分)18.(1) 解:原式)11-=2-. (2分)(2) 解:原式=)11=1. (4分)(3)解:原式2211(8分)19.根据题意,161.58,4 1.56,10.3PQ PR QR =⨯==⨯==(2分)222228610,P QP RQ R +=∴+=.(4分) 90QPR ∴∠=︒.(6分)由"远航"号沿东北方向航行可知,45,45NPQ RPN ∠=︒∴∠=︒.(7分) 答:"海天"号沿西北方向航行.(8分)20.证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥DC ,(2分)∴∠F =∠E ,∠DCA =∠CAB ,(4分) ∵AB =CD ,FD =BE ,∴CF =AE ,(5分) ∴△COF ≌△AOE ,(7分) ∴OE =OF .(8分)(方法二:连接FA 、CE,证四边形FAEC 是平行四边形,也可.)21 . 解:(1)14.5 (4分)(2)连BD ,设B 到AD 的距离为d ,可求90BCD ∠=︒ , AD ==5分)152B C D S=⨯=(6分) 114.552ABD S h ∆∴=-=(7分) h ∴=(8分)22.解:(1)在矩形ABCD 中,AB=6,AD=8,∠ADC=90°, ∴DC=AB=6,;(1分)要使△PCD 是等腰三角形,有如下三种情况: ①当CP=CD 时,CP=6,∴AP=AC-CP=4 ;(2分)②当PD=PC 时,∠PDC=∠PCD ,∵∠PCD+∠PAD =∠PDC+∠PDA=90°,∴∠PAD=∠PDA ,∴PD=PA ,∴PA=PC ,∴AP=2AC,即AP=5;(3分) ③当DP=DC 时,过D 作DQ ⊥AC 于Q ,则PQ=CQ ,∵S △ADC =12 AD ·DC=12AC ·DQ ,∴DQ=245AD DC AC =185= ,∴PC=2CQ =365,∴AP=AC-PC=145 .(6分)综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145.(2)连接PF 、DE ,记PF 与DE 的交点为O ,连接OC , 四边形ABCD 是矩形,190,,2BCD OE OD OC ED ∴∠=︒=∴=(7分)在矩形PEFD中,PF DE =,∴12OC PF =,(8分)12OP OF PF ==,OC OP OF ∴==, OCF OFC ∴∠=∠,OCP OPC ∠=∠(9分)又180OPC OFC PCF ∠+∠+∠=︒,22180O C P O C F ∴∠+∠=︒,90PCF ∴∠=︒(10分),ACB ∠=O A 又OM AC ⊥ ②证明:取AB 的中点E ,AC 的中点F ;连接EF,DF ,过P 作PH AQ ⊥于H ,在Rt APH ∆中 2AP t = 30A ∠=︒, AH ∴=又CQ =, AF=CFHF QF ∴=(7分) 又∵D 是PQ 的中点 DF PH ∴PH AC ⊥90ACB ∠=︒PH BC ∴DF BC ∴(8分) ∵E 、F 分别是AB 、AC 的中点 EF BC ∴(9分)∴D 在△ABC 的中位线EF 上.(10分)24.证明:(1)∵EM 垂直平分BD 90EOD MOB ∴∠=∠=︒ OB=OD ∵四边形ABCD 是平行四边形 AD BC ∴ ADB CBD ∴∠=∠ ∴△DOE ≌△BOM ∴OE=OM(2分)又OB=OD EM ⊥BD ∴四边形BMDE 是菱形(3分)(2)延长MN 分别交AB 、AD 的延长线于点E 、F ,作M A F M A E'∠=∠,截取AM AM '=,连接,M N M F '',则有45AFN FND CNM CMN BME E ∠=∠=∠=∠=∠=∠=︒, 45M AN M AF FAN MAE FAN MAN ''∠=∠+∠=∠+∠=︒=∠,又∵AM AM '=AN AN =,MAN ∴∆≌M AN '∆(4分) M N MN '∴=,45MFA E ︒∠=∠= AF AE ∴=又∵AM AM '= MAFMAE '∠=∠MAF '∴∆≌MAE ∆(5分) ∴M F ME '= M FA E '∠=∠ 则90M FN '∠=︒, 在Rt M FN '∆中,222M N FN M F ''=+,(6分)在Rt MBE ∆中,222ME MB =, 在Rt FDN ∆中,222FN DN =, 在Rt MCN ∆中,222MN MC =,2222222M C M N M NB M D N '∴===+,222MC BM DN ∴=+(8分)(3)在矩形ABCD 及四边形EFMN 是平行四边形可证明AF=CN, (9分)如图,延长DC 至N ’,截CN ’=CN,连接FN ’交BC 于M ’,连接MN ’、AC.则有MN ’=MN, 由三角形中两边之和大于第三边易知,无论F 点在什么位置,点M 在M ’处时 FM+MN=FN ’=AC=, (11分) 故四边形EFMN周长的最小值为.(12分)人教版八年级数学下册期中考试试题【含答案】 一.选择(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个正确选项) 1.(4分)要使代数式有意义,则下列关于x 的描述正确的是( ) A .最小值是1B .最大值是1C .最小值是﹣1D .最大值是﹣12.(4分)以下列数组作为三角形的三条边长,其中能构成直角三角形的是( ) A .1,,3B .,,5C .1.5,2,2.5D .,,3.(4分)下列等式成立的是( ) A .=B .3+C .2D .=34.(4分)如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB =BC 时,它是菱形B .当AC =BD 时,它是正方形 C .当∠ABC =90°时,它是矩形A D FB N图3C MEN ’ MD.当AC⊥BD时,它是菱形5.(4分)设路程为s(km),速度为v(km/h),时间为t(h),当s=60时,v=,在这个函数关系式中()A.s是常量,t是s的函数B.v是常量,t是v的函数C.t是常量,v是t的函数D.s是常量,t是自变量,v是t的函数6.(4分)如图,平面直角坐标系中,点A是y轴上一点,B(6,0),C是线段AB中点,且OC=5,则点A的坐标是()A.(0,8)B.(8,0)C.(0,10)D.(10,0)7.(4分)已知菱形ABCD的对角线AC与BD交于点O,则下列结论正确的是()A.点O到顶点A的距离大于到顶点B的距离B.点O到顶点A的距离等于到顶点B的距离C.点O到边AB的距离大于到边BC的距离D.点O到边AB的距离等于到边BC的距离8.(4分)如图:正方形ABCD的面积是1,E、F分别是BC、DC的中点,则以EF为边的正方形EFGH的周长是()A.+1B.C.2+1D.29.(4分)厦门的各所初高中学校,都有部分同学骑自行车上下学,骑行安全成为各校安全教育的常规,若骑行速度超过300米/分钟,就超越了安全限度.周六刘明骑自行车到学校自习,当他骑了一段时间后,想到需先选购一本参考书,于是折回刚经过的新华书。

2010第二学期八年级数学下册期中试卷(附答案)

2010第二学期八年级数学下册期中试卷(附答案)

2010学年第二学期八年级数学学科期中试卷时间:90分钟 闭卷 满分:100分 班级 姓名 学号 题号 一二三总分得分一、选择题(12小题,每小题3分,共36分)1、代数式xx 、n m n m 、a 、x 232-+中,分式有( ) A 、4个 B 、3个 C 、2个 D 、1个2、把分式y x x+2中的都扩大2倍,那么分式的值( )。

A 、扩大2倍B 、扩大4倍C 、缩小一半D 不变3、若分式392+-x x 的值为0,则x 的值是( )A 、-3B 、3C 、±3D 、04、以下是分式方程1211=-+xxx 去分母后的结果,其中正确的是( )A 、112=--xB 、112=+-xC 、x x 212=-+D 、x x 212=+-5、若关于x 的方程1331--=--x mx x 无解,则m 的值为( )A 、-3B 、-1C 、2D 、-26、若(x-2)0=1,则x 不等于( ) A 、 -2 B 、2 C 、 3 D 、07、对于反比例函数xy 2=,下列说法不正确的是( )A 、点(-2,-1)在它的图象上。

B 、它的图象在第一、三象限。

C 、当x>0时,y 随x 的增大而增大。

D 、当x<0时,y 随x 的增大而减小8、如图,点A 是函数xy 4=图象上的任意一点,AB ⊥x 轴于点B ,AC ⊥y 轴于点C , 则四边形OBAC 的面积为( ) A 、2 B 、4 C 、8 D 、无法确定9、已知反比例函数xy 2=经过点A (x 1,y 1)、B (x 2,y 2),如果x 1<x 2<0,那么y 1与y 2的大小关系是( )A 、y 1>y 2>0B 、y 2>y 1>0C 、y 2<y 1<0D 、y 1<y 2<0 10、已知下列四组线段:①5,12,13 ; ②15,8,17 ; ③15,20,25 ; ④43145,,。

八年级数学(下)期中测试卷含答案

八年级数学(下)期中测试卷含答案

八年级数学(下)期中测试卷(考试时间:120分钟满分:120分)注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分.请在答题卡上作答,在本试卷上作答无效.2. 答题前,请认真阅读答题卡上的注意事项.3.不能使用计算器,考试结束时,将本试卷和答题卡一并交回.第I卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1有意义,字母x的取值必须满足A.x≥0 B.x≤0 C.x≥1 D.x≥-1 2.下列二次根式中,最简二次根式是A B C D3.下列计算中,正确的是A.32+23=55B.33×32= C.27÷3=3 D.2)3(-=-34.方程的解是A.4x=B.2x=C.124,0x x==D.0x= 5.用配方法将方程2x+6x-11﹦0变形,正确的是A.2320x-=()B.232x-=()C.232x+=()D.2320x+=()6.已知关于x的方程(a-1)x2-2x+1﹦0有实数根,则a的取值范围是A.a≤2B.a>2C.a≤2且a≠1D.a<-2 7.已知一个直角三角形的两边长分别3和4,则第三边长是A.5 B C.25 D.58.已知方程2x2+6x-1﹦0的两个实数根为1x,2x,则1211x x+的值为240x x-=A .-3B .3C .6D .-69.某超市一月份的营业额是100万元,月平均增加的百分率相同,第一季度的总营业额是364万元,若设月平均增长的百分率是,那么可列出的方程是 A . B .100+100(1+x )+1002x +(1)=364C .D .10.如图,在Rt △ABC 中,∠ACB =90°,AE 为△A BC 的角平分线,且ED ⊥AB ,若AC =6,BC =8,则ED 的长 A .2 B .3 C .4D .511.直线n x m y l +--=2)3(:(m ,n 为常数)的图象如图所示,化简︱3-m ︱-442+-n n 得A .n m --5B .1+-m nC .1--n mD .5-+n m12.△ABC 的三边分别为a ,b ,c ,下列条件能推出△ABC 是直角三角形的有① 222a c b -= ②20a b a b c -++=()() ③ ∠A =∠B -∠C ④∠A ∶∠B ∶∠C =1∶2∶3 ⑤51,41,31===c b a ⑥10a =, 24b =,26=c A .2个 B .3个 C .4个 D .5个第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每题3分,共18分) 13.计算4812-结果得 ▲ .14.如图,在一个高为5 m ,长为13 m 的楼梯表面铺地毯,则地毯的长度至少是 ▲ m .15.27与最简二次根式1m +是同类二次根式,则m = ▲ . 16.等腰三角形的顶角为120°,底边上的高为2,则它的周长为 ▲ .17.若关于x 的一元二次方程2215360m x x m m -+++-=()的常数项为-2,则m 的值为 ▲ . 18.若关于x 的方程ax 2+2(ab ) + (ba ) x =0有两个相等的实数根,则a :b = ▲ .三、解答题(本大题共8小题,满分66分.解答题应写出文字说明、证明过程或演算步骤.) 19.(本题共2小题,每小题4分,满分8分)计算:x 2100(1)364x +=2100(12)364x +=2100100(1)(12)364x x ++++=(1)11842432-+÷ (2)28182122--⎪⎭⎫ ⎝⎛+⨯20.(本题共2小题,每小题4分,满分8分)解下列方程:(1)2943x x -=-()(2)231x x -=21.(本题满分7分)已知: , 求:(1)a -b 的值; (2)ab 的值; (3)a bb a-的值 22.(本题满分8分)如图,在4×4的正方形网格中,每个小正方形的边长都为1.求: (1)△ABC 的周长; (2)∠ABC 度数;23.(本题满分7分)已知关于x 的方程22210x kx k ++-=.(1)试说明:无论k 取何值时,方程总有两个不相等的实数根; (2)如果方程有一个根为-3, 试求2k 2+12k +2019的值.24. (本题满分8分)一架梯子AB 长25米,如图斜靠在一面墙上,梯子底端B 离墙7米. (1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子底部在水平方向滑动了4米吗?为什么?21a =-21b =25.(本题满分10分)已知a ,b ,c 是△ABC 的三边长,关于x 的一元二次方程有两个相等的实数根,关于x 的方程3cx +2b ﹦2a 的根为x ﹦0.(1)试判断△ABC 的形状;(2)若a ,b 是关于x 的一元二次方程x 2+mx -3m =0的两个实数根,求m 的值.26.(本题满分10分)某商场计划购进一批书包,经市场调查发现:当某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,每月销售量就减少10个.(1)当售价定为42元时,每月可售出多少个?(2)若书包的月销售量为300个,则每个书包的定价为多少元?(3)当商场每月获得10000元的销售利润时,为体现“薄利多销”的销售原则,你认为销售价格应定为多少元?220x c a ++-=数学试题参考答案及评分标准一、选择题(本大题共12小题,每小题3分,共36分)二、填空题(每小题3分,共18分)13.14. 17 15.2 16.8+17. -4 18.17-或1 三.解答题(本大题共8个小题,共66分)19.(1解:原式=……………………3分 =……………………4分(2)28182122--⎪⎭⎫⎝⎛+⨯解:原式=2+1-(3-2)……………………3分=3……………………4分20. (1)x2-9=4(x-3)解:整理得:x2-4x+3=0,……………………1分分解因式得:(x-1)(x-3)=0,……………………2分可得x-1=0或x-3=0,……………………3分解得:x1=1,x2=3;……………………4分(2)23=1x x-解:原方程可化为2310x x--=∵a=3,b=-1,c=-1,……………………1分∴△=43-⨯⨯2(-1)(-1)=13,……………………2分x=. ……………………3分4-+∴11136x +=,21136x -= . ……………………4分21.解:(1)a -b =21-()-2+1()=2121--- ……………………1分 =-2 ……………………2分(2) ab = 21-()2+1()=2221-() ……………………3分=1 ……………………4分 (3)∵a+b =21+21--=22 , a -b =-2,ab =1 ……………………5分∴ =a b a b ab+-()()……………………6分=22⨯(-2)=42- ……………………7分22.解:(1)AB = = , ……………………1分BC = = , ……………………2分AC = =5, ……………………3分△ABC 的周长=25+5+5=35+5; ……………………4分(2)∵AC 2=25,AB 2=20,BC 2=5, ……………………5分∴AC 2=AB 2+BC 2, ……………………6分 ∴∠ABC =90°. ……………………7分 (3)△ABC 的面积为2×÷2=5.……………………8分23.解:(1)∵△= (2k )2-4(k 2-1)22a b a bb a ab--=252242+2221+2234+5=4k2-4k2+4=4>0……………………2分∴无论k取何值时,方程总有两个不相等的实数根. ……………………3分(2)把x=-3代入原方程得(-3)2-6k+k2-1=0k2-6k+8=0(k-2)(k-4)=0k=2或k=4 ……………………5分当k=2时,2k2+12k+2019=2051 ……………………6分当k=4时,2k2+12k+2019=2099 ……………………7分24. 解:(1)梯子距离地面的高度AO=AB2-OB2=22257-=24(米).……………………2分答:这个梯子的顶端距地面有24米高.……………………3分(2)不是梯子下滑了4米即梯子距离地面的高度OA′=24-4=20(米),……………………4分根据勾股定理,得OB′=A′B′2-OA′2=222520-=15(米),…………………6分∴BB′=OB′-OB=15-7=8米.…………………7分答:当梯子的顶端下滑4米时,梯子的底端在水平方向移动了8米.…………………8分25.解:(1)∵关于x的一元二次方程x2+2b x+2c-a=0有两个相等的实数根,∴Δ=(2b)2-4×1×(2c-a)=0,……………………1分∴a+b=2c.……………………2分又∵关于x的方程3cx+2b=2a的根为x=0,∴a=b,……………………3分∴a=b=c,即△ABC是等边三角形.……………………4分(2)∵a,b是关于x的一元二次方程x2+mx-3m=0的两个实数根,又由(1)知a=b,∴方程x2+mx-3m=0有两个相等的实数根,……………………5分∴Δ=m2+4×3m=0,解得m=0或m=-12.……………………6分当m=0时,方程x2+mx-3m=0可化为x2=0,解得x1=x2=0. ……………………7分又由a,b,c是△ABC的三边长,得a>0,b>0,c>0,故m=0不符合题意:…………8分当m=-12时,方程x2+mx-3m=0可化为x2-12x+36=0,解得x1=x2=6,……………………9分可知m=-12符合题意.故m的值为-12.……………………10分解法二:利用根与系数的关系说明m的值26.解:(1)当售价为42元时,每月可以售出的个数为600-10×(42-40)=580(个)……………………2分(2)当书包的月销售量为300个时,每个书包的价格为:40+(600-300)÷10=70(元);……………………4分解法二:此题也可列方程解:每个书包的定价为a元,则月销售量为600-10(a-40)=-10a+1000由题意得,-10a+1000=300解得,a=70答:每个书包的定价为70元.(3)设销售价格应定为x元,则…………………5分(x-30)[600-10(x-40)]=10000,…………………7分解得x1=50,x2=80,当x=50时,销售量为500个;当x=80时,销售量为200个. …………………9分答:为体现“薄利多销”的销售原则,销售价格应定为50元.…………………10分。

八年级(下)数学期中考试试题【含答案】

八年级(下)数学期中考试试题【含答案】

八年级(下)数学期中考试试题【含答案】一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)在Rt△ABC中,∠C=90°,∠A=70°,则∠B的度数为()A.20°B.30°C.40°D.70°2.(3分)在Rt△ABC中,斜边上的中线CD=2.5cm,则斜边AB的长是()A.2.5cm B.5cm C.7.5cm D.10cm3.(3分)以下列长度的线段为边,不能构成直角三角形的是()A.3,4,5B.5,12,13C.2,3,4D.8,15,17 4.(3分)如图,▱ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为()A.6cm B.12cm C.4cm D.8cm5.(3分)在线段、角、等腰三角形、平行四边形、矩形、菱形、正方形这几个图形中,既是轴对称图形又是中心对称图形的个数是()A.3个B.4个C.5个D.6个6.(3分)如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为()A.6B.5C.4D.37.(3分)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3B.4C.6D.58.(3分)下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形9.(3分)菱形ABCD的对角线交于点O,则下列结论不一定正确的是()A.AB=BC B.OA=OC C.OA⊥OB D.AC=BD 10.(3分)如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A 重合,则下列结论错误的是()A.AF=AE B.△ABE≌△AGF C.EF=2D.AF=EF11.(3分)已知直角三角形两直角边的和为,斜边长为2,则这个直角三角形的面积是()A.B.C.3D.412.(3分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4D.5二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)在▱ABCD中,∠A,∠B的度数之比为5:4,则∠C等于度.14.(3分)在某直角三角形中,其中一个锐角为30°,斜边和较小的边的和为12cm,则较大的直角边的长为.15.(3分)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=8,则PD的长为.16.(3分)如图,在菱形ABCD中,边长AB=6,∠ABD=30°,则菱形ABCD的面积是.17.(3分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,P为AB边上不与A,B 重合的一动点,过点P分别作PE⊥AC于点E,PF⊥BC于点F,则线段EF的最小值是.18.(3分)如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E 作EF∥BC,分别交BD,CD于点G,F两点,若M,N分别是DG,CE的中点,则MN 的长是.三、解答题(本大题共8小题,共计66分)19.(6分)已知一个多边形的内角和比其外角和的2倍多180°,求这个多边形的边数及对角线的条数?20.(6分)若a,b,c为△ABC的三边长,且a,b,c满足等式|a﹣3|+(4﹣b)2+=0,△ABC是直角三角形吗?请说明理由.21.(8分)已知:如图,在平行四边形ABCD中,E,F是对角线BD上的两点,且BF=DE.求证:(1)AE=CF;(2)四边形AECF是平行四边形.22.(6分)如图,求作一点P,使PM=PN,并且使点P到∠AOB的两边OA,OB的距离相等.23.(8分)已知:如图,一轮船一直由西向东航行,早上8点,在A处测得小岛P的方向是北偏东75°,以每小时15海里的速度继续向东航行,10点到达B处,并测得小岛P 的方向是北偏东60°,若小岛周围25海里内有暗礁,问该轮船一直向东航行是否有触礁的危险?24.(10分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.25.(10分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN 交∠ACB的平分线于点E,交∠ACB的外角平分线于点F(1)若CE=12,CF=5,求OC的长;(2)当点O在边AC上运动到何处且△ABC满足什么条件时,四边形AECF是正方形?并说明理由.26.(12分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且P A=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.2017-2018学年广西贵港市桂平市八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.【解答】解:∵在Rt△ABC中,∠C=90°,∴∠A+∠B=90°,∴∠B=90°﹣∠A=90°﹣70°=20°,故选:A.2.【解答】解:∵Rt△ABC中,斜边AB的中线CD=2.5cm,∴2CD=AB,∴AB=5cm.故选:B.3.【解答】解:在A中,32+42=252=52,故能构成直角三角形,故A不符合题意;在B中,52+122=169=132,故能构成直角三角形,故B不符合题意;在C中,22+32=13≠42,故不能构成直角三角形,故C符合题意;在D中,82+152=289=172,故能构成直角三角形,故D不符合题意;故选:C.4.【解答】解:∵▱ABCD的周长是28cm,∴AB+BC=14cm,∵AB+BC+AC=22cm,∴AC=22﹣14=8 cm.故选:D.5.【解答】解:既是轴对称图形又是中心对称图形的是:线段、矩形、菱形、正方形,共4个,故选:B.6.【解答】解:∵在Rt△ACB中,∠ACB=90°,AC=8,AB=10,∴BC=6.又∵DE垂直平分AC交AB于点E,∴DE∥BC,∴DE是△ACB的中位线,∴DE=BC=3.故选:D.7.【解答】解:作DH⊥AC于H,如图,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DH⊥AC,∴DH=DE=2,∵S△ABC=S△ADC+S△ABD,∴×2×AC+×2×4=7,∴AC=3.故选:A.8.【解答】解:A、两组对边分别相等的四边形是平行四边形,正确,故本选项错误;B、四个内角都相等的四边形是矩形,正确,故本选项错误;C、四条边都相等的四边形是菱形,正确,故本选项错误;D、两条对角线垂直且平分的四边形是正方形,错误,应该是菱形,故本选项正确.故选:D.9.【解答】解:∵四边形ABCD是菱形,∴AB=BC,OA=OC,OA⊥OB.故不一定正确的是AC=BD.故选:D.10.【解答】解:设BE=x,则CE=BC﹣BE=8﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=8﹣x,在Rt△ABE中,AB2+BE2=AE2,即42+x2=(8﹣x)2解得x=3,∴AE=8﹣3=5,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=5,∴A正确;在Rt△ABE和Rt△AGF中,,∴△ABE≌△AGF(HL),∴B正确;过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=4,AH=BE=3,∴FH=AF﹣AH=5﹣3=2,在Rt△EFH中,EF=2,∴C正确;∵△AEF不是等边三角形,∴EF≠AF,故D错误;故选:D.11.【解答】解:设直角三角形两直角边分别为a、b,由题意得,a+b=,a2+b2=22,则2ab=(a+b)2﹣(a2+b2)=3,∴直角三角形的面积=ab=,故选:B.12.【解答】解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BDN中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)13.【解答】解:根据平行四边形两邻角此补,可得:∠A+∠B=180°又∵∠A,∠B的度数之比为5:4,可得两角分别是100°,80°,∴平行四边形的对角相等,∴∠C等于100度.故答案为100.14.【解答】解:设较小直角边是xcm,则斜边是2xcm.根据题意,得x+2x=12,解得x=4.则2x=8.根据勾股定理,较大直角边==4(cm).故答案为4cm.15.【解答】解:作PE⊥OA于E,∵P是∠AOB平分线上一点,∴∠AOP=∠BOP=15°,∵PC∥OB,∴∠POD=∠OPC,∴∠PCE=∠POC+∠OPC=∠POC+∠POD=∠AOB=30°,∴PE=PC=4,∵P是∠AOB平分线上一点,PD⊥OB,PE⊥OA,∴PD=PE=4,故答案为:4.16.【解答】解:连接CA交BD于点O,∵四边形ABCD是菱形,∴AC⊥BD,AO=OC,BO=OD,在RT△ABO中,∵∠AOB=90°,AB=6,∠ABO=30°,∴AO=AB=3,BO=AO=3,∴AC=6,BD=6,∴S菱形ABCD=•BD•AC=18.故答案为18.17.【解答】解:如图,连接CP.∵∠C=90°,AC=6,BC=8,∴AB==10,∵PE⊥AC,PF⊥BC,∠C=90°,∴四边形CFPE是矩形,∴EF=CP,由垂线段最短可得CP⊥AB时,线段EF的值最小,此时,S△ABC=BC•AC=AB•CP,即×8×6=×10•CP,解得CP=4.8.故答案为:4.818.【解答】解:过M作MK⊥CD于K,过N作NP⊥CD于P,过M作MH⊥PN于H,则MK∥EF∥NP,∵∠MKP=∠MHP=∠HPK=90°,∴四边形MHPK是矩形,∴MK=PH,MH=KP,∵NP∥EF,N是EC的中点,∴=1,==∴PF=FC=BE=2,NP=EF=3,同理得:FK=DK=1,∵四边形ABCD为正方形,∴∠BDC=45°,∴△MKD是等腰直角三角形,∴MK=DK=1,NH=NP﹣HP=3﹣1=2,∴MH=2+1=3,在Rt△MNH中,由勾股定理得:MN==;故答案为:.三、解答题(本大题共8小题,共计66分)19.【解答】解:设这个多边形的边数为n,根据题意,得:(n﹣2)×180°=360°×2+180°,解得n=7,则这个多边形的边数是7,七边形的对角线条数为:×7×(7﹣3)=14(条),答:所求的多边形的边数为7,这个多边形对角线为14条.20.【解答】解:△ABC是直角三角形.理由是:∵|a﹣3|+(4﹣b)2+=0,∴a﹣3=0,4﹣b=0,c﹣5=0,∴a=3,b=4,c=5,∴a2+b2=32+42=25,c2=52=25,∴a2+b2=c2,由勾股定理的逆定理可知,△ABC是直角三角形.21.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD∠ABE=∠CDF.又∵BF=DE,∴BF﹣EF=DE﹣EF,即:BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS).∴AE=CF.(2)∵△ABE≌△CDF,∴∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF∵AE=CF,∴四边形AECF是平行四边形.22.【解答】解:如图所示:点P即为所求.23.【解答】解:过点P作PD⊥AB于点.∵在A处测得小岛P的方向是北偏东75°,∴∠P AB=90°﹣75°=15°又∵在B处测得小岛P的方向是北偏东60°,∴∠PBD=90°﹣60°=30°,∵∠PBD=∠P AB+∠APB,∴∠APB=∠PBD﹣∠P AB=30°﹣15°=15°,∴∠APB=∠P AB,∴AB=PB=2×15=30(海里),在Rt△BDP中,∠PBD=30°,∴PD=BP=15(海里)<25 (海里)∴该轮船一直向东航行是有触礁的危险.24.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.25.【解答】解:(1)∵OF是∠BCA的外角平分线,∴∠OCF=∠FCD,又∵MN∥BC,∴∠OFC=∠FCD,∴∠OFC=∠OCF,∴OF=OC,∴OE=OF;∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F ∴∠ECF=90°,∵CE=12,CF=5,∴EF==13,∵CE是∠ACB的角平分线,∴∠ACE=∠BCE,又∵MN∥BC,∴∠NEC=∠ECB,∴∠NEC=∠ACE,∴OE=OC,∴CO是△ECF上的中线,∴CO=EF=6.5;(2)点O是AC的中点且∠ACB=90°,理由:∵O为AC中点,∴OA=OC,∵由(1)知OE=OF,∴四边形AECF为平行四边形;∵∠1=∠2,∠4=∠5,∠1+∠2+∠4+∠5=180°,∴∠2+∠5=90°,即∠ECF=90°,∴▱AECF为矩形,又∵AC⊥EF.∴▱AECF是正方形.∴当点O为AC中点且△ABC是以∠ACB为直角三角形时,四边形AECF是正方形.26.【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∵P A=PE,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵P A=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∠BAP=∠BCP,∴∠DAP=∠DCP,∵P A=PE,∴PC=PE,∵P A=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD,∴∠CPF=∠EDF∵∠ABC=∠ADC=120°,∴∠CPF=∠EDF=180°﹣∠ADC=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE;人教版八年级第二学期下册期中模拟数学试卷及答案一、选择题(本大题共12小题,共36.0分)1.若式子在实数范围内有意义,则实数a的取值范围是()A. B. C. D.2.下列根式中,不是最简二次根式的是()A. B. C. D.3.下列各组数中能作为直角三角形的三边长的是()A. 4,5,6B. 1,1,C. 6,8,11D. 5,12,234.下列计算正确的是()A. B. C. D.5.如图,在▱ABCD中,∠A=3∠B,则∠C的大小是()A.B.C.D.6.如图,在△ABC中,∠ACB=90°,DE垂直平分AC交AB于点E,若BC=6,则DE的长为()A. 6B. 5C. 4D. 37.菱形具有而一般平行四边形不具有的性质是()A. 对边相等B. 对角相等C. 对角线互相平分D. 对角线互相垂直8.如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A. B. C. D.9.下列二次根式:(1);(2);(3);(4)能与合并的是( )A. 和B. 和C. 和D. 和10.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两直角边长分别为5和3,则小正方形的面积为()A. 4B. 3C. 2D. 111.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A. ≌B.C. D.12.如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)13.计算:=______.14.直角三角形两直角边长分别为,,则斜边长为______.15.矩形的两条对角线所夹的锐角为60°,较短的边长为12,则对角线长为______ .16.已知n是一个正整数,是整数,则n的最小值是______ .17.如图,菱形ABCD中,AB=AC=2,点E、F是AB,AD边上的动点,且AE=DF,则EF长的最小值为______ .18.如图,四边形ABCD是正方形,△ABE是等边三角形,EC=,则正方形ABCD的面积为______ .三、解答题(本大题共7小题,共66.0分)19.计算:(1)(+)×(2)(4-3)÷2+.20.在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,若c-a=4,b=12,求a,c.21.已知:x2+y2-10x+2y+26=0,求(+y)(-y)的值.22.如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米.(1)求梯子上端到墙的底端E的距离(即AE的长);(2)如果梯子的顶端A沿墙下滑0.4米(即AC=0.4米),则梯脚B将外移(即BD长)多少米?23.如图,▱ABCD对角线AC、BD相交于点O,E,F分别是OA,OC的中点,连接BE,DF.(1)根据题意,补全图形;(2)求证:BE=DF.24.如图,AC是▱ABCD的对角线,∠BAC=∠DAC.(1)求证:AB=BC;(2)若AB=2,AC=2,求▱ABCD的面积.顶点E、G、H分别在矩形ABCD的边AB、CD、DA上,AH=2.(1)若DG=6,求AE的长;(2)若DG=2,求证:四边形EFGH是正方形.答案和解析1.【答案】D【解析】解:由题意得,a-1≥0,解得,a≥1,故选:D.根据二次根式有意义的条件列出不等式,解不等式即可.本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.2.【答案】B【解析】解:因为==2,因此不是最简二次根式.故选:B.判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式).是否同时满足,同时满足的就是最简二次根式,否则就不是.规律总结:满足下列两个条件的二次根式,叫做最简二次根式.(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.3.【答案】B【解析】解:A、因为42+52≠62,故不是勾股数;故此选项错误;B、因为12+12=()2,故三角形是直角三角形.故此选项正确;C、因为62+82≠112,故不是勾股数;故此选项错误;D、因为52+122≠232,故不是勾股数.故此选项错误;故选:B.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4.【答案】C【解析】解:A、=4,故此选项错误;B、()2=2,故此选项错误;C、×=,此选项正确,D、÷=,故此选项错误;故选:C.分别利用二次根式的性质以及二次根式乘除运算法则求出判断即可.此题主要考查了二次根式的乘除运算以及二次根式化简,正确掌握运算法则是解题关键.5.【答案】C【解析】解:如图所示,∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A=3∠B,∴∠B=45°,∴∠A=∠C=135°.故选:C.平行四边形中,利用邻角互补可求得∠B的度数,利用对角相等,即可得∠C的值.此题主要考查了平行四边形的性质,利用邻角互补的结论求四边形内角度数是解题关键.6.【答案】D【解析】解:∵在△ABC中,∠ACB=90°,DE垂直平分AC交AB于点E,BC=6,∴DE是△ABC的中位线,∴DE=BC=3.故选D.先根据题意得出DE是△ABC的中位线,进而可得出结论.本题考查的是三角形中位线定理,熟知三角形的中位线等于底边的一半是解答此题的关键.7.【答案】D【解析】解:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选:D.由菱形的性质可得:菱形的对角线互相平分且垂直;而平行四边形的对角线互相平分;则可求得答案.此题考查了菱形的性质以及平行四边形的性质.注意菱形的对角线互相平分且垂直.8.【答案】B【解析】解:如图所示:连接OC,由题意可得:OB=2,BC=1,则OC==,故点M对应的数是:.故选:B.直接利用勾股定理得出OC的长,进而得出答案.此题主要考查了勾股定理,根据题意得出CO的长是解题关键.9.【答案】A【解析】解:(1)=2;(2)=2;(3)=;(4)=3.∴(1)(4)能与合并,故选A.根据同类二次根式的定义进行选择即可.本题考查了同类二次根式,掌握同类二次根式的定义是解题的关键.10.【答案】A【解析】解:3和5为两条直角边长时,小正方形的边长=5-3=2,∴小正方形的面积22=4;故选A.3和5为两条直角边长时,求出小正方形的边长=2,即可得出小正方形的面积;即可得出结果.本题考查了勾股定理的证明,理解直角三角形的边长与小正方形的边长之间的关系是关键.11.【答案】B【解析】解:(A)由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故(A)正确;(B)∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故(B)错误;(C)由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故(C)正确;(D)由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC-EC,∴BE=AD-DF,故(D)正确;故选:B.先根据已知条件判定△AFD≌△DCE(AAS),再根据矩形的对边相等,以及全等三角形的对应边相等进行判断即可.本题主要考查了矩形和全等三角形,解决问题的关键是掌握矩形的性质:矩形的四个角都是直角,矩形的对边相等.解题时注意:在直角三角形中,若有一个锐角等于30°,则这个锐角所对的直角边等于斜边的一半.12.【答案】D【解析】解:(1)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(2)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(3)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(4)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴S1+S2=S3.综上,可得面积关系满足S1+S2=S3图形有4个.故选:D.根据直角三角形a、b、c为边,应用勾股定理,可得a2+b2=c2.(1)第一个图形中,首先根据等边三角形的面积的求法,表示出3个三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(2)第二个图形中,首先根据圆的面积的求法,表示出3个半圆的面积;然后根据a2+b2=c2,可得S1+S2=S3.(3)第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(4)第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(1)此题主要考查了勾股定理的应用,要熟练掌握,解答此题的关键是要明确:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.(2)此题还考查了等腰直角三角形、等边三角形、圆以及正方形的面积的求法,要熟练掌握.13.【答案】2【解析】解:(+)(-)=5-3=2.本题是平方差公式的应用,是相同的项,互为相反项是-与.运用平方差公式(a+b)(a-b)=a2-b2计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.14.【答案】【解析】解:由勾股定理得()2+()2=斜边2斜边=,故答案为.已知直角三角形的两条直角边,由勾股定理直角三角形两条直角边的平方和等于斜边的平方,即可求得斜边的长度.勾股定理:直角三角形两条直角边的平方和等于斜边的平方,我们应熟练正确的运用这个定理,在以后复杂的题目中这是最为常见也最为基础的定理公式.15.【答案】24【解析】解:如图所示:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=12,∴AC=BD=24.故答案为:24.由矩形的性质得出OA=OB,证明△AOB是等边三角形,得出OA=OB=AB=12,即可得出对角线的长.本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,并能进行推理论证与计算是解决问题的关键.16.【答案】3【解析】解:∵=4,若是整数,则也是整数;∴n的最小正整数值是3;故答案是:3.先将中能开方的因数开方,然后再判断n的最小正整数值.本题考查了二次根式定义.解答此题的关键是能够正确的对进行开方化简.17.【答案】【解析】解:如图,∵四边形ABCD是菱形,∴AB=BC=CD=AD=AC,∴△ABC,△ACD都是等边三角形,∴∠EAC=∠D=60°,在△EAC和△FDC中,,∴△EAC≌△FDC,∴EC=CF,∠ACE=∠DCF,∴∠ECF=∠ACD=60°,∴△ECF是等边三角形,∴CE=EF=CF,∵CE⊥AB时,线段CE最小,最小值为×2=,∴EF的最小值为.故答案为.首先证明△CEF是等边三角形,构建垂线段最短可知,当CE⊥AB时,CE最短,即EF最短.本题考查菱形的性质、等边三角形的判定和性质、垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,灵活运用垂线段最短解决最值问题,属于中考常考题型.18.【答案】8【解析】解:过点E作MN∥AD,交AB于点M,交CD于点N,如图所示.设正方形的边长为a,则ME=a,NC=a,EN=AD-ME=a-a,在Rt△ENC中,由勾股定理得:EC2=NC2+EN2,即=+,解得:a2=8.故答案为:8.过点E作MN∥AD,交AB于点M,交CD于点N,设正方形的边长为a,根据正方形和等边三角形的性质可得出EN、NC的长度,根据勾股定理即可得出关于a的方程,解方程即可得出结论.本题考查了正方形的性质以及等边三角形的性质,解题的关键是找出关于a的方程.本题属于基础题,难度不大,解决该题型题目时,在直角三角形中利用沟谷定理找出关于未知数a的方程是关键.19.【答案】解:(1)原式=2+3;(2)原式=2-+=2.【解析】(1)根据二次根式的乘法进行即可;(2)根据多项式除以单项式的法则和二次根式的除法进行计算即可.本题考查了二次根式的混合运算,掌握运算法则是解题的关键.20.【答案】解:在△ABC中,∠C=90°,∴a2+b2=c2,∵c-a=4,b=12∴c=a+4,∴a2+122=(a+4)2∴a=16∴c=20,即a=16,c=20【解析】利用勾股定理得出结论,将c-a=4和b=12代入建立方程求出a的值,即可.此题主要考查了勾股定理,解方程,解本题的关键是得出a2+122=(a+4)2.21.【答案】解:∵x2+y2-10x+2y+26=0,∴(x-5)2+(y+1)2=0,∴x=5,y=-1,∴(+y)(-y)=x-y2=5-(-1)2.=4.【解析】先配方,根据非负数的性质得出x,y的值,再代入计算即可.本题考查了二次根式的化简求值,掌握非负数的性质以及配方法是解题的关键.22.【答案】解:(1)由题意得:AB=2.5米,BE=0.7米,∵AE2=AB2-BE2,∴AE==2.4米;(2)由题意得:EC=2.4-0.4=2(米),∵DE2=CD2-CE2,∴DE==1.5(米),∴BD=0.8米.【解析】(1)在Rt△ABE中利用勾股定理求出AC的长即可;(2)首先在Rt△CDE中利用勾股定理求出DE的长,然后再计算出DB的长即可.此题主要考查了勾股定理的应用,关键是掌握正确运用勾股定理:直角三角形中,两直角边的平方和等于斜边的平方.23.【答案】(1)解:图象如图所示.(2)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E,F分别是OA,OC的中点,∴OE=OA,OF=OC,∴OE=OF,在△BOE和△DOF中,,∴△BOE≌△DOF(SAS),∴BE=DF.【解析】(1)根据要求画出图象即可.(2)只要证明△BOE≌△DOF(SAS),即可解决问题.本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型.24.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA,∵∠BAC=∠DAC,∴∠BAC=∠BCA,∴AB=BC;(2)解:连接BD交AC于O,如图所示:∵四边形ABCD是平行四边形,AB=BC,∴四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=,OB=OD=BD,∴OB===1,∴BD=2OB=2,∴▱ABCD的面积=AC•BD=×2×2=2.【解析】(1)由平行四边形的性质得出∠DAC=∠BCA,再由已知条件得出∠BAC=∠BCA,即可得出AB=BC;(2)连接BD交AC于O,证明四边形ABCD是菱形,得出AC⊥BD,OA=OC=AC=,OB=OD=BD,由勾股定理求出OB,得出BD,▱ABCD的面积=AC•BD,即可得出结果.本题考查了平行四边形的性质、等腰三角形的判定、勾股定理、菱形面积的计算;熟练掌握平行四边形的性质,证明四边形是菱形是解决问题的关键.25.【答案】(1)解:∵AD=6,AH=2∴DH=AD-AH=4∵四边形ABCD是矩形∴∠A=∠D=90°∴在Rt△DHG中,HG2=DH2+DG2在Rt△AEH中,HE2=AH2+AE2∵四边形EFGH是菱形∴HG=HE∴DH2+DG2=AH2+AE2即42+62=22+AE2∴AE==4;(2)证明:∵AH=2,DG=2,∴AH=DG,∵四边形EFGH是菱形,∴HG=HE,在Rt△DHG和Rt△AEH中,,∴Rt△DHG≌Rt△AEH(HL),∴∠DHG=∠AEH,∵∠AEH+∠AHE=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.【解析】(1)先根据矩形的性质,利用勾股定理列出表达式:HG2=DH2+DG2,HE2=AH2+AE2,再根据菱形的性质,得到等式DH2+DG2=AH2+AE2,最后计算AE的长;(2)先根据已知条件,用HL判定Rt△DHG≌Rt△AEH,得到∠DHG=∠AEH,因为∠AEH+∠AHE=90°,∠DHG+∠AHE=90°,可得菱形的一个角为90°,进而判定该菱形为正方形.本题主要考查了矩形、菱形的性质以及正方形的判定,解决问题的关键是掌握:矩形的四个角都是直角,菱形的四条边都线段,有一个角为直角的菱形是正方形.在解题时注意,求直角三角形的边长时,一般都需要考虑运用勾股定理进行求解.人教版八年级(下)期中模拟数学试卷【含答案】一.选择题:(每小题3分,共30分)1.下列式子中,是二次根式的是()A B D2.要使式子有意义,则x的取值范围是()A.x>0 B.x≥-2 C.x≥2 D.x≤23.下列二次根式中,是最简二次根式的是()A.xy 2B.2ab C.21 D. 4.下列二次根式,不能与12合并的是( ) A.48 B.18 C.311 D.75- 5.下列运算正确的是( )=123= C =2D =6.有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm ),从中取出三根首尾顺次连接搭成一个直角三角形,则这根木棒的长度分别为( ) A .2,4,8 B.4,8,10 C.6,8,10 D.8,10,12 7.不能判定四边形ABCD 为平行四边形的条件是( ) A. AB ∥CD ,AD=BC B. AB ∥CD ,∠A=∠C C. AD ∥BC ,AD=BC D. ∠A=∠C ,∠B=∠D8. 如下页图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm , 现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )(A )4 cm (B )5 cm (C )6 cm (D )10 cm9.如下图所示:是一段楼梯,高BC 是3m ,斜边AC 是5m ,如果在楼梯上铺地毯,那么至少需要地毯( ) A.5m B.6m C.7m D.8m10.如下图,在底面周长为12,高为8的圆柱体上有A,B 两点,则AB 之间的最短距离是( ) A .10 B .8 C .5 D .4二、填空题(每小题4分,共20分)11.在ABCD 中,∠A=︒50,则∠B= 度,∠C= 度,∠D= 度.12.如果ABCD 的周长为28cm ,且AB :BC=2∶5,那么AB= cm ,BC= cm ,CD= cm13.化简= ;0,0)x y >> = . 14.,则它的斜边长为 cm ,面积为2cm .15.如图,在矩形ABCD 中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为 . 三、解答题(共50分)16.计算:(每小题4分,共8分)()1()2-17.(7分)如图,利用尺规,在△ABC 的边AC 上方作∠CAE=∠ACB,在射线AE 上截取AD=BC ,连接CD ,并证明CD ∥AB 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二学期八年级数学学科期中试卷
时间:90分钟 闭卷 满分:100分
班级 姓名 学号 题号
一 二 三 总分 得分
一、选择题(12小题,每小题3分,共36分)
1、代数式x
x 、n m n m 、a 、x 2
32-+中,分式有( ) A 、4个 B 、3个 C 、2个 D 、1个
2、若分式3
92+-x x 的值为0,则x 的值是( ) A 、-3 B 、3 C 、±3 D 、0
3、以下是分式方程1211=-+x
x x 去分母后的结果,其中正确的是( ) A 、112=--x B 、112=+-x C 、x x 212=-+ D 、x x 212=+-
4、若关于x 的方程13
31--=--x m x x 无解,则m 的值为( ) A 、-3 B 、-1 C 、2 D 、-2
5、若(x-2)0=1,则x 不等于( )
A 、 -2
B 、2
C 、 3
D 、0
6、对于反比例函数x
y 2=,下列说法不正确的是( ) A 、点(-2,-1)在它的图象上。

B 、它的图象在第一、三象限。

C 、当x>0时,y 随x 的增大而增大。

D 、当x<0时,y 随x 的增大而减小
7、如右图,点A 是函数
x
y 4=图象上的任意一点, A B ⊥x 轴于点B ,A C ⊥y 轴于点C ,
则四边形OBAC 的面积为( )
A 、2
B 、4
C 、8
D 、无法确定
8、已知反比例函数x
y 2=经过点A (x 1,y 1)、B (x 2,y 2),如果x 1<x 2<0,那么y 1与y 2的大小关系是( )
A 、y 1>y 2>0
B 、y 2>y 1>0
C 、y 2<y 1<0
D 、y 1<y 2<0
9、已知下列四组线段:
①5,12,13 ; ②15,8,17 ; ③15,20,25 ; ④4
3145,,。

其中能构成直角三角形的有( )
A 、四组
B 、三组
C 、二组
D 、一组
10、为了迎接新年的到来,同学们做了许多用来布置教室的拉花,准备召开新年晚会,昊昊搬来了一架高为2.5m 的木梯,准备把拉花挂到高2.4m 的墙上,则梯脚与墙角的距离应为( )
A 、 0.7m
B 、0.8m
C 、0.9m
D 、1m
二、填空题(10小题,每小题2分,共20分)
11、写出一个图象位于第一、三象限的反比例函数的表达式: 。

12、反比例函数)0(≠=
k x k y 的图象经过点A (-3,1),则k 的值为 。

13、若分式3
12+-x x 的值是负数,那么x 的取值范围是 。

14、化简:=++-4
4422a a a 。

15、如果反比例函数)0(≠=
k x k y 的图象在第二、四象限,则直线2+=kx y 不经过第 象限。

16、已知反比例函数x
k y =的图象经过点A (-3,-2)、B( 1,m ),则m=____.。

17、命题“如果a=b,那么a 2=b 2”它的逆命题是__________________________。

18、一根长24米的绳子,折成三边为三个连续偶数的三角形,则此三角形的形状为 三角形
19、已知,x+y=7, xy=12,则y x 11+= 。

20、如图,已知△ABC 中,∠ACB=900,
以△ABC 的各边为过在△ABC 外作三个
正方形,S 1、S 2、S 3分别表示这三个
正方形的面积,S 1=81,S 3=225,
则S 2= 。

三、解答题(共50分,写出必要的演算推理过程)
21、(6分)先化简,再求值:
)223(
+--x x x x ÷4
2-x x ,其中x=5,
22、(8分)解下列分式方程 (1)3221+=x x
(2)1
4122-=-x x
23、(8分)已知反比例函数)0(≠=k x
k y 的图象经过点(-1,2). (1)求y 与x 的函数关系式。

(2)若点(2,m )在这个函数图象上,求m 的值。

(3)画出这个函数的图象。

24、(6分)如图所示在△ABC中,AB=13,AD=12,AC=15,CD=9,
求△ABC的面积。

A
B C
D
25、(8分)在压力不变的情况下,某物体承受的压强p(Pa) 是它的受力面积S(m2)的反比例函数,其图像如图所示。

(1)求p与S之间的函数关系式;
(2)求当S=0.5m2时,物体承受的压强p。

(3)如果要求压强不超过2000Pa,那么该物体的面积至少要多大?
26、(6分)比邻而居的蜗牛神和蚂蚁王相约,第二天上午八时结伴出发,到相距16米的银杏树下参加探讨环境保护问题的微型动物首脑会议,蜗牛神想到“笨鸟先飞”的古训,于是给蚂蚁王留下一纸便条后提前2小时独自先行,蚂蚁王按既定时间出发,结果它们同时到达,已知蚂蚁王的速度是蜗牛神的4倍,求它们各自的速度?
27、(8分)如图,已知反比例函数x
y 12 的图像与一次函数y =kx +4的图像相交于P 、Q 两点,并且P 点的纵坐标是6.
(1)求这个一次函数的解析式;
(2)求△POQ 的面积.
2010学年第二学期八年级数学学科期中试卷
参考答案 一、1、B 2、A 3、 B4、C 5、B 6、C7、B 8、C 9 、A 10、A
二、11、x
y 2=
(答案不唯一);12、-3; 13、x<1 ; 14、22+-a a ;15、三; 16、6;17、如果a 2=b 2那么a=b ;18、直角19、127; 20、144 三、21、化简得2x+把x=5代入得2x+8=2×5+8=18。

.
22、(1)x=1, (2)无解
23、(1)x
y 2-=(2)m=-1 (3)图略 24、△ABC 的面积为84
25、(1)P=S
100 (2) P=200Pa
(3) S 至少0.05m 2
26、蜗牛神的速度是6米/小时,蚂蚁王的速度是24米/小时。

27、(1)4+=x y
(2)△POQ 的面积为16。

相关文档
最新文档