典型汽车液压传动系统
(完整版)典型液压系统汽车起重机液压系设计毕业设计论文
优秀论文审核通过未经允许切勿外传目录引言............................................................................................................................................正文............................................................................................................................................1.1 液压传动系统的特点.........................................................................................1.2 液压传动应用于汽车起重机上的优缺点 ........................................................2 汽车起重机总体方案设计 ...........................................................................................2.1 传动型式的选定.................................................................................................2.2 动力装置的选定.................................................................................................2.3 起升机构液压油路方案设计 ............................................................................2.4 支臂控制机构液压油路方案设计 ....................................................................2.5 回转机构液压油路方案设计 ............................................................................2.6 支腿机构液压油路方案设计 ............................................................................3 起重机液压系统元件的选择 ......................................................................................3.1汽车起重机液压系统功能、组成和工作特点 ...............................................3.2 典型工况分析及对系统的要求 (1)4 起重机各液压回路组成原理和性能分析 (1)4.1 汽车起重机典型液压系统原理图 (1)4.2 起升回路 (1)4.3 变幅回路 (1)4.4 伸缩回路 (1)4.5 回转回路 (1)4.6 支腿回路 (1)4.7 制动回路 (1)5 起重机液压系统的常见故障及预防 (2)5.1 起重机液压系统的主要故障 (2)5.2 汽车起重机液压系统故障的预防 (2)5.3 起重机液压系统故障的排除 (2)结论 (2)致谢 (2)参考文献 (2)引言汽车起重机是各种工程建筑广泛应用的起重设备,是用来对物料进行起重、运输、装卸或安装等作业的机械设备,在工业和民用建筑中作为主要施工机械而得到广泛运用。
汽车起重机液压系统工作原理
汽车起重机液压系统工作原理以QL2-8型汽车起重机的液压系统为例,说明其工作原理。
1.液压系统的功能起重机的起升机构、变幅机构、旋转机构、臂架伸缩机构和支腿收放机构均采用液压传动,其原理参见液压系统图10-4.ZBD40型定量泵由装在底盘上的取力箱带动,直接从油箱中吸油,经过滤油器2,输出压力油。
改变发动机的转速,可改变泵的排出油量,从而对各机构的工作速度进行调节。
手动换向阀3可控制压力油的流向。
联合阀4操纵上车各机构(起升、变幅、旋转和臂架伸缩机构),二联阀5操纵支腿收放。
系统工作压力由溢流阀6,7控制。
上车机构的油路相互串联,可实现一个机构单独动作或几个机构的组合动作.二联阀3和主控四联阀4中的各手动换向阀都有节流作用,因而可在一定范围内实现机构运动的无级调速。
护作用。
(6)平衡阀10、12、14都采用同一结构。
平衡阀10,12保证变幅和伸缩臂机构匀速运动,同时起液压锁的作用.一旦与油缸连接的管路破裂,可防止吊臂突然下落或缩回造成事故.平衡阀14保证吊载匀速下降,防止在重力作用下运动速度过快,造成事故.现以起升机构为例,说明平衡阀的工作原理(见图10-5)。
平衡阀是由单向阀1和内泄漏的远控顺序阀2组成。
当手动换向阀拨至左位时,油泵输出压力油项开单向阀,无阻碍地进入油马达,马达带动卷筒旋转来起升吊载,回油经换向阀返回油箱。
当换向阀拨到右位时(如图10-5所示状态),油泵输出的压力油直接经换向阀进入油马达的另一端.而马达回油无法再经单向阀1返回,必须打开顺序阀2才能将回路接通。
顺序阀2的控制油路与马达进油的管路相通,这时控制管路中的高压油进入D腔。
将顺序阀2中的阀杆B向左推移,打开阀杆上锥形体E处的环形通道,于是马达回油经此流出,再经换向阀返回油箱,马达带动卷筒反向旋转下降吊物。
由于重力作用,吊物有加速下降并带动马达加速旋转的趋势。
当马达的排油量大于油泵的供油量时,马达的进油压力减小,甚至出现负压,顺序阀2控制油路的油压也相应变化,顺序阀2的阀杆B在弹簧C的作用下,阀杆锥体E处的环形通道变小,使马达经此通道返回油箱的流量减小,直到与泵的供油量相适应时为止,从而使马达的转速(相关吊载的下降速度〕始终保持匀速。
典型液压传动系统应用实例
根据工作循环和动作要求,参照电磁铁动作顺序表弄清液流路线,读懂液压系统图。
进油路:泵1-阀6中位 3Y得电,阀21 处于左位。
综合归纳以上的分析,总结系统在性能、操作、环境、安全等方面的要求和特点,达到对系统工作原理和性能的全面清晰的理解
-阀21左位-下缸下腔。 下缸上腔则经阀21中位从油箱补油。
主缸滑块在自重作用下 迅速下降,泵1 虽处于 最大流量状态,仍不能 满足其需要,因此主缸 上腔形成负压,上位油 箱15 的油液经充液阀14 进入主缸上腔。
3) 主缸慢速接近工件、加压
当主缸滑块降至一定位置触 动行程开关2S 后,5Y 失电, 阀9 关闭,主缸下腔油液经 背压阀10、阀6 右位、阀21 中位回油箱。这时,主缸上 腔压力升高,阀14 关闭,主 缸在泵1 供给的压力油作用 下慢速接近工件。接触工件 后阻力急剧增加,压力进一 步提高,泵1 的输出流量自过程 飞机轮部的液压系统
目的和任务
目的
通过对典型液压系统的分析,进一步加深对各种液压 元件和基本回路综合运用的认识。
任务
了解设备的功用和液压系统工作循环、动作要求。 根据工作循环和动作要求,参照电磁铁动作顺序表弄 清液流路线,读懂液压系统图。 了解系统由哪几种基本回路组成,各液压元件的功用 和相互的关系,液压系统的特点。
飞机轮部的液压系统
一 液压系统工作原理
1) 启动 电磁铁全部不得电,主泵输出油
液通过阀6、21中位卸载。 2)主缸快速下行 电磁铁1Y、5Y 得电,阀6 处于右
位,控制油经阀8 使液控单向阀9 开启
进油路:泵1-阀6右位-阀13 -主缸上腔。
回油路:主缸下腔-阀9- 阀6右位-阀21中位-油箱
分析系统对各分系统之间动作的顺序、联动、互锁、同步、抗干扰 等方面的要求和实现方法,理解各分系统是如何组成整个系统的。
液压与气压传动8-2 典型液压系统实例
一、概述
液压机是用来对金属、木材、塑料等进行压力加工的机械,也是最 早应用液压传动的机械之一。目前液压传动己成为压力加工机械的主 要传动形式。液压机传动系统是以压力变换为主的系统由于用在主传 动,系统压力高,流量大,功率大,因此特别要注意提高原动机功率利用率, 须防止泄压时产生冲击。
二、工况特点及对液压系统的要求
主机动作要求:液压机根据其工作循环要求有快进、减速接近工件、加压、 保压延时、泄压、快速回程及保持(即活塞)停留在行程的任意位置等基 本动作,图8-3为液压机典型工作塞前进、停止和退回等动作。
《液压与气压传动》第8章 典型液压传动系统
四、液压系统的特点 1. 液压系统中各部分相互独立,可根据需要使任一部分单独动作,也可 在执行元件不满载时,各串联的执行元件任意组合地同时动作。 2. 支腿回路中采用双向液压锁6,将前后支腿锁定在一定位置,防止出 现“软腿”现象或支腿自由下落现象。 3. 起升回路、吊臂伸缩、变幅回路均设置平衡阀,以防止重物在自重 作用下下滑。 4.为了防止由于马达泄漏而产生的“溜车”现象,起升液压马达上设有 制动阀,并且松阀用液压力,上阀用弹簧力,以保持在突然失去动力时液压 马达仍能锁住,确保安全。
《液压与气压传动》第8章 典型液压传动系统
四、 YA32-315型四柱万能液压机液压系统特点 1. 采用高压大流量恒功率变量泵供油,既符合工艺要求,又节省能量,这是
压机液压系统的一个特点; 2.本压机利用活塞滑块自重的作用实现快速下行,并用充液阀对主缸充液。
这一系统结构简单,液压元件少,在中、小型液压机是一种常用的方 案;
《液压与气压传动》第8章 典型液压传动系统
4DT
10 9
7
1DT
起重机液压系统
2起升机构液压传动回路 起升机构液压传动回路
在提升已悬挂在吊钩上的载荷时,随着供油压力逐渐上升,制动器首 在提升已悬挂在吊钩上的载荷时,随着供油压力逐渐上升, 先开启,使载荷力矩作用在马达上. 先开启,使载荷力矩作用在马达上.而这时马达进口压力还不足以使 马达启动;相反 在载荷作用下马达会逆转而使载荷下降, 相反, 马达启动 相反,在载荷作用下马达会逆转而使载荷下降,这就是所谓 的二次提升下滑. 的二次提升下滑. 单向节流阀对制动器开启的延时作用,将使马达进口压力在制动 单向节流阀对制动器开启的延时作用, 器开启时有一定的提高,从而减小二次提升下滑量.但是, 器开启时有一定的提高,从而减小二次提升下滑量.但是,单向节流 阀的作用将加剧空钩起升时机构的抖动. 阀的作用将加剧空钩起升时机构的抖动.因为空钩起升所需的马达启 动压力较低,而制动器开启压力不变, 动压力较低,而制动器开启压力不变,在制动器开启时马达进口压力 超过空钩起升所需压力,制动器打开时马达会很快转动;这样所导致的 超过空钩起升所需压力,制动器打开时马达会很快转动 这样所导致的 系统压力下降将使制动器又关闭,机构停止,压力又开始上升;当制动 系统压力下降将使制动器又关闭,机构停止,压力又开始上升 当制动 器再度开启时,马达又会很快转动.就这样不断重复. 器再度开启时,马达又会很快转动.就这样不断重复.单向节流阀正 是加大了制动器开启时马达进口处的压力, 是加大了制动器开启时马达进口处的压力,所以空钩时的抖动现象也 会加剧.当然, 会加剧.当然,当发动机转速很高而使油路阻力加大从而使马达转动 压力升高时,这种现象可得到一定的缓解. 压力升高时,这种现象可得到一定的缓解.
三 液压缸变幅机构传动 回路
3 液压缸变幅机构传动回路
对于采用钢丝绳变幅的机构,其驱动部分的液压原理与起升机构 对于采用钢丝绳变幅的机构, 的液压原理相同,这里不再重复. 的液压原理相同,这里不再重复.下面主要介绍液压缸变幅机构的液 压传动原理. 压传动原理. 图3a是一变幅机构的液压原理图.当手动换向阀中位时,液压泵 是一变幅机构的液压原理图. 是一变幅机构的液压原理图 当手动换向阀中位时, 的来油经换向阀中位直接回油箱,平衡阀处于关闭状态, 的来油经换向阀中位直接回油箱,平衡阀处于关闭状态,使变幅液压 缸无杆腔中的压力油无法流出,保证了液压缸不回缩. 缸无杆腔中的压力油无法流出,保证了液压缸不回缩.当手动换向阀 处于Ⅰ位时(图 处于Ⅰ位时 图3b),泵的来油经过换向阀和平衡阀中的单向阀 进入 ,泵的来油经过换向阀和平衡阀中的单向阀3进入 变幅液压缸的无杆腔,推动活塞杆外伸. 变幅液压缸的无杆腔,推动活塞杆外伸.有杆腔的排油经换向阀流回 油箱.当手动换向阀处于Ⅱ位时, 油箱.当手动换向阀处于Ⅱ位时,泵的来油经过换向阀同时进人变幅 缸的有杆腔和平衡阀的远控口C(图 缸的有杆腔和平衡阀的远控口 图3c).当压力达到平衡阀的开启值 . 平衡阀阀蕊1在活塞 的推动下克服弹簧力向右移动,打开平衡阀, 在活塞2的推动下克服弹簧力向右移动 时,平衡阀阀蕊 在活塞 的推动下克服弹簧力向右移动,打开平衡阀, 从而使进入平衡阀B口的压力油经过平衡阀 口的压力油经过平衡阀, 口流进手动换向阀, 从而使进入平衡阀 口的压力油经过平衡阀,从A口流进手动换向阀, 口流进手动换向阀 回到油箱.变幅液压缸的活塞杆回缩. 回到油箱.变幅液压缸的活塞杆回缩.
9《液压传动》典型液压系统分析
第一节 组合机床动力滑台液压系统
组合机床是由通用部件和某些专用部件所组成的高效率和自动化程度 较高的专用机床。它能完成钻、镗、铣、刮端面、倒角、攻螺纹等加工和 工件的转位、定位、夹紧、输送等动作。
动力滑台是组合机床的一种通用部件。在滑台上可以配各种工艺用途的 切削头,例如安装动力箱和主轴箱、钻削头、铣削头、镗削头、镗孔、 车端面等。YT4543型组合机床液压动力滑台可以实现多种不同的工作 循环,其中一种比较典型的工作循环是:快进—— 一工进——二工 进——死档铁停留——快退——停止。完成这一动作循环的动力滑台液 压系统工作原理如图9-2所示。系统中采用限压式变量叶片泵供油,并 使液压缸差动联接以实现快速运动。由电液换向阀换向,用行程阀、液 控顺序实现快进与工进的转换,用二位二通电磁换向阀实现一工进和二 工进之间的速度换接。为保证进给的尺寸精度,采用了死档铁停留来限 位。实现工作循环的工作原理如下:
(7)原位停止 当主液压缸快速返回到达终点时,滑块上的挡块压下行程 1XK让其发出信号,使所有电磁铁都断电,于是全部电磁铁都处于原位;阀 控制腔依靠阀4的d型中位机能与油箱相通,阀F5的控制腔与压力油相通。 阀F2打开,液压泵输出的油液全部经阀F2回油箱,液压泵处于卸荷状态; 关闭,封住压力油流向主液缸下腔的通道,主液压缸停止运动。 液压机辅助液压缸的工作情况如下: (1)向上顶出 工件压制完毕后,按下顶出按钮,使电磁铁2YA、9YA和 都通电,于是阀4上位接入系统,阀16、17下位接入系统;阀F2的控制腔被 插装阀F8和F9的控制腔通油箱。因而阀F2关闭,阀F8、F9打开,液压泵输 油液进入辅助液压缸下腔,实现向上顶出。此时系统中油液流动情况为: 进油路 液压泵——阀F1——阀F9——辅助液压缸下腔; 回油路 辅助液压缸上腔——阀F8——油箱。 (2)向下退回 把工件顶出模子后,按下退回按钮,使9YA、10YA断电,8 11YA通电,于是阀13、19下位接入系统,阀16、17上位接入系统;阀F7、 的控制腔与油箱相通,阀F8的控制腔被封死,阀F9的控制腔通压力油。因而 阀F7、F10打开,阀F8、F9关闭。液压泵输出的油液进入辅助液压缸上腔, 腔油液回油箱,实现向下退回。这时系统中油液流动情况为: 进油路 液压——阀F1——阀F7——辅助液压缸上腔; 回油路 辅助液压缸下腔阀——F10油箱。
液压传动技术在汽车中的应用及发展趋势
液压传动技术在汽车中的应用及发展趋势1. 液压传动技术的基本原理液压传动技术是利用液体传递能量的一种传动方式。
在汽车中,液压传动技术主要通过液压油泵、液压缸和液压控制阀等组件实现动力传递和控制。
液压传动技术的基本原理是利用液体在封闭的容器中传递压力,通过改变液体的流动方向和流量来实现输出力的控制。
2. 液压传动技术在汽车中的应用液压传动技术在汽车中有着广泛的应用,包括但不限于以下几个方面: 1) 制动系统:液压制动系统是汽车制动系统的主要形式之一。
通过踩刹车踏板,驱动主缸产生压力,通过液压传动将压力传递至各个刹车缸,推动刹车片和刹车鼓之间的摩擦,从而实现汽车的制动功能。
2) 变速箱控制系统:自动变速箱利用液压传动技术来实现齿轮的换挡控制。
液压控制单元通过控制液压油的流动方向和流量,实现变速箱离合器和换挡机构的控制。
3) 助力转向系统:液压助力转向系统通过液压传动技术来减小驾驶员操纵转向盘所需的力量,提供更轻便的转向操控。
驾驶员操纵转向盘时,液压泵将液压油送至液压缸,通过液压作用减小了转向机构的转向阻力,提高了操控舒适性。
4) 悬挂系统:液压传动技术可以应用在主动悬挂系统中,通过控制液压缸的伸缩来调节汽车悬挂的硬度,提高汽车的悬挂性能和行驶稳定性。
3. 液压传动技术在汽车中的发展趋势随着汽车工业的不断发展,液压传动技术在汽车中的应用也在不断创新和完善,未来的发展趋势主要表现在以下几个方面:1) 节能环保:随着能源和环保要求的不断提高,未来液压传动技术在汽车中的应用将更加注重节能和环保。
新型液压油的研发和应用将进一步提高液压传动系统的能效,减少能源消耗和环境污染。
2) 智能化控制:未来液压传动技术在汽车中的应用将更加智能化和自动化。
智能液压控制系统、液压传感技术和液压执行机构的发展将进一步提高汽车液压系统的精准度、稳定性和可靠性。
3) 集成化设计:未来液压传动技术将更加注重系统的集成化设计和模块化组装。
汽车典型液压系统应用
企 业 技 术 开 发 ② 回转回路。 回转 回路主要 由液压泵 、 换 向阀、 平衡阀
和液压马达等组成 。 在 回转 回路 中回转力很小 , 回转结构
2 0 1 4 年1 月
也就没有没有起升回路那样复杂 。 重物水平移动的范围有 限, 所需功率也很小 , 这就符合 回转回路的工作条件 , 通常 将汽车起重机都设计成全 回转式 的,回转的速度一般为2 d m i n~ 3 r / m i n 。 液压马达的回转主要有三位四通手动换 向 阀c 进行控制 , 当三位四通手动换向阀c 工作在左位时 , 液 压马达正向回转 , 在右位时 , 液压马达正 向回转 。 其油流路
作循 环和 动作 特 点不 同。 文章 主要 论述 了汽 车典 型液 压 系统的应 用 , 进 一步 了解 液压 元件 在 整个 液压 系统 中的作 用和 各种
液压 回路 的组 成 。
关键 词 : 汽车 ; 典型 液压 系统 ; 液压 回路 ; 工作 原理 ; 应 用
中图分类号: T H 1 3 7
文献标识码: A
文章编号: 1 0 0 6 — 8 9 3 7( 2 0 1 4 ) 3 - 0 0 3 9 — 0 2
在汽车的众多系统中 , 有很多都采用的是液压传动 系 2 汽车典型液压系统的应用 统。 在实际应用 的过程 中, 只有了解和掌握相关液压 系统 的组成 、 特点和工作原理 , 才能够根据实 际需要选择合适 2 . 1 汽车起重机液压 系统 的液 压 系统 。 液压起重机 承载能力 比较大 , 能够在有冲击 、 振动和 环境温度恶劣的情况下工作 。 一般液压起重机都会采用手 1 液压传动系统的组成及其特点 动控制 , 这样方便对 系统 的准确 的控制。 由于起重机 的液 1 . 1 液 压 系统 的 基本 组 成 压系统对保证工作安全性较为重要 , 所 以它的各项指标均 液压传动系统的主要 部分 为 : 动力元件 、 控制元件和 要 符合 国家标准。 起重机 的走 台板通常为全覆盖式 , 便于 辅助元件。 此外 , 还包含液压系统中的工作介质 。 各个组成 操作和维修 。 因此 , 在汽车起重机系统 中得到 了广泛的应 部分在液压传动系统中功能是不一样 的, 具体情况如下 : 用。 ①动力元件 : 它是系统机械能转化为工作介质压力能 2 . 1 . 1 汽车起重机液压系统的特点 的装置 , 主要作用是为液压 系统提供压力油 , 是 系统 的动 汽车起重机液压 系统一般 由伸缩回路 、 回转 回路和控 力源 。 常见 的动力元件有液压泵和电动机。 制回路等 回路组成。 每个 回路都有各 自的功能和特点。 ②控制元件 : 它是控制系统压力油流速 、 压力 、 方 向的 2 . 1 . 2 汽车起重机液压系统的工作回路 。 种装置。 如溢流 阀、 节流阀和换向阀等。 ①伸缩 回路 。 伸缩 回路主要通过改变 吊臂 的长度来改 ③执行元件 :它是将液体压力能转换为机械能的装 变起重机 吊重的高度 , 这样就能够根据所 吊物体 的高度来 根据伸缩高度和方式不同 , 其液 压缸的节数结 置, 其作用是输出力 和速度 , 以驱 动液压缸和液压马达工 进行调节 。 作。 构也会不一样 。 三位 四通手动换 向阀D 控制 吊臂的伸缩运 ④辅助元件 : 为整个压力系统提供辅助功能的一些装 动 , 换向阀D 的不同工位能够实现伸长、 缩短和停止三种不 置。 主要作用是为系统储油和保护系统。 如油箱 、 过滤器和 同的工作状态。 当三位 四通手 动换 向阀D 工作在左位 时液 压力计等装置。 压缸伸出, 在右位时液压缸缩 回, 在中位时 , 液压缸处于停 ⑤工作介质 :工作介质是指传动液体或传动气体 , 在 止状态。 手动阀组D中位工作时液压油的流向如图1 所示 。 液压传动系统中通常为液压油液。 1 . 2 液压传动 系统的特点 1 . 2 . 1 液压传动系统的优点 液压传动可 以实现无级调速 , 并且调速范围大和调速 便捷。 如果在相 同功率 的情况下 , 液压传动工作 比较平稳 , 反应也很迅速 , 并且换 向冲击很小 ; 同时也能够快速启动 、 制动和频繁换 向, 这些特点使得液压传动控制易于实现 自
第七章液压传动系统实例
下腔回油,上滑块快速下行,缸上腔压力降低,主缸顶部
充液箱的油经液控单向阀12向主缸上腔补油。其油路为:
第七章:液压传动系统实例
控制油路进油路:泵1→减压阀4→阀5(左)→阀6左端控
制油路回油路:阀6右端→单向阀I2→阀5(左)→油箱
主油路进油路:泵1→顺序阀7→阀6(左)→一方面使液控 单向阀阀11开启;同时液压油经单向阀10→主缸上腔。由 于主缸活塞面积大,当主缸活塞快速下行使主缸上腔出现
三、液压系统的主要特点 (1)系统中采用了平衡回路、锁紧回路和制动回路, 能保证起重机工作可靠,操作安全。
(2)采用三位四通手动换向阀,不仅可以灵活方便地
控制换向动作,还可以通过手柄操纵来控制流量,以实 现节流调速。在起升工作中,将此节流调速方法与控制 发动机转速的方法结合使用,可以实现各个工作部件微 速动作。
第七章:液压传动系统实例
(3)换向阀串联组合,各机构的动作既可独立进
行,又可在轻载作业时,实现起升和回转复合动作,
以提高工作效率。 (4)各换向阀处于中位时系统即卸荷,能减少功 率损耗,适于起重机间歇性工作。
第七章:液压传动系统实例
7.3 液压压力机的液压系统 一、 YB32-200型是四柱万能液压压力机概述 该压力机有上、下两个液压缸,安装在四个立柱之间。上
第七章:液压传动系统实例
在图中,旋转编码器的工作电压为24V,如果不是
24V,则需要另外附加相应的电源接入。所有的行程开
关、压力继电器和按钮都是无源元件,可直接根据分配 的地址接入PLC。其中控制按钮都有紧急停止、手动/ 自动转换、电机起动/停止和电磁铁的单控按钮等,这 些都是PLC无源输入元件。
工作循环液压缸 信号来源 电磁铁 1YA 2YA 3YA 4YA
举例说明液压传动在汽车上的应用
举例说明液压传动在汽车上的应用
液压传动在汽车上有多种应用。
其中一个主要的应用是在汽车
的制动系统中。
液压制动系统利用液压传动来传递力量,使得汽车
能够快速、可靠地停止。
当你踩下制动踏板时,液压传动系统会将
你的踏板力量转换成液压压力,这个压力通过液压管路传递到车轮
的制动器上,从而使得制动器夹紧刹车盘或刹车鼓,从而减速或停
止车辆。
另一个应用是在汽车的悬挂系统中。
液压悬挂系统可以根据路
面情况和车速实时调整车辆的悬挂硬度,提供更好的乘坐舒适性和
操控稳定性。
当汽车行驶在崎岖路面时,液压悬挂系统可以增加悬
挂的硬度,减少车身的摇晃,提高车辆的稳定性;而在平整路面上,液压悬挂系统可以减少悬挂的硬度,提高乘坐舒适性。
此外,液压传动还被广泛应用在汽车的变速器系统中。
自动变
速器中的液压传动系统通过控制液压压力来实现换挡操作,使得汽
车能够平稳、高效地进行换挡,提高驾驶的舒适性和燃油经济性。
总的来说,液压传动在汽车上的应用非常广泛,涉及到制动系
统、悬挂系统、变速器系统等多个方面,为汽车的性能、安全性和乘坐舒适性提供了重要支持。
典型液压传动系统实例分析
第四章典型液压传动系统实例分析第一节液压系统的型式及其评价一、液压系统的型式通常可以把液压系统分成以下几种不同的型式。
1.按油液循环方式的不同分按油液循环方式的不同,可将液压系统分为开式系统和闭式系统。
(1)开式系统如图4.1所示,开式系统是指液压泵1从油箱5吸油,通过换向阀2给液压缸3(或液压马达)供油以驱动工作机构,液压缸3(或液压马达)的回油再经换向阀回油箱。
在泵出口处装溢流阀4。
这种系统结构较为简单。
由于系统工作完的油液回油箱,因此可以发挥油箱的散热、沉淀杂质的作用。
但因油液常与空气接触,使空气易于渗入系统,导致工作机构运动的不平稳及其它不良后果。
为了保证工作机构运动的平稳性,在系统的回油路上可设置背压阀,这将引起附加的能量损失,使油温升高。
在开式系统中,采用的液压泵为定量泵或单向变量泵,考虑到泵的自吸能力和避免产生吸空现象,对自吸能力差的液压泵,通常将其工作转速限制在额定转速的75%以内,或增设一个辅助泵进行灌注。
工作机构的换向则借助于换向阀。
换向阀换向时,除了产生液压冲击外,运动部件的惯性能将转变为热能,而使液压油的温度升高。
图4.1 开式系统但由于开式系统结构简单,因此仍为大多数工程机械所采用。
(2)闭式系统如图4.2所示。
在闭式系统中,液压泵的进油管直接与执行元件的回油管相联,工作液体在系统的管路中进行封闭循环。
闭式直系统结构较为紧凑,和空气接触机会较少,空气不易渗入系统,故传动的平稳性好。
工作机构的变速和换向靠调节泵或马达的变量机构实现,避免了在开式系统换向过程中所出现的液压冲击和能量损失。
但闭式系统较开式系统复杂,由于闭式系统工作完的油液不回油箱,油液的散热和过滤的条件较开式系统差。
为了补偿系统中的泄漏,通常需要一个小容量的补油泵进行补油和散热,因此这种系统实际上是一个半闭式系统。
一般情况下,闭式系统中的执行元件若采用双作用单活塞杆液压缸时,由于大小腔流量不等,在工作过程中,会使功率利用率下降。
液压传动在汽车上的应用
液压、气动与液力传动在汽车上的应用近年来随着液压、气压与液力传动技术的发展和在汽车上的应用,大地提汽车的各项性能都有了很高,尤其是现代汽车上使用了电脑、机电液一体化的高新技术,使汽车工业的发展更上了一个新的台级。
汽车工业成为衡量一个国家科学技术水平先进与否的重要标志,目前技术先进的汽车已广泛采用了液压气压和液力传动新技术,就连汽车的燃料供给和机械润滑系统也借鉴了这些技术,因此加强针对汽车的液压气压与液力传动技术的学习与研究,对于从事汽车理论学习和设计制造维修的人员具有很重要的意义。
现在汽车都在向着驾驶方便、运行平稳、乘坐舒适、安全可靠、节能环保的方向发展。
在这些发展中液压气压与液力传动技术起了主导作用。
液压气压与液力传动在汽车上的应用具有一定的特点,由于汽车整体结构和轻量化的要求,系统结构紧凑、元件组合性强与电气结合,能够根据汽车的运行状况进行控制。
气压传动与液压传动一样,主要用于实现动力远程传递、电气控制信号转换等。
由于其工作介质是气体,因此工作安全、系统泄漏对环境污染也小,但受气体可压缩性大的影响,系统的灵敏性不如液压传动。
如液压汽车制动装置的制动滞后时间为0.2S,而气压汽车装置的制动滞后时间是0.5S,而且气压系统的噪音也大,自动润滑性能也差。
下面举几个例子介绍液压气压与液力传动在汽车传动系统中的具体应用。
1 .液压动力转向系统液压动力转向系统是在液压动力转向系统的基础上增设了电子控制装置。
该系统能够根据汽车行驶条件的变化对助力的大小实行控制,使汽车在停车状态时得到足够大的助力,以便提高转向系统操作的灵活性。
当车速增加时助力逐渐减小,高速行驶时无助力,使操纵有一定的行路感,而且还能提高操纵的稳定性。
另外,液压系统一般工作压力不高,流量也不大。
2 .液力自动变速器液力自动变速器在现代汽车上用得也越来越多。
使用液力变速器可以简化驾驶操作,使发动机的转速控制在一定的范圉内,避免车速急剧变化,有利于减少发动机振动和噪音,而且能消除和吸收传动装置的动载荷,减少换档冲击,提高发动机和变速器的使用寿命。
液压传动系统完整版
七.制动缓冲回路 为了减少液压冲击,除了在液压元件结构本 身采取措施,还可以在系统中采去缓冲回来 了。可以采用单向行程节流阀和溢流阀的缓 冲制动回路。
第节 速度控制回路
速度控制回路是关于系统的速度调节和 变换的问题。是使执行元件从一种速度到另 一种速度的回路,有增速回路、减速回路和 二次速度转换回路。
一.插装阀方向控制回路 图2-54是二通插装阀方向控制基本回路。 其中a与b为单向节流阀,c为液控单向阀。d 为二位二通的方向控制阀。 一个插装阀只能控制两个油口的通断。
图2-54 手绘
图2-55是插装阀三位四通换向回路。图示位 置先导阀失电时,插装阀1、2、3、4的控制 腔在压力油的作用下,阀芯均关闭,P、A、B、 T均不相同;1Y得电,插装阀2、4控制油腔失 压而开启,1、3关闭,P和A接通,B和T接通; 2Y得电时,P和B、A和T接通,构成相当于O型 机能的三维四通电液换向回路。
2 1 1 2
图2-6a
图2-6b中,增压回路可使液压缸1共作行程 加长,活塞向右运动时遇到负载时,单向阀4 由于系统压力升高而开启,压力油进入增压 器2 才起到增压作用。 系统实现快进,并低速工作要求。 液控单向阀6是为了增压时隔开高低压力 油。
图2-6b
四.卸荷回路 液压系统工作时,执行元件短时间的停止 工作,不需要输入油,此时可以让液压泵卸 荷。 液压泵卸荷:让液压泵以很小的出输出功 率运转,或以很低的压力运转,或让液压泵 输出很小流量的压力油。
图2-36
图2-37
第四节 顺序动作回路
顺序动作回路是实现多个执行元件按预定 的次序动作的液压回路。按顺序动作控制方 法可分为压力控制和行程控制两大类。
一.压力控制顺序回路 图2-37是顺序阀控制的顺序动作回路。 当手动换向阀4左位接入回路,液压缸1活塞 向右运动,完成动作1后,压力升高,3开启, 液压缸2的活塞向右运动,完成动作2。退回 时,换向阀右位接入回路,一次完成3、4。