编码器的工作原理简介

合集下载

编码器的工作原理

编码器的工作原理
2 多圈式绝对值编码器:在单圈绝对值编码器的基 础上利用钟表齿轮机械的原理,当中心码盘旋转 时,通过齿轮传动另一组码盘(或多组齿轮,多 组码盘),在单圈编码的基础上再增加圈数的编 码,以扩大编码器的测量范围
正余弦编码器输出原理
▪ 利用平行光通过光栅时,所产生的莫尔条 纹的光强度近似于余弦函数,在莫尔条纹 移动的方向上放置4个1/4莫尔条纹的光敏元 件,将会得到4组正余弦输出信号
格雷码的特点:相邻的整数在他的数字表示中只有 一个不同,可避免数字转换电路中出现很大的峰值 电流(如3-4,0011-0100) 二进制-格雷码 转换格式 :高位保留 次高位取(二 进制)高位与次高位的“异或”运算
绝对值编码器的输出形式
▪ 1 并行输出模式
多少位(码道)绝对值编码器就有多少根 信号电缆,每根电缆代表一位数据,以电缆 输出电平的高低代表1或0,物理器件与增量 值编码器相似 ,有集电极开路PNP,NPN型, 差分驱动,推挽式,差分高电平有效或低电平 有效来针对PNP或NPN的物理器件格式 ,并 行输出一般已格雷码形式输出,又称格雷码编 码器
旋转变压器的应用
▪ 1. 鉴相工作方式 感应电压的相位角等于转子的机械转角。
因此只要检测出转子输出电压的相位角,就 知道了转子的转角
旋转变压器的应用
旋转变压器
旋转变压器又称分解器,是一种控制用的微电机, 它将机械转角变换成与该转角呈某一函数关系的电信 号的一种间接测量装置。
旋转变压器的原理
1 旋转变压器是一种输出电压随转子转角变化的信号 元件。当励磁绕组以一定频率的交流电压励磁时,输出 绕组的电压幅值与转子转角成正弦或余弦函数关系,或 保持某一比例关系,或在一定转角范围内与转角成线性 关系
直尺编码器

编码器的工作原理

编码器的工作原理

编码器的工作原理编码器是一种将输入信号转换成特定编码形式的设备或算法。

它的工作原理可以分为硬件编码器和软件编码器两种类型。

硬件编码器是一种使用专用电路或芯片将输入信号转换成数字或模拟编码形式的设备。

它的工作原理可以简化为以下几个步骤:1.采样:编码器对输入信号进行采样,以便在离散时间点上获取输入信号的瞬时值。

采样频率决定了编码器的精度和响应时间。

2.量化:采样后的信号被量化,将模拟信号转换为数字信号。

量化可以通过将模拟信号映射到一个离散的数值集合来实现。

通过控制量化级数,可以平衡编码精度和数据量。

3.编码:量化后的信号被编码成特定的编码形式。

常见的编码形式包括脉冲编码调制(PCM)和脉冲编码调制(PCM)等。

编码器根据采样值的数值和顺序生成一个二进制编码序列。

4.解码:编码后的信号可以被传输或存储。

在接收端,解码器对接收到的编码信号进行解码,重新获得原始的输入信号。

软件编码器是一种通过算法将输入信号转换成编码形式的设备。

它的工作原理可以概括为以下几个步骤:1.采样:输入信号通过模数转换器(ADC)或其他方式进行采样,以便在离散时间点上获取信号的瞬时值。

采样频率决定了编码器的精度和响应时间。

2.数字信号处理:采样后的信号会经过一系列数字信号处理算法进行处理。

这些算法可以用于滤波、降噪、增益控制等。

数字信号处理可以提高编码器的性能和可靠性。

3.编码:处理后的信号被编码成特定的编码形式。

编码算法可以根据信号的统计特性和编码目的来选择。

常见的编码算法包括哈夫曼编码、熵编码等。

4.解码:编码后的信号可以被传输或存储。

在接收端,解码器通过反向算法对接收到的编码信号进行解码,重新获得原始的输入信号。

无论是硬件编码器还是软件编码器,它们都可以应用于各种领域。

例如,音频编码器常用于语音通信和音乐压缩,视频编码器常用于视频传输和存储,图像编码器常用于图像压缩和传输等。

编码器可以通过优化编码算法和增加处理能力来提高编码精度、压缩率和实时性,以满足不同应用的要求。

编码器工作原理

编码器工作原理

编码器工作原理
编码器是一种用于将机械运动转化为数字信号的装置。

它通常由一个旋转轴和一个光学或磁性传感器组成。

编码器的工作原理是通过测量旋转轴的位置和速度来生成相应的数字信号。

1. 光学编码器的工作原理:
光学编码器使用光学传感器来检测旋转轴的位置和速度。

它包含一个光源和一个光敏元件。

光源发出光束,经过旋转轴上的光栅或编码盘后被光敏元件接收。

光栅或编码盘上的刻线会使光束产生变化,光敏元件会将这些变化转化为电信号。

通过测量光敏元件接收到的电信号的变化,可以确定旋转轴的位置和速度。

2. 磁性编码器的工作原理:
磁性编码器使用磁性传感器来检测旋转轴的位置和速度。

它包含一个磁性编码盘和一个磁性传感器。

磁性编码盘上有一些磁性标记,当旋转轴旋转时,磁性传感器会感应到这些标记的磁场变化。

通过测量磁性传感器接收到的磁场变化,可以确定旋转轴的位置和速度。

编码器的输出通常是一个数字信号,可以是脉冲信号或者是数字序列。

脉冲信号的频率和方向表示旋转轴的速度和方向,而数字序列则可以被解码为旋转轴的绝对位置。

编码器在许多领域都有广泛的应用,例如机械工程、自动化控制和机器人技术等。

它们可以用于测量旋转轴的位置和速度,实现精确的位置控制和运动控制。

编码器的工作原理使其成为现代工业中不可或缺的设备之一。

编码器的工作原理及作用

编码器的工作原理及作用

编码器的工作原理及作用:它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。

编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC、控制系统等来处理。

这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。

在ELTRA 编码器中角位移的转换采用了光电扫描原理。

读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。

此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。

接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。

一般地,旋转编码器也能得到一个速度信号,这个信号要反馈给变频器,从而调节变频器的输出数据。

故障现象:1、旋转编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PG断开”...联合动作才能起作用。

要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电子电路来处理。

编码器pg接线与参数矢量变频器与编码器pg之间的连接方式,必须与编码器pg的型号相对应。

一般而言,编码器pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的接口,因此选择合适的pg卡型号或者设置合理.编码器一般分为增量型与绝对型,它们存着最大的区别:在增量编码器的情况下,位置是从零位标记开始计算的脉冲数量确定的,而绝对型编码器的位置是由输出代码的读数确定的。

在一圈里,每个位置的输出代码的读数是唯一的;因此,当电源断开时,绝对型编码器并不与实际的位置分离。

如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。

现在编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用编码器、伺服电机专用型编码器等,并且编码器都是智能型的,有各种并行接口可以与其它设备通讯。

电机编码器工作原理

电机编码器工作原理

电机编码器工作原理
电机编码器是一种用于测量电机旋转位置和速度的装置。

它通常由光电传感器和编码盘组成。

工作原理如下:
1. 光电传感器感知光源:电机编码器的编码盘上有一系列的孔,光电传感器通过感知孔的存在来检测光源的亮暗。

光源一般为红外光。

2. 编码盘转动:电机的旋转会带动编码盘一起旋转。

编码盘上的孔会随着旋转位置的变化而变化。

3. 光电传感器检测孔的变化:光电传感器会不断检测光源亮度的变化,通过记录亮暗信号的变化来确定编码盘的旋转位置和速度。

4. 输出信号:通过将亮暗信号转换为数字信号,电机编码器可以将旋转位置和速度信息传输给控制系统,以便控制系统能够对电机进行准确的控制。

总结:电机编码器利用光电传感器检测旋转编码盘上孔的亮暗信号的变化,从而测量电机的旋转位置和速度。

这些信息可以被控制系统用于实现精确的电机控制。

编码器的工作原理及作用

编码器的工作原理及作用

编码器的工作原理及作用:它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。

编码器产生电信号后由数控制置C、可编程逻辑控制器PLC、控制系统等来处理。

这些传感器主要应用在以下方面:机床、材料加工、电动机反应系统以及测量和控制设备。

在ELTRA编码器中角位移的转换采用了光电扫描原理。

读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。

此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收器外表上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘一样的窗口。

接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。

一般地,旋转编码器也能得到一个速度信号,这个信号要反应给变频器,从而调节变频器的输出数据。

故障现象:1、旋转编码器坏〔无输出〕时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PG断开〞...联合动作才能起作用。

要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电子电路来处理。

编码器pg接线与参数矢量变频器与编码器pg 之间的连接方式,必须与编码器pg的型号相对应。

一般而言,编码器pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的接口,因此选择适宜的pg卡型号或者设置合理.编码器一般分为增量型与绝对型,它们存着最大的区别:在增量编码器的情况下,位置是从零位标记开场计算的脉冲数量确定的,而绝对型编码器的位置是由输出代码的读数确定的。

在一圈里,每个位置的输出代码的读数是唯一的;因此,当电源断开时,绝对型编码器并不与实际的位置别离。

如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。

现在编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用编码器、伺服电机专用型编码器等,并且编码器都是智能型的,有各种并行接口可以与其它设备通讯。

编码器工作原理

编码器工作原理

编码器工作原理引言概述编码器是一种用于将运动或位置转换为数字信号的设备,广泛应用于工业自动化、机器人技术、数控系统等领域。

编码器工作原理的了解对于工程师和技术人员来说至关重要。

一、编码器的类型1.1 光电编码器:通过光电传感器和光栅盘的相互作用来测量位置或运动。

1.2 磁性编码器:利用磁性传感器和磁性标尺进行位置或运动测量。

1.3 光栅编码器:采用光栅盘和光电传感器来实现高精度的位置检测。

二、编码器的工作原理2.1 光电编码器工作原理:光电编码器通过光栅盘上的透明和不透明区域,使光电传感器检测到光信号的变化,从而转换为数字信号。

2.2 磁性编码器工作原理:磁性编码器利用磁性标尺上的磁性信号,通过磁性传感器检测磁场的变化,实现位置或运动的测量。

2.3 光栅编码器工作原理:光栅编码器利用光栅盘上的光栅结构,通过光电传感器检测光信号的变化,实现高精度的位置检测。

三、编码器的精度和分辨率3.1 精度:编码器的精度取决于光栅盘或磁性标尺上的刻度数量和检测器的灵敏度。

3.2 分辨率:编码器的分辨率是指编码器能够分辨的最小位移量,通常以脉冲数或线数表示。

3.3 精度和分辨率的提高可以通过增加光栅盘或磁性标尺上的刻度数量、提高检测器的灵敏度等方式实现。

四、编码器的应用领域4.1 工业自动化:编码器在数控机床、自动化生产线等设备中广泛应用,实现位置和速度的精确控制。

4.2 机器人技术:编码器用于机器人的定位、导航和运动控制,提高机器人的精度和稳定性。

4.3 数控系统:编码器在数控系统中用于测量工件位置、实现自动化加工,提高生产效率和产品质量。

五、编码器的发展趋势5.1 高精度:随着科技的不断发展,编码器的精度和分辨率将不断提高,满足更高精度的应用需求。

5.2 多功能化:未来的编码器将具备更多功能,如温度补偿、自动校准等,提高设备的稳定性和可靠性。

5.3 无接触式:随着无接触式编码器的发展,将减少机械磨损,延长设备的使用寿命。

编码器工作原理

编码器工作原理

编码器工作原理编码器是一种用来将输入信号转换成特定编码形式的设备,它在各种领域都有着广泛的应用,比如数字通信、控制系统、计算机等。

编码器的工作原理是通过将输入信号进行编码,然后输出特定的编码信号,以便于传输、存储或者处理。

在这篇文档中,我们将深入探讨编码器的工作原理及其应用。

首先,我们来了解一下编码器的基本结构。

编码器通常由输入端、编码电路和输出端组成。

输入端接收来自外部的信号,比如声音、图像、运动等,然后将这些信号传输给编码电路。

编码电路会根据特定的编码规则,将输入信号转换成对应的编码形式,最后输出给输出端。

接下来,让我们详细了解一下编码器的工作原理。

编码器的工作原理主要包括信号采样、量化和编码三个步骤。

首先是信号采样。

信号采样是指将连续的模拟信号转换成离散的数字信号的过程。

在这一步中,编码器会以一定的时间间隔对输入信号进行采样,获取一系列离散的信号样本。

接着是量化。

量化是指将采样得到的模拟信号样本转换成数字信号的过程。

在这一步中,编码器会根据一定的量化规则,将连续的模拟信号样本转换成离散的数字信号值。

最后是编码。

编码是指将量化得到的数字信号转换成特定编码形式的过程。

在这一步中,编码器会根据特定的编码规则,将量化得到的数字信号转换成对应的编码形式,比如二进制、格雷码等。

除了以上的基本工作原理,编码器还有许多不同的类型和应用。

常见的编码器类型包括数字编码器、模拟编码器、旋转编码器等。

每种类型的编码器都有着不同的工作原理和适用范围,比如数字编码器适用于数字信号的编码和传输,而模拟编码器适用于模拟信号的编码和处理。

在实际应用中,编码器有着广泛的用途。

比如在数字通信系统中,编码器可以将声音、图像等模拟信号转换成数字信号,以便于传输和处理;在控制系统中,编码器可以将机械运动转换成数字信号,以便于监控和控制;在计算机系统中,编码器可以将各种数据转换成特定的编码形式,以便于存储和处理。

总的来说,编码器是一种非常重要的设备,它通过将输入信号进行采样、量化和编码,将其转换成特定的编码形式,以便于传输、存储或者处理。

编码器的工作原理

编码器的工作原理

编码器的工作原理编码器是一种数字电子器件,其工作原理是将输入信号转换为对应的数字编码输出。

它在通信系统、自动控制、数字电路和计算机系统等领域中得到广泛应用。

本文将介绍编码器的工作原理以及常见的编码器类型。

一、编码器的工作原理:1.信号采样:在编码器中,输入信号通常是模拟信号或数字信号。

在信号采样阶段,输入信号会被周期性地采样,将连续的信号转换为离散的信号。

采样的频率取决于实际应用的要求以及系统的采样率。

2.编码处理:在信号采样后,采样的信号需要被编码成数字形式的编码输出。

编码过程是将离散信号映射为二进制编码的过程。

编码器根据特定的编码规则将信号的不同状态映射为二进制编码。

常见的编码规则有格雷码、二进制编码等。

二、编码器的分类:编码器根据信号特性和应用领域的不同,可以分为多种类型。

常见的编码器有以下几种。

1.绝对值编码器:绝对值编码器将每个位置上的输入信号映射为唯一的编码输出。

常见的绝对值编码器有二进制编码器和格雷码编码器。

二进制编码器将每个位置上的输入信号映射为二进制数,例如4位二进制编码器可以表示0-15的数字。

格雷码编码器是一种独特的编码方式,相邻的任意两个编码仅有一个位数发生变化,以减少误差和问题。

2.相对值编码器:相对值编码器将信号的变化状态编码为相对于前一状态的变量。

常见的相对值编码器有增量式编码器和霍尔效应编码器。

增量式编码器将每个位置上的输入信号与上一状态进行比较,以计算输出信号的变化量。

霍尔效应编码器通过利用霍尔传感器感测磁场的变化来实现编码。

三、编码器的应用:1.通信系统:在通信系统中,编码器用于将模拟信号转换为数字信号,以便传输和处理。

例如,音频编码器用于将声音信号编码为数字信号,以便在数字音频播放器和计算机上播放。

2.自动控制系统:在自动控制系统中,编码器用于检测和测量旋转的位置和速度。

例如,在机械系统中,旋转编码器用于测量电机的角度和速度,并将其转换为数字信号,以便控制系统对电机进行精确控制。

编码器工作原理

编码器工作原理

编码器的工作原理及作用:它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。

编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC、控制系统等来处理。

这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。

在ELTRA编码器中角位移的转换采用了光电扫描原理。

读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。

此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。

接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。

一般地,旋转编码器也能得到一个速度信号,这个信号要反馈给变频器,从而调节变频器的输出数据。

故障现象:1、旋转编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PG断开”...联合动作才能起作用。

要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电子电路来处理。

编码器pg接线与参数矢量变频器与编码器pg之间的连接方式,必须与编码器pg的型号相对应。

一般而言,编码器pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的接口,因此选择合适的pg卡型号或者设置合理.编码器一般分为增量型与绝对型,它们存着最大的区别:在增量编码器的情况下,位置是从零位标记开始计算的脉冲数量确定的,而绝对型编码器的位置是由输出代码的读数确定的。

在一圈里,每个位置的输出代码的读数是唯一的;因此,当电源断开时,绝对型编码器并不与实际的位置分离。

如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。

现在编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用编码器、伺服电机专用型编码器等,并且编码器都是智能型的,有各种并行接口可以与其它设备通讯。

编码器工作原理

编码器工作原理

编码器工作原理引言概述:编码器是一种用于将运动转换为数字信号的设备,常用于测量旋转角度或线性位移。

它在许多领域中都有广泛的应用,如机械制造、自动化控制、机器人技术等。

本文将介绍编码器的工作原理及其应用。

一、编码器的类型1.1 光学编码器:利用光学传感器来检测运动物体的位置,常见的有绝对光学编码器和增量光学编码器。

1.2 磁性编码器:利用磁性传感器来检测运动物体的位置,常见的有绝对磁性编码器和增量磁性编码器。

1.3 其他类型:还有许多其他类型的编码器,如电容编码器、霍尔编码器等。

二、编码器的工作原理2.1 光学编码器工作原理:光学编码器通过光栅盘和光电传感器来实现位置的检测,光栅盘上的光栅条通过光电传感器产生信号,经过处理后得到位置信息。

2.2 磁性编码器工作原理:磁性编码器通过磁性条纹和磁性传感器来实现位置的检测,磁性条纹上的磁性信息被磁性传感器检测并转换为位置信息。

2.3 编码器信号处理:编码器输出的信号经过信号处理电路进行处理,包括滤波、放大、数字化等步骤,最终得到准确的位置信息。

三、编码器的应用领域3.1 机械制造:编码器常用于数控机床、机器人等设备中,用于准确测量位置和速度,实现精密加工。

3.2 自动化控制:编码器在自动化控制系统中起到重要作用,用于反馈位置信息,实现闭环控制。

3.3 机器人技术:编码器是机器人关节的重要组成部分,用于控制机器人的姿态和位置,实现精准运动。

四、编码器的优势4.1 高精度:编码器能够实现高精度的位置测量,满足各种应用领域的需求。

4.2 高稳定性:编码器具有良好的稳定性和可靠性,能够长时间稳定工作。

4.3 高速度:编码器能够快速响应运动信号,实现高速运动控制。

五、编码器的发展趋势5.1 高分辨率:随着技术的不断进步,编码器的分辨率将不断提高,实现更加精密的位置测量。

5.2 多功能性:未来的编码器将具有更多的功能,如温度补偿、自动校准等功能。

5.3 集成化:编码器将越来越趋向于集成化设计,减小体积、提高性能。

编码器工作原理

编码器工作原理

编码器工作原理编码器是一种用于将输入信号转换成特定输出信号的设备。

它广泛应用于自动控制系统、通信系统、数码产品等领域。

本文将详细介绍编码器的工作原理和其常见的工作方式。

一、编码器的基本原理编码器的基本原理是将输入信号转换成特定的输出信号,以实现信息的编码和传输。

它通常由输入部分、编码部分和输出部分组成。

1. 输入部分:输入部分接收来自外部的输入信号,可以是电流、电压、光信号等。

输入信号的特点决定了编码器的适用范围和工作方式。

2. 编码部分:编码部分是编码器的核心部分,它将输入信号转换成特定的编码形式。

常见的编码方式有脉冲编码、格雷码、二进制编码等。

不同的编码方式适用于不同的应用场景。

3. 输出部分:输出部分将编码部分生成的编码信号转换成输出信号,可以是电流、电压、光信号等。

输出信号的特点决定了编码器的输出方式和使用方式。

二、编码器的工作方式编码器的工作方式主要分为绝对编码和增量编码两种。

1. 绝对编码:绝对编码器可以直接读取出物体的精确位置信息,不需要通过计数或复位等操作。

它的工作原理是将每个位置对应一个唯一的编码,通过读取编码信号来确定物体的位置。

绝对编码器通常具有高精度和高分辨率的特点,适用于对位置要求较高的应用。

2. 增量编码:增量编码器通过计数脉冲的方式来确定物体的位置。

它的工作原理是将物体的运动转换成脉冲信号,通过计数脉冲的数量和方向来确定物体的位置和运动状态。

增量编码器通常具有较低的成本和较简单的结构,适用于对位置要求不太严格的应用。

三、编码器的应用领域编码器广泛应用于各个领域,以下是一些常见的应用领域:1. 自动控制系统:编码器可以用于测量和控制机械设备的位置、速度和角度等参数,实现精确的运动控制。

2. 通信系统:编码器可以用于数字通信系统中的信号编码和解码,实现信息的传输和处理。

3. 数码产品:编码器可以用于数码相机、数码音乐播放器等产品中的位置和控制功能,提供更好的用户体验。

4. 机器人技术:编码器可以用于机器人的运动控制和定位,实现精确的姿态和位置控制。

编码器的工作原理及分类

编码器的工作原理及分类

编码器的工作原理及分类编码器是一种电子设备或电路,用于将模拟信号转换为数字信号。

编码器的工作原理是通过将连续的模拟信号转换为离散的数字信号,以便于传输、处理和存储。

编码器通常由两个主要组件组成:采样器和量化器。

采样器负责以一定的频率采样输入模拟信号,将其转换为离散的样本。

量化器则将采样后的样本进行量化,将其映射为一系列离散的数字值。

具体而言,编码器的工作原理如下:1.采样:编码器通过将输入模拟信号按照一定的频率进行采样,将其转换为一系列离散的样本。

采样频率决定了样本的数量和质量,通常采样频率越高,样本的精度越高,但也会增加系统的复杂性和数据的处理量。

2.量化:采样后的样本是连续变化的模拟信号,需要通过量化将其转换为离散的数字信号。

量化器将样本映射为一系列离散的数字值,通常使用一个固定的二进制或多进制编码方案,如二进制码、格雷码等。

量化过程中,样本与最接近的离散数值匹配,即将样本所属的区间表示为该离散数值。

3.编码:量化后的离散信号通过编码器进行编码,转换为数字信号。

编码器使用一种特定的编码方案,将离散信号映射为二进制码或其他数字表示形式,常见的编码方式有直接二进制编码(BCD)、格雷码、ASCII 码等。

编码后的数字信号可以直接传输、存储和处理。

编码器根据输入信号和编码方式的不同,可分为多种不同类型,常见的编码器类型有以下几种:1.广义编码器:广义编码器是最常见的编码器类型,可将任何类型的输入信号转换为数字信号,如模数转换器(ADC)和音频编码器等。

广义编码器可根据输入信号的特点选择合适的编码方式,用于不同应用领域。

2.旋转编码器:旋转编码器是一种用于测量旋转运动的编码器,通常用于输入设备如鼠标、旋钮等的位置检测。

旋转编码器通过检测旋钮的旋转位置和方向,将其转换为数字信号输出。

3.光学编码器:光学编码器是利用光学原理测量位置的编码器,常用于测量线性或旋转运动的位置。

光学编码器通过红外线或激光光束与光栅结构进行交互,将光栅的运动转换为数字信号输出。

编码器的工作原理介绍

编码器的工作原理介绍

编码器的工作原理介绍编码器是一种将模拟信号转换为数字信号的设备或系统。

在数字通信系统中,信息常以模拟形式存在,而数字信号更适合在长距离传输中使用。

因此,编码器的作用就是将模拟信号转换为数字信号,使之能够更加高效地传输和处理。

1.采样:编码器首先对模拟信号进行采样。

采样的目的是将模拟信号在时间上进行离散化,即将连续信号转化为以一定时间间隔为单位的离散信号。

常见的采样方法有脉冲采样和平均采样。

2.量化:采样之后,编码器开始对采样后的信号进行量化处理。

量化是指将连续的模拟信号离散化为有限个不同幅度级别的数字值。

通常使用的量化方法是均匀量化,即将信号的幅度区间划分为若干相等的量化级别,然后将采样值四舍五入到最近的量化级别上。

3.编码:量化之后,编码器将离散化的信号转换为二进制形式的数字信号。

常见的编码方法有脉冲编码调制(PCM)、脉冲码调制(PCM)、光纤编码等。

编码的目的是将量化后的信号转换为数字信号,以便进行数字信号的传输、储存和处理。

4.传输:一旦完成编码,数字信号就可以通过传输媒介(如电缆、光纤等)传输到接收端。

在传输过程中,数字信号往往会受到噪声和失真的影响,因此需要使用一些调制和解调技术来增强信号的鲁棒性。

5.解码:接收端的解码器对传输过来的数字信号进行解码,将其转换回模拟形式的信号。

解码的过程与编码相反,包括解调、译码和重建。

解调是将数字信号恢复成模拟信号的过程,译码则是将数字信号转换成相应的模拟幅度值,重建是通过插值等方法使得模拟信号更接近原始信号。

总之,编码器主要通过采样、量化、编码等步骤将模拟信号转换为数字信号,并对其进行传输和解码,使之能够更加高效地传输、储存和处理。

编码器的工作原理是数字通信系统中至关重要的一环,其技术的发展对于现代通信领域的进步起到了重要的推动作用。

编码器工作原理及特点介绍

编码器工作原理及特点介绍

编码器工作原理及特点介绍编码器是一种将输入数据转换为特定编码的设备或程序。

它的工作原理是将输入数据的不同状态或信号转换成二进制编码,以便于传输、存储和处理。

在数字电路中,常用的编码器有绝对值编码器和优先级编码器。

绝对值编码器根据输入数据的不同状态给出相应的输出编码,例如4位绝对值编码器能够将输入数据00、01、10、11分别编码为0000、0001、0010、0011、而优先级编码器则根据输入数据的优先级给出相应的输出编码,例如4位优先级编码器中,如果同时出现了多个输入数据,那么只有其中最高优先级的数据会被编码输出。

编码器的特点有以下几点:1.高效传输:编码器可以将数据从一种形式转换为另一种形式,以适应传输和存储的要求。

例如,在通信系统中,数据通常需要以二进制形式传输。

使用编码器可以将数据从模拟形式(如声音或图像)转换为数字形式,以便传输和处理。

2.数据压缩:编码器可以通过对数据进行压缩,减少数据量,从而节省传输和存储的资源。

例如,一些编码器可以将音频或视频数据压缩为更小的文件大小,以减少带宽消耗和存储空间。

3.错误检测与纠正:一些编码器可以将冗余信息添加到编码数据中,以便在传输过程中检测和纠正错误。

例如,前向纠错码可以在数据中添加冗余位,以便在接收端检测和纠正少量错误,提高数据传输的可靠性。

4.数据加密:编码器可以将数据进行加密,以保护数据的安全性和隐私。

例如,密码学中的加密算法可以将数据编码为密文,只有掌握解密密钥的人才能解码获取原始数据。

5.数据控制:编码器可以根据输入数据的不同状态来控制输出数据的行为。

例如,在计算机硬件中,地址编码器可以根据输入的不同地址信号选择对应的输出设备进行访问。

总之,编码器是一种常用的数字电路设备,它可以将输入数据转换为特定编码,以适应不同的传输、存储和处理需求。

它的特点包括高效传输、数据压缩、错误检测与纠正、数据加密和数据控制等。

编码器工作原理

编码器工作原理

编码器工作原理编码器是一种用于将机械运动转换为数字信号的设备。

它在许多领域中被广泛应用,例如机器人技术、自动化控制系统和数码设备等。

本文将详细介绍编码器的工作原理。

一、编码器的基本原理编码器可以将机械运动转换为数字信号,以便于计算机或者其他设备进行处理。

它通常由两个主要部份组成:光学传感器和编码盘。

1. 光学传感器:光学传感器是编码器的核心部件之一。

它通常由发光二极管(LED)和光电二极管(光敏二极管或者光电二极管)组成。

LED发出光线,光线照射到编码盘上的光栅或者刻线上,然后被光电二极管接收。

光电二极管将接收到的光信号转换为电信号,并发送给计算机或者其他设备进行处理。

2. 编码盘:编码盘是光学传感器的配套部件。

它通常由透明的圆盘或者条状物组成,上面刻有光栅或者刻线。

光栅通常由黑色和白色的条纹组成,黑白相间。

当光线照射到光栅上时,光电二极管会根据光线的强弱变化产生不同的电信号。

二、编码器的工作模式编码器的工作模式可以分为两种:增量式编码器和绝对式编码器。

1. 增量式编码器:增量式编码器通过计算脉冲数来确定物体的位置和运动方向。

它通常有两个输出信号通道:A相和B相。

当物体运动时,光电二极管接收到的光信号会产生脉冲,每一个脉冲对应一个位置变化。

A相和B相之间存在90度的相位差,可以通过检测A相和B相的电平变化来确定运动方向。

此外,增量式编码器还可以通过一个Z相信号来确定物体的起始位置。

2. 绝对式编码器:绝对式编码器可以直接确定物体的位置,无需计算脉冲数。

它通常有多个输出信号通道,每一个通道对应一个特定的位置。

这些位置通道上的光栅或者刻线编码不同,通过检测不同的编码组合来确定物体的位置。

绝对式编码器的优点是可以直接读取物体的位置,无需进行计数操作。

三、编码器的应用领域编码器在许多领域中都有广泛的应用,下面是一些常见的应用领域:1. 机器人技术:编码器被广泛应用于机器人技术中,用于测量机器人的关节角度和位置,以实现精确的运动控制。

编码器工作原理

编码器工作原理

编码器工作原理编码器是一种用于将物理量转换为数字信号的设备。

它在许多领域中都有广泛的应用,如自动化控制系统、通信系统、机器人技术等。

编码器的工作原理是通过测量和转换物理量的变化来生成数字信号。

一、编码器的基本原理编码器可以测量和转换各种物理量,如位置、速度、角度等。

它通常由两部份组成:传感器和信号处理器。

1. 传感器:传感器是编码器的核心部件,用于测量物理量的变化。

常见的编码器传感器有光电传感器、磁传感器和电容传感器等。

传感器将物理量的变化转换为电信号,并将其传送给信号处理器。

2. 信号处理器:信号处理器接收传感器传来的电信号,并将其转换为数字信号。

它通常由模数转换器(ADC)和微处理器组成。

ADC将摹拟信号转换为数字信号,微处理器对数字信号进行处理和分析。

二、编码器的工作过程编码器的工作过程可以分为以下几个步骤:1. 传感器测量:传感器测量物理量的变化,并将其转换为电信号。

例如,光电传感器可以通过测量光强的变化来测量位置的变化。

2. 信号转换:传感器将测量到的电信号传送给信号处理器。

信号处理器接收到电信号后,将其转换为数字信号。

这个过程通常通过模数转换器(ADC)来实现。

3. 数字信号处理:信号处理器对数字信号进行处理和分析。

它可以对信号进行滤波、放大、计数等操作,以获取更准确的测量结果。

4. 数据输出:信号处理器将处理后的数据输出给用户或者其他设备。

数据可以以数字形式输出,也可以通过通信接口传输给其他设备。

三、编码器的应用编码器在许多领域中都有广泛的应用,以下是一些常见的应用领域:1. 自动化控制系统:编码器被广泛应用于自动化控制系统中,用于测量和控制物体的位置、速度、角度等。

例如,在机械臂控制系统中,编码器可以用于测量机械臂的关节角度,从而实现精确的位置控制。

2. 通信系统:编码器可以用于通信系统中的数据传输和接收。

例如,在数字通信系统中,编码器将摹拟信号转换为数字信号,以便进行高效的数据传输。

编码器的工作原理及作用

编码器的工作原理及作用

编码器的工作原理及作用:它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。

编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC、控制系统等来处理。

这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。

在ELTRA 编码器中角位移的转换采用了光电扫描原理。

读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。

此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。

接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。

一般地,旋转编码器也能得到一个速度信号,这个信号要反馈给变频器,从而调节变频器的输出数据。

故障现象:1、旋转编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PG断开”...联合动作才能起作用。

要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电子电路来处理。

编码器pg接线与参数矢量变频器与编码器pg之间的连接方式,必须与编码器pg的型号相对应。

一般而言,编码器pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的接口,因此选择合适的pg卡型号或者设置合理.编码器一般分为增量型与绝对型,它们存着最大的区别:在增量编码器的情况下,位置是从零位标记开始计算的脉冲数量确定的,而绝对型编码器的位置是由输出代码的读数确定的。

在一圈里,每个位置的输出代码的读数是唯一的;因此,当电源断开时,绝对型编码器并不与实际的位置分离。

如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。

现在编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用编码器、伺服电机专用型编码器等,并且编码器都是智能型的,有各种并行接口可以与其它设备通讯。

编码器的工作原理

编码器的工作原理

编码器的工作原理编码器是一种用来将输入信号转换为特定格式的信号的设备,它在各种领域都有着广泛的应用,比如数字通信、音视频编码、传感器信号处理等。

编码器的工作原理是通过将输入信号进行采样、量化、编码等处理,最终输出特定格式的信号,下面我们来详细介绍一下编码器的工作原理。

首先,编码器会对输入信号进行采样。

采样是指在一定时间间隔内对输入信号进行取样,将连续的模拟信号转换为离散的数字信号。

采样的频率越高,转换出的数字信号就越接近原始模拟信号,这就需要编码器具备高速的采样率和精准的采样技术。

其次,编码器会对采样后的信号进行量化处理。

量化是将连续的模拟信号转换为离散的数字信号的过程,它会将采样后的信号按照一定的量化步长进行近似表示。

量化的精度越高,输出的数字信号就越接近原始模拟信号,这就需要编码器具备高精度的量化技术。

然后,编码器会对量化后的信号进行编码处理。

编码是将量化后的数字信号按照特定的编码规则进行处理,以便于传输和存储。

常见的编码方式包括无损编码和有损编码,它们分别适用于不同的应用场景。

无损编码可以完整地保留原始信号的信息,而有损编码则可以通过牺牲一部分信息来实现更高的压缩率。

最后,编码器会输出经过编码处理后的信号。

这些信号可以是数字信号,也可以是模拟信号,具体取决于编码器的类型和应用场景。

无论是哪种类型的信号,编码器都需要具备高质量的输出能力,以确保输出信号的准确性和稳定性。

总的来说,编码器的工作原理是通过采样、量化、编码等处理,将输入信号转换为特定格式的信号。

它需要具备高速的采样率、精准的采样技术、高精度的量化技术、有效的编码规则和高质量的输出能力。

只有这样,编码器才能在各种应用场景中发挥出最佳的性能和效果。

(整理)编码器的工作原理介绍

(整理)编码器的工作原理介绍

编码器的工作原理介绍一、光电编码器的工作原理光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。

这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。

光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。

由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。

此外,为判断旋转方向,码盘还可提供相位相差90o的两路脉冲信号。

根据检测原理,编码器可分为光学式、磁式、感应式和电容式。

根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。

(一)增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90o,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。

它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。

其缺点是无法输出轴转动的绝对位置信息。

(二)绝对式编码器绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。

这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。

显然,码道越多,分辨率就越高,对于一个具有N位二进制分辨率的编码器,其码盘必须有N条码道。

目前国内已有16位的绝对编码器产品。

绝对式编码器是利用自然二进制或循环二进制(葛莱码)方式进行光电转换的。

绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编码器的工作原理简介绝对脉冲编码器:APC增量脉冲编码器:SPC两者一般都应用于速度控制或位臵控制系统的检测元件.旋转编码器是用来测量转速的装臵。

它分为单路输出和双路输出两种。

技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。

单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。

增量型编码器与绝对型编码器的区分编码器如以信号原理来分,有增量型编码器,绝对型编码器。

增量型编码器 (旋转型)工作原理:由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。

由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。

编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。

分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。

信号输出:信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。

信号连接—编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。

如单相联接,用于单方向计数,单方向测速。

A.B两相联接,用于正反向计数、判断正反向和测速。

A、B、Z三相联接,用于带参考位修正的位臵测量。

A、A-,B、B-,Z、Z-连接,由于带有对称负信号的连接,电流对于电缆贡献的电磁场为0,衰减最小,抗干扰最佳,可传输较远的距离。

对于TTL的带有对称负信号输出的编码器,信号传输距离可达150米。

对于HTL的带有对称负信号输出的编码器,信号传输距离可达300米编码器的工作原理介绍一、光电编码器的工作原理光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。

这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装臵组成。

光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。

由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装臵检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。

此外,为判断旋转方向,码盘还可提供相位相差90o的两路脉冲信号。

根据检测原理,编码器可分为光学式、磁式、感应式和电容式。

根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。

(一)增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90o,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。

它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。

其缺点是无法输出轴转动的绝对位臵信息。

(二)绝对式编码器绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位臵时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。

这种编码器的特点是不要计数器,在转轴的任意位臵都可读出一个固定的与位臵相对应的数字码。

显然,码道越多,分辨率就越高,对于一个具有 N位二进制分辨率的编码器,其码盘必须有N条码道。

目前国内已有16位的绝对编码器产品。

绝对式编码器是利用自然二进制或循环二进制(葛莱码)方式进行光电转换的。

绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位臵。

编码的设计可采用二进制码、循环码、二进制补码等。

它的特点是:1.可以直接读出角度坐标的绝对值;2.没有累积误差;3.电源切除后位臵信息不会丢失。

但是分辨率是由二进制的位数来决定的,也就是说精度取决于位数,目前有10位、14位等多种。

(三)混合式绝对值编码器混合式绝对值编码器,它输出两组信息:一组信息用于检测磁极位臵,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。

光电编码器是一种角度(角速度)检测装臵,它将输入给轴的角度量,利用光电转换原理转换成相应的电脉冲或数字量,具有体积小,精度高,工作可靠,接口数字化等优点。

它广泛应用于数控机床、回转台、伺服传动、机器人、雷达、军事目标测定等需要检测角度的装臵和设备中。

二、光电编码器的应用电路(一)EPC-755A光电编码器的应用EPC-755A光电编码器具备良好的使用性能,在角度测量、位移测量时抗干扰能力很强,并具有稳定可靠的输出脉冲信号,且该脉冲信号经计数后可得到被测量的数字信号。

因此,我们在研制汽车驾驶模拟器时,对方向盘旋转角度的测量选用EPC-755A光电编码器作为传感器,其输出电路选用集电极开路型,输出分辨率选用360个脉冲/圈,考虑到汽车方向盘转动是双向的,既可顺时针旋转,也可逆时针旋转,需要对编码器的输出信号鉴相后才能计数。

图2给出了光电编码器实际使用的鉴相与双向计数电路,鉴相电路用1个D触发器和2个与非门组成,计数电路用3片74LS193组成,当光电编码器顺时针旋转时,通道A输出波形超前通道B输出波形90°,D触发器输出Q(波形W1)为高电平,Q(波形W2)为低电平,上面与非门打开,计数脉冲通过(波形W3),送至双向计数器74LS193的加脉冲输入端CU,进行加法计数;此时,下面与非门关闭,其输出为高电平(波形W4)。

当光电编码器逆时针旋转时,通道A输出波形比通道B输出波形延迟90°,D触发器输出Q(波形W1)为低电平,Q(波形W2)为高电平,上面与非门关闭,其输出为高电平(波形W3);此时,下面与非门打开,计数脉冲通过(波形W4),送至双向计数器74LS193的减脉冲输入端CD,进行减法计数。

汽车方向盘顺时针和逆时针旋转时,其最大旋转角度均为两圈半,选用分辨率为360个脉冲/圈的编码器,其最大输出脉冲数为900个;实际使用的计数电路用3片74LS193组成,在系统上电初始化时,先对其进行复位(CLR信号),再将其初值设为800H,即2048(LD信号);如此,当方向盘顺时针旋转时,计数电路的输出范围为2048~2948,当方向盘逆时针旋转时,计数电路的输出范围为2048~1148;计数电路的数据输出D0~D11送至数据处理电路。

实际使用时,方向盘频繁地进行顺时针和逆时针转动,由于存在量化误差,工作较长一段时间后,方向盘回中时计数电路输出可能不是2048,而是有几个字的偏差;为解决这一问题,我们增加了一个方向盘回中检测电路,系统工作后,数据处理电路在模拟器处于非操作状态时,系统检测回中检测电路,若方向盘处于回中状态,而计数电路的数据输出不是2048,可对计数电路进行复位,并重新设臵初值。

(二)光电编码器在重力测量仪中的应用采用旋转式光电编码器,把它的转轴与重力测量仪中补偿旋钮轴相连。

重力测量仪中补偿旋钮的角位移量转化为某种电信号量;旋转式光电编码器分两种,绝对编码器和增量编码器。

增量编码器是以脉冲形式输出的传感器,其码盘比绝对编码器码盘要简单得多且分辨率更高。

一般只需要三条码道,这里的码道实际上已不具有绝对编码器码道的意义,而是产生计数脉冲。

它的码盘的外道和中间道有数目相同均匀分布的透光和不透光的扇形区(光栅),但是两道扇区相互错开半个区。

当码盘转动时,它的输出信号是相位差为90°的A 相和B相脉冲信号以及只有一条透光狭缝的第三码道所产生的脉冲信号(它作为码盘的基准位臵,给计数系统提供一个初始的零位信号)。

从A,B两个输出信号的相位关系(超前或滞后)可判断旋转的方向。

当码盘正转时,A道脉冲波形比B道超前π/2,而反转时, A 道脉冲比B道滞后π/2。

是一实际电路,用A道整形波的下沿触发单稳态产生的正脉冲与B道整形波相‘与’,当码盘正转时只有正向口脉冲输出,反之,只有逆向口脉冲输出。

因此,增量编码器是根据输出脉冲源和脉冲计数来确定码盘的转动方向和相对角位移量。

通常,若编码器有N个(码道)输出信号,其相位差为π/ N,可计数脉冲为2N倍光栅数,现在N=2。

电路的缺点是有时会产生误记脉冲造成误差,这种情况出现在当某一道信号处于‚高‛或‚低‛电平状态,而另一道信号正处于‚高‛和‚低‛之间的往返变化状态,此时码盘虽然未产生位移,但是会产生单方向的输出脉冲。

例如,码盘发生抖动或手动对准位臵时(下面可以看到,在重力仪测量时就会有这种情况)。

是一个既能防止误脉冲又能提高分辨率的四倍频细分电路。

在这里,采用了有记忆功能的D型触发器和时钟发生电路。

每一道有两个D触发器串接,这样,在时钟脉冲的间隔中,两个Q端(如对应B道的74LS175的第2、7引脚)保持前两个时钟期的输入状态,若两者相同,则表示时钟间隔中无变化;否则,可以根据两者关系判断出它的变化方向,从而产生‘正向’或‘反向’输出脉冲。

当某道由于振动在‘高’、‘低’间往复变化时,将交替产生‘正向’和‘反向’脉冲,这在对两个计数器取代数和时就可消除它们的影响(下面仪器的读数也将涉及这点)。

由此可见,时钟发生器的频率应大于振动频率的可能最大值。

由图4还可看出,在原一个脉冲信号的周期内,得到了四个计数脉冲。

例如,原每圈脉冲数为1000的编码器可产生4倍频的脉冲数是4000个,其分辨率为0.09°。

实际上,目前这类传感器产品都将光敏元件输出信号的放大整形等电路与传感检测元件封装在一起,所以只要加上细分与计数电路就可以组成一个角位移测量系统(74159是4-16译码器)。

三、应用中问题分析及改进措施(一)应用中问题分析光电检测装臵的发射和接收装臵都安装在生产现场,在使用中暴露出许多缺陷,其有内在因素也有外在因素,主要表现在以下几个方面:1.发射装臵或接受装臵因机械震动等原因而引起的移位或偏移,导致接收装臵不能可靠的接收到光信号,而不能产生电信号。

相关文档
最新文档