数据结构讲义第7章新
第7章--新型计算机结构
2024年7月17日星期三
27
7.3.2面向函数式语言的归约机
• 归约机按其归约模型可分为串归约(String Reduction)机和图归约(Graph Reduction)机 两类。两者的区分主要是对函数表达式所 使用的存储方式不同,前者以字符串形式 存储而后者则以图的形式存储。
C
A
B
c
21c
22
c23
a31a32a33
b31b32b33
c31c32c33
3
其中 Cij aik bkj 1≤i≤3,1≤j≤3
k 1
在4时5图输Ο 中出方c给向23出上, c了将22在同, ct时312、输的t2出值、,ct31t时38 ,时c刻1输2送,出c入11c数,3c3据21的,,c值3到1。的t6 时值,,从t7
2024年7月17日星期三
32
AI处理的基本要点:有关知识的获取、表示和智慧地 加以使用(知识处理)。
知识的获取:AI系统应能从视觉、声音和书写等各种 信息源获取信息。由于这些信息的来源往往是不完整、 不精确甚至是相互矛盾的,因此必须对它们进行止确 的识别和理解。
知识的表示:主要是对有关对象、关系、目标、动作 以及处理过程的信息加以编码,形成数据结构和编写 成过程。
•x
激发后
<0
<0
• T(x<0)
x
•
y • 激发后
≥
≥
• F(x<y)
利用上述常用结点,可以画出一些程序结构的数据流 程图。
2024年7月17日星期三
17
数据流 程序图 举例
数据结构 第七章 章节重点概要三
活动a4 e (4)=ve(2)=3 l (4)=vl (5)-1=6
活动a5 e (5)=ve(3)=4 l (5)=vl (5)-3=4
活动a6 e (6)=ve(3)=4 l (6)=vl (6)-5=14
活动a7 e (7)=ve(4)=5 l (7)=vl (7)-6=15
ptr=G->adjlist[j].firstedge;
while (ptr!=null)
{ k=ptr->adjvex;
G->adjlist[k].count--;/*当前输出顶点邻接点的入度减1*/
if(G->adjlist[k].count= =0)/*新的入度为0的顶点进栈*/
{G->adjlist[k].count =top;
(3)从汇点vn出发,令vl[n-1]=ve[n-1],按逆拓扑有序求其余各顶点的最迟发生时间vl[i](n-2≥i≥2);
(4)根据各顶点的ve和vl值,求每条弧s的最早开始时间e(s)和最迟开始时间1(s)。若某条弧满足条件e(s)=l(s),则为关键活动。
算法7.8求出了各事件的最早发生时间,Stack为栈;引用的函数FindInDegree(G, indegree)用来求图G中各顶点的入度,并将所求的入度存放于一维数组indegree中。
如果用AOE网来表示一项工程,那么,仅仅考虑各个子工程之间的优先关系还不够,更多关心的是:整个工程完成的最短时间是多少?哪些活动的延期将会影响整个工程的进度?而加速这些活动是否会提高整个工程的效率?
因此,通常在AOE网中列出完成预定工程计划所需要进行的活动,每个活动计划完成的时间,要发生哪些事件以及这些事件与活动之间的关系,从而可以确定该项工程是否可行,估算工程完成的时间以及确定哪些活动是影响工程进度的关键。
数据结构《第七章、图》PPT课件
例如: G1 = (V1, VR1)
其中 A
V1={A, B, C, D, E}
B
E VR1={<A,B>, <A,E>,
C
D
<B,C>, <C,D>, <D,B>, <D,A>, <E,C> }
若<v, w>VR 必有<w, v>VR, 则称 (v,w) 为顶点 v 和顶点 w 之间存在一条边。
A
B
EB
E
CF
CF
假设一个连通图有 n 个顶点和 e 条边, 其中 n-1 条边和 n 个顶点构成一个极小连 通子图,称该极小连通子图为此连通图的 生成树。
B A
F
C D
E
对非连通图,则 称由各个连通分 量的生成树的集 合为此非连通图 的生成森林。
基本操作
结构的建立和销毁 对顶点的访问操作
插入或删除顶点 插入和删除弧
7.2 图的存储表示
一、图的数组(邻接矩阵)存储表示 二、图的邻接表存储表示 三、有向图的十字链表存储表示 四、无向图的邻接多重表存储表示
一、图的数组(邻接矩阵)存储表示
定义:矩阵的元素为
{ 0 (i,j)VR
Aij= 1 (i,j)VR
B A
F
C D
E
010010 100010 000101 001001 110000 011100
含有 e=n(n-1) 条弧的有向图称作 有 向完全图;
若边或弧的个数 e<nlogn,则称作 稀疏图,否则称作稠密图。
假若顶点v 和顶点w 之间存在一条边, 则称顶点v 和w 互为邻接点, 边(v,w) 和顶点v 和w 相关联。
数据结构第7章-答案
一、单选题C01、在一个图中,所有顶点的度数之和等于图的边数的倍。
A)1/2 B)1 C)2 D)4B02、在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的倍。
A)1/2 B)1 C)2 D)4B03、有8个结点的无向图最多有条边。
A)14 B)28 C)56 D)112C04、有8个结点的无向连通图最少有条边。
A)5 B)6 C)7 D)8C05、有8个结点的有向完全图有条边。
A)14 B)28 C)56 D)112B06、用邻接表表示图进行广度优先遍历时,通常是采用来实现算法的。
A)栈 B)队列 C)树 D)图A07、用邻接表表示图进行深度优先遍历时,通常是采用来实现算法的。
A)栈 B)队列 C)树 D)图A08、一个含n个顶点和e条弧的有向图以邻接矩阵表示法为存储结构,则计算该有向图中某个顶点出度的时间复杂度为。
A)O(n) B)O(e) C)O(n+e) D)O(n2)C09、已知图的邻接矩阵,根据算法思想,则从顶点0出发按深度优先遍历的结点序列是。
A)0 2 4 3 1 5 6 B)0 1 3 6 5 4 2 C)0 1 3 4 2 5 6 D)0 3 6 1 5 4 2B10、已知图的邻接矩阵同上题,根据算法,则从顶点0出发,按广度优先遍历的结点序列是。
A)0 2 4 3 6 5 1 B)0 1 2 3 4 6 5 C)0 4 2 3 1 5 6 D)0 1 3 4 2 5 6D11、已知图的邻接表如下所示,根据算法,则从顶点0出发按深度优先遍历的结点序列是。
A)0 1 3 2 B)0 2 3 1 C)0 3 2 1 D)0 1 2 3A12、已知图的邻接表如下所示,根据算法,则从顶点0出发按广度优先遍历的结点序列是。
A)0 3 2 1 B)0 1 2 3 C)0 1 3 2 D)0 3 1 2A13、图的深度优先遍历类似于二叉树的。
A)先序遍历 B)中序遍历 C)后序遍历 D)层次遍历D14、图的广度优先遍历类似于二叉树的。
课件c语言:数据结构第七章图
含有 e=n(n-1) 条弧的有向图称作 有 向完全图;
若边或弧的个数 e<nlogn,则称作
稀疏图,
13
1
1
4
2
3
4
2
3
无向完全图 有向完全图
15 A 9
11
B 7 21
E
3
C2 F
权:与图的边或 弧相关的数。
网:带权的图。
有两个图G=(V,{E}) 和
图 G=(V,{E}),
245
无向完全图 5
3
6
1
3
6
图与子图 例
例
245
1 57
1
3
6
32
46
G2
顶点5的度:3 顶点2的度:4
G1
顶点2入度:1 出度:3 顶点4入度:1 出度:0
例
路径:1,2,3,5,6,3 路径长度:5
245
简单路径:1,2,3,5
回路:1,2,3,5,6,3,1
1
3
6
简单回路:3,5,6,3
G1
31.12.2020
h
6
7.1 图的定义和术语
主
7.2 图的存储结构(***)
要
7.3 图的遍历(***)
内 容
7.4 图的连通性问题 最小生成树(***)
7.5 有向无环图及其应用
拓扑排序 关键路径
7.6 最短路径
图的结构定义:
图是由一个顶点集 V 和一个弧集 R构成的 数据结构。
Graph = (V , R ) 其中,VR={<v,w>| v,w∈V 且 P(v,w)}
C D
E
A F
数据结构(C语言版)_第7章 图及其应用
实现代码详见教材P208
7.4 图的遍历
图的遍历是对具有图状结构的数据线性化的过程。从图中任 一顶点出发,访问输出图中各个顶点,并且使每个顶点仅被访 问一次,这样得到顶点的一个线性序列,这一过程叫做图的遍 历。
图的遍历是个很重要的算法,图的连通性和拓扑排序等算法 都是以图的遍历算法为基础的。
V1
V1
V2
V3
V2
V3
V4
V4
V5
图9.1(a)
图7-2 图的逻辑结构示意图
7.2.2 图的相关术语
1.有向图与无向图 2.完全图 (1)有向完全图 (2)无向完全图 3.顶点的度 4.路径、路径长度、回路、简单路径 5.子图 6.连通、连通图、连通分量 7.边的权和网 8.生成树
2. while(U≠V) { (u,v)=min(wuv;u∈U,v∈V-U); U=U+{v}; T=T+{(u,v)}; }
3.结束
7.5.1 普里姆(prim)算法
【例7-10】采用Prim方法从顶点v1出发构造图7-11中网所对 应的最小生成树。
构造过程如图7-12所示。
16
V1
V1
V2
7.4.2 广度优先遍历
【例7-9】对于图7-10所示的有向图G4,写出从顶点A出发 进行广度优先遍历的过程。
访问过程如下:首先访问起始顶点A,再访问与A相邻的未被 访问过的顶点E、F,再依次访问与E、F相邻未被访问过的顶 点D、C,最后访问与D相邻的未被访问过的顶点B。由此得到 的搜索序列AEFDCB。此时所有顶点均已访问过, 遍历过程结束。
【例7-1】有向图G1的逻辑结构为:G1=(V1,E1) V1={v1,v2,v3,v4},E1={<v1,v2>,<v2,v3>,<v2,v4>,<v3,v4>,<v4,v1>,<v4,v3>}
数据结构-第7章图答案
7.3 图的遍历 从图中某个顶点出发游历图,访遍图中其余顶点, 并且使图中的每个顶点仅被访问一次的过程。 一、深度优先搜索 从图中某个顶点V0 出发,访问此顶点,然后依次 从V0的各个未被访问的邻接点出发深度优先搜索遍 历图,直至图中所有和V0有路径相通的顶点都被访 问到,若此时图中尚有顶点未被访问,则另选图中 一个未曾被访问的顶点作起始点,重复上述过程, 直至图中所有顶点都被访问到为止。
void BFSTraverse(Graph G, Status (*Visit)(int v)) { // 按广度优先非递归遍历图G。使用辅助队列Q和访问标志数组 visited。 for (v=0; v<G.vexnum; ++v) visited[v] = FALSE; InitQueue(Q); // 置空的辅助队列Q for ( v=0; v<G.vexnum; ++v ) if ( !visited[v]) { // v尚未访问 EnQueue(Q, v); // v入队列 while (!QueueEmpty(Q)) { DeQueue(Q, u); // 队头元素出队并置为u visited[u] = TRUE; Visit(u); // 访问u for ( w=FirstAdjVex(G, u); w!=0; w=NextAdjVex(G, u, w) ) if ( ! visited[w]) EnQueue(Q, w); // u的尚未访问的邻接顶点w入队列Q
4。邻接多重表
边结点
mark ivex
顶点结点
ilink
jvex
jlink
info
data
firstedge
#define MAX_VERTEX_NUM 20 typedef emnu {unvisited, visited} VisitIf; typedef struct Ebox { VisitIf mark; // 访问标记 int ivex, jvex; // 该边依附的两个顶点的位置 struct EBox *ilink, *jlink; // 分别指向依附这两个顶点的下一条 边 InfoType *info; // 该边信息指针 } EBox; typedef struct VexBox { VertexType data; EBox *firstedge; // 指向第一条依附该顶点的边 } VexBox; typedef struct { VexBox adjmulist[MAX_VERTEX_NUM]; int vexnum, edgenum; // 无向图的当前顶点数和边数 } AMLGraph;
数据结构第七章 排序
name 张涛 赵亮
冯博远 王强 李燕
7.2
基本原理
插入排序
每次将一个待排序的对象,按其关键字大小, 插入到前面已经排序好的一组对象的适当位臵上, 直到对象全部插入为止。
直接插入排序(Insert Sort)
希尔排序(Shell Sort)
7.2.1
直接插入排序
R[1]---R[i-1]
08 08
16 16
第三次
08
16
21
25* 25
49
希尔排序中d(间隔量)的取法 Shell最初的方案是 d= n/2, d=d/2, 直到d=1; Knuth的方案是d= d/3+1;
其它方案有:都取奇数为好;d互质为好 等等。
希尔排序的稳定性
如序列: 21 25 排序后为:08 16
R[0]有两个作用:
其一: 进入查找循环之前,保存 R[i] 的副本,使之不至 于因记录的后移而丢失R[i]中的内容; 其二: 在 while 循环时,“监视”下标变量 j 是否越界, 一旦越界(j<0),R[0]自动控制while循环的结束, 从而 避免了在while 循环内的每一次都要检测 j 是否越界( 即 省略了循环条件j>=0)。 因此,把 R[0] 称为“监视哨”。
第七章 排 序
本章内容
排序的概念和有关知识
常用的几种排序方法的基本思想、排序过 程和算法实现 各种排序算法的时间复杂度分析
学生成绩表
学号 姓名 高数 英语 总分
005 010 002
018 004
Chen Lin Gao Hong Wang Na
ZhangYang Zhao Pen
84 69 90
数据结构:第7章 图3-最小生成树
• 按照生成树的定义,n 个顶点的连通网络的生成树有 n
个顶点、n-1 条边。
即有权图
目标:
在网络的多个生成树中,寻找一个各边权值之和最小的
生成树。
构造最小生成树的准则 ❖ 必须只使用该网络中的边来构造最小生成树;
❖ 必须使用且仅使用n-1条边来联结网络中的n个顶点;
❖ 不能使用产生回路的边。
典型用途:
(b) u={1} w={2,3,4,5,6}
0 6 1 5
6
0
5
3
1 5 0 7 5 4
5
7
0
2
3 5 0 6
4 2 6 0
i
1234
closest[i] 1 1 1 1
lowcost[i] 0 6 1 5
56 11 ∞∞
closest用于存放顶点序号 lowest存放权值
15 4 6
1 25
3
54
5
6
(c ) u={1,3} w={2,4,5,6}
1
1
4
25
6
32
54
5
6
(d) u={1,3,6} w={2,4,5}
i
1234 5 6
closest[i] 1 3 1 1 3 3
lowcost[i] 0 5 0 5 5 4
i
1234 5 6
closest[i] 1 3 1 6 3 3
生
v3 v1
成
树 v4 v2
v1
0^ 1^ 0^ 1^
2.生成森林
若一个图是非连通图或非强连通图,但有若 干个连通分量或若干个强连通分量,则通过 深度优先搜索遍历或广度优先搜索遍历,不 可以得到生成树,但可以得到生成森林,且 若非连通图有 n 个顶点,m 个连通分量或强 连通分量,则可以遍历得到m棵生成树,合 起来为生成森林,森林中包含n-m条树边。
数据结构第7章-答案
一、单选题C01、在一个图中,所有顶点的度数之和等于图的边数的倍。
A)1/2 B)1 C)2 D)4B02、在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的倍。
A)1/2 B)1 C)2 D)4B03、有8个结点的无向图最多有条边。
A)14 B)28 C)56 D)112C04、有8个结点的无向连通图最少有条边。
A)5 B)6 C)7 D)8C05、有8个结点的有向完全图有条边。
A)14 B)28 C)56 D)112B06、用邻接表表示图进行广度优先遍历时,通常是采用来实现算法的。
A)栈 B)队列 C)树 D)图A07、用邻接表表示图进行深度优先遍历时,通常是采用来实现算法的。
A)栈 B)队列 C)树 D)图A08、一个含n个顶点和e条弧的有向图以邻接矩阵表示法为存储结构,则计算该有向图中某个顶点出度的时间复杂度为。
A)O(n) B)O(e) C)O(n+e) D)O(n2)C09、已知图的邻接矩阵,根据算法思想,则从顶点0出发按深度优先遍历的结点序列是。
A)0 2 4 3 1 5 6 B)0 1 3 6 5 4 2 C)0 1 3 4 2 5 6 D)0 3 6 1 5 4 2B10、已知图的邻接矩阵同上题,根据算法,则从顶点0出发,按广度优先遍历的结点序列是。
A)0 2 4 3 6 5 1 B)0 1 2 3 4 6 5 C)0 4 2 3 1 5 6 D)0 1 3 4 2 5 6D11、已知图的邻接表如下所示,根据算法,则从顶点0出发按深度优先遍历的结点序列是。
A)0 1 3 2 B)0 2 3 1 C)0 3 2 1 D)0 1 2 3A12、已知图的邻接表如下所示,根据算法,则从顶点0出发按广度优先遍历的结点序列是。
A)0 3 2 1 B)0 1 2 3 C)0 1 3 2 D)0 3 1 2A13、图的深度优先遍历类似于二叉树的。
A)先序遍历 B)中序遍历 C)后序遍历 D)层次遍历D14、图的广度优先遍历类似于二叉树的。
数据结构第7章-答案
一、单选题C01、在一个图中,所有顶点的度数之和等于图的边数的倍。
A)1/2 B)1 C)2 D)4B02、在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的倍。
A)1/2 B)1 C)2 D)4B03、有8个结点的无向图最多有条边。
A)14 B)28 C)56 D)112C04、有8个结点的无向连通图最少有条边。
A)5 B)6 C)7 D)8C05、有8个结点的有向完全图有条边。
A)14 B)28 C)56 D)112B06、用邻接表表示图进行广度优先遍历时,通常是采用来实现算法的。
A)栈B)队列C)树D)图A07、用邻接表表示图进行深度优先遍历时,通常是采用来实现算法的。
A)栈B)队列C)树D)图A08、一个含n个顶点和e条弧的有向图以邻接矩阵表示法为存储结构,则计算该有向图中某个顶点出度的时间复杂度为。
A)O(n) B)O(e) C)O(n+e) D)O(n2)C09、已知图的邻接矩阵,根据算法思想,则从顶点0出发按深度优先遍历的结点序列是。
A)0 2 4 3 1 5 6 B)0 1 3 6 5 4 2 C)0 1 3 4 2 5 6 D)0 3 6 1 5 4 2B10、已知图的邻接矩阵同上题,根据算法,则从顶点0出发,按广度优先遍历的结点序列是。
A)0 2 4 3 6 5 1 B)0 1 2 3 4 6 5 C)0 4 2 3 1 5 6 D)0 1 3 4 2 5 6D11、已知图的邻接表如下所示,根据算法,则从顶点0出发按深度优先遍历的结点序列是。
A)0 1 3 2 B)0 2 3 1 C)0 3 2 1 D)0 1 2 3A12、已知图的邻接表如下所示,根据算法,则从顶点0出发按广度优先遍历的结点序列是。
A)0 3 2 1 B)0 1 2 3 C)0 1 3 2 D)0 3 1 2A13、图的深度优先遍历类似于二叉树的。
A)先序遍历B)中序遍历C)后序遍历D)层次遍历D14、图的广度优先遍历类似于二叉树的。
数据结构:第7章 图4-拓扑排序和关键路径
拓扑排序算法
拓扑排序方法: (1)在AOV网中选一个入度为0的顶点(没有前驱) 且输出之; (2)从AOV网中删除此顶点及该顶点发出来的所 有有向边; (3)重复(1)、(2)两步,直到AOV网中所有 顶点都被输出或网中不存在入度为0的顶点。
从拓扑排序步骤可知,若在第3步中,网中所有顶 点都被输出,则表明网中无有向环,拓扑排序成功。 若仅输出部分顶点,网中已不存在入度为0的顶点, 则表明网中有有向环,拓扑排序不成功。
拓扑序列:C1--C2--C3 (3)
C12 C9 C10
C7 C8 C6
C11
拓扑序列:C1--C2--C3--C4 (4)
C7
C12
C12
C8
C8 C9 C10
C6
C9 C10
C6
C11
C11 拓扑序列:C1--C2--C3--C4--C5
(5)
拓扑序列:C1--C2--C3--C4--C5--C7 (6)
在 (b)中,我们用一种有向图来表示课程开设
拓扑排序
1.定义 给出有向图G=(V,E),对于V中的顶点的线性序列 (vi1,vi2,...,vin),如果满足如下条件:若在G中从 顶点 vi 到vj有一条路径,则在序列中顶点vi必在 顶点 vj之前;则称该序列为 G的一个拓扑序列。 构造有向图的一个拓扑序列的过程称为拓扑排序。 2.说明 (1)在AOV网中,若不存在回路,则所有活动可排成 一个线性序列,使得每个活动的所有前驱活动都排 在该活动的前面,那么该序列为拓扑序列. (2)拓扑序列不是唯一的.
2.AOV网实际意义
现代化管理中, 通常我们把计划、施工过程、生产流程、 程序流程等都当成一个工程,一个大的工程常常被划分 成许多较小的子工程,这些子工程称为活动。在整个工 程实施过程中,有些活动开始是以它的所有前序活动的 结束为先决条件的,必须在其它有关活动完成之后才能 开始,有些活动没有先决条件,可以 安排在任意时间开 始。AOV网就是一种可以形象地反映出整个工程中各个 活动之间前后关系的有向图。例如,计算机专业学生的 课程开设可看成是一个工程,每一门课程就是工程中的 活动,下页图给出了若干门所开设的课程,其中有些课 程的开设有先后关系,有些则没有先后关系,有先后关 系的课程必须按先后关系开设,如开设数据结构课程之 前必须先学完程序设计基础及离散数学,而开设离散数 学则必须先并行学完数学、程序设计基础课程。
数据结构 (C语言版)课件:第7章_图
2020/9/30
3
7.1 图的逻辑结构
7.1.1 图的定义
● 相关概念 无向图和有向图
● 无向图:如果图中顶点 vi 和 vj 之间的边无方向,则称这条边为无向边, 用无序偶对 (vi, vj) 表示,称该图为无向图。
● 有向图:如果图中顶点 vi 和 vj 之间的边有方向,则称这条边为有向边, 用有序偶对 <vi, vj> 表示,称该图为有向图。
无论有向图还是无向图,顶点数 n、边 数 e 和度数之间满足:
2020/9/30
8
7.1 图的逻辑结构
7.1.1 图的定义
● 相关概念 权和网
● 权:权通常是指对图中边赋予的有意义的数值量。在实际应用中,权 可以有具体的含义。
● 网:如果将图中的每条边上都赋上一个权值,则称这种图为网,或称 为有权图 。
2020/9/30
6
7.1 图的逻辑结构
7.1.1 图的定义
● 相关概念 稀疏图和稠密图
● 稀疏图:边数很少的图称为稀疏图,如果 e 表示图中的边数,n 表示 图中的顶点数,则 e<nlogn。
● 稠密图:边数很多的图称为稠密图,如果 e 表示图中的边数,n 表示 图中的顶点数,则 e≥nlogn。
2020/9/30
无向完全图
有向完全图
5
7.1 图的逻辑结构
7.1.1 图的定义
● 相关概念 邻接和依附
● 邻接:对图 G=(V, VR),如果边 (vi, vj)∈VR,则称顶点 vi 和 vj 互为邻 接点;如果弧<vi, vj>∈VR,则称顶点 vi 邻接到 vj,vj 邻接自 vi。
● 依附:对图 G=(V, VR),如果边 (vi, vj)∈VR 或弧 <vi, vj>∈VR,则称 边 (vi, vj) 或弧 <vi, vj> 依附于顶点 vi 和 vj。
数据结构第7章图3有向无环图及其应用ppt课件
for(p=G.vertices[i].firstarc; p; p=p->nextarc){ k=p—>adivex;//对i号顶点的每个邻接点入度减1 if(!(--indegree[k])) Push(S,k); //若入度减为0,则入栈
§7.5 有向无环图及其应用
❖有向无环图
在工程实践中,一个工程项目往往由若干个子项 目组成,这些子项目间往往有多种关系:
①先后关系,即必须在一子项目完成后,才能开 始实施另一个子项目;
②子项目之间无次序要求,即两个子项目可以同 时进行,互不影响。
§7.5 有向无环图及其应用
❖两种常用的活动网络(Activity Network)
3
4 4^
4
2 1^ 3^
1^
s
0 V1 3 V4
5 V6
4
V2 1 V3 2 V5 4
indegree[0..5] 0 0 0 0 0 0 012345
最后输出的拓扑序列为:v6v1v3v2v4v5
§7.5 有向无环图及其应用
G.vertices[0] v1
3
2
G.vertices[1] v打2 印^G.vertices[4].data
1. 输入AOV网络。令 n 为顶点个数。 2. 在AOV网络中选一个没有直接前驱的顶点, 并输出之; 3. 从图中删去该顶点, 同时删去所有它发出的有向边; 4. 重复以上 2、3 步, 直到:
全部顶点均已输出,拓扑有序序列形成,拓扑排序完成 或者,图中还有未输出的顶点,但已跳出处理循环。这说 明图中还剩下一些顶点,它们都有直接前驱,再也找不到 没有前驱的顶点了。这时AOV网络中必定存在有向环。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反之,对于下列有向图
B A C D
不能求得它的拓扑有序序列。 因为图中存在一个回路 {B, C, D}
如何进行拓扑排序? 如何进行拓扑排序?
一、从有向图中选取一个没有前驱 没有前驱 的顶点(入度为0),并输出之; 二、从有向图中删去此顶点以及所 删去此顶点以及所 有以它为尾的弧; 有以它为尾的弧 重复上述两步,直至图空,或者 图不空但找不到无前驱的顶点为止。
设图G=(V,{VR})中的一个顶点序列 { u=vi,0,vi,1, …, vi,m=w}中,(vi,j-1,vi,j)∈VR 1≤j≤m, 则称从顶点u 到顶点w 之间存在一条路径 路径。 路径 路径上边的数目称作路径长度 路径长度。 路径长度 如:长度为3的路径 简单路径:序列中顶点 简单路径 {A,B,C,F} 不重复出现的路径。 A 简单回路:序列中第一 简单回路 B E 个顶点和最后一个顶 点相同的路径。 C F
∞,反之
V1 15 8 12 2 7 3 1 V 2 4
3
V6
V3
∞ 15 ∞ 3 ∞ ∞ ∞ ∞ 4 ∞ ∞ ∞ 8 ∞ ∞ ∞ ∞ 12 ∞ ∞ ∞ ∞ 2 1 ∞ ∞ ∞ 9 ∞ ∞ 3 ∞ ∞ ∞ 7 ∞
V5
9
V4
二、图的邻接表 存储表示
算法一:(普里姆算法) 算法一:(普里姆算法) :(普里姆算法 算法二:(克鲁斯卡尔算法) 算法二:(克鲁斯卡尔算法) :(克鲁斯卡尔算法
普里姆算法的基本思想: 普里姆算法的基本思想
取图中任意一个顶点 v 作为生成树的根, 在添加 之后往生成树上添加新的顶点 w。在添加 和已经在生成树上的顶点v 的顶点 w 和已经在生成树上的顶点 之间 必定存在一条边, 必定存在一条边,并且该边的权值在所有 之间的边中取值最小。之 连通顶点 v 和 w 之间的边中取值最小 后继续往生成树上添加顶点,直至生成树 上含有 n-1 个顶点为止。
例如: 例如 a c h
0 1 2 3
b e k
4 5
g f
d
6
7
8
访问标志: T T T T T T T T T 访问标志: F F F F F F F F F 访问次序: 访问次序: a c h d k f e b g
7.3.2
基本思想: 基本思想:
广度优先搜索
从图中某个顶点v 出发,首先访问v (1)从图中某个顶点v0出发,首先访问v0。 (2)依次访问v0的各个未被访问的邻接点。 依次访问v 的各个未被访问的邻接点。
例如: 例如:
a
18 16 19 14 12 7
b
5
c
3
e
8
g
27
பைடு நூலகம்
d f
21
比较两种算法
算法名 时间复杂度 适应范围
普里姆算法 克鲁斯卡尔算法
O(n2) 稠密图
O(eloge) 稀疏图
7.5.1 拓扑排序
问题: 问题
假设以有向图表示一个工程的施 工图或程序的数据流图,则图中不允 许出现回路。
检查有向图中是否存在回路的方法 之一,是对有向图进行拓扑排序 拓扑排序。 拓扑排序
<B,E>, <C,D>, <D,F>, <B,F>, <C,F> }
由顶点集和边 集构成的图称 作无向图。
B A F
C D E
名词和术语
网、子图 完全图、稀疏图、稠密图 邻接点、度、入度、出度 路径、路径长度、简单路径、简单回路 连通图、连通分量、 强连通图、强连通分量 生成树、生成森林
15
A
7.1 图的定义和术语 7.2 图的存储表示 7.3 图的遍历 7.4 图的连通性问题 7.5 有向无环图及其应用 7.6 最短路径
图的结构定义: 图的结构定义
图是由一个顶点集 V 和一个弧集 R构成 是由一个顶点集 和一个弧集 构成 的数据结构。 的数据结构。 Graph = (V , R ) 其中,VR={<v,w>| v,w∈V 且 P(v,w)} <v,w>表示从 v 到 w 的一条弧,并称 v 为 弧头,w 为弧尾 弧尾。 弧头 弧尾 谓词 P(v,w) 定义了弧 <v,w>的意义或信息。
克鲁斯卡尔算法的基本思想: 克鲁斯卡尔算法的基本思想:
考虑问题的出发点: 考虑问题的出发点 为使生成树上边的权 值之和达到最小,则应使生成树中每一条 边的权值尽可能地小。 具体做法: 具体做法 先构造一个只含 n 个顶点的子图 SG,然后从权值最小的边开始,若它的添 加不使SG 中产生回路,则在 SG 上加上这 条边,如此重复,直至加上 n-1 条边为止。
何谓“拓扑排序” 何谓“拓扑排序”?
对有向图进行如下操作:
按照有向图给出的次序关系, 将图中顶点排成一个线性序列, 对于有向图中没有限定次序关 系的顶点,则可以人为加上任 意的次序关系。
由此所得顶点的线性序列称之为 拓扑有序序列
例如:对于下列有向图
B A C D
可求得拓扑有序序列: ABCD 或 ACBD
假若顶点v 和顶点w 之间存在一条边, 则称顶点v 和w 互为邻接点 邻接点, 邻接点 边(v,w) 和顶点v 和w 相关联 关联。 关联 和顶点v 关联的边的数目 边的数目定义为顶点v的度。 边的数目 度 例如: 例如: TD(B) = 3 TD(A) = 2 F E A B C D
对有向图来说, 对有向图来说
0 (i,j)∉VR
A B C DD E F
有向图的邻接矩阵 为非对称矩阵
A B C E E F
A B C E F
A B C F
0 0 0 0 1
1 0 0 0 1
0 1 0 1 0
1 0 0 0 0
0 0 1 0 0
网的邻接矩阵可定义为: 网的邻接矩阵可定义为:
wij,若(vi,vj)或< vi,vj >∈E ∈ A[i,j]=
若图G中任意两个顶 点之间都有路径相通, 则称此图为连通图 连通图; A 连通图 B A F E C D
B
C D
F
E
若无向图为非连通图, 则图中各个极大连通 子图称作此图的连通 连通 分量。 分量
若任意两个顶点之间都存在 对有向图, 对有向图, 一条有向路径,则称此有向图为强连通图 强连通图。 强连通图 否则,其各个强连通子图称作它的 强连通分量。 强连通分量 A B C F E B C F A E
例如: 例如:
a
18 16 19 14 12 7
b
5
c
3
e
8
g
27
d f
21
所得生成树权值和 = 14+8+3+5+16+21 = 67
一般情况下所添加的顶点应满足下列 条件: 在生成树的构造过程中,图中 n 个 顶点分属两个集合:已落在生成树上的 顶点集 U 和尚未落在生成树上的顶点集 V-U ,则应在所有连通 中顶点和 在所有连通U中顶点和 在所有连通 中顶点和V-U中 中 顶点的边中选取权值最小的边。 顶点的边中选取权值最小的边
7.3.2
例
广度优先搜索
求图G 的以V0 V0起点的的广度优先序列 求图G 的以V0起点的的广度优先序列 V0,V1,V2,V3,V4,V5,V6,V7 由于没有规定 访问邻接点的顺序, 访问邻接点的顺序, 广度优先序列不是唯一的
V0 V0 V1 V1 V2 V2 V4 V4 V7 V7 V5 V5
V3 V3
V6 V6
7.4 图的连通性问题
问题: 问题:
假设要在 n 个城市之间建立通讯 联络网,则连通 n 个城市只需要修建 n-1条线路,如何在最节省经费的前 如何在最节省经费的前 提下建立这个通讯网 通讯网? 提下建立 通讯网
该问题等价于: 该问题等价于: 构造网的一棵最小生成树,即: 在 e 条带权的边中选取 n-1 条边(不构成 回路),使“权值之和 权值之和”为最小。 权值之和
深度优先搜索 广度优先搜索 遍历应用举例
一、深度优先搜索遍历图
连通图的深度优先搜索遍历
从图中某个顶点V0 出发,访问此顶 点,然后依次从 0的各个未被访问的邻 依次从V 依次从 接点出发深度优先搜索遍历图,直至图中 接点出发深度优先搜索遍历图 所有和V0有路径相通的顶点都被访问到。
7.3.1
例
连通图深度优先搜索 求图G以 起点的的深度优先序列 求图 以V1起点的的深度优先序列
21 2
9 11
弧或边带权的图
B
3
7
E
C
F
有向网或 分别称作有向网 有向网 无向网。 无向网
设图G=(V,{VR}) 和 图 G′=(V′,{VR′}), 且 V′⊆V, VR′⊆VR, 子图。 则称 G′ 为 G 的子图 子图
B A B C F E
假设图中有 n 个顶点,e 条边,则 含有 e=n(n-1)/2 条边的无向图称作 完全图; 完全图 含有 e=n(n-1) 条弧的有向图称作 有向完全图; 有向完全图 若边或弧的个数 e<nlogn,则称作 稀疏图,否则称作稠密图 稀疏图 稠密图。 稠密图
(3)分别从这些邻接点(端结点)出发,依次访问 分别从这些邻接点(端结点)出发, 它们的各个未被访问的邻接点(新的端结点)。 它们的各个未被访问的邻接点(新的端结点)。 访问时应保证:如果Vi和Vk为当前端结点,且Vi在 访问时应保证:如果Vi和Vk为当前端结点, Vi在 Vi 为当前端结点 Vk之前被访问, Vi的所有未被访问的邻接点应在 Vk之前被访问,则Vi的所有未被访问的邻接点应在 之前被访问 Vk的所有未被访问的邻接点之前访问。重复( Vk的所有未被访问的邻接点之前访问。重复(3), 的所有未被访问的邻接点之前访问 直到所有端结点均没有未被访问的邻接点为止。 直到所有端结点均没有未被访问的邻接点为止。 若此时还有顶点未被访问, 若此时还有顶点未被访问,则选一个未被访问的顶 点作为起始点,重复上述过程, 点作为起始点,重复上述过程,直至所有顶点均被 访问过为止。 访问过为止。