2007年全国高中数学联合竞赛加试试卷
2007年全国高中数学联合竞赛一试试题及参考答案
球面与正方体的表面相交所得到的曲线的长等于(
).
解:如图,球面与正方体的六个面都相交,所得的交线分为两类:一类在顶点 A 所在 的三个面上,即面 AA1B1B、面 ABCD 和面 AA1D1D 上;另一类在不过顶点 A 的三个面上,即面 BB1C1C、面 CC1D1D 和面 A1B1C1D1 上.在面 AA1B1B 上,交线为弧 EF 且在过球心 A 的大圆上,
任意的 x∈R,af(x)+bf(x-c)=1,由此得
.
一般地,由题设可得
,
且
,于是 af(x)+bf(x-c)=1 可化为
,即
,c=π,则对 ,其中
,所以
.
由已知条件,上式对任意 x∈R 恒成立,故必有
,
若 b=0,则由(1)知 a=0,显然不满足(3)式,故 b≠0.所以,由(2)知 sinc=0,故 c=2kπ+π 或 c=2kπ(k∈Z).当 c=2kπ 时,cosc=1,则(1)、(3)两式矛盾,故 c=2kπ+π(k∈Z),cosc=-1.
1.如图,在正四棱锥 P-ABCD 中,∠APC=60°,则二面角 A-PB-C 的平面角的余弦值为( B)
A. B. C. D.
解:如图,在侧面 PAB 内,作 AM⊥PB,垂足为 M.连结 CM、AC,则∠AMC 为二面角 A-PB-C
的平面角.不妨设 AB=2,则
上是增函数,在
,设
,
上是减函数,且 y=g(x)的图像关于直线
对称,则对任意
,存在
,使 g(x2)=g(x1).于是
,而 f(x)在
上是减
函数,所以
,即 f(x)在
上的最小值是 .
12.将 2 个 a 和 2 个 b 共 4 个字母填在如图所示的 16 个小方格内,每个小方格内至多 填 1 个字母,若使相同字母既不同行也不同列,则不同的填法共有(3960)种(用数字作答).
全国高中数学联合竞赛一试试卷及答案
2007年全国高中数学联合竞赛一试试卷(考试时间:上午8:00—9:40)一、选择题(本题满分36分,每小题6分)1.如图,在正四棱锥P −ABCD 中,∠APC =60°,则二面角A −PB −C 的平面角的余弦值为 ( ) A .71B .71-C .21D .21-2.设实数a 使得不等式|2x −a |+|3x −2a |≥a 2对任意实数x 恒成立,则满足条件的a 所组成的集合是 ( )A .]31,31[-B .]21,21[-C .]31,41[-D . [−3,3]3.将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。
甲从袋中摸出一个球,其号码为a ,放回后,乙从此袋中再摸出一个球,其号码为b 。
则使不等式a −2b +10>0成立的事件发生的概率等于 ( )A .8152B .8159 C .8160 D .8161 4.设函数f (x )=3sin x +2cos x +1。
若实数a 、b 、c 使得af (x )+bf (x −c )=1对任意实数x 恒成立,则acb cos 的值等于( )A .21-B .21 C . −1 D .15.设圆O 1和圆O 2是两个定圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹不可能是 ( )6.已知A 与B 是集合{1,2,3,…,100}的两个子集,满足:A 与B 的元素个数相同,且为A ∩B 空集。
若n ∈A 时总有2n +2∈B ,则集合A ∪B 的元素个数最多为 ( ) A .62 B .66 C. 68 D. 74 二、填空题(本题满分54分,每小题9分) 7.在平面直角坐标系内,有四个定点A (−3,0),B (1,−1),C (0,3),D (−1,3)及一个动点P ,则|PA |+|PB |+|PC |+|PD |的最小值为__________。
8.在△ABC 和△AEF 中,B 是EF 的中点,AB =EF =1,BC =6,33=CA ,若2=⋅+⋅,则与的夹角的余弦值等于________。
2007年全国高中数学联合竞赛湖北省预赛试题
2007年全国高中数学联合竞赛湖北省预赛试题参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准。
选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准规定的评分档次给分,不要再增加其它中间档次。
2. 如果考生的解题方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,5分为一个档次,不要再增加其他中间档次。
一、选择题(本题满分36分,每小题6分)本题共有6小题,每小题均给出A ,B ,C ,D 四个结论,其中有且仅有一个是正确的。
请将正确答案的代表字母填在题后的括号内。
每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在括号内),一律得0分。
1. 已知,a b 是方程3274log 3log (3)3x x +=-的两个根,则a b += ( ) A. 1027 B. 481 C. 1081 D. 2881解 原方程变形为3333log 3log (3)4log (3)log 273x x +=-,即331log 141log 33x x ++=-+.令31log x t +=,则1433t t +=-,解得121,3t t =-=-.所以31l o g 1x +=-或31log 3x +=-,所以方程的两根分别为19和181,所以1081a b +=. 故选(C ).2. 设D 为△ABC 的边AB 上一点,P 为△ABC 内一点,且满足34AD AB =,25AP AD BC =+,则APD ABCSS =△△ ( ) A.310 B. 25 C. 715 D. 815解 连PD ,则25DP BC =,所以//DP BC ,故ADP B ∠=∠,故1sin 323214510sin 2APD ABC AD DP ADP S S AB BC B ⋅⋅∠==⋅=⋅⋅∠△△. 故选(A ).3. 定义在R 上的函数()f x 既是奇函数又是周期函数,若()f x 的最小正周期是π,且当x∈[0,2π)时,()sin f x x =,则8()3f π的值为 ( )A.2 B.2- C. 12 D. 12-解 根据题设条件可知8()(3)()()sin 33333f f f f ππππππ=-+=-=-=-= 故选(B ).4. 已知1111ABCD A BC D -是一个棱长为1的正方体,1O 是底面1111A B C D 的中心,M 是棱1BB 上的点,且:2:3S S =11△DBM △O B M ,则四面体1O ADM 的体积为 ( )A.724 B. 316 C. 748 D. 1148解 易知AC ⊥平面11D B BD ,设O 是底面ABCD 的中心,则AO ⊥平面1DO M .因为1111223S BD BM BM S O B B M B M ⋅==⋅=⋅11△DBM △O B M ,所以113BM B M =,故113,44BM B M ==.于是S S S S S =---1111111△DO M D B BD △DD O △O B M △DBM11311112222424=⨯-⨯-⨯=所以1173348V S AO =⋅==11A-O MD △DO M . 故选(C ). 5. 有编号分别为1,2,3,4,5的5个红球和5个黑球,从中取出4个,则取出的球的编号互不相同的概率为 ( )A.521. B. 27. C. 13 D. 821解 从10个球中取出4个,不同的取法有410C 210=种.如果要求取出的球的编号互不相同,可以先从5个编号中选取4个编号,有45C 种选法.对于每一个编号,再选择球,有两种颜色可供挑选,所以取出的球的编号互不相同的取法有445C 280⋅=种.CA C 1因此,取出的球的编号互不相同的概率为80821021=. 故选(D ). 6. 使得381n+是完全平方数的正整数n 有 ( ) A. 0个 B. 1个 C. 2个 D. 3个解 当4n ≤时,易知381n+不是完全平方数.故设4n k =+,其中k 为正整数,则38181(31)n k +=+.因为381n+是完全平方数,而81是平方数,则一定存在正整数x ,使得231kx +=,即231(1)(1)k x x x =-=+-,故1,1x x +-都是3的方幂.又两个数1,1x x +-相差2,所以只可能是3和1,从而2,1x k ==.因此,存在唯一的正整数45n k =+=,使得381n+为完全平方数.故选(B ). 二、填空题(本题满分54分,每小题9分) 本题共有6小题,要求直接将答案写在横线上。
2007年高中数学联合竞赛天津地区预赛试卷
2007年高中数学联合竞赛天津地区预赛试卷一、选择题1. 6=的实数解的个数为( )A 、0B 、1C 、2D 、大于22. 正2007边形P 被它的一些不在P 内部相交的对角线分割成若干个区域,每个区域都是三角形,则锐角三角形的个数为( )A 、0B 、1C 、大于1D 、与分割方法有关3. 已知关于参数()0a a >的二次函数()2211344y ax a a x R a=++--+∈的最小值是关于a 的函数()f a ,则()f a 的最小值为( ) A 、2- B 、13764- C 、14- D 、以上结果都不对4. 已知,a b 为正整数,a b ≤,实数,x y 满足4x y +=,若x y +的最大值为40,则满足条件的数对(),a b 的数目为( )A 、1B 、3C 、5D 、75. 定义区间()[)(][],,,,,,,c d c d c d c d 的长度均为d c -,其中d c >.已知实数a b >,则满足111x a x b+≥--的x 构成的区间的长度之和为( ) A 、1 B 、a b - C 、a b + D 、26. 过四面体ABCD 的顶点D 作半径为1的球,该球与四面体ABCD 的外接球相切于点D ,且与平面ABC 相切.若AD =45,60BAD CAD BAC ∠=∠=︒∠=︒,则四面体ABCD 的外接球的半径r 为( )A 、2B 、C 、3D 、二、填空题7. 若关于,x y 的方程组22110ax by x y +=⎧⎨+=⎩有解,且所有解都是整数,则有序数对(),a b 的数目为8. 方程2232007x y +=的所有正整数解的个数为9. 若D 为边长为1的正三角形ABC 的边BC 上的点,ABD 与ACD 的内切圆半径分别为12,r r ,若12r r +=,则满足条件的点D 有两个,分别设为12,D D ,在12,D D 之间的距离为10. 方程()()()()()()()()()33333333149214911493149x x x x x x x x x x x x ⎛⎫---++++++= ⎪ ⎪++++++⎝⎭的不同非零整数解的个数为11. 设集合{}{}222221234512345,,,,,,,,,A a a a a a B a a a a a ==,其中12345,,,,a a a a a 是五个不同的正整数,12345a a a a a <<<<,{}1414,,10A B a a a a =+=,若A B 中所有元素的和为246,则满足条件的集合A 的个数为12. 在平面直角坐标系中定义两点()11,P x y ,()22,Q x y 之间的交通距离为()1212,d P Q x x y y =-+-.若(),C x y 到点()()1,3,6,9A B 的交通距离相等,其中实数,x y 满足010,010x y ≤≤≤≤,则所有满足条件的点C 的轨迹的长之和为三、解答题13. 已知ABC 的外心为O ,90A ∠<︒,P 为OBC 的外接圆上且在ABC 内部的任意一点,以OA 为直径的圆分别与,AB AC 交于,D E ,,OD OE 分别与,PB PC 或其延长线交于点,F G ,求证,,A F G 三点共线14. 已知数列{}n a ()0n ≥满足010,1a a ==,对于所有正整数n ,有1122007n n n a a a +-=+,求使得2008|n a 成立的最小正整数n15. 排成一排的10名学生生日的月份均不相同,有n 名教师,依次挑选这些学生参加n 个兴趣小组,每个学生恰被一名教师挑选,且保持学生的排序不变,每名教师挑出的学生必须满足生日的月份是逐渐增加或逐渐减少的(挑选一名或两名学生也认为是逐渐增加或逐渐减少),每名教师尽可能多选学生,对于学生所有可能的排序,求n 的最小值.答案:1、A2、B3、A4、C5、D6、C7、328、42,9x y == 910、4 11、2 12、)51 13、略14、200815、4。
2007年全国高中数学联合竞赛试题及解答.
2007年全国高中数学联合竞赛一试一、填空题:本大题共6个小题,每小题6分,共36分。
2007*1、如图,在正四棱锥ABCD P -中,060=∠APC ,则二面角C PB A --的平面角的余弦值为A.71 B.71- C.21 D.21-◆答案:B★解析:如图,在侧面PAB 内,作AM ⊥PB ,垂足为M 。
连结CM 、AC ,则∠AMC 为二面角A−PB−C 的平面角。
不妨设AB =2,则22==AC PA ,斜高为7,故2272⋅=⨯AM ,由此得27==AM CM 。
在△AMC 中,由余弦定理得712cos 222-=⋅⋅-+=∠CM AM AC CM AM AMC 。
2007*2、设实数a 使得不等式2232a a x a x ≥-+-对任意实数x 恒成立,则满足条件的a 所组成的集合是A.⎥⎦⎤⎢⎣⎡-31,31 B.⎥⎦⎤⎢⎣⎡-21,21 C.⎥⎦⎤⎢⎣⎡-31,41 D.[]3,3-◆答案:A★解析:令a x 32=,则有31||≤a ,排除B 、D 。
由对称性排除C ,从而只有A 正确。
一般地,对R k ∈,令ka x 21=,则原不等式为2|||34|||23|1|||a k a k a ≥-⋅+-⋅,由此易知原不等式等价于|34|23|1|||-+-≤k k a ,对任意的R k ∈成立。
由于⎪⎪⎪⎩⎪⎪⎪⎨⎧<-<≤-≥-=-+-125334121134325|34|23|1|k k k k k k k k ,所以31|}34|23|1{|min R =-+-∈k k k ,从而上述不等式等价于31||≤a 。
2007*3、将号码分别为9,,2,1 的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。
甲从袋中摸出一个球,其号码为a ,放回后,乙从袋中再摸出一个球,其号码为b 。
则使不等式0102>+-b a 成立的事件发生的概率等于A.8152 B.8159 C.8160 D.8161◆答案:D ★解析:甲、乙二人每人摸出一个小球都有9种不同的结果,故基本事件总数为8192=个。
2007年全国高中数学联合竞赛一试试题及参考答案
2007年全国高中数学联合竞赛一试试题及参考答案一、选择题(本题满分36分,每小题6分)1.如图,在正四棱锥P-ABCD中,∠APC=60°,则二面角A-PB-C的平面角的余弦值为( )A. B. C. D.2.设实数a使得不等式|2x-a|+|3x-2a|≥a2对任意实数x恒成立,则满足条件的a所组成的集合是( )A. B. C. D.[-3,3]3.将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同.甲从袋中摸出一个球,其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b.则使不等式a-2b+10>0成立的事件发生的概率等于( )A. B. C. D.4.设函数f(x)=3sinx+2cosx+1.若实数a、b、c使得af(x)+bf(x-c)=1对任意实数x恒成立,则的值等于( )A. B. C.-1 D.15.设圆O1和圆O2是两个定圆,动圆P与这两个定圆都相切,则圆P的圆心轨迹不可能是( )6.已知A与B是集合{1,2,3,…,100}的两个子集,满足:A与B的元素个数相同,且为A∩B空集.若n∈A时总有2n+2∈B,则集合A∪B的元素个数最多为( )A.62B.66C.68D.74二、填空题(本题满分54分,每小题9分)7.在平面直角坐标系内,有四个定点A(-3,0),B(1,-1),C(0,3),D(-1,3)及一个动点P,则|PA|+|PB|+|PC|+|PD|的最小值为__________.8.在△ABC和△AEF中,B是EF的中点,AB=EF=1,BC=6,,若,则与的夹角的余弦值等于________.9.已知正方体ABCD-A1B1C1D1的棱长为1,以顶点A为球心,为半径作一个球,则球面与正方体的表面相交所得到的曲线的长等于__________.10.已知等差数列{a n}的公差d不为0,等比数列{b n}的公比q是小于1的正有理数.若2,且是正整数,则q等于________.a11.已知函数,则f(x)的最小值为________.12.将2个a和2个b共4个字母填在如图所示的16个小方格内,每个小方格内至多填1个字母,若使相同字母既不同行也不同列,则不同的填法共有________种(用数字作答).三、解答题(本题满分60分,每小题20分)13.设,求证:当正整数n≥2时,a n+1<a n.14.已知过点(0,1)的直线l与曲线C:交于两个不同点M和N.求曲线C在点M、N处切线的交点轨迹.15.设函数f(x)对所有的实数x都满足f(x+2π)=f(x),求证:存在4个函数f i(x)(i=1,2,3,4)满足:(1)对i=1,2,3,4,f i(x)是偶函数,且对任意的实数x,有f i(x+π)=f i(x);(2)对任意的实数x,有f(x)=f1(x)+f2(x)cosx+f3(x)sinx+f4(x)sin2x.2007年全国高中数学联合竞赛一试试题参考答案一、选择题(本题满分36分,每小题6分)1.如图,在正四棱锥P-ABCD中,∠APC=60°,则二面角A-PB-C的平面角的余弦值为( B )A. B. C. D.解:如图,在侧面PAB内,作AM⊥PB,垂足为M.连结CM、AC,则∠AMC为二面角A-PB-C 的平面角.不妨设AB=2,则,斜高为,故,由此得.在△AMC中,由余弦定理得.2.设实数a使得不等式|2x-a|+|3x-2a|≥a2对任意实数x恒成立,则满足条件的a所组成的集合是( A )A. B. C. D.[-3,3]解:令,则有,排除B、D.由对称性排除C,从而只有A正确.一般地,对k∈R,令,则原不等式为,由此易知原不等式等价于,对任意的k∈R成立.由于,所以,从而上述不等式等价于.3.将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同.甲从袋中摸出一个球,其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b.则使不等式a-2b+10>0成立的事件发生的概率等于( D )A. B. C. D.解:甲、乙二人每人摸出一个小球都有9种不同的结果,故基本事件总数为92=81个.由不等式a-2b+10>0得2b<a+10,于是,当b=1、2、3、4、5时,每种情形a可取1、2、…、9中每一个值,使不等式成立,则共有9×5=45种;当b=6时,a可取3、4、…、9中每一个值,有7种;当b=7时,a可取5、6、7、8、9中每一个值,有5种;当b=8时,a可取7、8、9中每一个值,有3种;当b=9时,a只能取9,有1种.于是,所求事件的概率为.4.设函数f(x)=3sinx+2cosx+1.若实数a、b、c使得af(x)+bf(x-c)=1对任意实数x恒成立,则的值等于( C )A. B. C.-1 D.1解:令c=π,则对任意的x∈R,都有f(x)+f(x-c)=2,于是取,c=π,则对任意的x∈R,af(x)+bf(x-c)=1,由此得.一般地,由题设可得,,其中且,于是af(x)+bf(x-c)=1可化为,即,所以.由已知条件,上式对任意x∈R恒成立,故必有,若b=0,则由(1)知a=0,显然不满足(3)式,故b≠0.所以,由(2)知sinc=0,故c=2kπ+π或c=2kπ(k∈Z).当c=2kπ时,cosc=1,则(1)、(3)两式矛盾,故c=2kπ+π(k∈Z),cosc=-1.由(1)、(3)知,所以.5.设圆O1和圆O2是两个定圆,动圆P与这两个定圆都相切,则圆P的圆心轨迹不可能是( A )解:设圆O1和圆O2的半径分别是r1、r2,|O1O2|=2c,则一般地,圆P的圆心轨迹是焦点为O1、O2,且离心率分别是和的圆锥曲线(当r1=r2时,O1O2的中垂线是轨迹的一部份,当c=0时,轨迹是两个同心圆).当r1=r2且r1+r2<2c时,圆P的圆心轨迹如选项B;当0<2c<|r1-r2|时,圆P的圆心轨迹如选项C;当r1≠r2且r1+r2<2c时,圆P的圆心轨迹如选项D.由于选项A中的椭圆和双曲线的焦点不重合,因此圆P的圆心轨迹不可能是选项A.6.已知A与B是集合{1,2,3,…,100}的两个子集,满足:A与B的元素个数相同,且为A∩B空集.若n∈A时总有2n+2∈B,则集合A∪B的元素个数最多为( B )A.62B.66C.68D.74解:先证|A∪B|≤66,只须证|A|≤33,为此只须证若A是{1,2,…,49}的任一个34元子集,则必存在n∈A,使得2n+2∈B.证明如下:将{1,2,…,49}分成如下33个集合:{1,4},{3,8},{5,12},…,{23,48}共12个;{2,6},{10,22},{14,30},{18,38}共4个;{25},{27},{29},…,{49}共13个;{26},{34},{42},{46}共4个.由于A是{1,2,…,49}的34元子集,从而由抽屉原理可知上述33个集合中至少有一个2元集合中的数均属于A,即存在n∈A,使得2n+2∈B.如取A={1,3,5,…,23,2,10,14,18,25,27,29,…,49,26,34,42,46},B={2n+2|n∈A},则A、B满足题设且|A∪B|≤66.二、填空题(本题满分54分,每小题9分)7.在平面直角坐标系内,有四个定点A(-3,0),B(1,-1),C(0,3),D(-1,3)及一个动点P,则|PA|+|PB|+|PC|+|PD|的最小值为().解:如图,设AC与BD交于F点,则|PA|+|PC|≥|A C|=|FA|+|FC|,|PB|+|PD|≥|BD|=|FB|+|FD|,因此,当动点P与F点重合时,|PA|+|PB|+|PC|+|PD|取到最小值.8.在△ABC和△AEF中,B是EF的中点,AB=EF=1,BC=6,,若,则与的夹角的余弦值等于().解:因为,所以,即.因为,,,所以,即.设与的夹角为θ,则有,即3cosθ=2,所以.9.已知正方体ABCD-A1B1C1D1的棱长为1,以顶点A为球心,为半径作一个球,则球面与正方体的表面相交所得到的曲线的长等于().解:如图,球面与正方体的六个面都相交,所得的交线分为两类:一类在顶点A所在的三个面上,即面AA1B1B、面ABCD和面AA1D1D上;另一类在不过顶点A的三个面上,即面BB1C1C、面CC1D1D和面A1B1C1D1上.在面AA1B1B上,交线为弧EF且在过球心A的大圆上,因为,AA1=1,则.同理,所以,故弧EF的长为,而这样的弧共有三条.在面BB1C1C上,交线为弧FG且在距球心为1的平面与球面相交所得的小圆上,此时,小圆的圆心为B,半径为,,所以弧FG的长为.这样的弧也有三条.于是,所得的曲线长为.10.已知等差数列{a n}的公差d不为0,等比数列{b n}的公比q是小于1的正有理数.若a1=d,b1=d2,且是正整数,则q等于().解:因为,故由已知条件知道:1+q+q2为,其中m为正整数.令,则.由于q是小于1的正有理数,所以,即5≤m≤13且是某个有理数的平方,由此可知.11.已知函数,则f(x)的最小值为().解:实际上,设,则g(x)≥0,g(x)在上是增函数,在上是减函数,且y=g(x)的图像关于直线对称,则对任意,存在,使g(x2)=g(x1).于是,而f(x)在上是减函数,所以,即f(x)在上的最小值是.12.将2个a和2个b共4个字母填在如图所示的16个小方格内,每个小方格内至多填1个字母,若使相同字母既不同行也不同列,则不同的填法共有(3960)种(用数字作答).解:使2个a既不同行也不同列的填法有C42A42=72种,同样,使2个b既不同行也不同列的填法也有C42A42=72种,故由乘法原理,这样的填法共有722种,其中不符合要求的有两种情况:2个a所在的方格内都填有b的情况有72种;2个a所在的方格内仅有1个方格内填有b的情况有C161A92=16×72种.所以,符合题设条件的填法共有722-72-16×72=3960种.三、解答题(本题满分60分,每小题20分)13.设,求证:当正整数n≥2时,a n+1<a n.证明:由于,因此,于是,对任意的正整数n≥2,有,即a n+1<a n.14.已知过点(0,1)的直线l与曲线C:交于两个不同点M和N.求曲线C在点M、N处切线的交点轨迹.解:设点M、N的坐标分别为(x1,y1)和(x2,y2),曲线C在点M、N处的切线分别为l1、l2,其交点P的坐标为(x p,y p).若直线l的斜率为k,则l的方程为y=kx+1.由方程组消去y,得,即(k-1)x2+x-1=0.由题意知,该方程在(0,+∞)上有两个相异的实根x1、x2,故k≠1,且Δ=1+4(k-1)>0…(1),…(2),…(3),由此解得.对求导,得,则,,于是直线l1的方程为,即,化简后得到直线l1的方程为…(4).同理可求得直线l2的方程为…(5).(4)-(5)得,因为x1≠x2,故有…(6).将(2)(3)两式代入(6)式得x p=2.(4)+(5)得…(7),其中,,代入(7)式得2y p=(3-2k)x p+2,而x p=2,得y p=4-2k.又由得,即点P的轨迹为(2,2),(2,2.5)两点间的线段(不含端点).15.设函数f(x)对所有的实数x都满足f(x+2π)=f(x),求证:存在4个函数f i(x)(i=1,2,3,4)满足:(1)对i=1,2,3,4,f i(x)是偶函数,且对任意的实数x,有f i(x+π)=f i(x);(2)对任意的实数x,有f(x)=f1(x)+f2(x)cosx+f3(x)sinx+f4(x)sin2x.证明:记,,则f(x)=g(x)+h(x),且g(x)是偶函数,h(x)是奇函数,对任意的x∈R,g(x+2π)=g(x),h(x+2π)=h(x).令,,,,其中k为任意整数.容易验证f i(x),i=1,2,3,4是偶函数,且对任意的x∈R,f i(x+π)=f i(x),i=1,2,3,4.下证对任意的x∈R,有f1(x)+f2(x)cosx=g(x).当时,显然成立;当时,因为,而,故对任意的x∈R,f1(x)+f2(x)cosx=g(x).下证对任意的x∈R,有f3(x)sinx+f4(x)sin2x=h(x).当时,显然成立;当x=kπ时,h(x)=h(kπ)=h(kπ-2kπ)=h(-kπ)=-h(kπ),所以h(x)=h(kπ)=0,而此时f3(x)sinx+f4(x)sin2x=0,故h(x)=f3(x)sinx+f4(x)sin2x;当时,,故,又f4(x)sin2x=0,从而有h(x)=f3(x)sinx+f4(x)sin2x.于是,对任意的x∈R,有f3(x)sinx+f4(x)sin2x=h(x).综上所述,结论得证.。
2007-2011全国高中数学联赛试题和答案
1. 若函数()21x f x x =+且()()()n nfx f f f f x ⎡⎤=⎡⎤⎣⎦⎣⎦,则()()991f = . 【答案】110【解析】()()()121x f x f x x ==+,()()()2212x fx f f x x ==⎡⎤⎣⎦+,……,()()992199x fx x =+.故()()991110f=. 2. 已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为 .【答案】 []36,【解析】 设()9A a a -,,则圆心M 到直线AC 的距离sin 45d AM =︒,由直线AC 与圆M 相交,得342d ≤.解得36a ≤≤. 3. 在坐标平面上有两个区域M 和N ,M 为02y y x y x ⎧⎪⎨⎪-⎩≥≤≤,N 是随t 变化的区域,它由不等式1t x t +≤≤所确定,t 的取值范围是01t ≤≤,则M 和N 的公共面积是函数()f t = .【答案】 212t t -++ 【解析】 由题意知()f t S =阴影部分面积AOB OCD BEF S S S ∆∆∆=--()22111122t t =---212t t =-++ 4. 使不等式1111200712213a n n n +++<-+++对一切正整数n 都成立的最小正整数a 的值为 .【答案】 2009【解析】 设()1111221f n n n n =++++++.显然()f n 单调递减,则由()f n 的最大值()1120073f a <-,可得2009a =.5. 椭圆22221x y a b+=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积OP OQ ⋅的最小值为 .【答案】 22222a b a b +【解析】 设()cos sin P OP OP θθ,,ππcos sin 22Q OQ OQ θθ⎛⎫⎛⎫⎛⎫±± ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,. 由P ,Q 在椭圆上,有222221cos sin a b OP θθ=+ ① 222221sin cos a b OQ θθ=+ ② ①+②得22221111a b OPOQ+=+. F ED CB AO yx于是当22222a b OP OQ a b ==+时,OP OQ 达到最小值22222a b a b+. 6. 若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是 .【答案】 0k <或4k = 【解析】 当且仅当 0kx >① 10x +>② ()2210x k x +-+=③对③由求根公式得1x ,221242x k k k ⎡⎤=-±-⎣⎦ ④2400k k k ∆=-⇒≥≤或4k ≥.(ⅰ)当0k <时,由③得12122010x x k x x +=-<⎧⎨=>⎩,所以1x ,2x 同为负根.又由④知121010x x +>⎧⎨+<⎩,所以原方程有一个解1x .(ⅱ)当4k =时,原方程有一个解112kx =-=. (ⅲ)当4k >时,由③得12122010x x k x x +=->⎧⎨=>⎩,所以1x ,2x 同为正根,且12x x ≠,不合题意,舍去. 综上可得0k <或4k =为所求.7. 一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是 (可以用指数表示)【答案】 981012⨯ 【解析】 易知:(ⅰ)该数表共有100行;(ⅱ)每一行构成一个等差数列,且公差依次为11d =,22d =,232d =,…,98992d = (ⅲ)100a 为所求.设第()2n n ≥行的第一个数为n a ,则()22111222n n n n n n a a a a -----=++=+3222222n n n a ---⎡⎤=++⎣⎦24223222222n n n n a ----⎡⎤=++⨯+⎣⎦323232n n a --=+⨯=……()121212n n a n --=+-⨯()212n n -=+ 故981001012a =⨯. 二、解答题1. (本小题满分14分)设直线:l y kx m =+(其中k ,m 为整数)与椭圆2211612x y +=交于不同两点A ,B ,与双曲线221412x y -=交于不同两点C ,D ,问是否存在直线l ,使得向量0AC BD +=,若存在,指出这样的直线有多少条?若不存在,请说明理由.【解析】 由2211612y kx m x y =+⎧⎪⎨+=⎪⎩消去y 化简整理得()2223484480k x kmx m +++-=设()11A x y ,,()22B x y ,,则122834kmx x k +=-+()()()222184344480km k m ∆=-+-> ① ………4分由221412y kx m x y =+⎧⎪⎨-=⎪⎩消去y 化简整理得()22232120k x kmx m ----=设()34C x y ,,()44D x y ,,则34223kmx x k+=- ()()()2222243120km k m ∆=-+-+> ② …………8分因为0AC BD +=,所以()()42310x x x x -+-=,此时()()42310y y y y -+-=.由1234x x x x +=+得2282343km kmk k -=+-. 所以20km =或2241343k k -=+-.由上式解得0k =或0m =.当0k =时,由①和②得2323m -<<.因m 是整数,所以m 的值为3-,2-,1-,0,1,2,3.当0m =,由①和②得33k -<<.因k 是整数,所以1k =-,0,1.于是满足条件的直线共有9条.………14分2. (本小题15分)已知p ,()0q q ≠是实数,方程20x px q -+=有两个实根α,β,数列{}n a 满足1a p =,22a p q =-,()1234n n n a pa qa n --=-=,,(Ⅰ)求数列{}n a 的通项公式(用α,β表示);(Ⅱ)若1p =,14q =,求{}n a 的前n 项和. 【解析】 方法一:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以 ()1212n n n n n a px qx a a αβαβ------=+-,()345n =,,,整理得()112n n n n a a a a βαβ----=-令1n n n b a a β+=-,则()112n n b b n α+==,,.所以{}n b 是公比为α的等比数列.数列{}n b 的首项为:()()222121b a a p q p ββαβαββαβα=-=--=+--+=.所以211n n n b ααα-+=⋅=,即11n n n a a βα++-=()12n =,,.所以11n n n a a βα++=+()12n =,,.①当240p q ∆=-=时,0αβ=≠,12a p ααα==+=,11n n n a a βα++=+()12n =,,变为11n n n a a αα++=+()12n =,,.整理得,111n nn na a αα++-=,()12n =,,.所以,数列n n a α⎧⎫⎨⎬⎩⎭成公差为1的等差数列,其首项为122a ααα==.所以()2111nna n n α=+-=+.于是数列{}n a 的通项公式为()1nn a n α=+;……………………………5分②当240p q ∆=->时,αβ≠, 11n n n a a βα++=+1n n a βαβαβα+-=+-11n n n a βαβααβαβα++=+---()12n =,,.整理得211n n n n a a ααββαβα+++⎛⎫+=+ ⎪--⎝⎭,()12n =,,.所以,数列1n n a αβα+⎧⎫+⎨⎬-⎩⎭成公比为β的等比数列,其首项为2221a ααβαββαβαβα+=++=---.所以121n n n a αβββαβα+-+=--. 于是数列{}n a 的通项公式为11n n n a βαβα++-=-.………………………………10分(Ⅱ)若1p =,14q =,则240p q ∆=-=,此时12αβ==.由第(Ⅰ)步的结果得,数列{}n a 的通项公式为()11122nn n n a n +⎛⎫=+= ⎪⎝⎭,所以,{}n a 的前n 项和为231234122222n n n n n s -+=+++++234112341222222n n n n s n ++=+++++以上两式相减,整理得1133222n n n s ++=-所以332n n n s +=-.………………………………………………………15分方法二:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以1a αβ=+,222a αβαβ=++. 特征方程20p q λλ-+=的两个根为α,β. ①当0αβ=≠时,通项()()1212nn a A A n n α=+=,,由12a α=,223a α=得()()122212223A A A A αααα+=⎧⎪⎨+=⎪⎩, 解得121A A ==.故 ()1nn a n α=+.…………5分 ②当αβ≠时,通项()1212n nn a A A n αβ=+=,,.由1a αβ=+,222a αβαβ=++得 12222212A A A A αβαβαβαβαβ+=+⎧⎪⎨+=++⎪⎩, 解得1A αβα-=-,2A ββα=-.故 1111n n n n n a αββαβαβαβα++++--=+=---.………………………………………10分 (Ⅱ)同方法一.3. (本小题满分15分)求函数2713y x x x =++-+的最大和最小值. 【解析】 函数的定义域为[]013,.因为 ()27132713213y x x x x x x =+++-=+++-2713+≥3313=+当0x =时等号成立.故y 的最小值为3313+.……………………5分又由柯西不等式得()222713y x x x=+++- ()()()11122731312123x x x ⎛⎫+++++-=⎪⎝⎭≤所以11y ≤. …………………………………………………………10分由柯西不等式等号成立的条件,得()491327x x x =-=+,解得9x =.故当9x =时等号成立.因此y 的最大值为11.……………………………………15分一、如图,M ,N 分别为锐角三角形ABC ∆(A B ∠<∠)的外接圆Γ上弧BC ⌒ 、AC ⌒的中点.过点C 作PC MN ∥交圆Γ于P 点,I 为ABC ∆的内心,连接PI 并延长交圆Γ于T .⑴求证:MP MT NP NT ⋅=⋅;⑵在弧AB ⌒(不含点C )上任取一点Q (Q A ≠,T ,B ),记AQC ∆,QCB △的内心分别为1I ,2I ,ITQPNMCBA求证:Q ,1I ,2I ,T 四点共圆.【解析】 ⑴连NI ,MI .由于PC MN ∥,P ,C ,M ,N 共圆,故PCMN 是等腰梯形.因此NP MC =,PM NC =.ABCMNPTI连AM ,CI ,则AM 与CI 交于I ,因为MIC MAC ACI MCB BCI MCI ∠=∠+∠=∠+∠=∠,所以MC MI =.同理NC NI =. 于是NP MI =,PM NI =.故四边形MPNI 为平行四边形.因此PMT PNT S S =△△(同底,等高).又P ,N ,T ,M 四点共圆,故180TNP PMT ∠+∠=︒,由三角形面积公式1sin 2PMT S PM MT PMT =⋅∠△1sin 2PNT S PN NT PNT ==⋅∠△1sin 2PN NT PMT =⋅∠于是PM MT PN NT ⋅=⋅.⑵因为1111NCI NCA ACI NQC QCI CI N ∠=∠+∠=∠+∠=∠,I 2I 1ABCMNPQ TI所以1NC NI =,同理2MC MI =.由MP MT NP NT ⋅=⋅得NT MTMP NP=. 由⑴所证MP NC =,NP MC =,故12NT MTNI MI =. 又因12I NT QNT QMT I MT ∠=∠=∠=∠,有12I NT I MT ∆∆∽.故12NTI MTI ∠=∠,从而1212I QI NQM NTM I TI ∠=∠=∠=∠. 因此Q ,1I ,2I ,T 四点共圆.二、求证不等式:2111ln 12n k k n k =⎛⎫-<- ⎪+⎝⎭∑≤,1n =,2,… 【解析】 证明:首先证明一个不等式:⑴ln(1)1x x x x<+<+,0x >. 事实上,令()ln(1)h x x x =-+,()ln(1)1xg x x x =+-+.则对0x >,1()101h x x'=->+,2211()01(1)(1)x g x x x x '=-=>+++. 于是()(0)0h x h >=,()(0)0g x g >=.在⑴中取1x n=得⑵111ln 11n n n⎛⎫<+< ⎪+⎝⎭. 令21ln 1nn k k x n k ==-+∑,则112x =, 121ln 111n n n x x n n -⎛⎫-=-+ ⎪+-⎝⎭211n n n<-+210(1)n n =-<+ 因此1112n n x x x -<<<=.又因为111ln (ln ln(1))(ln(1)ln(2))(ln 2ln1)ln1ln 1n k n n n n n k -=⎛⎫=--+---++-+=+ ⎪⎝⎭∑.从而12111ln 11nn n k k k x k k -==⎛⎫=-+ ⎪+⎝⎭∑∑12211ln 111n k kn k k n -=⎛⎫⎛⎫=-++ ⎪ ⎪++⎝⎭⎝⎭∑12111n k k k k -=⎛⎫>- ⎪+⎝⎭∑ 1211(1)n k k k -==-+∑111(1)n k k k -=-+∑≥111n =-+>-. 三、设k ,l 是给定的两个正整数.证明:有无穷多个正整数m k ≥,使得C km 与l 互素.【解析】 证法一:对任意正整数t ,令(!)m k t l k =+⋅⋅.我们证明()C 1km l =,. 设p 是l 的任一素因子,只要证明:p /∣C km . 若p /∣k !,则由1!C ()k kmi k m k i ==-+∏1[((!)]k i i tl k =≡+∏1ki i =≡∏ ()1!mod k p α+≡.及|!p k α,且p α+1/∣k !,知|!C k m p k α且1α+p/∣!C k m k .从而p /∣C k m .证法二:对任意正整数t ,令2(!)m k t l k =+⋅⋅,我们证明()C 1km l =,. 设p 是l 的任一素因子,只要证明:p /∣C km . 若p /∣k !,则由 1!C ()==-+∏k kmi k m k i 21[((!)]k i i tl k =≡+∏ 1ki i =≡∏ ()!mod k p ≡.即p 不整除上式,故p /∣C km . 若|!p k ,设1α≥使|!p k α,但1!pk α+Œ.12|(!)p k α+.故由11!C ()k kmi k m k i -==-+∏ 21[((!)]ki i tl k =≡+∏ 1k i i =≡∏()1!mod k p α+≡,及|!p k α,且p α+1/∣k !,知|!C kmp k α且1α+p/∣!C km k .从而p /∣C k m.一、选择题(本题满分36分,每小题6分)1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 ( C )[解] 当2x <时,20x ->,因此21(44)1()(2)22x x f x x x x +-+==+---12(2)2x x≥⋅⋅--2=,当且仅当122x x =--时上式取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2.2.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为( D )[解] 因240x ax --=有两个实根21424a a x =-+,22424a a x =++, 故B A ⊆等价于12x ≥-且24x <,即24224a a -+≥-且24424a a ++<, 解之得03a ≤<.3.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 ( B )[解法一] 依题意知,ξ的所有可能值为2,4,6. 设每两局比赛为一轮,则该轮结束时比赛停止的概率为 22215()()339+=. 若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有5(2)9P ξ==,4520(4)()()9981P ξ===,2416(6)()981P ξ===, 故520162662469818181E ξ=⨯+⨯+⨯=. [解法二] 依题意知,ξ的所有可能值为2,4,6.令k A 表示甲在第k 局比赛中获胜,则k A 表示乙在第k 局比赛中获胜. 由独立性与互不相容性得12125(2)()()9P P A A P A A ξ==+=, 1234123412341234(4)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++332112202[()()()()]333381=+=, 1234123412341234(6)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++2221164()()3381==, 故520162662469818181E ξ=⨯+⨯+⨯=. 4.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( A )[解] 设这三个正方体的棱长分别为,,a b c ,则有()2226564ab c ++=,22294a b c ++=,不妨设110a b c ≤≤≤<,从而2222394ca b c ≥++=,231c >.故610c ≤<.c 只能取9,8,7,6.若9c =,则22294913a b +=-=,易知2a=,3b =,得一组解(,,)(2,3,9)a b c =.若8c =,则22946430a b +=-=,5b ≤.但2230b ≥,4b ≥,从而4b =或5.若5b =,则25a=无解,若4b =,则214a =无解.此时无解.若7c =,则22944945a b +=-=,有唯一解3a =,6b =. 若6c =,则22943658a b +=-=,此时222258b a b ≥+=,229b ≥.故6b ≥,但6b c ≤=,故6b =,此时2583622a =-=无解.综上,共有两组解2,3,9a b c =⎧⎪=⎨⎪=⎩或3,6,7.a b c =⎧⎪=⎨⎪=⎩体积为3331239764V =++=cm 3或3332367586V =++=cm 3.5.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( B ) [解] 若0z =,则00.x y xy y +=⎧⎨+=⎩,解得00x y =⎧⎨=⎩,或11.x y =-⎧⎨=⎩,若0z≠,则由0xyz z +=得1xy =-. ① 由0x y z ++=得z x y =--. ②将②代入0xy yz xz y +++=得220x y xy y ++-=. ③ 由①得1x y=-,代入③化简得3(1)(1)0y y y ---=. 易知310y y --=无有理数根,故1y =,由①得1x =-,由②得0z =,与0z ≠矛盾,故该方程组共有两组有理数解0,0,0x y z =⎧⎪=⎨⎪=⎩或1,1,0.x y z =-⎧⎪=⎨⎪=⎩二、填空题(本题满分54分,每小题9分)7.设()f x ax b =+,其中,a b 为实数,1()()f x f x =,1()(())n n f x f f x +=,1,2,3,n =,若7()128381f x x =+,则a b += 5 .[解] 由题意知12()(1)nn n n f x a x aaa b --=+++++11n na a xb a -=+⋅-,由7()128381f x x =+得7128a =,713811a b a -⋅=-,因此2a =,3b =,5a b +=.8.设()cos 22(1cos )f x x a x =-+的最小值为12-,则a =23-+.[解] 2()2cos 122cos f x x a a x =---2212(cos )2122a x a a =----, (1) 2a >时,()f x 当cos 1x =时取最小值14a -;(2) 2a <-时,()f x 当cos 1x =-时取最小值1; (3)22a -≤≤时,()f x 当cos 2a x =时取最小值21212a a ---. 又2a >或2a <-时,()f x 的最小值不能为12-, 故2112122a a ---=-,解得23a =-+,23a =--(舍去). 9.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有 222 种.[解法一] 用4条棍子间的空隙代表3个学校,而用*表示名额.如||||********表示第一、二、三个学校分别有4,18,2个名额.若把每个“*”与每个“|”都视为一个位置,由于左右两端必须是“|”,故不同的分配方法相当于24226+=个位置(两端不在内)被2个“|”占领的一种“占位法”.“每校至少有一个名额的分法”相当于在24个“*”之间的23个空隙中选出2个空隙插入“|”,故有223C 253=种.又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种. 综上知,满足条件的分配方法共有253-31=222种.[解法二] 设分配给3个学校的名额数分别为123,,x x x ,则每校至少有一个名额的分法数为不定方程 12324x x x ++=.的正整数解的个数,即方程12321x x x ++=的非负整数解的个数,它等于3个不同元素中取21个元素的可重组合:2121232323H C C 253===.又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种. 综上知,满足条件的分配方法共有253-31=222种. 10.设数列{}n a 的前n 项和n S 满足:1(1)nn n S a n n -+=+,1,2,n =,则通项n a =112(1)nn n -+.[解] 1111(1)(2)(1)n n n n n n n a S S a a n n n n +++-=-=--++++,即 2n n a n n n n n n a ++++-++-+=+)1(111)2)(1(221=)1(1)2)(1(2+++++-n n a n n n , 由此得 2)1(1))2)(1(1(1++=++++n n a n n a n n . 令1(1)n n b a n n =++,111122b a =+= (10a =),有112n n b b +=,故12n n b =,所以)1(121+-=n n a n n . 11.设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足(2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f =200822007+.[解法一] 由题设条件知(2)()((4)(2))((6)(4))((6)())f x f x f x f x f x f x f x f x +-=-+-+-+-+++-24323263232x x x x ++≥-⋅-⋅+⋅=⋅,因此有(2)()32x f x f x +-=⋅,故(2008)(2008)(2006)(2006)(2004)(2)(0)(0)f f f f f f f f =-+-++-+2006200423(2221)(0)f =⋅+++++10031413(0)41f +-=⋅+-200822007=+.[解法二] 令()()2x g x f x =-,则2(2)()(2)()2232320x x x x g x g x f x f x ++-=+--+≤⋅-⋅=,6(6)()(6)()226326320x x x x g x g x f x f x ++-=+--+≥⋅-⋅=,即(2)(),(6)()g x g x g x g x +≤+≥,故()(6)(4)(2)()g x g x g x g x g x ≤+≤+≤+≤, 得()g x 是周期为2的周期函数,答12图1答12图2所以200820082008(2008)(2008)2(0)222007f g g =+=+=+.12.一个半径为1的小球在一个内壁棱长为46的正四面体容器内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是723.[解] 如答12图1,考虑小球挤在一个角时的情况,记小球半径为r ,作平面111A B C //平面ABC ,与小球相切于点D ,则小球球心O 为正四面体111P A B C -的中心,111P O A B C ⊥面,垂足D 为111A B C 的中心. 因11111113P A B C A B C V S PD -∆=⋅1114O A B C V -=⋅ 111143A B C S OD ∆=⋅⋅⋅,故44PD OD r ==,从而43PO PD OD r r r =-=-=.记此时小球与面PAB 的切点为1P ,连接1OP ,则 222211(3)22PP PO OP r r r =-=-=. 考虑小球与正四面体的一个面(不妨取为PAB )相切时的情况,易知小球在面PAB 上最靠近边的切点的轨迹仍为正三角形,记为1P EF ,如答12图2.记正四面体的棱长为a ,过1P 作1PM PA ⊥于M . 因16MPP π∠=,有113cos 2262PM PP MPP r r =⋅=⋅=,故小三角形的边长1226PE PA PM a r =-=-. 小球与面PAB 不能接触到的部分的面积为(如答12图2中阴影部分)1PAB P EF S S ∆∆-223((26))4a a r =--23263ar r =-. 又1r =,46a =,所以124363183PAB PEF S S ∆∆-=-=. 由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为723. 三、解答题(本题满分60分,每小题20分) 13.已知函数|sin |)(x x f =的图像与直线y kx = )0(>k 有且仅有三个交点,交点的横坐标的最大值为α,求证:2cos 1sin sin 34ααααα+=+. [证] ()f x 的图象与直线y kx = )0(>k 的三个交点如答13图所示,且在3(,)2ππ内相切,其切点为(,sin )A αα-,3(,)2παπ∈.…5分 由于()cos f x x '=-,3(,)2x ππ∈,所以sin cos ααα-=-,即tan αα=.…10分 因此cos cos sin sin 32sin 2cos αααααα=+14sin cos αα= …15分 22cos sin 4sin cos αααα+= 21tan 4tan αα+=214αα+=. …20分 14.解不等式:121086422log (3531)1log (1)x x x x x ++++<++.[解法一] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122++++<+x x x x x .即 1210864353210+++--<x x x x x . …5分 分组分解12108x x x +-1086222x x x ++-864444x x x ++-642x x x ++-4210++-<x x ,864242(241)(1)0+++++-<x x x x x x ,…10分所以 4210+-<x x ,221515()()022---+--<x x . …15分 所以2152-+<x ,即152-+-<152-+<x . 故原不等式解集为5151(,)22--. …20分 [解法二] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122++++<+x x x x x . …5分即6422232262133122(1)2(1)+>+++++=+++x x x x x x x x, )1(2)1()1(2)1(232232+++>+x x xx , …10分答15图令3()2g t t t =+,则不等式为221()(1)>+g g x x, 显然3()2g t t t =+在R 上为增函数,由此上面不等式等价于2211>+x x, …15分 即222()10+-<x x ,解得2512-<x 故原不等式解集为5151(,)22--. …20分 15.如题15图,P 是抛物线22y x =上的动点,点B C ,在y 轴上,圆22(1)1x y -+=内切于PBC ∆,求PBC ∆面积的最小值.[解] 设00(,),(0,),(0,)P x y B b C c ,不妨设b c >. 直线PB 的方程:00y by b x x --=, 化简得 000()0y b x x y x b --+=. 又圆心(1,0)到PB 的距离为1,0022001()y b x b y b x-+=-+ , …5分故22222000000()()2()y b x y b x b y b x b -+=-+-+,易知02x >,上式化简得2000(2)20x b y b x -+-=, 同理有2000(2)20x c y c x -+-=. …10分所以0022y b c x -+=-,002x bc x -=-,则22200020448()(2)x y x b c x +--=-. 因00(,)P x y 是抛物线上的点,有2002y x =,则22204()(2)x b c x -=-,0022x b c x -=-. …15分 所以00000014()(2)4222PBC x S b c x x x x x ∆=-⋅=⋅=-++--2448≥+=. 当20(2)4x -=时,上式取等号,此时004,22x y ==±.因此PBC S ∆的最小值为8. …20分 一、(本题满分50分)如题一图,给定凸四边形ABCD ,180B D ∠+∠<,P 是平面上的动点,令()f P PA BC PD CA PC AB =⋅+⋅+⋅.(Ⅰ)求证:当()f P 达到最小值时,P A B C ,,,四点共圆;(Ⅱ)设E 是ABC ∆外接圆O 的AB 上一点,满足:32AE AB =,31BC EC =-,12ECB ECA ∠=∠,又,DA DC 是O 的切线,2AC =,求()f P 的最小值.[解法一] (Ⅰ)如答一图1,由托勒密不等式,对平面上的任意点P ,有PA BC PC AB PB AC ⋅+⋅≥⋅.因此 ()f P PA BC PC AB PD CA =⋅+⋅+⋅PB CA PD CA ≥⋅+⋅()PB PD CA =+⋅.因为上面不等式当且仅当,,,P A B C 顺次共圆时取等号,因此当且仅当P 在ABC ∆的外接圆且在AC 上时,()()f P PB PD CA =+⋅. …10分又因PB PD BD +≥,此不等式当且仅当,,B P D 共线且P 在BD 上时取等号.因此当且仅当P 为ABC ∆的外接圆与BD 的交点时,()f P 取最小值min ()f P AC BD =⋅.故当()f P 达最小值时,,,,P A B C 四点共圆. …20分(Ⅱ)记E C B α∠=,则2E C Aα∠=,由正弦定理有sin 23sin 32AE AB αα==,从而3s i n 32s i n 2αα=,即33(3sin 4sin )4sin cos αααα-=,所以23343(1cos )4cos 0αα---=,整理得243cos4cos 30αα--=, …30分解得3cos 2α=或1cos 23α=-(舍去),故30α=,60ACE ∠=.由已知31BCEC=-=()0sin 30sin EAC EAC ∠-∠,有sin(30)(31)sin EAC EAC ∠-=-∠,即31sin cos (31)sin 22EAC EAC EAC ∠-∠=-∠,整理得 231sin cos 22EAC EAC -∠=∠, 故1tan 2323EAC ∠==+-,可得75EAC ∠=,………40分从而45E ∠=,45DAC DCA E ∠=∠=∠=,ADC ∆为等腰直角三角形.因2AC =,则1CD =.又ABC ∆也是等腰直角三角形,故2BC =,212212cos1355BD =+-⋅⋅=,5BD =.故min ()5210f P BD AC =⋅=⋅=. …50分[解法二] (Ⅰ)如答一图2,连接BD 交ABC ∆的外接圆O 于0P 点(因为D 在圆O 外,故0P 在BD上).过,,A C D 分别作000,,P A P C P D 的垂线,两两相交得111A B C ∆,易知0P 在ACD ∆内,从而在111A B C ∆内,记ABC ∆之三内角分别为x y z ,,,则0180AP C y z x ∠=︒-=+,又因110B C P A ⊥,110B A P C ⊥,得1B y ∠=,同理有1A x ∠=,1C z ∠=,所以111A B C ∆∽ABC ∆. …10分设11B C BC λ=,11C A CA λ=,11A B AB λ=, 则对平面上任意点M ,有0000()()f P P A BC P D CA P C AB λλ=⋅+⋅+⋅ 011011011P A B C P D C A P C A B =⋅+⋅+⋅ 1112A BC S ∆=答一图1111111MA B C MD C A MC A B ≤⋅+⋅+⋅ ()MA BC MD CA MC AB λ=⋅+⋅+⋅ ()f M λ=, 从而 0()()f P f M ≤. 由M 点的任意性,知0P 点是使()f P 达最小值的点.由点0P 在O 上,故0,,,P A B C 四点共圆. …20分 (Ⅱ)由(Ⅰ),()f P 的最小值11102()A B C f P S λ∆=2ABC S λ∆=, 记ECB α∠=,则2ECA α∠=,由正弦定理有sin 23sin 32AE AB αα==,从而3sin 32sin 2αα=,即33(3sin 4sin)4sin cos αααα-=,所以23343(1cos )4cos 0αα---=,整理得243cos4cos 30αα--=, …30分解得3cos 2α=或1cos 23α=-(舍去),故30α=,60ACE ∠=.由已知31BCEC=-=()0sin 30sin EAC EAC ∠-∠,有sin(30)(31)sin EAC EAC ∠-=-∠,即31sin cos (31)sin 22EAC EAC EAC ∠-∠=-∠, 整理得231s i n c o s 22EAC EAC -∠=∠,故1t a n 2323EAC ∠==+-,可得75EAC ∠=,…40分所以45E ∠=︒,ABC ∆为等腰直角三角形,2AC =,1ABC S ∆=,因为145AB C ∠=︒,1B 点在⊙O 上,190AB B ∠=︒,所以11B BDC 为矩形,1112212cos1355B C BD ==+-⋅⋅︒=,故52λ=,所以 min 5()21102f P =⋅⋅=. …50分 二、(本题满分50分)设()f x 是周期函数,T 和1是()f x 的周期且01T <<.证明:(Ⅰ)若T 为有理数,则存在素数p ,使1p是()f x 的周期;(Ⅱ)若T 为无理数,则存在各项均为无理数的数列{}n a 满足110n n a a +>>> (1,2,)n =⋅⋅⋅,且每个(1,2,)n a n =⋅⋅⋅都是()f x 的周期.[证] (Ⅰ)若T 是有理数,则存在正整数,m n 使得nT m=且(,)1m n =,从而存在整数,a b ,使得 1ma nb +=.于是11ma nb a bT a b T m m+==+=⋅+⋅ 是()f x 的周期.…10分又因01T <<,从而2m ≥.设p 是m 的素因子,则m pm '=,m *'∈N ,从而11m p m'=⋅ 是()f x 的周期.…20分(Ⅱ)若T 是无理数,令 111a T T ⎡⎤=-⎢⎥⎣⎦,则101a <<,且1a 是无理数,令 21111a a a ⎡⎤=-⎢⎥⎣⎦, ……111n n n a a a +⎡⎤=-⎢⎥⎣⎦, ………30分 由数学归纳法易知n a 均为无理数且01n a <<.又111n n a a ⎡⎤-<⎢⎥⎣⎦,故11n n n a a a ⎡⎤<+⎢⎥⎣⎦,即111n n n n a a a a +⎡⎤=-<⎢⎥⎣⎦.因此{}n a 是递减数列. …40分最后证:每个n a 是()f x 的周期.事实上,因1和T 是()f x 的周期,故111a TT ⎡⎤=-⎢⎥⎣⎦亦是()f x 的周期.假设k a 是()f x 的周期,则111k kk a a a +⎡⎤=-⎢⎥⎣⎦也是()f x 的周期.由数学归纳法,已证得n a 均是()f x 的周期. …50分三、(本题满分50分) 设0k a >,1,2,,2008k =.证明:当且仅当200811k k a =>∑时,存在数列{}n x 满足以下条件:(ⅰ)010n n x x x +=<<,1,2,3,n =;(ⅱ)lim n n x →∞存在;(ⅲ)20082007111n n kn kk n k k k x x a xa x -+++==-=-∑∑,1,2,3,n =.[证] 必要性:假设存在{}n x 满足(ⅰ),(ⅱ),(iii ).注意到(ⅲ)中式子可化为2008111()n n k n kn k k x x a xx -++-=-=-∑,n ∈*N ,其中00x =.将上式从第1项加到第n 项,并注意到00x =得 111222200820082008()()()n n n n x a x x a x x a x x +++=-+-++-. …10分由(ⅱ)可设lim n n b x →∞=,将上式取极限得112220082008()()()b a b x a b x a b x =-+-++-20081122200820081()kk b aa x a x a x ==⋅-+++∑20081k k b a =<⋅∑,因此200811kk a=>∑. …20分充分性:假设200811kk a=>∑.定义多项式函数如下:20081()1kk k f s a s==-+∑,[0,1]s ∈,则()f s 在[0,1]上是递增函数,且(0)10f =-<,20081(1)10k k f a ==-+>∑.因此方程()0f s =在[0,1]内有唯一的根0s s =,且001s <<,即0()0f s =.…30分 下取数列{}n x 为01nk n k x s==∑,1,2,n =,则明显地{}n x 满足题设条件(ⅰ),且1000101n nk nk s s x s s +=-==-∑.因001s <<,故10lim 0n n s+→∞=,因此100000lim lim 11n n n n s s s x s s +→∞→∞-==--,即{}n x 的极限存在,满足(ⅱ). …40分最后验证{}n x 满足(ⅲ),因0()0f s =,即2008011k k k a s==∑,从而200820082008101111()()nk n n k n n k k k n k n k k k k x x s a ss a sa x x +-++-===-====-∑∑∑.综上,存在数列{}n x 满足(ⅰ),(ⅱ),(ⅲ). …50分2007年全国高中数学联合竞赛一试试题参考答案 一、选择题(本题满分36分,每小题6分) 1. 如图,在正四棱锥P −ABCD 中,∠APC =60°,则二面角A −PB −C 的平面角的余弦值为( B )解:如图,在侧面PAB 内,作AM ⊥PB ,垂足为M 。
2007年全国高中数学联赛(福建赛区)预赛试卷参考答案
2007年全国高中数学联赛(福建赛区)预赛试卷参考答案(考试时间:2007年9月16日上午8:00-10:30)一、选择题(共6小题,每小题6分,满分36分,以下每小题均给出了代号为A 、B 、C 、D 的四个选项,其中有且只有一个是正确的,请将正确选项的代号填入题后的括号里,不填、多填或错填均得零分)1.一个直角三角形的两条直角边长为b a ,满足不等式31634192622≤+-++-b b a a ,则这个直角三角形的斜边长为( )A .5B .30C .6D .40 答案:B解:原不等式化为34)32(1)23(22≤+-++-b a , 而3414)32(1)23(22=+≥+-++-b a , 所以32,23==b a .于是,斜边长为30.2.数812934756是一个包含1至9每个数字恰好一次的九位数,它具有如下性质:数字1至6在其中是从小到大排列的,但是数字1至7不是从小到大排列的.这样的九位数共有( )个.A .336B .360C .432D .504 答案:C解:在1,2,3,4,5,6中插入7,有6种放法,然后插入8和9,分别有8种和9种放法,所以,共有432986=⨯⨯个满足性质的九位数.3.一个三角形的最短边长度是1,三个角的正切值都是整数,则该三角形的最长边的长度为( ).A .5102 B .553 C .3 D .2 答案:B解:该三角形不是直角三角形.不妨设C B A ≤≤.则3tan ≤A ,又Z A ∈tan ,所以1tan =A .非直角三角形中,有恒等式C B A C B A tan tan tan tan tan tan =++, 即B tan 、C tan 是方程xy y x =++1的一组正整数解. 所以B tan =2,C tan =3. 易解得最长边为553(另外一条边长为5102).4.正三棱锥底面一个顶点与它所对侧面重心的距离为8,则这个正三棱锥的体积的最大值为( ).A .18B .36C .72D .144 答案:D解:设正三棱锥P -ABC 的底面边长为a ,高为h ,O 为三角形ABC 的中心,G 为侧面PBC 的重心,GH 垂直底面ABC ,垂足为H .则a a AD AH h PO GH 934239898,3131=⋅====, 由222AG GH AH =+得6491271622=+h a ,故276431622⋅=+h a , 由平均不等式得322222238833882764h a a h a a ⋅⋅≥++=⋅,所以,35762≤h a ,于是144123312≤==∆-h a h S V ABC ABC P . 当46=h a 时等号成立.故体积的最大值为144. 5.对每一个正整数k ,设ka k 1211 ++=,则49493212500)99753(a a a a a -++++等于( )A .-1025B .-1225C .-1500D .-2525 答案:B解: 49493212500)99753(a a a a a -++++=4925004919931)9997(21)9975(1)9953(a -⨯++⨯++++⨯++++⨯+++ =492222222500491)4950(21)250(1)150(a -⨯-++⨯-+⨯- =4922500)4921()491211(50a -++-+++=1225)4921(-=+++- .6.集合{}7,6,5,4,3,2,1=S 的五元子集共有21个,每个子集的数从小到大排好后,取出中间的数,则所有这些数之和是( )A .80B .84C .100D .168ABCDPH OG ah第4题答题 图答案:B解:显然中间数只能是3,4,5.以3为中间数的子集有24C 个,以4为中间数的子集有2323C C ⨯个,以5为中间数的子集有24C 个. 所以,这些中间数的和为8454324232324=⨯+⨯⨯+⨯C C C C .另解:对某个子集A ,用8-A 表示A 中每个元素被8减所得的集合,这个集合也是一个满足要求的5元子集.这是一个1-1对应.且这两个集合中中间数之和为8,平均为4.故所有的中间数的和为84421=⨯.二.填空题(共6小题,每小题6分,满分36分.请直接将答案写在题中的横线上)7.函数32)(2+-=x x x f ,若a x f -)(<2恒成立的充分条件是21≤≤x ,则实数a 的取值范围是 . 答案:1<a <4解:依题意知,21≤≤x 时,a x f -)(<2恒成立.所以21≤≤x 时,-2<a x f -)(<2恒成立,即2)(-x f <a <2)(+x f 恒成立. 由于21≤≤x 时,32)(2+-=x x x f =2)1(2+-x 的最大值为3,最小值为2,因此,3-2<a <2+2,即1<a <4.8.在直角坐标平面上,正方形ABCD 的顶点A 、C 的坐标分别为(12,19)、(3,22),则顶点B 、D 的坐标分别为 .(A 、B 、C 、D 依逆时针顺序排列)答案:(9,25)、(6,16)解:设线段AC 的中点为M ,则点M 的坐标为)241,215(,利用复数知识不难得到顶点B 和D 的坐标分别为(9,25)、(6,16).(或者利用向量知识)9.已知1F 、2F 分别是椭圆19222=+b y x (0<b <3)的左、右焦点.若在椭圆的右准线上存在一点P,使得线段1PF 的垂直平分线过点2F ,则b 的取值范围是 .答案:)6,0(解:线段1PF 的垂直平分线过点2F ,等价于212F F P F =. 设椭圆的右准线cx 9=交x 轴于点K ,则在椭圆的右准线上存在一点P,使得212F F P F =,等价于212F F K F ≤. 所以c c c29≤-,32≥c . 因此692222≤-=-=c c a b 故b 的取值范围是]6,0(.10.方程10033100=+y x 的正整数解),(y x 有 组.答案:4解:由题设可知,10≤x .两边模3,知)3(mod 1≡x ,所以,x =1,4,7,10,对应的y 分别为301,201,101,1.故满足方程的正整数解有4组.11.设x xx x f +-++=11lg521)(,则不等式⎥⎦⎤⎢⎣⎡-)21(x x f <51的解集为 .答案:)4171,21()0,4171(+⋃- 解:原不等式即为⎥⎦⎤⎢⎣⎡-)21(x x f <)0(f .因为)(x f 的定义域为(-1,1),且)(x f 为减函数.所以⎪⎩⎪⎨⎧----0)21(1)21(1 x x x x .解得∈x )4171,21()0,4171(+⋃- 12.设函数1321)(+--=x x x f ,如果方程a x f =)(恰有两个不同的实数根v u ,,满足102≤-≤v u ,则实数a 的取值范围是 .答案:345≤≤-a 解:因为⎪⎪⎩⎪⎪⎨⎧--≤≤----+=.21,4211,251,4)(时当时,当时,当 x x x x x x x f当a >3时,a x f =)(无解;当a =3时,a x f =)(只有一个解.当329≤≤-a 时,直线a y =与4+=x y 和25--x y =有两个交点,故此时a x f =)(有两个不同的解;当a <29-时,直线a y =与4+=x y 和4--=x y 有两个交点,故此时a x f =)(有两个不同的解.对于上述两种情形,分别求出它们的解v u ,,然后解不等式102≤-≤v u ,可得实数a 的取值范围是345≤≤-a . 三、解答题:(共4小题,每小题20分,满分80分.要求写出解题过程) 13.已知x x x f sin 22sin )(+=,xx x g 413)(+=,若对任意),0(,21∞+∈x x 恒有m x g x f +≥)()(21,试求m 的最大值.解:因为111sin 22sin )(x x x f +=, )1(cos sin 211+=x x[]31121)cos 1)(cos 1(4)(x x x f +-=)cos 1)(cos 1)(cos 1)(cos 33(341111x x x x +++-=41111)4cos 1cos 1cos 1cos 33(34x x x x ++++++-⨯≤=427所以233)(1≤x f .又3413)(222≥+=x x x g , 所以233233=-≤m . 当63,321==x x π时,上述各式的等号成立,所以m 的最大值为23.14.已知1F 、2F 分别是双曲线1322=-y x 的左、右焦点,过1F 斜率为k 的直线1l 交双曲线的左、右两支分别于A 、C 两点,过2F 且与1l 垂直的直线2l 交双曲线的左、右两支分别于D 、B 两点.(1)求k 的取值范围;(2)设点P ),00y x (是直线1l 、2l 的交点为,求证:32020y x +>34; (3)求四边形ABCD 面积的最小值.解:(1)由条件知,1l 、2l 的方程分别为)2(+=x k y 、)2(1--=x ky .由⎩⎨⎧+==-)2(3322x k y y x ,得0344)3(2222=----k x k x k . 由于1l 交双曲线的左、右两支分别于A 、C 两点,所以22334kk x x C A ---=⋅<0,解得2k <3. 由⎪⎩⎪⎨⎧--==-)2(13322x k y y x ,得0344)13(222=--+-k x x k . 由于2l 交双曲线的左、右两支分别于D 、B 两点,所以133422---=⋅k k x x D B <0,解得2k >31.因此,31<2k <3,k 的取值范围是)3,33()33,3(⋃--. (2)由条件知,21PF PF ⊥,点P 在以21F F 为直径的圆上.所以42020=+y x .因此32020y x +>332020y x +=34.(3)由(1)知,2222222223)1(63344)34(11kk k k k k k x x k AC C A -+=---⨯--⋅+=-⋅+=. 13)1(613344)134()1(1)1(122222222-+=---⨯---⋅-+=-⋅-+=k k k k k k x x k BD D B . ∴四边形ABCD 的面积)13)(3()1(18212222--+=⋅=k k k BD AC S .由于)13)(3()1(182222--+=k k k S =18)11313(41181131318222222222=+-++-⨯≥+-⨯+-k k k k k k k k .当且仅当 113132222+-=+-k k k k ,即1,12±==k k 时,等号成立. 所以,四边形ABCD 面积的最小值为18.15.如图,在锐角三角形ABC 中,1AA ,1BB 是两条角平分线,I,O,H 分别是ABC ∆的内心,外心,垂心,连接HO ,分别交AC,BC 于点P ,Q .已知C,1A ,I,1B 四点共圆.(1)求证:︒=∠60C ;(2)求证:BQ AP PQ +=.证明:(1)因为C,1A ,I,1B 四点共圆,所以 AIB C ∠-︒=∠180C B A IBC IAB ∠-︒=∠+∠=∠+∠=21902121. 所以,︒=∠60C .(2)因为︒=∠-︒=∠120180C AHB , ︒=∠=∠1202ACB AOB , 所以,B O H A ,,,四点共圆,于是︒=∠-︒=∠=∠30)180(21AOB OBA PHA ,又︒=∠-︒=∠3090C PAH , 所以PHA PAH ∠=∠, 于是PH AP =,同理可得 QH BQ = 故,BQ AP PQ +=第15题答题 图B第15题 图16.已知两个整数数列 ,,,210a a a 和 ,,,210b b b 满足 (1)对任意非负整数n ,有22≤-+n n a a ; (2)对任意非负整数,,n m 有 22n m n m b a a +=+证明:数列 ,,,210a a a 中最多只有6个不同的数.证明:首先,一个整数若是4的倍数,则它一定能表示成22)2(n n -+,其中n 是非负整数.事实上,由22)1()1(4--+=k k k 便得.若,,n m (m >n )的奇偶性相同,则22n m -是4的倍数,设 22n m -=22)2(k k -+, 所以 2222)2(n k k m ++=+ 于是由条件(2)知n k n k k m k m a a b b a a +===+++++2)2(2222, 故k k n m a a a a -=-+2 所以,2≤-n m a a于是在 ,,,531a a a 中,任意两项的差的绝对值至多为2,所以,它们最多能取3个不同的值:2,1,++a a a .同样,在 ,,,420a a a 中,任意两项的差的绝对值也至多为2,所以,它们最多能取3个不同的值:2,1,++b b b .综上所述,数列 ,,,210a a a 中最多只有6个不同的数.。
2007年全国高中数学联赛(吉林赛区)预赛试题与答案
π 6
⎤ ⎥⎦
,
⎜⎛ ⎝
π 6
,
π 3
⎤ ⎥⎦
,
⎜⎛ ⎝
π 3
,
π 2
⎤ ⎥⎦
.
由抽屉原理,上述 7 个θi (1 ≤ i ≤ 7 )中必有某两个数在同一个子区间内,不妨设θ j ,θ j+1 ,
(1 ≤ j ≤ 6 )在同一个子区间内. 因
0
≤θ
j +1
−θ
j
<
π 6
,
则
0≤
tan(θ j+1
−θ j)
>
2 3
11.
⎛ ⎜⎜⎝ −7, −
14 2
⎞ ⎟⎟⎠
∪
⎛ ⎜⎜⎝
−
14 2
,
−
1 2⎞ ⎟⎟⎠来自由 (7a + 2tb )(ta + b ) < 0 得 − 7 < t < − 1 , 当 7a + 2tb 与 ta + b 共 线 时 有 7 = 2t , t = ± 14 而
2
t1
2
t = − 14 时, 7a + 2tb 与 ta + b 反向故 t ≠ − 14 ,
<
π tan
6
=
3, 3
即: 0 ≤ tanθ j+1 − tanθ j < 3 . 1+ tanθ j+1 tanθ j 3
记 x = tanθ j+1 , y = tanθ j ,即得所要证的不等式。
五、设{an} 为一个整数数列,并且满足:对任意的 n ∈ N * ,均有
(n − 1)an+1 = (n + 1)an − 2(n − 1)
2007年全国高中数学联赛试题及详细解析
2007年全国高中数学联赛 (考试时间:上午8:00—9:40)一、选择题(本题满分36分,每小题6分)1. 如图,在正四棱锥P −ABCD 中,∠APC =60°,则二面角A −PB −C 的平面角的余弦值为( ) A. 71 B. 71- C. 21 D. 21-5. 设圆O 1和圆O 2是两个定圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹不可能是( )6. 已知A 与B 是集合{1,2,3,…,100}的两个子集,满足:A 与B 的元素个数相同,且为A ∩B 空集。
若n ∈A 时总有2n +2∈B ,则集合A ∪B 的元素个数最多为( )A. 62B. 66C. 68D. 74二、填空题(本题满分54分,每小题9分)7. 在平面直角坐标系内,有四个定点A (−3,0),B (1,−1),C (0,3),D (−1,3)及一个动点P ,则|PA |+|PB |+|PC |+|PD |的最小值为__________。
8. 在△ABC 和△AEF 中,B 是EF 的中点,AB =EF =1,BC =6, 33=CA ,若2=⋅+⋅,则与的夹角的余弦值等于________。
9. 已知正方体ABCD −A 1B 1C 1D 1的棱长为1,以顶点A 为球心,332为半径作一个球,则球面与正方体的表面相交所得到的曲线的长等于__________。
10. 已知等差数列{a n }的公差d 不为0,等比数列{b n }的公比q 是小于1的正有理数。
若a 1=d ,b 1=d 2,且321232221b b b a a a ++++是正整数,则q 等于________。
11. 已知函数)4541(2)cos()sin()(≤≤+-=x x πx πx x f ,则f (x )的最小值为________。
12. 将2个a 和2个b 共4个字母填在如图所示的16个小方格内,每个小方格内至多填1个字母,若使相同字母既不同行也不同列,则不同的填法共有________种(用数字作答)。
2007年全国高中数学联赛试题及答案详解
2007年全国高中数学联赛考试时间:上午8:00—9:40)一、选择题(本题满分36分,每小题6分)1. 如图,在正四棱锥P −ABCD 中,∠APC =60°,则二面角A −PB −C 的平面角的余弦值为( ) A. 71 B. 71- C. 21 D. 21-5. 设圆O 1和圆O 2是两个定圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹不可能是( )6. 已知A 与B 是集合{1,2,3,…,100}的两个子集,满足:A 与B 的元素个数相同,且为A ∩B 空集。
若n ∈A 时总有2n +2∈B ,则集合A ∪B 的元素个数最多为( )A. 62B. 66C. 68D. 74二、填空题(本题满分54分,每小题9分)7. 在平面直角坐标系内,有四个定点A (−3,0),B (1,−1),C (0,3),D (−1,3)及一个动点P ,则|PA |+|PB |+|PC |+|PD |的最小值为__________。
8. 在△ABC 和△AEF 中,B 是EF 的中点,AB =EF =1,BC =6,33=CA ,若2=⋅+⋅AF AC AE AB ,则EF 与BC 的夹角的余弦值等于________。
9. 已知正方体ABCD −A 1B 1C 1D 1的棱长为1,以顶点A 为球心,332为半径作一个球,则球面与正方体的表面相交所得到的曲线的长等于__________。
10. 已知等差数列{a n }的公差d 不为0,等比数列{b n }的公比q 是小于1的正有理数。
若a 1=d ,b 1=d 2,且321232221b b b a a a ++++是正整数,则q 等于________。
11. 已知函数)4541(2)cos()sin()(≤≤+-=x x πx πx x f ,则f (x )的最小值为________。
12. 将2个a 和2个b 共4个字母填在如图所示的16个小方格内,每个小方格内至多填1个字母,若使相同字母既不同行也不同列,则不同的填法共有________种(用数字作答)。
2007年全国高中数学联合竞赛一试试题解析
(
n
+ 2
2
n
+ 2
1
)
k=1
∑n
k 1
=
−
n + 2 n + 1 k=2 k
(n + 1)(n + 2) n + 2 < 0 ⇒ n ⩾ 2 时,an+1 < an.
n+1
k=1 k
14.
已知过点
(0, 1)
的直线
l
与曲线
C
:
y
=
x+
1 (x
>
0)
交于两个不同的点
M
x
和 N . 求曲线 C 在点 M 、N 处切线的交点轨迹.
法也有 72 种,此时包含 a, b 填在同一方格的情形. 即 a, b 的填法有 722 种.
2 个 a 都填好后,若填 a 的两个方格均填入 b,此时填法有 72 · 1 种;
若填 a 的两个方格仅有一个填入 b,划去这个方格所在的行和列,还有 9 个方
格,再除去另一个 a 所在的方格,另一个 b 填法有 8 种. 此时填法有 72 · C21 · 8 种.(也可考虑同时填入 a, b 的方格有 16 个,还有 9 个方格填入另一个 a 和 b,
|a| |a| ,
= |a|,
于是
a2
x∈R
⩽ |a|
⇒
|a|
⩽
1
⇒
a
∈
[1 −,
1
] .
23 所以选 A.
3
3
3
33
3. 将号码分别为 1、2、· · · 、9 的九个小球放入一个袋中,这些小球仅号码不同,
2007年全国高中数学联赛试题及解答
2 3 9.已知正方体 ABCD-A1B1C1D1 的棱长为 1,以顶点 A 为球心, 为半径作一个球,则球面与正方 3 体的表面相交所得到的曲线的长等于 . 10.已知等差数列{an}的公差 d 不为 0,等比数列{bn}的公比 q 是小于 1 的正有理数.若 a1=d,b1=d2, 2 2 a2 1+a2+a3 且 是正整数,则 q 等于 . b1+b2+b3
2007 年全国高中数学联赛试卷
2007.10.18.
2007 年全国高中数学联赛一试试卷
(考试时间:10 月 14 日上午 8∶00——9∶40)
一、选择题(本题江分 36 分,每小题 6 分): 1.如图,在正四棱锥 P-ABCD 中,∠APC=60° ,则二面角 A-PB-C 的平 面角的余弦值为 A. 1 7 B.- 1 7 C.
2007 年全国高中数学联赛试卷
2007.10.18.
2007 年全国高中数学联赛一试解答
(考试时间:10 月 14 日上午 8∶00——9∶40)
一、选择题(本题江分 36 分,每小题 6 分): 1.如图,在正四棱锥 P-ABCD 中,∠APC=60° ,则二面角 A-PB-C 的平面角的余弦值为 A. 1 7 B.- 1 7 C. 1 2 D.- 1 2
A.
B.
C.
D.
选 A. 解:设⊙O1、⊙O2 半径分别为 R、r(不妨设 R≥r>0),|O1O2|=d. 若两圆内含,d<R-r,则⊙P 与两圆都内切或与小圆外切与大圆内切,所求轨迹为两个以两圆圆心为 焦点的椭圆,当两圆圆心重合时,轨迹为圆;故 C 可以是动圆圆心轨迹; 当两圆外离, d>R+r, 若 R>r, 动圆与两圆都外切或都内切, 所求轨迹为以两圆圆心为焦点的双曲线; 与一圆内切与另一圆外切时, 轨迹也为以两圆圆心为焦点的双曲线, 故 D 可以是动圆圆心轨迹; 当 R=r 时, 与两圆都外切或都内切的动圆圆心轨迹为两圆圆心连线的中垂线,与一圆内切与另一圆外切时,轨迹为以 两圆圆心为焦点的双曲线,故 B 可以是动圆圆心轨迹. A 中的椭圆与双曲线焦点不同,从而没有动圆圆心轨迹为 A 中情形. 事实上,当两圆相交时,若 R>r,动圆与两圆同时外切或内切,所求轨迹为以两圆圆心为焦点的双曲 线,与一圆内切与另一圆外切,轨迹为椭圆,但双曲线与椭圆的焦点相同;若 R=r,则轨迹为椭圆及一条 直线.当两圆内切时,所求轨迹为一个以两圆圆心为焦点的椭圆与经过两圆圆心的直线;当两圆外切时, 若 R>r,动圆与两圆都外切或都内切,所求轨迹为一个以两圆圆心为焦点的双曲线,与一圆外切与另一圆 内切,轨迹为经过两圆圆心的直线;若 R=r,轨迹为两条直线;即 A 不能成为动圆圆心轨迹. 6.已知 A 与 B 是集合{1,2,3,„,100}的两个子集,满足:A 与 B 的元素个数相同,且 A∩B 为空 集.若 n∈A 时,总有 2n+2∈B,则集合 A∪B 的元素个数最多为 A.62 B.66 C.68 D.74 选 B. 解:由 2n+2≤100,知 n≤49.即若 n∈A,则 n≤49. 把不超过 49 的数分组:{2k-1,4k}(k=1,2,„,12 其中 2(2k-1)+2=4k≤50),(12 组,24 个数) {2k-1}(k=13,14,„,25 其中 50≤4k≤100),(13 组,13 个数) {2,6},{10,22},{14,30},{18,38} (余下 4k-2 型数,配对 4 组,8 个数) {26},{34},{42},{46}(4 组,4 个数) 共有 33 组,若 A 在小于 49 的正整数中取出的数超过 34 个,则必有两个数同组,此时 A∩B≠.故 n ≤33.又取 A={2k-1|k∈N*,k≤25}∪{2,10,14,18,26,34,42,46},B={2n+2|n∈A},满足题意, 此时|A∪B|=66. 二、填空题(本题满分 54 分,每小题 9 分) 7.在平面直角坐标系内,有四个定点 A(-3,0),B(1,-1),C(0,3),D(-1, y 3)及一个动点 P,则|PA|+|PB|+|PC|+|PD|的最小值为 . 填 3 2+2 5. 解:显然,如图可知,|PA|+|PC|≥|AC|,|PB|+|PD|≥|BD|,于是|PA|+|PB|+|PC| +|PD|≥|AC|+|BD|=3 2+2 5. → → 8. 在∆ABC 和∆AEF 中, B 是 EF 中点, AB=EF=1, BC=6, CA= 33, 若 AB · AE
2007年全国高中数学联赛江苏赛区复赛
分别 为 a 、 b、 c , 且 tan B =
2
( 2) 如果 n 是奇数 ,并且 2 那么 , n 是多少 ?
2n 3
bn 是整数 ,
第 二 试
( 50 分 ) 如图 一、 3 , 在梯 形 ABCD 中 , AD ∥BC , BC = BD = 1 , AB = AC , CD < 1 , 图3 且 ∠BAC + ∠BDC = 180° . 求 CD 的长 . ( 50 分) 已知 n 为正整数 . 求证 : 二、 1 1 1 25 + + …+ < . n +1 n +2 2 n 36 ( 50 分 ) 如图 4 , 依顺时针方向 , 从 1 三、 开始 ,走 1 步到 2 ,再走 2 步到 3 ,最后走 3 步到 4. 对于大于 1 的自然数 n , 能否将 1 至 n 排在圆周 上 ,使得从 1 开始 , 走一 步 到 a2 , 再 走 a2 步 到 图4 a3 , …… 最后 , 走 an - 1 步 到 an ? 这 里 a1 ( a1 = 1) , a2 , a3 , …, an 是 1 ,2 , …, n 的一个排列 .
3 ac 3 ac 3 = , 2 2 2 = 2 accos B 2cos B a +c - b 3 . 2
图5
π 2 π 所以 , ∠B 为 或 . 3 3
8. 当 n 为偶数时为 Cn 2 , 当 n 为奇数时 n 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年全国高中数学联合竞赛加试试卷
(考试时间:上午10:00—12:00)
一、(本题满分50分)如图,在锐角△ABC 中,AB<AC ,
AD 是边BC 上的高,P 是线段AD 内一点。
过P 作PE ⊥AC ,
垂足为E ,做PF ⊥AB ,垂足为F 。
O 1、O 2分别是△BDF 、
△CDE 的外心。
求证:O 1、O 2、E 、F 四点共圆的充要条
件为P 是△ABC 的垂心。
二、(本题满分50分)如图,在7×8的长方形棋盘的每个
小方格的中心点各放一个棋子。
如果两个棋子所在的小方格共边或共顶点,那么称这两个棋子相连。
现从这56个棋子中取出一些,使得棋盘上剩下的
棋子,没有五个在一条直线(横、竖、斜方向)上依次相连。
问最少取出多少个棋子才可能满足要求?并说明理由。
三、(本题满分50分)设集合P ={1,2,3,4,5},对任意k ∈P
和正整数m ,记f (m ,k )=∑=⎥⎦⎤⎢⎣⎡++5
111i i k m ,其中[a ]表示不大于a 的最大整数。
求证:对任意正整数n ,存在k ∈P 和正整数m ,使得f (m ,k )=n 。
2007年全国高中数学联合竞赛加试试题参考答案
一、(本题满分50分)如图,在锐角△ABC 中,AB<AC ,
AD 是边BC 上的高,P 是线段AD 内一点。
过P 作
PE ⊥AC ,垂足为E ,作PF ⊥AB ,垂足为F 。
O 1、O 2分
别是△BDF 、△CDE 的外心。
求证:O 1、O 2、E 、F 四O 2O 1F E P A O 2O 1
F E P A
点共圆的充要条件为P是△ABC的垂心。
证明:连结BP、CP、O1O2、EO2、EF、FO1。
因为PD⊥BC,PF⊥AB,故B、D、P、F 四点共圆,且BP为该圆的直径。
又因为O1是△BDF的外心,故O1在BP上且是BP的中点。
同理可证C、D、P、E四点共圆,且O2是的CP中点。
综合以上知O1O2∥BC,所以∠PO2O1=∠PCB。
因为AF·AB=AP·AD=AE·AC,所以B、C、E、F四点共圆。
充分性:设P是△ABC的垂心,由于PE⊥AC,PF⊥AB,所以B、O1、P、E四点共线,C、O2、P、F四点共线,∠FO2O1=∠FCB=∠FEB=∠FEO1,故O1、O2、E、F四点共圆。
必要性:设O1、O2、E、F四点共圆,故∠O1O2E+∠EFO1=180°。
由于∠PO2O1=∠PCB=∠ACB−∠ACP,又因为O2是直角△CEP的斜边中点,也就是△CEP 的外心,所以∠PO2E=2∠ACP。
因为O1是直角△BFP的斜边中点,也就是△BFP的外心,从而∠PFO1=90°−∠BFO1=90°−∠ABP。
因为B、C、E、F四点共圆,所以∠AFE=∠ACB,∠PFE=90°−∠ACB。
于是,由∠O1O2E+∠EFO1=180°得
(∠ACB−∠ACP)+2∠ACP+(90°−∠ABP)+(90°−∠ACB)=180°,即∠ABP=∠ACP。
又因为AB<AC,AD⊥BC,故BD<CD。
设B'是点B关于直线AD的对称点,则B'在线段DC上且B'D=BD。
连结AB'、PB'。
由对称性,有∠AB'P=∠ABP,从而∠AB'P=∠ACP,所以A、P、B'、C四点共圆。
由此可知∠PB'B=∠CAP=90°−∠ACB。
因为∠PBC=∠PB'B,
故∠PBC+∠ACB=(90°−∠ACB)+∠ACB=90°,故直线BP和AC垂直。
由题设P在边BC的高上,所以P是△ABC的垂心。
二、(本题满分50分)如图,在7×8的长方形棋盘的每个小方格的中心点各放一个棋子。
如果两个棋子所在的小方格共边或共顶点,那么称这两个棋子相连。
现从这56个棋子中取出一些,使得棋盘上剩下的棋子,没有五个在一条直线(横、竖、斜方向)上依次相连。
问最少取出多少个棋子才可能满足要求?并说明理由。
解:最少要取出11个棋子,才可能满足要求。
其原因如下:
如果一个方格在第i行第j列,则记这个方格为(i,j)。
第一步证明若任取10个棋子,则余下的棋子必有一个五子连
珠,即五个棋子在一条直线(横、竖、斜方向)上依次相连。
用反证法。
假设可取出10
个棋子,使余下的棋子没有一个五子连珠。
如图1,在每一行的前五格中必须各取出一个棋子,后三列的前五格中也必须各取出一个棋子。
这样,10个被取出的棋子不会分布在右下角的阴影部分。
同理,由对称性,也不会分布在其他角上的阴影部分。
第1、2行必在每行取出一个,且只能分布在(1,4)、(1,5)、(2,4)、(2,5)这些方格。
同理(6,4)、(6,5)、(7,4)、(7,5)这些方格上至少要取出2个棋子。
在第1、2、3列,每列至少要取出一个棋子,分布在(3,1)、(3,2)、(3,3)、(4,1)、(4,2)、(4,3)、(5,1)、(5,2)、(5,3)所在区域,同理(3,6)、(3,7)、(3,8)、(4,6)、(4,7)、(4,8)、(5,6)、(5,7)、(5,8)所在区域内至少取出3个棋子。
这样,在这些区域内至少已取出了10个棋子。
因此,在中心阴影区域内不能取出棋子。
由于①、②、③、④这4个棋子至多被取出2个,从而,从斜的方向看必有五子连珠了。
矛盾。
图1 图2
第二步构造一种取法,共取走11个棋子,余下的棋子没有五子连珠。
如图2,只要取出有标号位置的棋子,则余下的棋子不可能五子连珠。
综上所述,最少要取走11个棋子,才可能使得余下的棋子没有五子连珠。
三、(本题满分50分)设集合P={1,2,3,4,5},对任意k∈P和正整数m,记
f(m,k)=∑
=
⎥
⎦
⎤
⎢
⎣
⎡
+
+
5
1
1
1
i
i
k
m,其中[a]表示不大于a的最大整数。
求证:对任意正整数n,存在k∈P和正整数m,使得f(m,k)=n。
证明:定义集合A={1
+
k
m|m∈N*,k∈P},其中N*为正整数集。
由于对任意k、i∈P
且k ≠i ,1
1++i k 是无理数,则对任意的k 1、k 2∈P 和正整数m 1、m 2,112211+=+k m k m 当且仅当m 1=m 2,k 1=k 2。
由于A 是一个无穷集,现将A 中的元素按从小到大的顺序排成一个无穷数列。
对于任意的正整数n ,设此数列中第n 项为1+k m 。
下面确定n 与m 、k 的关系。
若111+≤+k m i m ,则1
11++≤i k m m 。
由m 1是正整数可知,对i =1,2,3,4,5,满足这个条件的m 1的个数为⎥⎦⎤⎢⎣
⎡++11i k m 。
从而n =∑=⎥⎦⎤⎢⎣⎡++5111i i k m =f (m ,k )。
因此对任意n ∈N*,存在m ∈N*,k ∈P ,使得f (m ,k )=n 。