常用机构、平面两岸机构、凸轮机构汇总

合集下载

机构类型有哪些分为哪几类

机构类型有哪些分为哪几类

机构类型有哪些、分为哪几类
1.组织机构
2.常用机械机构
3.企业机构
组织机构分类
机关法人、机关非法人、企业法人、企业非法人、社会团体法人、社会团体非法人、事业法人、工户法人、个体工商户、民办非企业单位、其他机构等。

常用机械机构分类
平面机构(如平面连杆机构、圆柱齿轮机构等)、空间机构(如空间连杆机构、蜗轮蜗杆机构等)、低副机构(如连杆机构等)、高副机构(如凸轮机构等)、连杆机构、齿轮机构、斜面机构、棘轮机构、匀速机构、非匀速转动机构、直线运动机构、换向机构、间歇运动机构、安全保险机构、联锁机构、擒纵机构等。

企业机构分类
内资企业、国有企业、集体企业、股份合作企业、联营企业、有限责任公司、股份有限公司、私营企业其他企业、港、澳、台商投资企业、合资经营企业(港或澳、台资)、合作经营企业(港或澳、台资)、港、澳、台商独资经营企业、港、澳、台商投资股份有限公司、外商投资企业、中外合资经营企业、中外合作经营企业、外资企业和外商投资股份有限公司等。

机械基础-常用机构

机械基础-常用机构

振动筛(也称为惯性筛)
正平行四边形机构
蒸汽机车的车轮联动机构
反平行四边形机构
车门启闭机构
3.双摇杆机构
☆两连架杆均为摇杆
起重机中重物平移机构
汽车前轮转向机构(等腰梯形机构)
飞机起落架机构
1.曲柄滑块机构
☆ 一连架杆为曲柄,另一连架杆相对机架作往复移动而称为滑块 对心式曲柄滑块机构 偏置式曲柄滑块机构
2bc
0(o 或180 o)时,cos (1 或-1), 有最小值(或最大值) 。
δ与γ
进一步分析δ与 的关系
① 当δ≤ 90时o , =δ(对顶角关系);
② 当δ> 90o 时, = 180o-δ(互为补角关系)。
由此可见,要判断 min位置前,首先应判断δmin、δmax位置。
可分以下三种情况讨论:
2.2.1平面连杆机构:
用低副连接而成的平面机构。
2.2.2平面连杆机构的特点: 1、能实现多种运动形式。如:转动,摆动,移动,平面运动 2、运动副为低副: 面接触: ①承载能力大;②便于润滑。寿命长 ③几何形状简单——便于加工,成本低。 3、缺点: ①只能近似实现给定的运动规律; ②设计复杂; ③只用于速度较低的场合。
2.1.3 平面机构的自由度
❖计算实例
解: n =5, Pl = 7, Ph = 0 F = 3n – 2Pl – Ph = 3×5 – 2×7 – 0 =1
2.1.3 平面机构的自由度
三、自由度计算时应注意的几种情况
1.复合铰链
两个以上构件在同一轴线处用转动副连接,就形成了
复合铰链。
说明
2.局部自由度
常用机构
§2-1平面机构运动简图及其自由度 §2-2平面连杆机构 §2-3凸轮机构及间歇运动机构

机械传动基础和常用机构

机械传动基础和常用机构

一、机械传动概述
移动副的表示方法一、机械传动 Nhomakorabea述(2)高副 两构件通过点或线接触组成的运动副称为高
副。如轴与滚动轴承、凸轮机构和齿轮啮合 等。车轮与钢轨、凸轮与从动件、轮齿与轮 齿分别在接触处组成高副。组成平面高副二 构件间的相对运动是沿接触处切线t-t方向的 相对移动和在平面内的相对转动。 除上述平面运动副之外,机械中还经常见到 球面副和螺旋副。这些运动副两构件间的相 对运动是空间运动,故属于空间运动副。
这种使两构件直接接触并能产生一定相对运动的连接称为 运动副。(例如轴与轴承的连接、活塞与气缸的连接、传动齿轮两
个齿轮间的连接等都构成运动副)
构件组成运动副后,其独立运动受到约束,自由度便随之减少,两构 件组成的运动副,不外乎通过点、线或面的接触来实现。
按照接触特性,通常把运动副分为低副和高副两类。
=3×5 -2×7-0 =1
3、平面机构的自由度
计算机构自由度时应注意的事项 复合铰链:两个以上个构件在同一条轴线上形成的转动副。
由m个构件组成的复合铰链,共有(m-1)个转动副。
F 3n2pl ph 35 27 0 1
3、平面机构的自由度
机构具有确定运动的条件
原动件的数目=机构的自由度数F(F>0或F≥1)。
3.传动部分:把原动机的运动和动力传递给工作机。
4.控制部分:使机器的原动部分、传动部分、工作 部分按一定的顺序和规律运动,完成给定的工作循环。
一、机械传动概述
(二)机械传动的传动比和效率
传动比 i=n1/n2
机械效率
η=Po/Pi
一、机械传动概述
(三)机械传动的类型
摩擦传动


带传动、摩擦轮传动

一般常用机构

一般常用机构

常用的机构急回特性
二、凸轮机构
内燃机的配气凸轮机构
靠模车削
圆柱凸轮机构
从动件的形式
三、带传动
带的形式
四、常用的机构(链传动)
链条的形式
五、间歇运动机构
浇铸系统
槽轮机构
电影放映机的卷片机构
六、常用的机构
格拉霍夫定理


在有整装副存在的铰链四杆机构中,最短杆两 端的转动副均为整转副。此时,如果取最短杆 为机架,则得到双曲柄机构;若取最短杆的任 何一个相连构件为机架,则得到曲柄摇杆机构; 如果取最短杆对面构件为机架,则得到双摇杆 机构。 如果四杆机构不满足杆长之和条件,则不论选 取哪个构件为机架,所得到机构均为双摇杆机 构。
机械创新设计
一般常用机构
一般机构


四杆机构 凸轮机构 齿轮传动 链传动 带传动 间歇运动机构
一、四杆机构
格拉霍夫定理


曲柄存在的杆长之和条件:平面四杆机 构的最短杆和最长杆铰链四杆机构中,如果某个转动副能 够成为整转副,则它所连接的两个构件 中,必有一个为最短杆,并且四个构件 的长度关系满足杆长之和条件。

常用机构类型和应用

常用机构类型和应用

机械设计基础 —— 平面连杆机构
(2) 双曲柄机构
结构特点:二连架杆均为曲柄 运动变换:转动转动,通常二转速不相等 举例:振动筛机构
机械设计基础 —— 平面连杆机构
特殊双曲柄机构
平行四边形机构 结构特点:二曲柄等速 运动不确定问题 车门开闭机构
反平行四边形机构 结构特点:二曲柄转向相反
最短杆是机架
——双曲柄机构
最短杆是连杆
——双摇杆机构
推论2:
当Lmax+Lmin > L(其余两杆长度之和)时
——双摇杆机构
机械设计基础 —— 平面连杆机构
(2) 急回特征
当回程所用时间小于工作行程所用时间时,称该机构具有急回特征
极位夹角:
急回特性分析:
1 = C 1 = 1 t1 =1800 + 2 = 1 t2 =1800 - t1 > t2 , v2 > v1
圆轨迹复制机构
AMF保龄球置瓶机扫瓶机构
D
B A
M
C
机械设计基础 —— 平面连杆机构
2 实现从动件运动形式及运动特性的改变
步进式工件传送机构 运动形式改变实例
机械设计基础 —— 平面连杆机构
3 实现较运距离的传动或操纵
应用实例:自行车手闸
机械设计基础 —— 平面连杆机构
4 调节、扩大从动件行程
A
4
D
机架:固定不动的构件——AD
连架杆:直接与机架相连的构件——
AB、CD
连架杆 B
连杆:不与机架相连的构件—BC
1
曲柄:能作整周转动的连架杆
A
摇杆:不能作整周转动的连架杆
连杆 2
C 连架杆

机械设计基础凸轮机构及其他常用机构

机械设计基础凸轮机构及其他常用机构
详细描述
凸轮机构具有结构简单、紧凑、设计灵活等优点,能够实现精确的位移、速度 和加速度控制,因此在自动化生产线、内燃机、压缩机、印刷机等众多领域得 到广泛应用。
凸轮机构的应用领域
总结词
凸轮机构广泛应用于自动化生产线、内燃机、压缩机、印刷机等领域,用于实现 精确的往复运动或摆动。
详细描述
在自动化生产线中,凸轮机构可用于控制传送带的启停、进给等动作;在内燃机 中,凸轮机构用于控制气门的开闭和汽油的喷射;在压缩机中,凸轮机构用于驱 动活塞的往复运动;在印刷机中,凸轮机构用于控制印版的滚筒运动。
高效率原则
凸轮机构的设计应保证运动传 递效率高,减少摩擦和能量损 失。
可靠性原则
凸轮机构的设计应保证其具有 足够的强度和刚度,能够承受
工作载荷和冲击。
凸轮机构的设计步骤
分析运动需求
明确凸轮机构需要实现的运动规律, 如推程、回程和停歇等阶段的要求。
选择凸轮类型
根据运动需求选择合适的凸轮类型, 如盘形、圆柱形或圆锥形等。
优点是可实现多种复杂的运动规律和运动 轨迹;缺点是连杆的铰链处易磨损,且不 适合用于高速传动。
05
凸轮机构的设计与优化
凸轮机构的设计原则
功能需求原则
凸轮机构的设计应满足预定的 运动规律和动力要求,如位移 、速度和加速度等参数应符合
工作需求。
结构简单原则
凸轮机构的结构应尽量简单, 减少零件数量,降低加工难度 和成本。
03
常用机构介绍
常用机构介绍
• 请输入您的内容
04
凸轮机构与其他常用机构的比较
工作原理的比较
凸轮机构
通过凸轮的转动,使从 动件产生预期的运动规
律。
齿轮机构

机械设计基础凸轮机构及其他常用机构

机械设计基础凸轮机构及其他常用机构

一、凸轮机构的运动循环及基本名词术语
凸轮基圆半径 从动件推程
从动件回程
从动件远(近)休 推程运动角 回程运动角 远(近)休止角
二、从动件运动规律
等速运动规律
h
Φ0
Φs
Φ0
Φs
等加速等减速运动规律
h
Φ0
Φs
Φ0 Φs
余弦加速度(简谐)运动规律
h
Φ0
Φs
Φ0 Φs
正弦加速度(摆线)运动规律
h
Φ0
Φs
Φ0 Φs
3-4-5多项式运动规律
h
Φ0
Φs
Φ0 Φs
三、从动件运动规律的选择
在选择从动件的运动规律时,除要考虑刚性冲击与柔性
冲击外,还应该考虑各种运动规律的速度幅值
度幅值 amax 及其影响加以分析和比较。
vmax
、加速
vmax
amax
从动件动量 mvmax
从动件惯性力 mamax
1、槽轮机构的运动系数
拨盘转一周时,槽轮的运动时间t2与拨盘的运
动时间t1的比值为槽轮机构的运动特性系数。
t2
t1
拨盘转过一周的时间为:
2 若拨t1盘上有k个1圆柱销,则拨盘
每转一周, k 次拨动槽轮。每次 拨动槽轮的运动时间为:
t
' 2
2 1
1
k 次拨动槽轮的运动时间为:
t2
k
21
1
t1
二、槽轮机构的组成及其工作原理
主动拨盘转动
从动槽轮
圆柱销进入径向槽
从动槽轮转动
锁止弧松开
锁止弧
拨盘转过角21
槽轮转过22
径向槽

(最新整理)常用机构的基本形式

(最新整理)常用机构的基本形式
(最新整理)常用机构的基本形式
2021/7/26
1
常用机构的基本形式
2021/7/26
2
第一节 平面连杆机构
平面四杆机构是平面机构的基础,按其构件的运动形式不同,可分 为铰链四杆机构和滑块四杆机构两大类,前者是平面四杆机构的基本形 式,后者由前者衍生而成。
一、铰链四杆机构的基本形式及应用
铰链四杆机构是指 联接构件间,都是作回 转运动的平面0
第三节 间歇运动机构
间歇运动机构是将主动间的连续运动变换为从动件遵循一定规律 的时停时动的机构。间歇运动机构的类型很多,常用的有棘轮机构、 槽轮机构等。
一、棘轮机构
1.棘轮机构的组成及工作原理 如图6-26所示,棘轮机构由棘轮、棘爪及机架组成。图6-27是双 棘爪机构。
2021/7/26
2021/7/26
18
(3)移动凸轮 如图6-24所示为自动机床靠模机构。
盘形凸轮和移动凸轮与从动件之间的相对运动为平面运动,属于 平面凸轮机构;而圆柱凸轮与从动件之间的相对运动不在平行平面内, 属于空间凸轮机构。
2021/7/26
19
2. 按从动件形式分类 (如图6-25所示) (1)尖顶从动件 (2)滚子从动件 (3)平底从动件 此外,凸轮可按从动件的运动类型分为直动从动件和摆动从动件。
1.直径
螺纹的直径有大径(公称直径)、小径、中径。如图6-34所示。
大径———指与外螺纹牙顶或内螺纹牙底相切的假想圆柱的直径。 用d(D)表示。
小径———指与外螺纹牙底或内螺纹牙顶相切的假想圆柱的直径。 用d1(D1))表示。
中径———母线通过牙型上沟槽宽度和凸起宽度相等的假想圆柱 的直径。用d2(D2)表示。
6
图6-6所示的机车驱动轮 联动机构是正平行双曲柄机构 的应用实例。图6-7所示为车 门启闭机构,是反平行双曲柄 机构的一个应用,它使两扇车 门朝相反的方向转动,从而保 证两扇门能同时开启或关闭。

汽车机械基础4.常用机构

汽车机械基础4.常用机构

4.1 平面连杆机构
三、平面四杆机构的性质
3.死点位置
如图A,若摇杆为主动件,则当摇杆处于两个极限位置时,连杆与曲柄共线, 此时传动角γ =0°。 主动件摇杆CD通过连杆作用于从动曲柄AB上的力,恰好通过曲柄的回转中心A, 所以理论上不论作用多大的力,均不能使曲柄AB转动,因而产生“顶死”现象 如图b所示的偏置曲柄滑块机构,当滑块主动并处于极限位置(C1,C2)时, 机构的这种状态位置称为死点位置。
4.1 平面连杆机构
一、铰链四杆机构
最基本的是铰链四杆机构,即四个杆全部用铰链(转动副)连接的平面四杆机构 机架——机构中固定不动的杆,如图中的杆4。 连架杆——与机架直接连接的杆,如图中的杆1和杆3。 连杆——机构中不与机架直接连接的杆,如图的杆2。
在铰链四杆机构中,连杆通常做平面运动,连架杆1和3绕各自的回转中 心A和D转动。其中能做整周回转运动的连架杆称为曲柄;而仅能在一定 角度范围内摆动的连架杆称为摇杆。
4.1 平面连杆机构
一、铰链四杆机构
1. 曲柄摇杆机构 一个连架杆做循环整周运动,而另一连架杆做摆动
构件AB可作整圈的转动,构成曲柄;天 线3作为机构的另一连架杆可作一定范 围的摆动,构成摇杆;随着曲柄的缓缓 转动,天线仰角得到改变。
随着电动机带着曲柄AB 转动,刮雨胶与摇杆CD 一起摆动,完成刮雨功 能。
当两曲柄的长度相等且平行布置时,成为平行双曲柄机构
路灯检修车的载人升斗利用了平动的特点
车门的启闭机构利用了两曲柄反向转动的特点
4.1 平面连杆机构
一、铰链四杆机构
3.双摇杆机构 两根连架杆均只能在不足一周的范围内运动的铰链四杆机构称为双摇杆机构。
港口用起重机吊臂结构原理图 ABCD构成双摇杆机构,AD为机架,在主动摇杆AB的驱动下,随着机构 的运动连杆BC的外伸端点M获得近似直线的水平运动,使吊重Q能作水 平移动而大大节省了移动吊拌 爪与连杆一起作往复的摆动,爪 端点E作轨迹为椭圆的运动,实现 搅拌功能。 搅拌机

《汽车机械基础》汽车常见四杆机构

《汽车机械基础》汽车常见四杆机构

平面四杆机构
铰链四杆机构 滑块四杆机构
铰链四杆机构:全部用回转副相连的平面四杆机构,简称铰 链四杆机构。
滑ቤተ መጻሕፍቲ ባይዱ四杆机构:凡含有移动副的平面四杆机构,简称滑块四 杆机构。
汽车机械基础
1.铰链四杆机构的组成
2
3
1
4
铰链
机 架:机构固定不动的构件4 连架杆:与机架相连的构件1、3 连 杆:不与机架相连的构件2
汽车机械基础
【任务分析】 汽车风窗刮水器、汽车前轮转向机构、汽
车车门启闭机构采用的是平面四杆机构。 铰链四杆机构是平面四杆机构中最基本的
形式,学习铰链四杆机构学生能对机械运动有 较为直观的认识,同时为以后各类机构的学习 打下必要的基础。
汽车机械基础
【学习目标】 1.掌握铰链四杆机构的基本类型。 2.掌握铰链四杆机构的基本性质。 3.掌握铰链四杆机构的演化形式。
汽车机械基础
项目一 汽车常用机构
任务一 平面机构的结构分析 任务二 汽车常见四杆机构 任务三 汽车凸轮机构与棘轮机构
汽车机械基础
汽车机械基础
【任务引入】
汽车风窗刮水器 汽车车门启闭机构
汽车前轮转向机构
汽车风窗刮水器、汽车前 轮转向机构、汽车车门启闭机 构分别采用的是哪种四杆机构? 是怎样进行工作的?
反平行双曲柄机构 两曲柄转向相反,角速 度不等。
汽车机械基础
应用:机车车轮联动机构
被联动的各轮与主动轮作相同的运动!
汽车机械基础
(3)双摇杆机构
主要用途:改变 摆 角 。
汽车机械基础
应用:港口起重机
汽车机械基础
应用:飞机起落架
汽车机械基础
双摇杆机构有一种特殊机构:等腰梯形机构(两摇杆长度相等)。

机械机构分类

机械机构分类

机械机构分类
机械机构,也称为机械结构,是由一些特定的零件以一定的方式连接在一起,以实现特定的运动和功能的装置。

根据其结构和工作原理的不同,机械机构可以分为以下几类:
1. 刚性机构:由刚性零件组成的机械结构,能够保持零件位置和相对位置的不变。

这类机构主要用于提供稳定的支撑和连接功能,如桥梁、大型建筑等。

2. 柔性机构:由柔性零件组成的机械结构,能够在外力作用下发生形状变化。

这类机构主要用于实现复杂的形状变化和运动,如机器人的关节、可变形的结构等。

3. 平面机构:所有零件和连接件都在一个平面内运动的机械结构。

平面机构分为连杆机构、齿轮机构、凸轮机构等,常见的应用有发动机曲轴机构、传动装置等。

4. 空间机构:零件和连接件在三维空间内运动的机械结构。

空间机构能够实现复杂的运动和功能,如机械手臂、航天器的机械系统等。

5. 并联机构:由多个零件同时或独立地完成相同的运动的机械结构。

并联机构具有较高的刚度和精度,常用于要求高速度、高精度和高稳定性的应用,如工业机器人、平行机构等。

6. 串联机构:由多个零件按照一定的顺序连接,按照串联的位置顺序完成运动的机械结构。

串联机构常用于实现复杂的转换、
传动和变换等功能,如传动装置、变速器等。

以上是常见的机械机构分类,不同的机构类型适用于不同的应用领域。

机械工程学中还有对机构进行更详细分类的方法,例如根据运动副的特性、连接点的个数等进行分类。

机械基础第4章

机械基础第4章

第4章 常用机构
3)
以杆3为机架, 便得到图(d)所示的曲柄摇块机构。
曲柄摇块机构 以BC 为机架 直动导杆机构 以滑块为机架
杆机构
BC )
为机架

C
4
C
4
C
4
1
3 3 B 1 2 B 2 A A 1
A
c)
(d)
(e)
第4章 常用机构
图 4-20 汽车自动卸料机构
第4章 常用机构 4) 直动导杆机构:以滑块4为机架, 则导杆1只相对滑块4作 往复移动。
第4章 常用机构
铰链四杆机构有整转副的条件
一、铰链四杆机构 运动副A成为周转副的条件: 由△BCD可得:
l2 l2 l1
l1 l1 ll l 4 4 4


l2 l3 l3
l3
l1 l 4 l 2 l3 由△BCD可得:
+
同理,可得:

第 4章 § 2常用机构 -2 铰链四杆机构有整转副的条件
第4章 常用机构
图 4-5 曲柄摇杆机构
(1) 具有急回运动。 急回运动(Quick Return Motion):主动件作匀速运动, 从动 件往复运动所需的时间不等的性质。 最大摆角:摇杆两极限位置的夹角φ。 在生产中, 利用机构的急回运动,将慢行程作为工作行程, 快 行程作为空回行程, 可提高生产效率。
第4章 常用机构
A
1 2 B
C 3
4
自卸卡车举升机构
第4章 常用机构
汽车转向机构
A A A E EE B B B
D D D C C C
第4章 常用机构 三、平面连杆机构的特点:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以构件4作机架,构件1作360°圆周运动,滑块3作左右移动。
2.摇杆滑块机构
以滑块3作机架,构件2作往复摆动,构件4在滑块中作往复移 动。
§6-2 平面连杆机构
3.曲柄摇块机构
以构件2为机架,曲柄1作360°周转运动,摇块3绕铰转 动中心作往复摆动。
4.导杆机构
1.曲柄转动导杆机构 构件1作机架,构件2为曲柄和导杆4都能作360°周转运动, 主动曲柄作等速转动,从动导杆作变速转动,l1>l4。
一、运动副
按接触状态分为点、线接触的高副;面接触的低 副。
低副又分为曲面接触的转动副;平面接触的移动 副。
§6-1构件、运动副与平面机构
§6-1构件、运动副与平面机构
§6-1构件、运动副与平面机构
二、构件
构件可以是一个零件,更多 的是多个零件的组合体。构件可 分成 构件两端的运动副可以 是转动副、移动副或高副。
§6-3 凸轮机构
§6-3 凸轮机构
三、凸轮机构的 运动分析
1.从动件的运动曲 线
从动件的位 移曲线与盘形凸 轮运动轮廓成一 一对应关系。如 图6-40所示。
2.盘形凸轮
几个参数― 基圆半径,远、 近休止角,回程 角。
§6-3 凸轮机构
3.从动件的基本运动规律
常用有等速运动规律, 如图6-41所示;等加等减 速运动规律,如图6-42所 示。主要研究各种运动规律 的加速度大小,因为加速度 与从动件的质量乘积是冲击 力,在从动件的质量一定的 条件下,加速度越大,冲击
2.曲柄摆动导杆机构
构件1作机架,构件2为曲柄作360°周转运动,摆动导杆4 作往复摆动,l1〈l4。
§6-2 平面连杆机构
四、 平面四杆机构的运动特性
1.急回特性 从图6-28中分析,摇杆的行程往返一样,但曲柄转
过的圆心角不相等。曲柄作等角速运动,转过的圆心角 大,所需要的时间长;反之,所需要的时间短。在相同 的行程中,时间长的转动速度必然慢,反之必然快,使 摇杆出现快速返回,称为回程的急回特性。
的压强大,不适于重载的工作条件。
二、凸轮机构的类型
1.按凸轮的形状和从动件的端部结构分类:
盘形凸轮:如常见的补鞋机手摇轮为盘形双凸轮 。 移动凸轮:常用钥匙与锁心的弹子。 圆柱凸轮:如图所示。
§6-3 凸轮机构
§6-3 凸轮机构
§6-3 凸轮机构
§6-3 凸轮机构
§6-3 凸轮机构
2.按照从动件的形状分: 尖顶从动件 滚子从动件
§6-2 平面连杆机构
二、铰链四杆机构类型的判定
将最短杆与其中最长杆的长度之和与其它两杆长 度之和比较判定:
1.最短杆与最长杆的长度之和小于其它两杆长度之 和,则机构可能存在曲柄。
§6-2 平面连杆机构
此时,如果取最短杆的相邻杆为机架,则机 构为曲柄摇杆机构;如果取最短杆为机架,则机 构为双曲柄机构;如果取最短杆的对边杆件为机 架,则机构为双摇杆机构。
§6-1构件、运动副与平面机构
例6-2:
1.电动机 2.小皮带轮
3.皮带 4.大皮带轮
5.轴
6.小
7.大齿轮 8.离合器
9.曲轴 10.制动器
11.连杆 12.滑块
13.机架
§6-2 平面连杆机构
一、铰链四杆机构的型式
由铰链连接而成的四杆机构称为铰链四杆机 构。分固定不动的机架和两个与机架相连接的连 架杆;不与机架相连接的杆件为连杆。能绕机架 作整周转动的连架杆称为曲柄;只能绕机架作某 个角度范围内摆动的连架杆称为摇杆。
§6-1构件、运动副与平面机构
§6-1构件、运动副与平面机构
三、平面机构运动简图
只应用一些简单的苻号按一定的比例确定运动副 和构件的相对位置,表示机构各构件间的运动关系的图 形称平面机构运动简图。
§6-1构件、运动副与平面机构
画图的步骤是: 找出原动件-传动构件-执形构件-机架-确定运
动副的 类型-选比例尺-用直线或曲线连接运动副。
§6-2 平面连杆机构
解决死点位置的方法
是加惯性轮,靠惯性的作 用冲过死点,或者采用机 构错位排列的方法。可以 利用死点作有用的工作, 如作夹具或飞机起落架。
§6-3 凸轮机构
一、凸轮的组成与特点
1.组成 由凸轮、从动件和机架等三个构件组成。
2.特点 将凸轮连续匀速转动转变成从动件断续非匀速的
直线运动或摆动。 具有构件数少,结构紧凑的特点,但点、线接触
平底从动件
§6-3 凸轮机构
3.按照从动件的运动形式分
移动从动件 摆动从动件
二、凸轮机构的材料及结构
1.材料 凸轮 高副点线接触的压强大,要求耐磨损材
料,凸轮和滚子选45、40Cr,外轮廓淬火热处理。 从动杆 端部作淬火热处理。
2.结构 凸轮按结构大小做成凸轮轴或凸轮与轴分别加工,
然后再用键或销连接起来。
§6-2 平面连杆机构
2.压力角
如图6-29所示,C点的绝对速度与受力方向的压力 角为压力角,压力角与传动角互成90度,传动角的大小 由连杆和摇杆的夹角组成,在运动中容易观察,所以常 用传动角来控制压力角的大小。
§6-2 平面连杆机构
3.死点
死点形成前提是在曲柄摇杆机构中,以摇杆作为主 动构件,当摇杆在两极限位置,极位夹角成0°或180° 时,曲柄的力臂为0。此时无论施加多大的作用力,曲 柄都不可能转动,称之为死点位置。
铰链四杆机构分三种不同型式: 1.曲柄摇杆机构
两个连架杆分别为曲柄和摇杆的铰链四杆机构。
§6-2 平面连杆机构
§6-2 平面连杆机构
§6-2 平面连杆机构
2.双曲柄机构
两个连架杆都为曲柄的铰链四杆机构。如果两 个连架杆的长度相等,称为平行双双曲柄机构。
§6-2 平面连杆机构
3.双摇杆机构 两个连架杆都为摇杆的铰链四杆机构 。
2.最短杆与最长杆的长度之和大于其它两杆长 度之和,则机构不可能存在曲柄。此机构只能为 双摇杆机构。
例 6-2 图中各杆件长度 分别AB=800mm,BC=
1300mm,CD=1000mm, AD =1200mm,取各杆件 为机架,可得何种机构?
§6-2 平面连杆机构
三、含有一个移动副的四杆机构
1.曲柄滑块机构
第六章 常用机构
机构是机械基础的重要内容,它将连续 的转动改变成执行元件所需要的其它运动 形式,如直线运动、间歇运动等。
常见的机构有平面四杆机构、凸轮机构 棘轮机构、槽轮机构等。
机器是由各种机构和传动组成的,掌握 机构的组成和特点,是了解和正确使用机 器的必备基础知识。
§6-1构件、运动副与平面机构
相关文档
最新文档