双曲线及标准方程典型例题
双曲线题型归纳含(答案)
三、典型例题选讲(一)考查双曲线的概念例1 设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为023=-y x ,1F 、2F 分别是双曲线的左、右焦点.若3||1=PF ,则=||2PF ( )A .1或5B .6C .7D .9分析:根据标准方程写出渐近线方程,两个方程对比求出a 的值,利用双曲线的定义求出2||PF 的值.解:Θ双曲线19222=-y a x 渐近线方程为y =x a 3±,由已知渐近线为023=-y x , 122,||||||4a PF PF ∴=±∴-=,||4||12PF PF +±=∴. 12||3,||0PF PF =>Q ,7||2=∴PF .故选C .归纳小结:本题考查双曲线的定义及双曲线的渐近线方程的表示法.(二)基本量求解例2(2009山东理)设双曲线12222=-by a x 的一条渐近线与抛物线21y x =+只有一个公共点,则双曲线的离心率为( )A .45B .5C .25D .5解析:双曲线12222=-b y a x 的一条渐近线为x a b y =,由方程组21b y x a y x ⎧=⎪⎨⎪=+⎩,消去y ,得210b x x a -+=有唯一解,所以△=2()40ba-=, 所以2b a =,2221()5c a b b e a a a+===+=,故选D .归纳小结:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念、基本方法和基本技能.例3(2009全国Ⅰ理)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率等于( )A.3 B.2 C.5 D.6 解析:设切点00(,)P x y ,则切线的斜率为0'0|2x x y x ==.由题意有002y x x =.又有2001y x =+,联立两式解得:2201,2,1()5b bx e a a=∴==+=. 因此选C .例4(2009江西)设1F 和2F 为双曲线22221x y a b-=(0,0a b >>)的两个焦点,若12F F ,,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为( )A .32 B .2 C .52D .3解析:由3tan62c b π==2222344()c b c a ==-,则2c e a==,故选B . 归纳小结:注意等边三角形及双曲线的几何特征,从而得出3tan 62c b π==体现数形结合思想的应用.(三)求曲线的方程例5(2009,北京)已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为3,右准线方程为33x =. (1)求双曲线C 的方程;(2)已知直线0x y m -+=与双曲线C 交于不同的两点A ,B ,且线段AB 的中点在圆225x y +=上,求m 的值.分析:(1)由已知条件列出,,a b c 的关系,求出双曲线C 的方程;(2)将直线与双曲线方程联立,再由中点坐标公式及点在圆上求出m 的值.解:(1)由题意,得2333a cc a⎧=⎪⎪⎨⎪=⎪⎩,解得1,3a c ==. ∴2222b c a =-=,∴所求双曲线C 的方程为2212y x -=. (2)设A 、B 两点的坐标分别为()()1122,,,x y x y ,线段AB 的中点为()00,M x y ,由22120y x x y m ⎧-=⎪⎨⎪++=⎩得22220x mx m ---=(判别式0∆>), ∴12000,22x x x m y x m m +===+=, ∵点()00,M x y 在圆225x y +=上, ∴()2225m m +=,∴1m =±.另解:设A 、B 两点的坐标分别为()()1122,,,x y x y ,线段AB 的中点为()00,M x y ,由221122221212y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得121212121()()()()02x x x x y y y y +--+-=.由直线的斜率为1,121200,22x x y yx y ++==代入上式,得002y x =. 又00(,)M y x 在圆上,得22005y x +=,又00(,)M y x 在直线上,可求得m 的值.归纳小结:本题主要考查双曲线的标准方程、圆的切线方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力.例6 过(1,1)M 的直线交双曲线22142x y -=于,A B 两点,若M 为弦AB 的中点,求直线AB 的方程.分析:求过定点M 的直线方程,只需要求出它的斜率.为此可设其斜率是k ,利用M 为弦AB 的中点,即可求得k 的值,由此写出直线AB 的方程.也可设出弦的两端点坐标用“点差法”求解.解法一:显然直线AB 不垂直于x 轴,设其斜率是k ,则方程为1(1)y k x -=-.由221421(1)x y y k x ⎧-=⎪⎨⎪-=-⎩消去y 得222(12)4(1)2460①k x k k x k k ----+-=设),(),(221,1y x B y x A ,由于M 为弦AB 的中点,所以1222(1)1212x x k k k+-==-,所以12k =. 显然,当12k =时方程①的判别式大于零.所以直线AB 的方程为11(1)2y x -=-,即210x y -+=.解法二:设),(),(221,1y x B y x A ,则221122221②421③42x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩①-②得12121212()()2()()0x x x x y y y y -+--+=. 又因为12122,2x x y y +=+=,所以12122()x x y y -=-.若12,x x =则12y y =,由12122,2x x y y +=+=得121x x ==,121y y ==. 则点A B 、都不在双曲线上,与题设矛盾,所以12x x ≠. 所以121212y y k x x -==-.所以直线AB 的方程为11(1)2y x -=-,即210x y -+=. 经检验直线210x y -+=符合题意,故所求直线为210x y -+=.解法三:设A (x y ,),由于A B 、关于点M (1,1)对称,所以B 的坐标为(22x y --,),则2221,42(2) 1.2x y y ⎧-=⎪⎪⎨-⎪-=⎪⎩2(2-x)4消去平方项,得210x y -+=. ④ 即点A 的坐标满足方程④,同理点B 的坐标也满足方程④. 故直线AB 的方程为210x y -+=.归纳总结:由于双曲线(抛物线)不是“封闭”的曲线,以定点为中点的弦不一定存在,所以在求双曲线(抛物线)中点弦方程时,必须判断满足条件的直线是否存在.(四)轨迹问题例7 已知点100(,)P x y 为双曲线222218x y b b-=(b 为正常数)上任一点,2F 为双曲线的右焦点,过1P 作右准线的垂线,垂足为A ,连接2F A 并延长交y 轴于2P .求线段1P 2P 的中点P 的轨迹E 的方程.分析:求轨迹问题有多种方法,如相关点法等,本题注意到点P 是线段1P 2P 的中点,可利用相关点法.解:由已知得208(3,0),(,)3F b A b y ,则直线2F A 的方程为:03(3)y y x b b=--. 令0x =得09y y =,即20(0,9)P y .设P x y (,),则00002952x x y y y y⎧=⎪⎪⎨+⎪==⎪⎩, 即0025x xy y =⎧⎪⎨=⎪⎩代入22002218x y b b -=得:222241825x y b b -=, 即P 的轨迹E 的方程为22221225x y b b-=.()x ∈R 归纳小结:将几何特征转化为代数关系是解析几何常用方法. (五)突出几何性质的考查例8(2006江西)P 是双曲线221916x y -=的右支上一点,M ,N 分别是圆22(5)4x y ++=和22(5)1x y -+=上的点,则||||PM PN -的最大值为( )A.6B.7C.8D.9解析:双曲线的两个焦点1(5,0)F -与2(5,0)F 恰好是两圆的圆心,欲使||||PM PN -的值最大,当且仅当||PM 最大且||PN 最小,由平面几何性质知,点M 在线段1PF 的延长线上,点N 是线段2PF 与圆的交点时所求的值最大.此时12||||(2)(1)PM PN PF PF -=+--9321=+-=PF PF .因此选D . 例9(2009重庆)已知以原点O 为中心的双曲线的一条准线方程为5x =,离心率5e =. (1)求该双曲线的方程;(2)如图,点A 的坐标为(5,0)-,B 是圆22(5)1x y +-=上的点,点M 在双曲线右支上,求MA MB +的最小值,并求此时M 点的坐标.分析:(1)比较基础,利用所给条件可求得双曲线的方程;(2)利用双曲线的定义将MA MB 、转化为其它线段,再利用不等式的性质求解.解:(1)由题意可知,双曲线的焦点在x 轴上,故可设双曲线的方程为22221(0,0)x y a b a b -=>>,设22c a b=+5x =25a c = 由5e =5ca= 解得1,5a c ==从而2b =,∴该双曲线的方程为2214y x -=.(2)设点D 的坐标为(5,0),则点A 、D 为双曲线的焦点,则||||22MA MD a -==.所以||||2||||2||MA MB MB MD BD +=+++≥.因为B 是圆22(5)1x y +-=上的点,其圆心为(0,5)C ,半径为1, 故||||1101BD CD -=+≥,从而||||2||101MA MB BD +++≥≥.当,M B 在线段CD 上时取等号,此时||||MA MB +的最小值为101+.Q 直线CD 的方程为5y x =-+,因点M 在双曲线右支上,故0x >.由方程组22445x y y x ⎧-=⎪⎨=-+⎪⎩解得5424542,33x y -+-==.所以M 点的坐标为5424542(,)33-+-. 归纳小结:本题综合考查双曲线的知识及不等式性质,考查推理能力及数形结合思想.。
高中数学精讲(4)双曲线及其标准方程
双曲线及其标准方程1.双曲线的定义:平面内与两定点12,F F 的距离的差的 等于常数(小于12F F )的点的轨迹叫做双曲线。
两定点12,F F 叫做双曲线的 , 两焦点间的距离12F F 叫做双曲线的 .反思:设常数为2a ,为什么2a <12F F ?2a =12F F 时,轨迹是 ;2a >12F F 时,轨迹 .2.双曲线的标准方程:22222221,(0,0,)x y a b c a b a b-=>>=+(焦点在x 轴) 其焦点坐标为1(,0)F c -,2(,0)F c .焦点在y 轴,标准方程是 。
思考:由双曲线的标准方程如何判定焦点的位置以及22,b a3. 典型例题例1已知双曲线的两焦点为1(5,0)F -,2(5,0)F ,双曲线上任意点到12,F F 的距离的差的绝对值等于6,求双曲线的标准方程.变式:已知双曲线221169x y -=的左支上一点P 到左焦点的距离为10,则点P 到右焦点的距离为 .例2:求适合下列条件的双曲线的标准方程式:(1)焦点在x 轴上,4a =,3b =;(2)焦点为(0,6),(0,6)-,且经过点(2,5)-.例3:双曲线2255x ky +=的一个焦点是,那么实数k 的值为( ).A .25-B .25C .1-D .1练习:1.动点P 到点(1,0)M 及点(3,0)N 的距离之差为2,则点P 的轨迹是( ).A. 双曲线B. 双曲线的一支C. 两条射线D. 一条射线2.双曲线的两焦点分别为12(3,0),(3,0)F F -,若2a =,则b =( ).A. 5B. 13C.3.已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=则动点P 的轨迹方程为 .4.已知方程22121x y m m -=++表示双曲线,则m 的取值范围 .5.求适合下列条件的双曲线的标准方程:(1)焦点在x 轴上,a =,经过点(5,2)A -;(2)经过两点(7,A --,B .双曲线的简单几何性质1.(1)双曲线22221x y a b-=的几何性质范围:x : y : 。
双曲线双曲线及其标准方程练习题(带答案)
双曲线双曲线及其标准方程练习题(带答案)双曲线及其标准方程练习一、选择题(每小题四个选项中,只有一项符合题目要求) 1.已知点和,曲线上的动点P到、的距离之差为6,则曲线方程为()A. B. C.或 D. 2.“ab<0”是“方程表示双曲线”的() A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分又不必要条件 3.动圆与两圆和都相切,则动圆圆心的轨迹为() A.抛物线 B.圆 C.双曲线的一支 D.椭圆 4.P为双曲线上的一点,F 为一个焦点,以PF为直径的圆与圆的位置关系是() A.内切 B.内切或外切 C.外切 D.相离或相交 5.双曲线的左焦点为F,点P为左支的下半支上任一点(非顶点),则直线PF的斜率的范围是()A.(-∞,0]∪[1,+∞) B.(-∞,0)∪(1,+∞) C.(-∞,-1)∪[1,+∞) D.(-∞,-1)∪(1,+∞) 6.若椭圆和双曲线有相同的焦点、,P是两曲线的一个公共点,则的值是() A.m -a B. C. D.二、填空题 7.双曲线的一个焦点是,则m的值是________ _。
8.过双曲线的焦点且垂直于x轴的弦的长度为_______。
三、解答题 9.已知双曲线过点A(-2,4)、B(4,4),它的一个焦点是,求它的另一个焦点的轨迹方程。
10.已知直线y=ax+1与双曲线相交于A、B两点,是否存在这样的实数a,使得A、B关于直线y=2x对称?如果存在,求出a的值,如果不存在,说明理由。
11.A、B、C是我方三个炮兵阵地,A在B的正东相距6km,C在B的北偏西30°相距4km,P为敌炮兵阵地,某时刻A发现敌炮阵地的某种信号,4秒种后,B、C才同时发现这一信号,该信号的传播速度为每秒1km, A若炮击P地,求炮击的方位角。
答案与提示一、1.D 2.A 3.C 4.B 5.B 6.A 二、7.-2 8.三、9.提示:易知由双曲线定义知即① 即此时点的轨迹为线段AB 的中垂线,其方程为x=1(y≠0) ② 即此时点的轨迹为以A、B为焦点,长轴长为10的椭圆,其方程为(y≠0) 10.不存在 11.提示:以AB的中点为原点,正东、正北方向分别为x轴、y轴建立直角坐标系,则A(3,0),B(-3,0),,依题意|PB|-|PA|=4 ∴ P 点在以A、B为焦点的双曲线的右支上,其中c=3,2a=4,则,方程为又|PB|=|PC| ∴P在线段BC的垂直平分线上联立解得∴ 又∴α=60° ∴P点在A点东偏北60°处,即A炮击P地时,炮击的方位角为北偏东30°。
双曲线性质总结及经典例题
双曲线性质总结及经典例题双曲线知识点总结1. 双曲线的第一定义:⑴①双曲线标准方程:.一般方程:.⑵①i. 焦点在x轴上:顶点:焦点:准线方程渐近线方程:或ii. 焦点在轴上:顶点:. 焦点:. 准线方程:. 渐近线方程:或②轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2c. ③离心率. ④准线距(两准线的距离). ⑤参数关系. ⑥焦点半径公式:对于双曲线方程(分别为双曲线的左、右焦点或分别为双曲线的上下焦点)例题分析定义类1,已知12(5,0),(5,0)F F -,一曲线上的动点P 到21,F F 距离之差为6,则双曲线的方程为点拨:一要注意是否满足122||a F F <,二要注意是一支还是两支12||||610PF PF -=< ,P 的轨迹是双曲线的右支.其方程为)0(116922>=-x y x2双曲线的渐近线为x y 23±=,则离心率为 点拨:当焦点在x 轴上时,23=a b ,213=e ;当焦点在y轴上时,23=b a ,313=e4 设P 为双曲线11222=-y x 上的一点F 1、F 2是该双曲线的两个焦点,若|PF 1|:|PF 2|=3:2,则△PF 1F 2的面积为 ( )A .36B .12C .312D .24 解析:2:3||:||,13,12,121====PF PF c b a 由 ①又,22||||21==-a PF PF ②由①、②解得.4||,6||21==PF PF,52||,52||||2212221==+F F PF PF为21F PF ∴直角三角形,.124621||||212121=⨯⨯=⋅=∴∆PF PF S F PF 故选B 。
1已知双曲线C 与双曲线162x -42y =1有公共焦点,且过点(32,2).求双曲线C 的方程.【解题思路】运用方程思想,列关于c b a ,,的方程组 [解析] 解法一:设双曲线方程为22a x -22b y =1.由题意易求c =25.又双曲线过点(32,2),∴22)23(a -24b =1.又∵a 2+b 2=(25)2,∴a 2=12,b 2=8.故所求双曲线的方程为122x-82y =1.解法二:设双曲线方程为kx -162-ky +42=1,将点(32,2)代入得k =4,所以双曲线方程为122x -82y =1.2.已知双曲线的渐近线方程是2xy ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ; [解析]设双曲线方程为λ=-224y x ,当0>λ时,化为1422=-λλy x ,2010452=∴=∴λλ, 当0<λ时,化为1422=---λλy y ,2010452-=∴=-∴λλ,综上,双曲线方程为221205x y -=或120522=-x y3.以抛物线x y 382=的焦点F 为右焦点,且两条渐近线是03=±y x 的双曲线方程为___________________.[解析] 抛物线x y 382=的焦点F 为)0,32(,设双曲线方程为λ=-223y x ,9)32(342=∴=∴λλ,双曲线方程为13922=-y x【例1】若椭圆()0122 n m ny m x =+与双曲线221x y a b-=)0( b a 有相同的焦点F 1,F 2,P 是两条曲线的一个交点,则|PF 1|·|PF 2|的值是 ( )A. a m -B. ()a m -21 C. 22a m -D.am -()1221m PF PF m∴+=,()1222a PF PF a∴-=±,()()()2212121244PF PF m a PF PF m a-⋅=-⇒⋅=-:,故选A.【评注】严格区分椭圆与双曲线的第一定义,是破解本题的关键. 【例2】已知双曲线127922=-y x 与点M(5,3),F 为右焦点,若双曲线上有一点P ,使PMPF 21+最小,则P 点的坐标为XY O F(6,0)M(5,3)P N P ′N ′X=32【分析】待求式中的12是什么?是双曲线离心率的倒数.由此可知,解本题须用双曲线的第二定义.【解析】双曲线的右焦点F (6,0),离心率2e =, 右准线为32l x =:.作MN l ⊥于N ,交双曲线右支于P , 连FP ,则122PF e PN PN PN PF ==⇒=.此时 PM 1375225PF PM PN MN +=+==-=为最小. 在127922=-y x 中,令3y =,得2122 3.xx x =⇒=±∴0,取23x =所求P 点的坐标为23(,).【例3】过点(1,3)且渐近线为x y 21±=的双曲线方程是【解析】设所求双曲线为()2214x y k -=点(1,3)代入:135944k =-=-.代入(1): 22223541443535x y x y -=-⇒-=即为所求.【评注】在双曲线22221x y a b -=中,令222200x y x y a b a b-=⇒±=即为其渐近线.根据这一点,可以简洁地设待求双曲线为2222x y k a b-=,而无须考虑其实、虚轴的位置.【例7】直线l 过双曲线12222=-by a x 的右焦点,斜率k =2.若l 与双曲线的两个交点分别在左右两支上,则双曲线的离心率e 的范围是 ( ) A .e >2 B.1<e <3 C.1<e <5 D.e >5【解析】如图设直线l 的倾斜角为α,双曲线渐近线m的倾斜角为β.显然。
双曲线练习题(含答案)
双曲线及其标准方程习题一、 单选题(每道小题 4分 共 56分 )1. 命题甲:动点P 到两定点A 、B 距离之差│|PA|-|PB|│=2a(a >0);命题乙; P 点轨迹是双曲线,则命题甲是命题乙的 [ ] A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件2.若双曲线的一个焦点是,,则等于 . . . .2kx ky =1(04)k [ ]A B C D 22---33258332583.点到点,与它关于原点的对称点的距离差的绝对值等于,则点的轨迹方程是 . .. .P (60)10P [ ]A y 11=1B y 25=1C y 6=1D y 25=12222-----x x x x 2222256125114.k 5+y 6k=1[ ]A B C D 2<是方程表示双曲线的 .既非充分又非必要条件 .充要条件.必要而非充分条件 .充分而非必要条件x k 25--5. 如果方程x 2sin α-y 2cos α=1表示焦点在y 轴上的双曲线,那么角α的终边在 [ ] A .第四象限 B .第三象限 C .第二象限 D .第一象限 6.下列曲线中的一个焦点在直线上的是 . .. .4x 5y +25=0[ ]A y 16=1B +y 16=1C x 16=1D +x 16=12222---x x y y 22229259257. 若a ·b <0,则ax 2-ay 2=b 所表示的曲线是 [ ] A .双曲线且焦点在x 轴上 B .双曲线且焦点在y 轴上 C .双曲线且焦点可能在x 轴上,也可能在y 轴上 D .椭圆 8.以椭圆的焦点为焦点,且过,点的双曲线方程为. .. .x x y y y 2222296109251150+y 25=1P(35)[ ]A y 10=1B x 6=1C x 3=1D x 2=122222----9.到椭圆的两焦点距离之差的绝对值等于椭圆短轴的点的轨迹方程是 . .. .x x x x x 2222225251697+y 9=1[ ]A y 9=1B y 9=1C y 7=1D y 9=122222----10.直线与坐标轴交两点,以坐标轴为对称轴,以其中一点为焦点且另一点为虚轴端点的双曲线的方程是 . .. .或2x 5y +20=0[ ]A y 16=1B y 84=1C y 84=1D y 84=1y 84=122222------x x x x x 2222284161001610011.以坐标轴为对称轴,过,点且与双曲线有相等焦距的双曲线方程是 .或 .或.或 .或A(34)y 20=1[ ]A y 20=1x 20=1B y 15=1x 15=1C y 20=1x 15=1D y 5=1x 10=1222222222x x y x y x y x y 22222222255510105102015---------12.与双曲线共焦点且过点,的双曲线方程是 . .. .x x x x x 2222215520916------y 10=1(34)[ ]A y 20=1B y 5=1C y 16=1D y 9=12222213. 已知ab <0,方程y=-2x +b 和bx 2+ay 2=ab 表示的曲线只可能是图中的 [ ]14.已知△一边的两个端点是、,另两边斜率的积是,那么顶点的轨迹方程是 . .. .ABC A(7,0)B(70)C [ ]A x +y =49B +x 49=1C =1D 5y 147=12222---,x 355147514749492222y y x二、 填空题(每道小题 4分 共 8分 )1.已知双曲线的焦距是,则的值等于 .x k 21+-y 5=18k 22.设双曲线,与恰是直线在轴与轴上的截距,那么双曲线的焦距等于 .x a 22--y b=1(a >0,b >0)a b 3x +5y 15=0x y 22双曲线的标准方程及其简单的几何性质1.平面内到两定点E 、F 的距离之差的绝对值等于|EF |的点的轨迹是( ) A .双曲线 B .一条直线 C .一条线段 D .两条射线 2.已知方程x 21+k -y 21-k =1表示双曲线,则k 的取值范围是( )A .-1<k <1B .k >0C .k ≥0D .k >1或k <-13.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都相外切,则动圆圆心的轨迹为( ) A .双曲线的一支 B .圆 C .抛物线 D .双曲线4.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是( )A.x 23-y 2=1 B .y 2-x 23=1 C.x 23-y 24=1D.y 23-x 24=1 5.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6.已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2, |PF 1|·|PF 2|=2,则该双曲线的方程是( ) A.x 22-y 23=1 B.x 23-y 22=1 C.x 24-y 2=1 D .x 2-y 24=17.已知点F 1(-4,0)和F 2(4,0),曲线上的动点P 到F 1、F 2距离之差为6,则曲线方程为( ) A.x 29-y 27=1 B.x 29-y 27=1(y >0) C.x 29-y 27=1或x 27-y 29=1 D.x 29-y 27=1(x >0) 8.已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是( ) A .16B .18C .21D .269.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,双曲线的方程是( )A.x 212-y 24=1B.x 24-y 212=1 C .-x 212+y 24=1 D .-x 24+y 212=1 10.焦点为(0,±6)且与双曲线x 22-y 2=1有相同渐近线的双曲线方程是( )A.x 212-y 224=1 B.y 212-x 224=1 C.y 224-x 212=1 D.x 224-y 212=111.若0<k <a ,则双曲线x 2a 2-k 2-y 2b 2+k 2=1与x 2a 2-y 2b 2=1有( )A .相同的实轴B .相同的虚轴C .相同的焦点D .相同的渐近线12.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( )A .y =±54xB .y =±45xC .y =±43xD .y =±34x13.双曲线x 2b 2-y 2a 2=1的两条渐近线互相垂直,那么该双曲线的离心率为( )A .2B. 3C. 2D.3214.双曲线x 29-y 216=1的一个焦点到一条渐近线的距离等于( )A. 3 B .3 C .4 D .2二、填空题15.双曲线的焦点在x 轴上,且经过点M (3,2)、N (-2,-1),则双曲线标准方程是________. 16.过双曲线x 23-y 24=1的焦点且与x 轴垂直的弦的长度为________.17.如果椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1的焦点相同,那么a =________.18.双曲线x 24+y 2b =1的离心率e ∈(1,2),则b 的取值范围是________.19.椭圆x 24+y 2a 2=1与双曲线x 2a2-y 2=1焦点相同,则a =________.20.双曲线以椭圆x 29+y 225=1的焦点为焦点,它的离心率是椭圆离心率的2倍,求该双曲线的方程为________.双曲线及其标准方程习题答案一、单选题1. B2. C3. A4. D5. B6. C7. B8. B9. C 10. A 11. C 12. A 13. B 14. D 二、填空题1. 10 2.234双曲线的标准方程及其简单的几何性质(答案)1、[答案] D2、[答案] A [解析] 由题意得(1+k )(1-k )>0,∴(k -1)(k +1)<0,∴-1<k <1.3、[答案] A [解析] 设动圆半径为r ,圆心为O , x 2+y 2=1的圆心为O 1,圆x 2+y 2-8x +12=0的圆心为O 2,由题意得|OO 1|=r +1,|OO 2|=r +2, ∴|OO 2|-|OO 1|=r +2-r -1=1<|O 1O 2|=4, 由双曲线的定义知,动圆圆心O 的轨迹是双曲线的一支.4、[答案] B [解析] 由题意知双曲线的焦点在y 轴上,且a =1,c =2, ∴b 2=3,双曲线方程为y 2-x 23=1. 5、[答案] C [解析] ab <0⇒曲线ax 2+by 2=1是双曲线,曲线ax 2+by 2=1是双曲线⇒ab <0. 6、[答案] C [解析] ∵c =5,|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2, ∴(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|=4c 2,∴4a 2=4c 2-4=16,∴a 2=4,b 2=1. 7、[答案] D [解析] 由双曲线的定义知,点P 的轨迹是以F 1、F 2为焦点, 实轴长为6的双曲线的右支,其方程为:x 29-y 27=1(x >0)8、[答案] D [解析] |AF 2|-|AF 1|=2a =8,|BF 2|-|BF 1|=2a =8, ∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16,∴|AF 2|+|BF 2|=16+5=21, ∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26.9、[答案] C [解析] ∵椭圆x 29+y 225=1的焦点为(0,±4),离心率e =45,∴双曲线的焦点为(0,±4),离心率为145-45=105=2, ∴双曲线方程为:y 24-x 212=1.10、[答案] B [解析] 与双曲线x 22-y 2=1有共同渐近线的双曲线方程可设为x 22-y 2=λ(λ≠0),又因为双曲线的焦点在y 轴上, ∴方程可写为y 2-λ-x 2-2λ=1.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12. ∴双曲线方程为y 212-x 224=1.11、[答案] C [解析] ∵0<k <a ,∴a 2-k 2>0.∴c 2=(a 2-k 2)+(b 2+k 2)=a 2+b 2.12、[答案] D [解析] ∵c a =53,∴c 2a 2=a 2+b 2a 2=259,∴b 2a 2=169,∴b a =43,∴a b =34.又∵双曲线的焦点在y 轴上,∴双曲线的渐近线方程为y =±a b x ,∴所求双曲线的渐近线方程为y =±34x .13、[答案] C [解析] 双曲线的两条渐近线互相垂直,则渐近线方程为:y =±x ,∴b a =1,∴b 2a 2=c 2-a 2a 2=1,∴c 2=2a 2,e =ca= 2. 14、[答案] C[解析] ∵焦点坐标为(±5,0),渐近线方程为y =±43x ,∴一个焦点(5,0)到渐近线y =43x 的距离为4.15、[答案] x 273-y 275=1 [解析] 设双曲线方程为:x 2a 2-y 2b 2=1(a >0,b >0)又点M (3,2)、N (-2,-1)在双曲线上,∴⎩⎨⎧ 9a 2-4b 2=14a 2-1b 2=1,∴⎩⎨⎧a 2=73b 2=75.16、[答案]833[解析] ∵a 2=3,b 2=4,∴c 2=7,∴c =7, 该弦所在直线方程为x =7,由⎩⎪⎨⎪⎧x =7x 23-y 24=1得y 2=163,∴|y |=433,弦长为833.17、[答案] 1 [解析] 由题意得a >0,且4-a 2=a +2,∴a =1.18、[答案] -12<b <0 [解析] ∵b <0,∴离心率e =4-b2∈(1,2),∴-12<b <0. 19、[答案]62 [解析] 由题意得4-a 2=a 2+1,∴2a 2=3,a =62. 焦点为(0,±4),离心率e =c a =45,∴双曲线的离心率e 1=2e =85,∴c 1a 1=4a 1=85,∴a 1=52,∴b 21=c 21-a 21=16-254=394,∴双曲线的方程为y 2254-x 2394=1.20、[答案]y2254-x2394=1 [解析]椭圆x29+y225=1中,a=5,b=3,c2=16,。
双曲线知识点及例题
双曲线知识点一:双曲线的定义: 在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且)的动点的轨迹叫作双曲线的轨迹叫作双曲线..这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距两焦点的距离叫作双曲线的焦距. . 注意:注意:1. 1. 双曲线的定义中,常数双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解; 2. 2. 若去掉定义中的“绝对值”,常数若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支;的一支;3. 3. 若常数若常数满足约束条件:,则动点轨迹是以F 1、F 2为端点的两条射线(包括端点);端点的两条射线(包括端点); 4.若常数满足约束条件:,则动点轨迹不存在;,则动点轨迹不存在;5.若常数,则动点轨迹为线段F 1F 2的垂直平分线。
的垂直平分线。
知识点二:双曲线与的简单几何性质标准方程图形性质焦点, ,焦距范围,,对称性 关于x 轴、y 轴和原点对称顶点 轴长 实轴长=,虚轴长=离心率 渐近线方程1.通径:过焦点且垂直于实轴的弦,其长ab 222.2.等轴双曲线等轴双曲线等轴双曲线 : : :当双曲线的实轴长与虚轴长相等即当双曲线的实轴长与虚轴长相等即2a=2b 时,我们称这样的双曲线为等轴双曲线。
其离心率,两条渐近线互相垂直为,等轴双曲线可设为3.3.与双曲线与双曲线有公共渐近线的双曲线方程可设为(,焦点在轴上,,焦点在y 轴上)轴上)4.4.焦点三角形的面积焦点三角形的面积2cot221qb SF PF =D ,其中21PF F Ð=q 5.5.双曲线的焦点到渐近线的距离为双曲线的焦点到渐近线的距离为b.6.在不能确定焦点位置的情况下可设双曲线方程为:)0(122<=+mn ny mx 7.7.椭圆、双曲线的区别和联系:椭圆、双曲线的区别和联系:椭圆、双曲线的区别和联系:椭圆双曲线根据|MF 1|+|MF 2|=2a根据|MF 1|-|MF 2|=|=±±2aa >c >0, a 22-c 22=b 22(b >0)0<a <c , c 22-a 22=b 22(b >0), ,(a>b>0)(a>0,b>0,a不一定大于b)典型例题1、已知双曲线:()的离心率为,则的渐近线方程为()D.A.B.C.试题分析:由题意可知,因为渐近线方程为 所以渐近线的方程为 2、已知分别是双曲线的左右焦点,过做垂直于轴的直线交双曲线于两点,若为钝角三角形,则双曲线的离心率的范围是A.B.C.D.试题分析:由题意为钝角三角形,则,所以,又,,所以,所以,所以.考点:双曲线离心率.3、已知双曲线(a>0,b>0)的一条渐近线为,则它的离心率为()A.B.C.D.试题分析:由已知得,又在双曲线中有,所以得到;故选A.4、若双曲线的两准线间的距离是焦距的,则双曲线的离心率为_________. 试题分析:双曲线的两准线的距离为:,两焦点间的距离为:,根据题意可由:化简为:解得:,所以答案为:. 5、双曲线的离心率 .试题分析:双曲线即为,其中6、如图,、是双曲线的左、右焦点,过的直线与双曲线的左右两支分别交于点、.若为等边三角形,则双曲线的离心率为( )A.4B.C.D.试题分析:因为为等边三角形,不妨设,为双曲线上一点,,为双曲线上一点,则,,由,则,在中应用余弦定理得:,得,则7、设双曲线的一条渐近线与抛物线只有一个公共点,则双曲线的离心率为()A.B.C.D.试题分析:的一条渐近线方程与抛物线只有一个公共点,把代入中,得,由,,则8、过双曲线的右焦点F2的一条弦PQ,|PQ|=7,F1是左焦点,那么△F1PQ的周长为()A.18B.C.D.试题分析:可化为;由双曲线的定义,得的周长为.9、双曲线的顶点到其渐近线的距离等于_________.试题分析:双曲线的顶点为,渐近线方程为,即;则顶点到其渐近线的距离为. 10、双曲线的离心率,则的取值范围是()A.B.C.D.试题分析:由题意知,又,∴,∴. 11、双曲线的实轴长是()A.2B.2C.4D.4试题分析:双曲线方程可变形为,所以. 12、双曲线:的渐近线方程是()A.B.C.D.试题分析:由双曲线的渐近线方程的公式可知的渐近线方程是.13、斜率为的直线过双曲线的右焦点,且与双曲线的左右两支都相交,则双曲线的离心率的取值范围是()A.B.C.D.试题分析:如图,要使斜率为的直线过双曲线的右焦点,且与双曲线的左右两支都相交,必须且只需即可,从而有所以有离心率,故选D. 14、过原点的直线与双曲线有两个交点,则直线的斜率的取值范围为()A.B.C.D.试题分析:双曲线的焦点在y轴上,通过双曲线的图象与性质可知当直线与双曲线有两交点时直线的斜率k>1或k<-1,因此答案选B。
高中数学双曲线经典例题
高中数学双曲线经典例题一、双曲线定义及标准方程1.已知两圆C1:(x+4)2+y2=2,C2:(x﹣4)2+y2=2,动圆M与两圆C1,C2都相切,则动圆圆心M的轨迹方程是()A.x=0 B.C. D.2、求适合下列条件的双曲线的标准方程:(1)焦点在x轴上,虚轴长为12,离心率为;(2)顶点间的距离为6,渐近线方程为.3、与双曲线有相同的焦点,且过点的双曲线的标准方程是4、求焦点在坐标轴上,且经过点A(,﹣2)和B(﹣2,)两点的双曲线的标准方程.5、已知P是双曲线=1上一点,F1,F2是双曲线的两个焦点,若|PF1|=17,则|PF2|的值为.二、离心率1、已知点F1、F2分别是双曲线的两个焦点,P为该双曲线上一点,若△PF1F2为等腰直角三角形,则该双曲线的离心率为.2、设F1,F2是双曲线C:(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为.3、双曲线的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(﹣1,0)到直线l的距离之和.则双曲线的离心率e的取值范围是()A.B.C. D.3、焦点三角形1、设P是双曲线x2﹣=1的右支上的动点,F为双曲线的右焦点,已知A(3,1),则|PA|+|PF|的最小值为.2、.已知F1,F2分别是双曲线3x2﹣5y2=75的左右焦点,P是双曲线上的一点,且∠F1PF2=120°,求△F1PF2的面积.3、已知双曲线焦点在y轴上,F1,F2为其焦点,焦距为10,焦距是实轴长的2倍.求:(1)双曲线的渐近线方程;(2)若P为双曲线上一点,且满足∠F1PF2=60°,求△PF1F2的面积.4、直线与双曲线的位置关系已知过点P (1,1)的直线L 与双曲线只有一个公共点,则直线L 的斜率k= ____5、综合题型如图,已知椭圆12222=+b y a x (a>b>0)的离心率为22,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(2+1),一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A 、B 和C 、D. (1)求椭圆和双曲线的标准方程;(2)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1; (3)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.高中数学双曲线经典例题参考答案与试题解析一.选择题(共2小题)1.(2015秋•洛阳校级期末)已知两圆C1:(x+4)2+y2=2,C2:(x﹣4)2+y2=2,动圆M与两圆C1,C2都相切,则动圆圆心M的轨迹方程是()A.x=0 B.C.D.【解答】解:由题意,①若两定圆与动圆相外切或都内切,即两圆C1:(x+4)2+y2=2,C2:(x﹣4)2+y2=2,动圆M与两圆C1,C2都相切,∴|MC1|=|MC2|,即M点在线段C1,C2的垂直平分线上又C1,C2的坐标分别为(﹣4,0)与(4,0)∴其垂直平分线为y轴,∴动圆圆心M的轨迹方程是x=0②若一内切一外切,不妨令与圆C1:(x+4)2+y2=2内切,与圆C2:(x﹣4)2+y2=2外切,则有M到(4,0)的距离减到(﹣4,0)的距离的差是2,由双曲线的定义知,点M的轨迹是以(﹣4,0)与(4,0)为焦点,以为实半轴长的双曲线,故可得b2=c2﹣a2=14,故此双曲线的方程为综①②知,动圆M的轨迹方程为应选D.2.(2014•齐齐哈尔三模)双曲线的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(﹣1,0)到直线l的距离之和.则双曲线的离心率e的取值范围是()A.B.C.D.【解答】解:直线l的方程为+=1,即bx+ay﹣ab=0.由点到直线的距离公式,且a>1,得到点(1,0)到直线l的距离,同理得到点(﹣1,0)到直线l的距离.,.由,得..于是得5≥2e2,即4e4﹣25e2+25≤0.解不等式,得≤e2≤5.由于e>1>0,所以e的取值范围是.故选D.二.填空题(共5小题)3.(2013秋•城区校级期末)已知P是双曲线=1上一点,F1,F2是双曲线的两个焦点,若|PF1|=17,则|PF2|的值为33.【解答】解:由双曲线方程知,a=8,b=6,则c==10.∵P是双曲线上一点,∴||PF1|﹣|PF2||=2a=16,又|PF1|=17,∴|PF2|=1或|PF2|=33.又|PF2|≥c﹣a=2,∴|PF2|=33.故答案为334.(2008秋•海淀区期末)已知点F1、F2分别是双曲线的两个焦点,P为该双曲线上一点,若△PF1F2为等腰直角三角形,则该双曲线的离心率为.【解答】解:由题意,角F1或角F2为直角,不妨令角F2为直角,双曲线方程﹣=1此时P(c,y),代入双曲线方程﹣=1解得y=又三角形PF1F2为等腰三角形得PF2=F1F2,故得=2c,即2ac=c2﹣a2,即e2﹣2e﹣1=0,解得e=1故双曲线的离心率是故答案为.5.(2014秋•象山县校级月考)设P是双曲线x2﹣=1的右支上的动点,F为双曲线的右焦点,已知A(3,1),则|PA|+|PF|的最小值为﹣2.【解答】解:设双曲线左焦点为F2,由双曲线的定义可得|PF2|﹣|PF|=2a,即|PF|=|PF2|﹣2a,则|PA|+|PF|=|PF2|+|PA|﹣2a≥|F2A|﹣2a,当P、F2、A三点共线时,|PF2|+|PA|有最小值,此时F2(﹣2,0)、A(3,1),则|PF2|+|PA|=|AF2|=,而对于这个双曲线,2a=2,所以最小值为﹣2.故答案为:﹣2.6.(2011秋•张家港市校级期末)与双曲线有相同的焦点,且过点的双曲线的标准方程是.【解答】解:设所求双曲线的方程为,∵已知双曲线的焦点为(±,0)∴所求双曲线中的c2=5①∵双曲线过点∴②且c2=a2+b2③联立①②③解得a2=4,b2=1,∴双曲线的方程为.故答案为:.7.(2013•湖南)设F1,F2是双曲线C:(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为.【解答】解:依题意可知∠F1PF2=90°|F1F2|=2c,∴|PF1|=|F1F2|=c,|PF2|=|F1F2|=c,由双曲线定义可知|PF1|﹣|PF2|=2a=(﹣1)c∴e==.故答案为:.三.解答题(共4小题)8.已知F1,F2分别是双曲线3x2﹣5y2=75的左右焦点,P是双曲线上的一点,且∠F1PF2=120°,求△F1PF2的面积.【解答】解:由题意,双曲线3x2﹣5y2=75,可化为=1由余弦定理可得160=PF12+PF22﹣2PF1•PF2cos120°=(PF1﹣PF2)2+3PF•PF2=100+3PF1•PF2,1∴PF1•PF2=20.S△F1PF2=PF1•PF2sin120°=×20×=5.故答案为:A.9.(2014春•湄潭县校级期中)已知双曲线焦点在y轴上,F1,F2为其焦点,焦距为10,焦距是实轴长的2倍.求:(1)双曲线的渐近线方程;(2)若P为双曲线上一点,且满足∠F1PF2=60°,求△PF1F2的面积.【解答】解:(1)设双曲线方程为(a>0,b>0),则∵焦距是实轴长的2倍,∴c=2a,∴b==a,∴双曲线的渐近线方程为y=±x;(2)由余弦定理可得4c2=PF12+PF22﹣2PF1•PF2cos60°=(PF1﹣PF2)2+PF•PF2=4a2+PF1•PF2,1∵焦距为10,∴2c=10,2a=5∴PF1•PF2=75.∴S=PF1•PF2sin60°=•75•=.△F1PF210.(2008秋•岳阳校级期末)求焦点在坐标轴上,且经过点A(,﹣2)和B (﹣2,)两点的双曲线的标准方程.【解答】解:设所求双曲线方程为:mx2﹣ny2=1,(mn>0),因为点A(,﹣2)和B(﹣2,)在双曲线上,所以可得:,解得,故所求双曲线方程为.11.(2009秋•天心区校级期末)求适合下列条件的双曲线的标准方程:(1)焦点在x轴上,虚轴长为12,离心率为;(2)顶点间的距离为6,渐近线方程为.【解答】解:(1)焦点在x轴上,设所求双曲线的方程为=1.由题意,得解得a=8,c=10.∴b2=c2﹣a2=100﹣64=36.所以焦点在x轴上的双曲线的方程为.(2)当焦点在x轴上时,设所求双曲线的方程为=1由题意,得解得a=3,b=.所以焦点在x轴上的双曲线的方程为.同理可求当焦点在y轴上双曲线的方程为.。
《双曲线》练习试题经典(含答案解析)
《双曲线》练习题一、选择题:1.已知焦点在x轴上的双曲线的渐近线方程是y=±4x,则该双曲线的离心率是(A)A.17B.15C.174 D.1542.中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为,则双曲线方程为(B)A.x2﹣y2=1 B.x2﹣y2=2 C.x2﹣y2=D.x2﹣y2=3.在平面直角坐标系中,双曲线C过点P(1,1),且其两条渐近线的方程分别为2x+y=0和2x﹣y=0,则双曲线C的标准方程为(B)A.B.C.或D.4.1(a>b>01有相同的焦点,则椭圆的离心率为( A )A B C D5.已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(A)A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)6.设双曲线=1(0<a<b)的半焦距为c,直线l过(a,0)(0,b)两点,已知原点到直线l的距离为,则双曲线的离心率为(A)A.2 B.C.D.7的圆相切,则双曲线的离心率为( A )A B C D8.双曲线虚轴的一个端点为M,两个焦点为F1、F2,∠F1MF2=120°,则双曲线的离心率为(B)A.3B.62 C.63D.339.已知双曲线221(0,0)x ym nm n-=>>的一个焦点到一条渐近线的距离是2,一个顶点到它的一条渐近线的,则m等于( D )A .9B .4C .2D .,310.已知双曲线的两个焦点为F 1(-10,0)、F 2(10,0),M 是此双曲线上的一点,且满足12120,||||2,MF MF MF MF ==则该双曲线的方程是( A )A.x 29-y 2=1 B .x 2-y 29=1 C.x 23-y 27=1D.x 27-y 23=1 11.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( C )A .4 2B .83C .24D .4812.过双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是( C ) A .28 B .14-82 C .14+8 2D .8 213.已知双曲线﹣=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( D ) A .﹣=1B .﹣=1 C .﹣=1 D .﹣=114.设双曲线﹣=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以F 2为圆心,|F 1F 2|为半径的圆与双曲线在第一、二象限内依次交于A ,B 两点,若3|F 1B |=|F 2A |,则该双曲线的离心率是( C ) A . B .C .D .215.过双曲线1222=-y x 的右焦点作直线l 交双曲线于A 、B 两点,若|AB|=4,则这样的直线共有( C )条。
双曲线及其标准方程(作业)
①曲线 C 不可能是圆; ②若 1<k<4,则曲线 C 为椭圆; ③若曲线 C 为双曲线,则 k<1 或 k>4; ④若曲线 C 表示焦点在 x 轴上的椭圆,则 1<k<52. 其中正确命题的序号是________(写出所有正确的命题的序号)
三、解答题 9.求与双曲线x42-y22=1 有相同焦点且过点 P(2,1)的双曲线的方程.
10.已知方程 kx2+y2=4,其中 k 为实数,对于不同范围的 k 值分别指出方 程所表示的曲线类型.
11.某部队进行军事演习,一方指挥中心接到其正西、正东、正北方向三 个观测点 A,B,C 的报告:正西、正北两个观测点同时听到了炮弹的爆炸声, 正东观测点听到爆炸声的时间比其他两观测点晚 4 s,已知各观测点到该中心的 距离都是 1 020 m,试确定该枚炮弹的袭击位置.(声音的传播速度为 340 m/s, 相关各点均在同一平面内).
A.x22-y32=1
B.x32-y22=1
C.x2-y42=1 D.x42-y2=1
二、填空题 6.双曲线m2+x2 12-4-y2m2=1 的焦距为________.
7.(2013·郑州高二检测)设点 P 是双曲线x92-1y26=1 上任意一点,F1,F2 分 别是其左、右焦点,若|PF1|=10,则|PF2|=________.
双曲线及其标准方程
一、选择题
1.(2013·东营高二检测)方程2+x2m-2-y2m=1 表示双曲线,则 m 的取值范
围( )
A.-2<m<2
B.m>0
C.m≥P 到 A(-5,0)的距离与它到 B(5,0)距离的差等于 6,则 P 点的轨
高中数学双曲线的标准方程精选题
双曲线的标准方程一.选择题(共17小题) 1.已知方程22221(,)3x y m n R mnmn-=∈+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是()A .(1,3)-B .(-C .(0,3)D .(02.已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过P 的直线l 与E 相交于A ,B 两点,且A B 的中点为(12,15)N --,则E 的方程式为( )A .22136xy-= B .22145xy-=C .22163xy-= D .22154xy-=3.已知双曲线22212x ya-=的一条渐近线的倾斜角为6π,则双曲线的离心率为()A 3B 3CD .24.已知双曲线2222:1x y Cab-=的焦距为10,点(2,1)P 在C 的渐近线上,则C 的方程为()A .221205xy-=B .221520xy-=C .2218020xy-=D .2212080xy-=5.双曲线22221124xymm-=+-的焦距是()A .4B .6C .8D .与m 有关6.已知双曲线C 的一个焦点为(0,5),且与双曲线2214xy-=的渐近线相同,则双曲线C 的标准方程为()A .2214yx-= B .2214xy-= C .221205xy-= D .221520yx-=7.一动圆P 过定点(4,0)M-,且与已知圆22:(4)16Nx y-+=相切,则动圆圆心P 的轨迹方程是()A .221(2)412xyx -=… B .221(2)412xyx -=…C .221412xy-=D .221412yx-=8.已知双曲线中心在原点且一个焦点为F ,0),直线1y x =-与其相交于M 、N 两点,M N 中点的横坐标为23-,则此双曲线的方程是()A .22134x y-= B .22143xy-=C .22152xy-= D .22125xy-=9.焦点在x 轴上,虚轴长为12,离心率为54的双曲线标准方程是( )A .22164144xy-=B .2213664xy-= C .2216416yx-=D .2216436xy-=10.已知椭圆2222135xym n+=和双曲线2222123xym n-=有公共的焦点,那么双曲线的渐近线方程是()A .2xy=±B .2y=±C .4xy=±D .4y=±11.命题p :“35m <<”是命题q :“曲线22135xym m-=--表示双曲线”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件12.已知双曲线方程为:2212yx-=,则下列叙述正确的是()A .焦点(1,0)F ±B .渐近线方程:y =C D .实轴长为13.设3(4πθ∈,)π,则关于x 、y 的方程221s in c o s xyθθ-=所表示的曲线是( )A .焦点在y 轴上的双曲线B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在x 轴上的椭圆14.以椭圆22143xy+=的焦点为顶点,顶点为焦点的双曲线方程为( )A .2213yx -=B .2213yx-= C .22143xy-= D .22134xy-=15.已知点(3,0)A -和点(3,0)B ,动点M 满足||||4M A M B-=,则点M 的轨迹方程是()A .221(0)45xyx -=< B .221(0)45xyx -=>C .221(0)95xyx -=<D .221(0)95xyx -=>.16.以原点为中心,焦点在y 轴上的双曲线C 的一个焦点为(0F ,,一个顶点为(0,2)A -,则双曲线C的方程为( )A .22122yx-=B .221412yx-= C .22144yx-= D .22142yx-=17.若方程22112xym m+=--表示双曲线,则实数m 的取值范围是()A .2m > B .1m <或2m> C .12m << D .1m <二.填空题(共13小题)18.已知双曲线过点(4且渐近线方程为12yx=±,则该双曲线的标准方程是 .19.若双曲线经过点(6,且其渐近线方程为13yx=±,则此双曲线的标准方程 .20.与椭圆2214924xy+=有公共焦点,且离心率54e =的双曲线的方程 .21.双曲线2214xy -=的焦距为 ;渐近线方程为 .22.已知以20xy ±=为渐近线的双曲线经过点(4,1),则该双曲线的标准方程为 .23.已知双曲线22221(0,0)x y a b ab-=>>的两条渐近线方程为3y=±,若顶点到渐近线的距离为1,则双曲线方程为 . 24.与双曲线2214yx-=有共同的渐近线,且过点(2,2)的双曲线的标准方程为 .25.已知双曲线C 的中心在原点,(2,0)F -是一个焦点,过F 的直线l 与双曲线C 交于A ,B 两点,且A B 的中点为(3,1)N --,则C 的方程是 .26.若双曲线的一个顶点坐标为(3,0),焦距为10,则它的标准方程为 . 27.已知双曲线221(0)6xym mm -=>+的虚轴长是实轴长的2倍,则双曲线的标准方程为 .28.过点(2,2)-且与2212xy-=有公共渐近线方程的双曲线方程为 .29.设中心在原点的双曲线与椭圆2212xy+=有公共的焦点,且它们的离心率互为倒数,则该双曲线的方程是 .30.以抛物线28y x=的顶点为中心,焦点为右焦点,且以y=为渐近线的双曲线方程是 .三.解答题(共2小题)31.(1)求适合下列条件的椭圆的标准方程:对称轴为坐标轴,经过点(6,0)P -和(0,8)Q . (2)已知双曲线的一个焦点为(5,0),渐近线方程为34y x=±,求此双曲线的标准方程.32.已知椭圆的中心在坐标原点,椭圆的右焦点2F 与抛物线24y x的焦点重合,且椭圆经过点3(1,)2P .(Ⅰ)求该椭圆的标准方程;(Ⅱ)求以这个椭圆的焦点为顶点、顶点为焦点的双曲线的标准方程.双曲线的标准方程精选题32道参考答案与试题解析一.选择题(共17小题) 1.已知方程22221(,)3x y m n R mnmn-=∈+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是()A .(1,3)- B.(-C .(0,3)D.(0【分析】由已知可得2c =,利用224()(3)m n mn =++-,解得21m =,又22()(3)0mn m n +->,从而可求n的取值范围.【解答】解:双曲线两焦点间的距离为4,2c ∴=,当焦点在x 轴上时, 可得:224()(3)mn mn =++-,解得:21m =,方程222213xy mnmn-=+-表示双曲线,22()(3)0mn mn ∴+->,可得:(1)(3)0n n +->,解得:13n -<<,即n 的取值范围是:(1,3)-.当焦点在y 轴上时, 可得:224()(3)mn mn -=++-,解得:21m =-,无解. 故选:A .【点评】本题主要考查了双曲线方程的应用,考查了不等式的解法,属于基础题.2.已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过P 的直线l 与E 相交于A ,B 两点,且A B 的中点为(12,15)N --,则E 的方程式为( )A .22136xy-= B .22145xy-=C .22163xy-= D .22154xy-=【分析】已知条件易得直线l 的斜率为1,设双曲线方程,及A ,B 点坐标代入方程联立相减得1224x x +=-,根据21221245y y b x x a-=-,可求得a 和b 的关系,再根据3c=,求得a 和b ,进而可得答案. 【解答】解:由已知条件易得直线l 的斜率为1P N kk ==,设双曲线方程为22221x y ab-=,1(A x ,1)y ,2(B x ,2)y ,则有22112222222211x y a bx y ab⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减并结合1224x x +=-,1230y y +=-得21221245y y b x x a-=-,从而22415b k a==即2245b a=, 又229a b +=,解得24a =,25b =,故选:B .【点评】本题主要考查了双曲线的标准方程.考查了学生综合分析问题和解决问题的能力. 3.已知双曲线22212x ya-=的一条渐近线的倾斜角为6π,则双曲线的离心率为()A3B3CD .2【分析】根据渐近线的倾斜角求出渐近线方程,结合题意求出a 、c 的值,再计算双曲线的离心率. 【解答】解:双曲线22212x ya-=的一条渐近线的倾斜角为6π,则ta n63π=,所以该条渐近线方程为3y =;3a =解得a =;所以c===所以双曲线的离心率为3c e a===.故选:A .【点评】本题考查了双曲线的渐近线和离心率的应用问题,是基础题.4.已知双曲线2222:1x yCa b-=的焦距为10,点(2,1)P在C的渐近线上,则C的方程为()A.221205x y-=B.221520x y-=C.2218020x y-=D.2212080x y-=【分析】利用双曲线2222:1x yCa b-=的焦距为10,点(2,1)P在C的渐近线上,建立方程组,求出a,b的值,即可求得双曲线的方程.【解答】解:双曲线2222:1x yCa b-=的焦距为10,点(2,1)P在C的渐近线上,2225a b∴+=,21ba=,b∴=a=∴双曲线的方程为221 205x y-=.故选:A.【点评】本题考查双曲线的标准方程,考查双曲线的几何性质,考查学生的计算能力,属于基础题.5.双曲线22221124x ym m-=+-的焦距是()A.4B.6C.8D.与m有关【分析】首先判断双曲线的焦点在x轴上,求出2a,2b,由222c a b=+,计算可得c,即可得到焦距2c.【解答】解:双曲线22221124x ym m-=+-焦点在x轴上,即有240m->,则2212a m=+,224b m=-,22216c a b=+=,则4c=,焦距28c=.故选:C.【点评】本题考查双曲线的方程和性质,考查运算能力,属于基础题.6.已知双曲线C的一个焦点为(0,5),且与双曲线2214xy-=的渐近线相同,则双曲线C的标准方程为()A.2214yx-=B.2214xy-=C.221205x y-=D.221520y x-=【分析】由已知是双曲线的方程可得渐近线的方程,设双曲线C的方程可得渐近线的方程,由题意可得a,b的关系,再由焦点的坐标可得a,b的值即求出双曲线C的方程.【解答】解:双曲线2214xy-=的渐近线方程为:12yx=±, 由题意设双曲线C 的方程为:22221y x ab-=,由焦点坐标(0,5)可得2225a b+=,①渐近线的方程为:a y xb=±再由C 与双曲线2214xy-=的渐近线相同,所以12a b=,②,由①②可得25a =,220b =,所以双曲线C 的方程为:221520yx-=,故选:D .【点评】本题考查双曲线的性质,渐近线方程与双曲线的参数之间的关系,属于基础题. 7.一动圆P 过定点(4,0)M-,且与已知圆22:(4)16Nx y-+=相切,则动圆圆心P 的轨迹方程是()A .221(2)412xyx -=… B .221(2)412xyx -=…C .221412xy-=D .221412yx-=【分析】动圆圆心为P ,半径为r ,已知圆圆心为N ,半径为4,则||4P N P M -=,即动点P 到两定点的距离之差为常数4,P 在以M 、C 为焦点的双曲线上,且24a =,28c=,从而可得动圆圆心P 的轨迹方程.【解答】解:动圆圆心为P ,半径为r ,已知圆圆心为N ,半径为4,则||4P NP M -=,即动点P 到两定点的距离之差为常数4,P 在以M 、C 为焦点的双曲线上,且24a=,28c =,b ∴=∴动圆圆心M 的轨迹方程为:221412xy-=.故选:C .【点评】本题考查圆与圆的位置关系,考查双曲线的定义,考查学生的计算能力,属于中档题.8.已知双曲线中心在原点且一个焦点为F ,0),直线1y x =-与其相交于M 、N 两点,M N 中点的横坐标为23-,则此双曲线的方程是()A .22134x y-= B .22143xy-=C .22152xy-= D .22125xy-=【分析】先设出双曲线的方程,然后与直线方程联立方程组,经消元得二元一次方程,再根据韦达定理及M N 中点的横坐标可得a 、b 的一个方程,又双曲线中有222c ab=+,则另得a 、b 的一个方程,最后解a 、b 的方程组即得双曲线方程.【解答】解:设双曲线方程为22221x y ab-=.将1yx =-代入22221x y ab-=,整理得2222222()20b a x a x aa b-+--=.由韦达定理得212222a x x ab+=-,则21222223x x a ab+==--.又2227c ab=+=,解得22a =,25b =,所以双曲线的方程是22125xy-=.故选:D .【点评】本题主要考查代数方法解决几何问题,同时考查双曲线的标准方程与性质等. 9.焦点在x 轴上,虚轴长为12,离心率为54的双曲线标准方程是( )A .22164144xy-=B .2213664xy-= C .2216416yx-=D .2216436xy-=【分析】由虚轴长是12求出半虚轴b ,根据双曲线的性质222c a b=+以及离心率然,求出2a ,写出双曲线的标准方程.【解答】解:根据题意可知212b =,解得6b=①又因为离心率54c ea ==②根据双曲线的性质可得222a c b=-③由①②③得,264a =双所以满足题意的双曲线的标准方程为:2216436xy-=故选:D .【点评】此题考查学生掌握双曲线的性质,会利用待定系数法求双曲线的标准方程,是一道中档题. 10.已知椭圆2222135xym n+=和双曲线2222123xym n-=有公共的焦点,那么双曲线的渐近线方程是()A .2xy=±B .2y=±C .4xy=± D .4y=±【分析】先根据椭圆方程和双曲线方程分别表示出c ,令二者相等即可求得m 和n 的关系,进而利用双曲线的方程求得双曲线的渐近线方程. 【解答】解:椭圆和双曲线有公共焦点22223523m nmn∴-=+,整理得228m n=,∴m n=双曲线的渐近线方程为4y x=±=±故选:D .【点评】本题主要考查了双曲线的标准方程,圆锥曲线的综合.考查了学生综合运用双曲线的基础的能力. 11.命题p :“35m <<”是命题q :“曲线22135xym m-=--表示双曲线”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【分析】根据题意,由m 的范围可得30m ->,5m ->,即可得曲线22135xym m-=--表示双曲线,反之,若曲线22135xym m-=--表示双曲线,必有(3)(5)0m m -->,解可得m 的取值范围,分析可得答案. 【解答】解:根据题意,当35m <<,则30m->,5m ->,则曲线22135xym m-=--表示双曲线,反之,若曲线22135xym m-=--表示双曲线,必有(3)(5)0m m -->,解可得35m <<,故命题p :“35m <<”是命题q :“曲线22135xym m-=--表示双曲线”的充要条件,故选:A .【点评】本题考查充分必要条件的判断,涉及双曲线的标准方程,属于基础题. 12.已知双曲线方程为:2212yx-=,则下列叙述正确的是()A .焦点(1,0)F ±B .渐近线方程:y =C D .实轴长为【分析】求出双曲线方程求出焦点坐标,渐近线方程,离心率,实轴长判断选项即可. 【解答】解:双曲线方程为:2212yx-=,所以1a =,22a =,所以D 不正确,b =,则c=C 不正确;渐近线方程为:y =,所以B 正确;焦点坐标(0),所以A 不正确;故选:B .【点评】本题考查双曲线的简单性质的应用,是基本知识的考查. 13.设3(4πθ∈,)π,则关于x 、y 的方程221s in c o s xyθθ-=所表示的曲线是( )A .焦点在y 轴上的双曲线B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在x 轴上的椭圆【分析】利用3(4πθ∈,)π,可定c o s s in 0θθ->>,即可得出结论.【解答】解:3(4πθ∈,)π,c o s s in 0θθ∴->>,∴关于x 、y 的方程221s in c o s xyθθ-=所表示的曲线是焦点在y 轴上的椭圆.故选:C .【点评】本题考查椭圆方程,考查学生的计算能力,比较基础. 14.以椭圆22143xy+=的焦点为顶点,顶点为焦点的双曲线方程为( )A .2213yx -=B .2213yx-= C .22143xy-= D .22134xy-=【分析】熟练掌握圆锥曲线的标准方程及其性质是解题的关键. 【解答】解:设要求的双曲线为22221x y ab-=,由椭圆22143xy+=得焦点为(1,0)±,顶点为(2,0)±.∴双曲线的顶点为(1,0)±焦点为(2,0)±.1a ∴=,2c=,2223b c a∴=-=.∴双曲线为2213yx-=.故选:B .【点评】熟练掌握圆锥曲线的标准方程及其性质是解题的关键. 15.已知点(3,0)A -和点(3,0)B ,动点M 满足||||4M A M B-=,则点M 的轨迹方程是()A .221(0)45xyx -=< B .221(0)45xyx -=>C .221(0)95xyx -=<D .221(0)95xyx -=>.【分析】由题设知动点M 是以点(3,0)A -和点(3,0)B 为焦点的双曲线的右支上的点,由此结合题设条件能求出点M 的轨迹方程.【解答】解:点(3,0)A -和点(3,0)B ,动点M 满足||||4M A M B-=,∴动点M 是以点(3,0)A -和点(3,0)B 为焦点的双曲线的右支上的点,且2a=,3c=,b=∴点M 的轨迹方程是221(0)45xyx -=>.故选:B .【点评】本题考查点的轨迹方程的求法,是基础题,解题时要认真审题,要熟练掌握双曲线的性质.16.以原点为中心,焦点在y 轴上的双曲线C 的一个焦点为(0F ,,一个顶点为(0,2)A -,则双曲线C的方程为( )A .22122yx-=B .221412yx-= C .22144yx-= D .22142yx-=【分析】利用双曲线的简单性质求解.【解答】解:以原点为中心,焦点在y 轴上的双曲线C 的一个焦点为(0F ,,一个顶点为(0,2)A -,∴设双曲线C 的方程为22221y x ab-=,则222(2a b b ⎧+=⎪⎨=⎪⎩,解得2ab ==,∴双曲线C 的标准方程是22144yx-=.故选:C .【点评】本题考查双曲线方程的求法,是基础题,解题时要认真审题,仔细解答,注意双曲线的简单性质的灵活运用. 17.若方程22112xym m+=--表示双曲线,则实数m 的取值范围是()A .2m> B .1m <或2m> C .12m << D .1m <【分析】由双曲线方程的特点可得(1)(2)0m m --<,解之可得.【解答】解:若方程22112xym m+=--表示的曲线为双曲线,则(1)(2)0mm --<,即(1)(2)0mm -->,解得1m <或2m>.故选:B .【点评】本题考查双曲线的简单性质,得出(1)(2)0m m --<是解决问题的关键,属基础题.二.填空题(共13小题)18.已知双曲线过点(4且渐近线方程为12yx=±,则该双曲线的标准方程是22114xy-= .【分析】设双曲线方程为2214y xλ-=,代入点(4,求出λ,即可求出双曲线的标准方程.【解答】解:设双曲线方程为2214y x λ-=,代入点(4,可得13164λ-⨯=,1λ∴=-,∴双曲线的标准方程是22114xy-=.故答案为:22114xy-=.【点评】本题考查双曲线的标准方程,考查学生的计算能力,正确设出双曲线的方程是关键.19.若双曲线经过点(6,且其渐近线方程为13yx=±,则此双曲线的标准方程2219xy-= .【分析】由已知设双曲线方程为229xyλ-=,(0)λ≠,利用待定系数法能求出此双曲线的标准方程.【解答】解:双曲线经过点(6,且其渐近线方程为13yx=±,∴设双曲线方程为229xyλ-=,(0)λ≠把点(6代入,得:3639λ-=,解得1λ=.∴此双曲线的标准方程为:2219xy -=.故答案为:2219xy-=.【点评】本题考查双曲线标准方程的求法,是基础题,解题时要认真审题,注意待定系数法的合理运用. 20.与椭圆2214924xy+=有公共焦点,且离心率54e =的双曲线的方程221169xy-= .【分析】求出椭圆的焦点,可得5c =,由离心率公式可得4a =,由a ,b ,c 的关系可得3b =,即可得到双曲线的方程.【解答】解:椭圆2214924xy+=的焦点为(0)即为(5,0)±,则双曲线的5c =,由离心率54e=,则54c a=,则有4a=,3b==,则双曲线的方程为221169xy-=,故答案为:221169xy-=.【点评】本题考查椭圆和双曲线的方程和性质,考查离心率公式的运用,考查运算能力,属于基础题和易错题. 21.双曲线2214xy-=的焦距为;渐近线方程为 .【分析】由双曲线方程求得a ,b ,c 的值,则其焦距与渐近线方程可求.【解答】解:由题知,24a =,21b =,故2225cab=+=,∴双曲线的焦距为:2c=,渐近线方程为:12b y x xa=±=±.故答案为:;12yx=±.【点评】本题考查双曲线的标准方程,考查双曲线的简单性质,是基础题. 22.已知以20xy ±=为渐近线的双曲线经过点(4,1),则该双曲线的标准方程为221123xy-= .【分析】由渐近线的方程设双曲线的方程,再由过的定点的坐标求出参数,化简为双曲线的标准形式. 【解答】解:由渐近线的方程以20x y ±=可以设双曲线的方程为:224xyλ-=,又过(4,1),所以1614λ-=,可得3λ=,所以双曲线的方程为:221123xy-=;故答案为:221123xy-=.【点评】考查双曲线的性质,属于基础题.23.已知双曲线22221(0,0)x y a b ab-=>>的两条渐近线方程为3y=±,若顶点到渐近线的距离为1,则双曲线方程为223144xy -= .【分析】由渐近线方程得到双曲线的实半轴、虚半轴之间的关系,再由顶点到渐近线的距离为1,求出实半轴、虚半轴的长, 进而写出双曲线方程.【解答】解:双曲线的焦点在x 轴上,两条渐近线方程为3y=±,∴3b a=,其中一个顶点的坐标(,0)a ,30y -= 的距离为:12a =,2a ∴=,3b∴=,∴所求双曲线的方程为:223144xy -=.【点评】本题考查双曲线的标准方程和性质,求出a 和b 的值,是解题的关键,属于中档题. 24.与双曲线2214yx-=有共同的渐近线,且过点(2,2)的双曲线的标准方程为221312xy-= .【分析】由于与双曲线2214yx-=有共同的渐近线,故方程可假设为224yxλ-=,再利用过点(2,2)即可求【解答】解:设双曲线方程为224yx λ-=过点(2,2),3λ∴=∴所求双曲线方程为221312xy-=故答案为221312xy-=【点评】本题的考点是双曲线的标准方程,主要考查待定系数法求双曲线的标准方程,关键是方程的假设方法.25.已知双曲线C 的中心在原点,(2,0)F -是一个焦点,过F 的直线l 与双曲线C 交于A ,B 两点,且A B 的中点为(3,1)N --,则C 的方程是2213xy-= .【分析】先利用点F ,N 的坐标求出直线A B 的斜率,再利用点差法得到223a b=,结合224a b+=求出a ,b的值,从而得到双曲线C 的方程.【解答】解:因为(2,0)F -,(3,1)N --,所以直线A B 的斜率1l k =,设双曲线方程为22221(0,0)x y a b ab-=>>,则224a b+=, 设1(A x ,1)y ,2(B x ,2)y ,则126x x +=-,122y y +=-,12121l y y k x x -==-.由2211221x y ab-=,2222221x y ab-=,得1212121222()()()()x x x x y y y y ab+-+--=,即22260l k ab-+=,223a b∴=.于是23a =,21b =, 所以C 的方程为2213xy-=.【点评】本题主要考查了双曲线方程,以及双曲线与直线的位置关系,考查了点差法的应用,是中档题. 26.若双曲线的一个顶点坐标为(3,0),焦距为10,则它的标准方程为 221916xy-= .【分析】根据顶点坐标求得a ,根据焦距求得c ,进而根据222b c a=-求得b ,进而求得双曲线的标准方程.【解答】解:依题意可知3a=,5c=4b ∴==根据顶点坐标可知焦点在x 轴,∴双曲线的方程为221916xy-=故答案为:221916xy-=【点评】本题主要考查了双曲线的标准方程.解题的关键是挖掘题设中的信息,充分利用a ,b 和c 的关系,同时注意焦点是在x 轴还是在y 轴. 27.已知双曲线221(0)6xym mm -=>+的虚轴长是实轴长的2倍,则双曲线的标准方程为22128xy-= .【分析】由题意可得m 与6m +的关系,求出m 的值,进而可得双曲线的方程.【解答】解:由题意知2a m=,26b m =+,则实轴长为,虚轴长为由题意有2=,解得2m=,代入2216xymm -=+中,可得双曲线的标准方程为22128xy-=.故答案为:22128xy-=.【点评】本题考查双曲线的定义,属于基础题. 28.过点(2,2)-且与2212xy-=有公共渐近线方程的双曲线方程为22124yx-= .【分析】先设出双曲线的方程,利用已知双曲线的渐近线求得a 和b 的关系,然后把点(2,2)-代入双曲线方程求得a ,进而求得b ,则双曲线的方程可得. 【解答】解:依题意可在知双曲线的焦点在y 轴, 设出双曲线的方程为22221y x ab-=,根据已知曲线方程可知其渐近线方程为2yx=±∴2a b=,b=把点(2.2)-代入24412aa-=中求得2b=,a=∴双曲线的方程为:22124yx-=故答案为:22124yx-=【点评】本题主要考查了双曲线的标准方程.考查考生分析推理和基本的运算能力. 29.设中心在原点的双曲线与椭圆2212xy+=有公共的焦点,且它们的离心率互为倒数,则该双曲线的方程是22221x y-= .【分析】欲求双曲线方程,只需求出双曲线中的a ,b 的值即可,根据双曲线与椭圆2212xy+=有公共的焦点,求出椭圆中的c 值,也即双曲线中的c 值,再求出椭圆中的离心率,因为椭圆与双曲线的离心率互为倒数,所以可得双曲线中离心率,据此求出a 值,再利用a ,b ,c 之间的关系式,就可得到双曲线的方程.【解答】解:椭圆2212xy+=中1c=中心在原点的双曲线与椭圆2212xy+=有公共的焦点∴双曲线中1c =,椭圆2212xy +=的离心率为2c a=,椭圆与双曲线的离心率互为倒数.∴∴双曲线中2a=,22212b ca=-=,2b=∴双曲线的方程为22221x y-=故答案为22221x y-=.【点评】本题主要考查了椭圆,双曲线的标准方程以及性质的应用.30.以抛物线28yx=的顶点为中心,焦点为右焦点,且以y=为渐近线的双曲线方程是2213yx-= .【分析】由题意设双曲线方程为2213xyλλ-=.再由双曲线的右焦点为(2,0),求出λ的值,进而得到双曲线方程.【解答】解:双曲线的渐近线为y=,∴设双曲线方程为2213xyλλ-=.28yx=的顶点为(0,0),焦点为(2,0),∴双曲线的右焦点为(2,0).34λλ∴+=,1λ=.∴双曲线方程为2213yx-=.故答案为:2213yx-=.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答. 三.解答题(共2小题)31.(1)求适合下列条件的椭圆的标准方程:对称轴为坐标轴,经过点(6,0)P -和(0,8)Q . (2)已知双曲线的一个焦点为(5,0),渐近线方程为34yx=±,求此双曲线的标准方程.【分析】(1)由已知可得椭圆焦点在y 轴上,且得到实半轴与短半轴的长,则椭圆方程可求; (2)由已知可得,双曲线焦点在x 轴上,且5c=,34b a=,结合隐含条件求得a ,b ,则双曲线方程可求.【解答】解:(1)由题意,可知椭圆焦点在y 轴上,且8a=,6b=,∴椭圆方程为2216436yx+=;(2)由已知可得,双曲线焦点在x 轴上,且5c =,34b a=,又222a bc+=,解得4a=,3b=,∴双曲线的标准方程为221169xy-=.【点评】本题考查椭圆与双曲线的标准方程,是基础题. 32.已知椭圆的中心在坐标原点,椭圆的右焦点2F 与抛物线24y x=的焦点重合,且椭圆经过点3(1,)2P .(Ⅰ)求该椭圆的标准方程;(Ⅱ)求以这个椭圆的焦点为顶点、顶点为焦点的双曲线的标准方程. 【分析】(Ⅰ)抛物线24y x=的焦点为(1,0)即1c =,再利用椭圆定义,求出2a ,得出a ,可求得方程(Ⅱ)双曲线中由(Ⅰ)1a =,2c =,可求得方程【解答】解:(Ⅰ)抛物线24yx=的焦点右焦点2(1,0)F ,左焦点1(1F -,2123530)1(1,)2423222c P a P F P F a b ∴==+==+=∴=∴=所求椭圆方程为22143xy+=(Ⅱ)1a=,2c =则23b=所求双曲线的方程为2213yx-=【点评】本题考查圆锥曲线定义、标准方程、简单的几何性质.属于基础题.。
双曲线及其标准方程习题
精心整理[学业水平训练]1.动点P 到点M (1,0)及点N (3,0)的距离之差为2,则点P 的轨迹是( )A .双曲线B .双曲线的一支C .两条射线D .一条射线解析:选D.依题意|PM |-|PN |=2=|MN |,所以点P 的轨迹不是双曲线,而是一条射线.2.若方程+=1表示双曲线,则k 的取值范围是( )A .(5,10)B .(-∞,5)C .3 )A.C.,所以4A B C D 5.( )A .C .3|MF 2|,所以3|6.m =16.答案:167.已知双曲线的焦点分别为(0,-2)、(0,2),且经过点P (-3,2),则双曲线的标准方程是________.解析:由题知c =2,又点P 到(0,-2)和(0,2)的距离之差的绝对值为2a ,2a =|-|=2,∴a =1,∴b 2=c 2-a 2=3.又焦点在y 轴上,∴双曲线的方程为y 2-=1.答案:y 2-=18.在平面直角坐标系xOy 中,已知双曲线-=1上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为________.解析:由题易知,双曲线的右焦点为(4,0),点M的坐标为(3,)或(3,-),则点M到此双曲线的右焦点的距离为4.答案:49.求满足下列条件的双曲线的标准方程.(1)已知双曲线的焦点在y轴上,并且双曲线过点(3,-4)和(,5).(2)与双曲线-=1有公共焦点,且过点(3,2).解:(1)由已知,可设所求双曲线方程为-=1(a>0,b>0),则解得所以双曲线的方程为-=1.(2)10F2(c,0).又c=1.1.已知双曲线-=1的焦点为F1,F2,点M在双曲线上,且MF1⊥x轴,则F1到直线F2M 的距离为()A. B.C. D.解析:选C.不妨设点F1(-3,0),容易计算得出|MF1|==,|MF2|-|MF1|=2.解得|MF2|=.而|F1F2|=6,在直角三角形MF1F2中,由|MF1|·|F1F2|=|MF2|·d,求得F1到直线F2M的距离d为.2.已知双曲线的两个焦点F1(-,0),F2(,0),P是双曲线上一点,且·=0,|PF1|·|PF2|=2,则双曲线的标准方程为________.解析:由题意可设双曲线方程为-=1(a>0,b>0).由·=0,得PF1⊥PF2.根据勾股定理得|PF1|2+|PF2|2=(2c)2,即|PF1|2+|PF2|2=20.203L且4(1)(2)故(1)16(2)将||PF2|-|PF1||=2a=6,两边平方得|PF1|2+|PF2|2-2|PF1|·|PF2|=36,∴|PF1|2+|PF2|2=36+2|PF1|·|PF2|=36+2×32=100.在△F1PF2中,由余弦定理得cos∠F1PF2===0,∴∠F1PF2=90°,∴S△F1PF2=|PF1|·|PF2|=×32=16.。
双曲线及其标准方程 题组训练-2021-2022学年高二上学期数学人教A版选修2-1第二章
2.3 双曲线2.3.1 双曲线及其标准方程基础过关练题组一 双曲线的定义及应用1.已知M(-2,0),N(2,0),||PM|-|PN||=3,则动点P 的轨迹是( ) A.圆 B.椭圆 C.射线 D.双曲线2.已知双曲线的方程为x 2a 2-y 2b2=1(a>0,b>0),点A,B 在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB|=m,F 1为双曲线的左焦点,则△ABF 1的周长为( )A.2a+2mB.4a+2mC.a+mD.2a+4m3.已知定点A(1,4),F 是双曲线x 24-y 212=1的左焦点,P 是双曲线右支上的动点,则|PF|+|PA|的最小值为( ) A.6 B.8 C.9 D.12 4.设F 1,F 2是双曲线x2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于 .题组二 双曲线的标准方程5.若方程x 2k+3+y 2k+2=1,k∈R表示焦点在x 轴上的双曲线,则k 的取值范围是( )A.-3<k<-2B.k<-3C.k<-3或k>-2D.k>-26.若ax 2+by 2=b(ab<0),则这个曲线是( ) A.双曲线,焦点在x 轴上 B.双曲线,焦点在y 轴上 C.椭圆,焦点在x 轴上 D.椭圆,焦点在y 轴上7.已知双曲线的中心在坐标原点,两个焦点F 1,F 2的坐标分别为(√5,0)和(-√5,0),点P 在双曲线上,且PF 1⊥PF 2,△PF 1F 2的面积为1,则双曲线的标准方程为( )A.x 22-y 23=1B.x 23-y 22=1 C.x 24-y 2=1 D.x 2-y24=1 8.已知双曲线的中心在坐标原点,且一个焦点为F 1(-√5,0),点P 位于该双曲线上,线段PF 1中点的坐标为(0,2),则该双曲线的标准方程是( )A.x 24-y 2=1 B.x2-y 24=1 C.x 22-y 23=1 D.x 23-y 22=19.以椭圆x 28+y 25=1长轴的两端点为焦点,且经过点(3,√10)的双曲线的标准方程为 .10.如图所示,已知双曲线以长方形ABCD 的顶点A,B 为左、右焦点,且双曲线过C,D 两顶点.若AB=4,BC=3,则此双曲线的标准方程为 .11.已知焦点在x 轴上的双曲线过点P(4√2,-3),且点Q(0,5)与两焦点的连线互相垂直,求此双曲线的标准方程.题组三 与双曲线有关的轨迹问题12.已知平面内两定点A(-5,0),B(5,0),动点M 满足|MA|-|MB|=6,则点M 的轨迹方程是( )A.x 216-y 29=1B.x 216-y 29=1(x≥4)C.x 29-y 216=1D.x 29-y 216=1(x≥3) 13.已知定圆F 1:x 2+y 2+10x+24=0,定圆F 2:x 2+y 2-10x+9=0,动圆M 与定圆F 1,F 2都外切,求动圆圆心M 的轨迹方程.能力提升练一、选择题1.(河北石家庄二中高二月考,★★☆)已知双曲线x 2a -3+y 22-a=1的焦点在x 轴上,若焦距为4,则a=( ) A.212B.7C.92D.122.(广西梧州高二期末,★★★)已知F 1,F 2为双曲线C:x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|=( ) A.2 B.4 C.6 D.83.(2018四川绵阳培城模拟,★★★)如图,F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a>0,b>0)的左、右焦点,过F 1(-√7,0)的直线l 与双曲线的左、右两支分别交于点A,B.若△ABF 2为等边三角形,则双曲线的方程为( )A.5x 27-5y 228=1 B.x 26-y 2=1 C.x2-y 26=1 D.5x 228-5y 27=1 4.(2018四川成都诊断,★★★)已知点P 在曲线C 1:x 216-y 29=1上,点Q在曲线C 2:(x+5)2+y 2=1上,点R 在曲线C 3:(x-5)2+y 2=1上,则|PQ|-|PR|的最大值是( ) A.6 B.8 C.10 D.12二、填空题5.(安徽阜阳三中高二月考,★★☆)已知点F 1,F 2分别是双曲线x 2a 2-y 29=1(a>0)的左、右焦点,P 是该双曲线上的一点,且|PF 1|=2|PF 2|=16,则△PF 1F 2的周长是 .6.(★★★)已知方程x 24-t +y 2t -1=1表示的曲线为C.给出以下四个结论:①当1<t<4时,曲线C为椭圆;②当t>4或t<1时,曲线C为双曲线;③若曲线C为焦点在x轴上的椭圆,则1<t<52;④若曲线C为焦点在y轴上的双曲线,则t>4. 其中正确的是(只填正确结论的序号).三、解答题7.(★★★)已知双曲线x 24-y29=1,F1,F2是其两个焦点,点M在双曲线上.(1)若∠F1MF2=90°,求△F1MF2的面积;(2)若∠F1MF2=120°,△F1MF2的面积是多少?若∠F1MF2=60°,△F1MF2的面积又是多少?(3)观察以上计算结果,你能看出随∠F1MF2的变化,△F1MF2的面积将怎样变化吗?试证明你的结论.8.(天津一中高二期末,★★★)已知点M(-2,0),N(2,0)是平面上的两点,动点P满足|PM|+|PN|=6.(1)求点P的轨迹方程;(2)若(1-cos∠MPN)|PM|·|PN|=2,求点P的坐标.9.(★★★)A,B,C是我方三个炮兵阵地,A在B正东6 km处,C在B北偏西30°方向,与B相距4 km,P为敌炮兵阵地,某时刻A处发现敌炮兵阵地发出的某种信号,由于B,C两地比A距P地远,因此4 s后,B,C 才同时发现这一信号,已知此信号的传播速度为1 km/s,A若炮击P地,求炮击的方向角.答案全解全析 基础过关练1.D 因为||PM|-|PN||=3<|MN|=4,所以由双曲线的定义可知,点P 的轨迹是双曲线.2.B 由题意知{|AF 1|-|AF 2|=2a ,|BF 1|-|BF 2|=2a ,即{|AF 1|=2a +|AF 2|,|BF 1|=2a +|BF 2|,又|AF 2|+|BF 2|=|AB|=m,所以△ABF 1的周长为|AF 1|+|BF 1|+|AB|=4a+2m.3.C 由双曲线的方程可知a=2,设其右焦点为F 1,则F 1(4,0).|PF|-|PF 1|=2a=4,即|PF|=|PF 1|+4,所以|PF|+|PA|=|PF 1|+|PA|+4≥|AF 1|+4,当且仅当A,P,F 1三点共线时取等号,此时|AF 1|=√(4-1)2+42=√25=5,所以|PF|+|PA|≥|AF 1|+4=9,即|PF|+|PA|的最小值为9.4.答案 24解析 由题意得a=1,2a=2,焦距|F 1F 2|=2×√1+24=10.∵3|PF 1|=4|PF 2|,∴|PF 1|=43|PF 2|,∴|P F 1|-|PF 2|=43|PF 2|-|PF 2|=13|PF 2|=2,∴|PF 2|=6,|PF 1|=8,∴|PF 1|2+|PF 2|2=|F 1F 2|2,∴PF 1⊥PF 2,∴S △PF 1F 2=12|PF 1|·|PF 2|=12×6×8=24.5.A 由题意知{k +3>0,k +2<0,解得-3<k<-2.6.B 原方程可化为x 2b a+y 2=1,因为ab<0,所以ba <0,所以方程表示的曲线是双曲线,且焦点在y 轴上. 7.C 由题意得,{|PF 1|·|PF 2|=2,|PF 1|2+|PF 2|2=(2√5)2,∴(|PF 1|-|PF 2|)2=16,即(2a)2=16,则2a=4,解得a=2,又c=√5,∴b=1,∴双曲线的标准方程为x 24-y 2=1.故选C.8.B 由双曲线的一个焦点为F 1(-√5,0)知c=√5,因为线段PF 1中点的坐标为(0,2),所以P(√5,4),设双曲线的右焦点为F 2,则有PF 2⊥x 轴,且PF 2=4,又点P 在双曲线右支上,所以PF 1=√(2√5)2+42=√36=6,所以PF 1-PF 2=6-4=2=2a,所以a=1,b 2=c 2-a 2=4,所以双曲线的标准方程为x 2-y 24=1. 9.答案x 23-y 25=1解析 由题意得,双曲线的焦点在x 轴上,且半焦距为2√2. 设双曲线的标准方程为x 2a 2-y 2b 2=1(a>0,b>0), 则有{a 2+b 2=c 2=8,9a 2-10b 2=1,解得a 2=3,b 2=5.故所求双曲线的标准方程为x 23-y 25=1.10.答案 x 2-y 23=1解析 设双曲线的标准方程为x 2a 2-y 2b 2=1(a>0,b>0).由题意得B(2,0),C(2,3), ∴{a 2+b 2=4,4a 2-9b 2=1,解得{a 2=1,b 2=3,∴双曲线的标准方程为x 2-y 23=1.11.解析 因为双曲线的焦点在x 轴上,所以设双曲线的标准方程为x 2a 2-y 2b 2=1(a>0,b>0),焦点F 1(-c,0),F 2(c,0).因为双曲线过点P(4√2,-3),所以32a2-9b 2=1.①因为点Q(0,5)与两焦点的连线互相垂直,所以QF 1⃗⃗⃗⃗⃗⃗⃗ ·QF 2⃗⃗⃗⃗⃗⃗⃗ =0, 即-c 2+25=0,解得c 2=25.② 又c 2=a 2+b 2,③所以由①②③解得a 2=16或a 2=50(舍去). 所以b 2=9,所以所求双曲线的标准方程是x 216-y 29=1.12.D 由题意知,点M 的轨迹是以A(-5,0),B(5,0)为焦点的双曲线的右支.易得c=5,a=3,∴b 2=16,∴点M 的轨迹方程为x 29-y 216=1(x≥3). 13.解析 由题意得,圆F 1:(x+5)2+y 2=1,圆心F 1(-5,0),半径r 1=1.圆F 2:(x-5)2+y 2=42,圆心F 2(5,0),半径r 2=4. ∴|F 1F 2|=10.设动圆M 的半径为R,则|MF 1|=R+1,|MF 2|=R+4,∴|MF 2|-|MF 1|=3<|F 1F 2|. ∴点M 的轨迹是以F 1,F 2为焦点的双曲线的左支,且a=32,c=5,∴b 2=c 2-a 2=914.∴动圆圆心M 的轨迹方程为4x 29-4y 291=1(x ≤-32).能力提升练一、选择题1.C ∵双曲线x 2a -3+y 22-a =1的焦点在x 轴上,焦距为4, ∴{2-a <0,a -3>0,√a -3-2+a =2,解得a=92. 2.B 由双曲线方程得a=1,b=1,c=√2, ∴|F 1F 2|=2√2, 在△F 1PF 2中,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos∠F 1PF 2, 即8=|PF 1|2+|PF 2|2-|PF 1|·|PF 2|, 即8=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, 又||PF 1|-|PF 2||=2a=2, ∴8=22+|PF 1|·|PF 2|, ∴|PF 1|·|PF 2|=4.3.C 根据双曲线的定义,有|AF 2|-|AF 1|=2a①,|BF 1|-|BF 2|=2a②,由于△ABF 2为等边三角形,则|AF 2|=|AB|=|BF 2|,①+②,得|BF 1|-|AF 1|=4a, 则|AB|=|AF 2|=|BF 2|=4a,|BF 1|=6a,又∠F 1BF 2=60°,所以(2c)2=(6a)2+(4a)2-2×6a×4a×12,即7a 2=c 2=7,解得a 2=1,则b 2=c 2-a 2=6, 所以双曲线的方程为x 2-y 26=1.4.C 不妨设C 1:x 216-y 29=1的两个焦点分别是F 1(-5,0)与F 2(5,0),且|PF 1|-|PF 2|=8,而这两点正好是两圆(x+5)2+y 2=1和(x-5)2+y 2=1的圆心,两圆(x+5)2+y 2=1和(x-5)2+y 2=1的半径分别是r 2=1,r 3=1,所以|PQ|max =|PF 1|+1,|PR|min =|PF 2|-1,所以|PQ|-|PR|的最大值为(|PF 1|+1)-(|PF 2|-1)=|PF 1|-|PF 2|+2=8+2=10. 故选C.二、填空题5.答案 34解析 ∵|PF 1|=2|PF 2|=16,∴|PF 2|=8,|PF 1|-|PF 2|=16-8=8=2a,∴a=4.又b 2=9,∴c 2=25,∴2c=10.∴△PF 1F 2的周长为|PF 1|+|PF 2|+|F 1F 2|=16+8+10=34.6.答案 ②③④解析 ①错误,当t=52时,曲线C 为圆;②正确,若曲线C 为双曲线,则(4-t)(t-1)<0,∴t<1或t>4;③正确,若曲线C 为焦点在x 轴上的椭圆,则4-t>t-1>0,∴1<t<52;④正确,若曲线C 为焦点在y 轴上的双曲线,则{4-t <0,t -1>0,∴t>4.三、解答题7.解析 设|MF 1|=r 1,|MF 2|=r 2(不妨设r 1>r 2),θ=∠F 1MF 2,因为S △F 1MF 2=12r 1r 2sin θ, θ已知,所以只要求r 1r 2即可,因此考虑到用双曲线的定义及余弦定理的知识,求出r 1r 2.(1)当θ=90°时,S △F 1MF 2=12r 1r 2sin θ=12r 1r 2.由双曲线方程知a=2,b=3,c=√13, 由双曲线的定义,得|r 1-r 2|=2a=4,两边平方,得r 12+r 22-2r 1r 2=16,又r 12+r 22=|F 1F 2|2, 所以|F 1F 2|2-4S △F 1MF 2=16,即52-16=4S △F 1MF 2,解得S △F 1MF 2=9.(2)若∠F 1MF 2=120°,在△MF 1F 2中,|F 1F 2|2=r 12+r 22-2r 1r 2cos 120°=(r 1-r 2)2+3r 1r 2=52,所以r 1r 2=12, 所以S △F 1MF 2=12r 1r 2sin 120°=3√3. 同理,若∠F 1MF 2=60°,则S △F 1MF 2=9√3.(3)由以上结果可见,随着∠F 1MF 2的增大,△F 1MF 2的面积将减小.证明如下:由双曲线的定义及余弦定理,得{(r 1-r 2)2=4a 2,①r 12+r 22-2r 1r 2cosθ=4c 2.②②-①,得r 1r 2=4c 2-4a 22(1-cosθ), 所以S △F 1MF 2=12r 1r 2sin θ=(c 2-a 2)sinθ1-cosθ =b 2cot θ2. 因为0<θ<π,所以0<θ2<π2, 在(0,π2)内,y=cot θ2是减函数. 因此当θ增大时,S △F 1MF 2=b 2cot θ2减小.8.解析 (1)设动点P 的坐标为(x,y).∵点M(-2,0),N(2,0)是平面上的两点,动点P 满足|PM|+|PN|=6>|MN|,∴点P 的轨迹是以M,N 为焦点的椭圆,设其方程为x 2a 2+y 2b 2=1(a>b>0),且a=3,c=2,∴b 2=9-4=5. ∴点P 的轨迹方程为x 29+y 25=1. (2)在△MPN 中,cos∠MPN=|PM |2+|PN |2-162|PM |·|PN | =(|PM |+|PN |)2-2|PM |·|PN |-162|PM |·|PN | =10-|PM |·|PN ||PM |·|PN |.∵(1-cos∠MPN)|PM|·|PN|=2,∴(1-10-|PM |·|PN ||PM |·|PN |)·|PM|·|PN|=2,解得|PM|·|PN|=6,由{|PM |·|PN |=6,|PM |+|PN |=6,得||PM|-|PN||=2√3<6,∴点P 在以M(-2,0),N(2,0)为焦点的双曲线x 23-y 2=1上, 联立{x 29+y 25=1,x 23-y 2=1,解得点P 的坐标为(3√32,√52),或(3√32,-√52)或(-3√32,√52)或(-3√32,-√52). 9.解析 如图,以直线BA 为x 轴,线段BA 的中垂线为y 轴,以1 km 为一个单位长度,建立平面直角坐标系,则B(-3,0),A(3,0),C(-5,2√3).因为|PB|=|PC|,所以点P在线段BC的垂直平分线上.设敌炮兵阵地的坐标为(x,y),BC的中点为D,易求得k BC=-√3,D(-4,√3),所以直线PD:y-√3=√3(x+4).①又|PB|-|PA|=4<|AB|,故P在以A,B为焦点的双曲线的右支上,且其方程为x 24-y25=1(x≥2).②联立①②,得x=8,y=5√3,所以P的坐标为(8,5√3).因此k PA=5√38-3=√3.故A若炮击P地,则炮击的方向角为北偏东30°.。
双曲线及标准方程典型例题
典型例题一例1 讨论192522=-+-ky k x 表示何种圆锥曲线,它们有何共同特征.典型例题二例2 根据下列条件,求双曲线的标准方程.(1)过点⎪⎭⎫⎝⎛4153,P ,⎪⎭⎫ ⎝⎛-5316,Q 且焦点在坐标轴上. (2)6=c ,经过点(-5,2),焦点在x 轴上. (3)与双曲线141622=-y x 有相同焦点,且经过点()223,典型例题三例 3 已知双曲线116922=-y x 的右焦点分别为1F 、2F ,点P 在双曲线上的左支上且3221=PF PF ,求21PF F∠的大小.典型例题四例 4 已知1F 、2F 是双曲线1422=-y x 的两个焦点,点P 在双曲线上且满足 9021=∠PF F ,求21PF F ∆的面积.典型例题五例5 已知两点()051,-F 、()052,F ,求与它们的距离差的绝对值是6的点的轨迹.例6 在ABC ∆中,2=BC ,且A B C sin 21sin sin =-,求点A 的轨迹.典型例题七例7 求下列动圆圆心M 的轨迹方程:(1)与⊙()2222=++y x C :内切,且过点()02,A (2)与⊙()11221=-+y x C :和⊙()41222=++y x C :都外切. (3)与⊙()93221=++y x C :外切,且与⊙()13222=+-y x C :内切.例8 在周长为48的直角三角形MPN 中,︒=∠90MPN ,43tan =∠PMN ,求以M 、N 为焦点,且过点P 的双曲线方程.典型例题九例9 P 是双曲线1366422=-y x 上一点,1F 、2F 是双曲线的两个焦点,且171=PF ,求2PF 的值.典型例题十例10 若椭圆122=+n y m x )0(>>n m 和双曲线122=-ty s x )0,(>t s 有相同的焦点1F 和2F ,而P 是这两条曲线的一个交点,则21PF PF ⋅的值是( ) .A .s m -B .)(21s m - C .22s m - D .s m -例11 若一个动点),(y x P 到两个定点)0,1(-A 、)0,1(1A 的距离之差的绝对值为定值a )0(≥a ,讨论点P 的轨迹.典型例题十二例12 如图,圆422=+y x 与y 轴的两个交点分别为A 、B ,以A 、B 为焦点,坐标轴为对称轴的双曲线与圆在y 轴左方的交点分别为C 、D ,当梯形ABCD 的周长最大时,求此双曲线的方程.例13A、B、C是我方三个炮兵阵地,A和B正东6千米,C在B正北偏西30°,相距4千米,P为敌炮阵地,某时刻A处发现敌炮阵地的某种信号,由于B、C两地比Akm,A若距P地远,因此s4后,B、C才同时发现这一信号,此信号的传播速度为1s炮击P地,求炮击的方位角.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型例题一
例1 讨论19252
2=-+-k
y k x 表示何种圆锥曲线,它们有何共同特征.
典型例题二
例2 根据下列条件,求双曲线的标准方程.
(1)过点⎪⎭⎫
⎝⎛4153,P ,⎪⎭
⎫ ⎝⎛-5316,Q 且焦点在坐标轴上. (2)6=c ,经过点(-5,2),焦点在x 轴上.
(3)与双曲线14162
2=-y x 有相同焦点,且经过点()
223,
典型例题三
例 3 已知双曲线116
92
2=-y x 的右焦点分别为1F 、2F ,点P 在双曲线上的左支上且3221=PF PF ,求21PF F
∠的大小.
典型例题四
例 4 已知1F 、2F 是双曲线14
22
=-y x 的两个焦点,点P 在双曲线上且满足 9021=∠PF F ,求21PF F ∆的面积.
典型例题五
例5 已知两点()051,
-F 、()052,F ,求与它们的距离差的绝对值是6的点的轨迹.
例6 在ABC ∆中,2=BC ,且A B C sin 2
1sin sin =
-,求点A 的轨迹.
典型例题七
例7 求下列动圆圆心M 的轨迹方程:
(1)与⊙()2222
=++y x C :内切,且过点()02,A (2)与⊙()11221=-+y x C :和⊙()412
22=++y x C :都外切. (3)与⊙()93221=++y x C :外切,且与⊙()1322
2=+-y x C :内切.
例8 在周长为48的直角三角形MPN 中,︒=∠90MPN ,4
3tan =∠PMN ,求以M 、N 为焦点,且过点P 的双曲线方程.
典型例题九
例9 P 是双曲线136
642
2=-y x 上一点,1F 、2F 是双曲线的两个焦点,且171=PF ,求2PF 的值.
典型例题十
例10 若椭圆122=+n y m x )0(>>n m 和双曲线12
2=-t
y s x )0,(>t s 有相同的焦点1F 和2F ,而P 是这两条曲线的一个交点,则21PF PF ⋅的值是( ) .
A .s m -
B .)(2
1s m - C .22s m - D .s m -
例11 若一个动点),(y x P 到两个定点)0,1(-A 、)0,1(1A 的距离之差的绝对值为定值a )0(≥a ,讨论点P 的轨迹.
典型例题十二
例12 如图,圆42
2=+y x 与y 轴的两个交点分别为A 、B ,以A 、B 为焦点,坐标轴为对称轴的双曲线与圆在y 轴左方的交点分别为C 、D ,当梯形ABCD 的周长最大时,求此双曲线的方程.
例13A、B、C是我方三个炮兵阵地,A和B正东6千米,C在B正北偏西30°,相距4千米,P为敌炮阵地,某时刻A处发现敌炮阵地的某种信号,由于B、C两地比A
km,A若距P地远,因此s4后,B、C才同时发现这一信号,此信号的传播速度为1s
炮击P地,求炮击的方位角.。