PWM控制原理要点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PWM控制技术

主要内容:PWM控制的基本原理、控制方式与PWM波形的生成方法,PWM逆变电路的谐波分析,PWM整流电路。

重点:PWM控制的基本原理、控制方式与PWM波形的生成方法。

难点:PWM波形的生成方法,PWM逆变电路的谐波分析。

基本要求:掌握PWM控制的基本原理、控制方式与PWM波形的生成方法,了解PWM 逆变电路的谐波分析,了解跟踪型PWM逆变电路,了解PWM整流电路。

PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。第3、4章已涉及这方面内容: 第3章:直流斩波电路采用,第4章有两处:4.1节斩控式交流调压电路,4.4节矩阵式变频电路。

本章内容

PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM 控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。

本章主要以逆变电路为控制对象来介绍PWM控制技术,也介绍PWM整流电路

1 PWM控制的基本原理

理论基础:

冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。

图6-1 形状不同而冲量相同的各种窄脉冲

面积等效原理:

分别将如图6-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图6-2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图6-2b所示。从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波形的差异

也越小。如果周期性地施加上述脉冲,则响应i(t)也是周期性的。用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。

图6-2 冲量相同的各种窄脉冲的响应波形

用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。

SPWM波形——脉冲宽度按正弦规律变化而和正弦波等效的PWM波形。

图6-3 用PWM波代替正弦半波

要改变等效输出正弦波幅值,按同一比例改变各脉冲宽度即可。

等幅PWM波和不等幅PWM波:

由直流电源产生的PWM波通常是等幅PWM波,如直流斩波电路及本章主要介绍的PWM逆变电路,6.4节的PWM整流电路。输入电源是交流,得到不等幅PWM波,如4.1节讲述的斩控式交流调压电路,4.4节的矩阵式变频电路。基于面积等效原理,本质是相同的。

PWM电流波:

电流型逆变电路进行PWM控制,得到的就是PWM电流波。

PWM波形可等效的各种波形:

直流斩波电路:等效直流波形

SPWM波:等效正弦波形,还可以等效成其他所需波形,如等效所需非正弦交流波形等,其基本原理和SPWM控制相同,也基于等效面积原理。

2 PWM逆变电路及其控制方法

目前中小功率的逆变电路几乎都采用PWM技术。逆变电路是PWM控制技术最为重要的应用场合。本节内容构成了本章的主体

PWM逆变电路也可分为电压型和电流型两种,目前实用的几乎都是电压型。

(1)计算法和调制法

1、计算法

根据正弦波频率、幅值和半周期脉冲数,准确计算PWM波各脉冲宽度和间隔,据此控制逆变电路开关器件的通断,就可得到所需PWM波形。

缺点:繁琐,当输出正弦波的频率、幅值或相位变化时,结果都要变化

2、调制法

输出波形作调制信号,进行调制得到期望的PWM波;通常采用等腰三角波或锯齿波作为载波;等腰三角波应用最多,其任一点水平宽度和高度成线性关系且左右对称;与任一平缓变化的调制信号波相交,在交点控制器件通断,就得宽度正比于信号波幅值的脉冲,符合PWM的要求。

调制信号波为正弦波时,得到的就是SPWM波;调制信号不是正弦波,而是其他所需波形时,也能得到等效的PWM波。

结合IGBT单相桥式电压型逆变电路对调制法进行说明:设负载为阻感负载,工作时

V1和V2通断互补,V3和V4通断也互补。

控制规律:

u o正半周,V1通,V2断,V3和V4交替通断,负载电流比电压滞后,在电压正半周,电流有一段为正,一段为负,负载电流为正区间,V1和V4导通时,u o等于U d,V4关断时,负载电流通过V1和V D3续流,u o=0,负载电流为负区间,i o为负,实际上从V D1和V D4流过,仍有u o=U d,V4断,V3通后,i o从V3和V D1续流,u o=0,u o总可得到U d和零两种电平。

u o负半周,让V2保持通,V1保持断,V3和V4交替通断,u o可得-U d和零两种电平。

图6-4 单相桥式PWM逆变电路

单极性PWM控制方式(单相桥逆变):

在u r和u c的交点时刻控制IGBT的通断。u r正半周,V1保持通,V2保持断,当u r>u c 时使V4通,V3断,u o=U d,当u ru c时使V3断,V4通,u o=0,虚线u of 表示u o的基波分量。波形见图6-5。

图6-5 单极性PWM控制方式波形

双极性PWM控制方式(单相桥逆变):

在u r半个周期内,三角波载波有正有负,所得PWM波也有正有负。在u r一周期内,

输出PWM波只有±U d两种电平,仍在调制信号u r和载波信号u c的交点控制器件通断。u r 正负半周,对各开关器件的控制规律相同,当u r >u c时,给V1和V4导通信号,给V2和V3关断信号,如i o>0,V1和V4通,如i o<0,V D1和V D4通,u o=U d,当u r0,V D2和V D3通,u o=-U d。波形见图6-6。

单相桥式电路既可采取单极性调制,也可采用双极性调制。

图6-6 双极性PWM控制方式波形

双极性PWM控制方式(三相桥逆变):见图6-7。

三相PWM控制公用u c,三相的调制信号u rU、u rV和u rW依次相差120°。

U相的控制规律:

当u rU>u c时,给

V1导通信号,给V4

关断信号,

u UN´=U d/2,当u rU

时,给V4导通信号,

给V1关断信号,

u UN´=-U d/2;当给

V1(V4)加导通信号

时,可能是V1(V4)导

通,也可能是

V D1(V D4)导通。u UN´、图6-7 三相桥式PWM型逆变电路