冀教版九年级数学上册《25.7相似多边形和图形的位似 第2课时 位似图形 》课件

合集下载

《相似多边形和图形的位似》

《相似多边形和图形的位似》

《相似多边形和图形的位似》汇报人:日期:•相似多边形的基本概念•相似多边形的判定方法•图形的位似变换目录•相似多边形与位似变换的关系•相似多边形和位似变换的应用举例•总结与展望01相似多边形的基本概念如果两个多边形的对应角相等,则它们是相似的。

对应角相等如果两个多边形的对应边成比例,则它们是相似的。

对应边成比例对应边成比例相似多边形的对应边成比例。

面积比等于相似比的平方相似多边形的面积比等于相似比的平方。

对应角相等相似多边形的对应角相等。

等边三角形矩形三边都相等的三角形。

四个角都是直角的四边形。

等腰三角形等腰梯形正方形两边相等的三角形,其中两边为腰,另一边为底。

有一组对边平行且另一组对边相等的四边形。

四边相等且四个角都是直角的四边形。

02相似多边形的判定方法平行线的性质是判定定理的基础,通过平行线的性质可以推导出相似多边形的判定定理。

平行线性质相似三角形的判定相似多边形的定义首先证明两个三角形相似,再利用相似三角形的性质推导出两个多边形相似。

根据相似多边形的定义,如果两个多边形的对应角相等,则它们相似。

030201判定定理可以应用于实际问题中,例如在建筑设计、工程绘图等领域中,需要利用相似多边形的性质进行计算和设计。

判定定理也可以应用于数学问题中,例如在几何证明、代数运算等领域中,可以利用相似多边形的性质进行证明和计算。

数学问题中的应用实际问题中的应用首先根据相似三角形的性质,证明两个三角形相似;然后利用相似三角形的性质,推导出两个多边形相似。

证明过程具体证明过程需要使用到平行线的性质、相似三角形的性质等知识点,通过逻辑推理和数学运算来证明判定定理的正确性。

03图形的位似变换如果一个图形经过某种变换后,其形状和大小保持不变,但各对应点间的相对位置关系发生了改变,那么这种变换称为位似变换。

定义位似变换保持了图形间的相对位置关系,但改变了图形的形状和大小。

位似变换的特性位似变换保持了图形间的相对位置关系,即图形中的点在变换后仍然保持它们之间的相对位置不变。

《相似多边形和图形的位似》PPT课件2

《相似多边形和图形的位似》PPT课件2
相似 ห้องสมุดไป่ตู้
每对对应顶点的连线
位似中心
位似比
成比例
相等
位似比
位似比
D
B
D
A
B
它们的相似比为2∶3
A
D
C
13.(8分)如图,如果AC∥BD,CE∥DF,那么△ACE与△BDF是否相似?△ACE与△BDF是否位似?试说明理由.
13.△ACE∽△BDF,是位似图形
14.A(0,0),B(5,2),C(0,4),A′(-1,0),B′(1.5,1),C′(-1,2)
15.(1)如图 (2)AA′=CC′=2.在Rt△OA′C′中,OA′=OC′=2,得A′C′=2,于是AC=4,∴四边形AA′CC′的周长=4+6
17.(1)证△C′D′E′∽△CDE (2)与画△AOB的内接等边三角形类似
相似多边形和图形的位似(二)
- .
1.两个________多边形,如果它们__________________相交于一点,我们就把这两个图形叫做位似图形,这个交点叫做________,这时的相似比又叫做________.2.位似图形是特殊的相似图形,所以成位似的两个图形具有相似形所有的性质:对应边________,对应角________,周长比等于________,面积比等于____________的平方.

图形的位似(第2课时)(优质课件)九年级数学上册(北师大版)

图形的位似(第2课时)(优质课件)九年级数学上册(北师大版)

A′ -6 -4 -2 O
-2
A 24
6
y (2) △OAB和△OA′B′是位似的
,位似中心是点O,相似比是-2.
-4
-6 B′
在直角坐标系中,四边形OABC 的顶点坐标分别为A(4,2),B(8,6), C(6,10), D(-2,6).将点O,A,B, C的横、纵坐标都乘 1 ,得到四个
2
点,以这四个点为顶点的四边形与 四边形OABC位似吗?如果位似,指 出位似中心和相似比.
随堂练习
1.如图,网格中的两个三角形是位似图形,它们的位似中心是
()
A.点A
B.点B
C.点C
D.点D
2.将平面直角坐标系中某个图形的各点坐标做如下变化,其中
属于位似变换的是
()
A. 将各点的纵坐标乘 2,横坐标不变
B. 将各点的横坐标除以 2,纵坐标不变
C. 将各点的横坐标、纵坐标都乘 2
D. 将各点的纵坐标减去 2,横坐标加上 2
y 10
C
8 D 6 C′(3,5) B
D′4(-1,3B)′(4,3) 2 A′(2,A1)
-4-2 O 2 4 6 8 x -2
-4
-6
将点O,A,B,C的横、纵
坐标都乘
1 2
呢?
y 10
C
8 D 6 C′(3,5) B
D′(4-1,3)B′(4,3)
2 A′(2,A1)
-4 -2A′O ′2(-24,-16) 8 x B′′(---24,-D3′)′(1,-3)
2 C'' A'' -4 -2 O
-2
B'' -4
B B'

25.7 相似多边形和图形的位似 - 第2课时课件(共25张PPT)

25.7 相似多边形和图形的位似 - 第2课时课件(共25张PPT)
知识点2 位似图形的性质
位似图形有哪些性质?
可以发现
对应顶点的直线都相交于位似中心.对应边互相平行或在同一条直线上.
例题示范
例1 如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△ ,以下说法错误的是( )A.△ABC∽△ B.点C,O, 三点在同一直线上C.D.AB∥
创设情境
如图是幻灯机放映图片的示意图,在幻灯机放映图片的过程中,这些图片之间有什么关系?连接图片上对应的点,你有什么发现?
探索新知
知识点1 位似图形的概念
一起探究
如图,已知△ABC及△ABC外的一点O.1.请你按如下步骤画出△A'B'C'.(1)画射线OA,OB,OC.(2)分别在OA,OB,OC上截取点A',B',C',使OA'=2OA,OB'=2OB,OC'=2OC.(3)连接A'B',A'C',B'C',得△A'B'C'.2.请你判断AB与A'B'、AC与A'C'、BC与B'C'的位置关系,并说明理由.3.△ABC与△A'B'C'相似吗?为什么?
例3 把四边形ABCD缩小到原来的1/2.
解:(1) 在四边形外任选一点 O (如图);(2) 分别在线段 OA,OB,OC,OD 上取点 A' ,B' , C' ,D' ,使得 ;(3) 顺次连接点 A' ,B' ,C' ,D' ,所得四边形 A' B' C' D' 就是所要求的图形.
C
归纳

冀教版九年级上册相似多边形课件

冀教版九年级上册相似多边形课件

问题1 这两个多边形类似吗?
ED
问题2 在这两个多边形中,是否有对应相等的内角?
问题3 在这两个多边形中,对应内角的两边是否成比例?
归纳: ◑类似多边形的定义: 如果两个多边形的对应角相等、对应边成比 例,那么这两个多边形就叫做类似多边形.
◑类似多边形的性质:
类似多边形的对应角相等,对应边成比例.
角对应相等,就称这两个多边形类似. 3.类似比:类似多边形对应边的比(类似比大于零).
第二十五章 图形的类似
25.7 类似多边形和图形的位似
第1课时 类似多边形
学习目标
1.理解类似图形的定义并能判断两图形是否类似. 2.学习并掌握类似多边形的性质与判定方法.
(重点、难点)
导入新课
视察与思考 问题1 请视察下面几组图片,它们有何共同之处?
讲授新课
一 类似图形 问题引导 下面图形有什么相同点和不同点?
两三角 形类似
AB:A1B1 = BC:B1C1 = CD:C1D1
对应边成比例
正六边形
A
F
120° B
E 放大 B1
A1 120°
F1 E1
C
D
∠A =∠A1, ∠B =∠B1, ∠C =∠C1 C1 ∠D =∠D1, ∠E =∠E1,∠F =∠F1
D1
对应角相等
A
F
A1 正六边形
F1
放大
B
E
比例,各角对应相等 ,就称这两个多边形类似.
类似比:类似多边形对应边的比(类似比大于零).
当堂练习
1.根据下图所示,这两个多边形类似吗?说说你的理由.
120
80
140
75
60

冀教版数学九上25.7《相似多边形和图形的位似》ppt课件(共27张PPT)

冀教版数学九上25.7《相似多边形和图形的位似》ppt课件(共27张PPT)
2.(3 分)下列各组图形中,不是位似图形的是(B )
3.(3 分)位似图形的位似中心可以在( D )
A.原图形外
B.原图形内
C.原图形的边上 D.以上三种都可以
4.(3 分)如图,以点 O 为位似中心,将五边形 ABCDE 放大后得
到五边形 A′B′C′D′E′,已知 OA=10 cm,OA′=20 cm,则五边形
A.46.8 cm2
B.48 cm2
C.24 cm2
D.54 cm2
6.(3分)一个多边形的边长分别为2,3,4,5,6,另一个和
它相似的多边形的最短边长为6,则这个多边形的最长边长为( B
)
A.12
B.18
C.24
D.30
7.(3 分)如图,矩形 ABCD 的面积是 72,AE=12DC,EF=12
AC∶AF=2∶3,则下列结论不正确的是( B )
A.四边形 ABCD 与四边形 AEFG 是相似图形 B.AD 与 AE 的比是 2∶3 C.四边形 ABCD 与四边形 AEFG 的周长比是 2∶3 D.四边形 ABCD 与四边形 AEFG 的面积比是 4∶9
7.(8 分)如图,△DEF 是△ABC 经过位似变换得到的,位似中心 是点 O,确定点 O 的位置,如果 OC=3.6 cm,OF=2.4 cm,求它们的 相似比.
AD,那么矩形 EBGF 的面积是( B )
A.24 C.12
B.18 D.9
8.(3 分)如图,六边形 ABCDEF∽六边形 GHIJKL,相似比为
2∶1,则下列结论正确的是( B )
A.∠E=2∠K B.BC=2HI C.六边形 ABCDEF 的周长=六边形 GHIJKL 的周长 D.S 六边形 ABCDEF=2S 六边形 GHIJKL

冀教版九年级数学 25.7 相似多边形和图形的位似(学习、上课课件)

冀教版九年级数学  25.7 相似多边形和图形的位似(学习、上课课件)

比,面积比等于相似比的平方 .
感悟新知
知1-讲
特别提醒 各角相等的两个多边形不一定相似,各边
成比例的两个多边形也不一定相似 .
感悟新知
知1-练
例1 如图 25-7-1,有一 块长 3 m、宽 1.5 m 的矩形黑板 ABCD,镶在其外围的木质边框宽 7.5 cm. 边框的内边 缘所成的矩形 ABCD 与边框的外边缘所成的矩形 EFGH 相似吗?为什么?
也可能位于两个位似图形之间,还可能 位于两个位似图形的内部、边上或某 一个顶点处. 常见位似图形的构成如图25-7-3所示.
知2-讲
感悟新知
3. 位似图形具有的性质(拓展)
知2-讲
(1) 位似图形每组对应顶点的连线所在的直线必过位似中心 .
(2) 位似图形任意一组对应顶点到位似中心的距离之比等于相
感悟新知
知1-练
∴AEBF=
1.5 1.65
=
10 11
,EAHD
=
3 3.15
=
20 21
.

10 11

20 21

∴ 边框的内边缘所成的矩形 ABCD 与边框的外
边缘所成的矩形 EFGH 不相似 .
感悟新知
知1-练
1-1. [ 模拟·邢台信都区] 如图,有甲、乙、丙三个矩形, 其中相似的是( A ) A. 甲与丙 B.甲与乙 C.乙与丙 D.甲、乙、丙
感悟新知
知1-练
例2 [母题 教材 P94 例] 如图 25-7-2,梯形 ABCD 与梯形 A′B′C′D′相似, AD ∥ BC, A′D′∥ B′C′,∠ A=∠ A′, AD=4, A′D′=6, AB=6,B′C′=12,∠ C=60° . (1) 求梯形 ABCD 与梯形 A′B′C′D′的相似比 k; (2)求 A′B′和 BC 的长; (3)求∠ D′的大小 .

25.7 相似多边形和图形的位似

25.7 相似多边形和图形的位似

做一做 △ABC的边长缩小到原来的一半.
连AO,并延长至A’,使
OA ' OA
1 2
B ‘
A’
连BO,并延长至B’,使
OB ' OB
1 2
C‘
连CO,并延长至C’,使 OC ' 1
OC 2
连接三个顶点就可以得到△A’B’C’.你能解 释原因吗?
同时满足下面两个条件的两个图形才叫做 位似图形.两条件缺一不可.
1.两图形相似. 2.每组对应点所在直线都经过同一点.
显然,位似图形是相似图形的特殊情形, 其相似比又叫做它们的位似比.
随堂练习
2. 一个多边形的边长分别是2、3、4、5、6, 另一个和它相似的多边形的最短边长为6, 则这个多边形的最长边为__1_8___ 。
3. 如图所示的两个矩形相似吗?为什么?
A 3D 2
E 1. H 15
F
G
B
C
解:矩形ABCD ∽ 矩形EFGH
因为它们的对应角相等,对应边的比也相等。
D1
在下列图形中,找出形状相同的图形。
相似多边形
定义:对应角相等,对应边成比例的两个多边形叫
做相似多边形。
相似多边形对应边的比叫做他们的相似比
D A
H E
F
GБайду номын сангаас
B
C
如图,记作:四边形ABCD∽四边形EFGH
注意字母的对应顺序
如图,四边形A1B1C1D1∽A2B2C2D2,相似比为k.
D1 A
A
D2
1
如图四边
形ABCD,
现要对其 放大两倍,
A1
该如何操
作?
D

冀教版九年级上册数学《相似多边形和图形的位似》PPT(第1课时)

冀教版九年级上册数学《相似多边形和图形的位似》PPT(第1课时)

O
D
A
B
C
A'
B'
C'
D'
O
D
A
B
C
一起探究
例3 如图,△ABC,画△A' B' C' ,使△A' B' C' ∽△ABC,且使相似比为1:5,要求:(1)位似中心在△ABC的一条边AB上; (2)以点C为位似中心.
(1)位似中心在△ABC的一条边AB上
(2)以点C为位似中心
对应边成比例,但对应角不一定相等
任意的两个菱形不一定相似
对应角相等,但对应边不一定成比例
任意的两个矩形不一定相似
观察图中的两个多边形,先直观判断它们是不是相似多边形,再验证你的结论.
相似
如:网格中易求线段长,则可用三边对应成比例,证明△ABC∽△A'B'C'及△ADC∽△A'B'C',相似比为1:2.且两对全等三角形的对应角相等.
O
D
A
B
C
A'
B'
C'
D'
利用位似,可以将一个图形放大或缩小.
1) 在四边形外任选一点O(如图),
对于上面的问题,还有其他方法吗?如果在四边形外任选一个点O,分别在OA、OB、OC、OD的反向延长线上取A',B' 、C'、D',使得 呢?如果点O取在四边形ABCD内部呢?分别画出这时得到的图形.
假设位似中心点O在AB上,相似比1:5,点O位置如图所示
o


A'
B'
C'

冀教版数学九年级上册 相似多边形和图形的位似

冀教版数学九年级上册    相似多边形和图形的位似

4.如图,在平面直角坐标系中,点A,B的坐标分别为(3,2),(6,4), AC⊥x轴于点C,BG ⊥x轴于点G,分别以AC,BG为边作正方形 ACDE和正方形BGMN. (1)试分别写出直线AB和直线EN对应的函数表达式; (2)求证:正方形ACDE和正方形BGMN是位似图形; (3)已知点M的坐标是(10,0),试作一个正方形,它以点M为其中一个 顶点,且与已有正方形成位似图形(在下图中作出即可).
∴正方形ACDE与正方形BGMN对应顶点连线交于一点,此点
为原点,且
,因此正方形ACDE和正方形
BGMN是位似图形.
(3)画图略.
思考: (1)相似三角形的判定有哪些? (2)相似图形的性质有哪些? (3)如何做一个图形与已知图形相似?
思考:
如图所示,已知△ABC,求作△A'B'C',使
△A'B'C'∽△ABC,且相似比为2:1.
A
B
C
学生活动一 【一起探究】
做一做:如图所示,已知△ABC及△ABC外的一点O.
1.请按如下步骤画出△A'B'C'.
4.解:(1)设直线AB的表达式为y=kx+b(k≠0),
将A(3,2),B(6,4)代入得:
解得
∴直线AB的表达式为y=23 x ,同理求得直线EN的表达式为
y=
2 5
x
.
4. (2)∵直线AB的表达式为y=23 x ,直线EN的表达式为
y=
2 5
x
,它们都过原点,直线DM与直线CG都与x轴重合,
C.(2,2)
D.(4,2)
在平面直角坐标系中. 如果位似变换是以原点为位似中心, 相似比为k,那么位似图形对应点的坐标的比等于k 或-k. 即若 原图形的某一顶点坐标为(x0,y0)则其位似图形对应顶点的坐 标 为(kx0,ky0)或 (-kx0,-ky0).

《图形的位似》示范教学方案第2课时

《图形的位似》示范教学方案第2课时

第四章图形的相似4.8 图形的位似第2课时一、教学目标1.巩固位似多边形的有关概念;能利用位似将一个图形放大或缩小.2.在直角坐标系中,探索并了解将一个多边形的顶点坐标(有一个顶点为原点、有一条变在横坐标轴上)分别扩大或缩小相同倍数时所对应的图形与原图形是位似的.二、教学重点及难点重点:位似图形的定义、性质与作图;利用位似将一个图形放大或缩小.难点:将放大或缩小的图形与原图形进行比较,归纳位似放大或缩小图形的规律.三、教学用具多媒体课件、直尺或三角板.四、相关资源《坐标系中的位似》动画,《平面直角坐标系中的位似》微课.五、教学过程【复习引入】1.位似多边形的概念一般地,如果两个相似多边形任意一组对应顶点P,P'所在的直线都经过同一点O,且有OP'=k·OP(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.k就是这两个相似多边形的相似比.2.位似图形的性质(1)位似图形的对应顶点的连线经过位似中心;(2)位似图形的对应边互相平行(或在同一条直线上);(3)位似图形的对应顶点到位似中心(在不重合的情况下)的距离之比等于相似比.师生活动:教师出示问题,学生思考、讨论并回答问题.设计意图:通过复习上节课图形的位似,为本节课的学习做好铺垫。

【探究新知】1.如图,在平面直角坐标系中,△OAB三个顶点的坐标分别为O(0,0),A(3,0),B(2,3).将点O,A,B的横坐标、纵坐标都乘2,得到三个点,以这三个点为顶点的三角形与△OAB位似吗?如果位似,指出位似中心和相似比.如果将点O,A,B的横坐标、纵坐标都乘-2呢?师生活动:教师出示问题,学生思考、讨论、动手画图.解:如下图所示,将点O,A,B的横坐标、纵坐标都乘2或-2,所得到的三角形都与原△OAB位似,位似中心均为点O,相似比均为2.2.如图,在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(4,2),B(8,6),C(6,10),D(-2,6).将点A,B,C,D的横坐标、纵坐标都乘12,得到四个点,以这四个点为顶点的四边形与四边形ABCD位似吗?如果位似,指出位似中心和相似比.如果将点A,B,C,D的横坐标、纵坐标都乘12呢?师生活动:教师出示问题,学生思考、讨论、动手画图,最后教师总结.解:如下图所示,将点A,B,C,D的横坐标、纵坐标都乘12或12,所得到的四边形与原四边形ABCD位似,位似中心均为点O,相似比均为12.结论在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k(k≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为k.设计意图:进一步帮助教师及时反馈学生的学习效果,提高学生综合运用知识的能力.此图片是动画缩略图,本资源为《坐标系中的位似》知识探究,通过交互式动画的方式,,可以吸引学生的学习兴趣,增加教学效果,适用于《坐标系中的位似》的教学.若需使用,请插入【数学探究】坐标系中的位似.【典例精析】例在平面直角坐标系中,四边形OABC的顶点坐标分别是O(0,0),A(6,0),B(3,6),C(-3,3).以原点O为位似中心,画出四边形OABC的位似图形,使它与四边形OABC 的相似比是2∶3.师生活动:教师出示例题,分析、引导学生画图.分析:为了使画出的四边形与原四边形的相似比为2∶3,可以将原四边形每个顶点的横坐标、纵坐标都乘23,或都乘23.解:如图,有两种画法.画法一:将四边形OABC各顶点的坐标都乘23,得O(0,0),A'(4,0),B'(2,4),C'(-2,2);在平面直角坐标系中描出点A',B',C',用线段顺次连接点O,A',B',C',O,则四边形OA'B'C'就是符合要求的四边形.画法二:将将四边形OABC各顶点的坐标都乘23,得O(0,0),A''(-4,0),B''(-2,-4),C''(2,-2);在平面直角坐标系中描出点A'',B'',C'',用线段顺次连接点O,A'',B'',C'',O,则四边形OA''B''C''也是符合要求的四边形.设计意图:让学生亲自操作、画图,组内交流,研究解决问题的方法,使其对新知识的把握更准确到位,让学生在数学学习的过程中,体验获得成功的乐趣,在探索过程中体会分类讨论的数学思想.本图片是微课的首页截图,本微课资源讲解了图形在平面直角坐标系中的位似,并通过讲解实例巩固所学的知识点,有利于启发教师教学或学生预习或复习使用.若需使用,请插入微课【知识点解析】平面直角坐标系中的位似.【课堂练习】1.在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O为位似中心,相似比为12,把△EFO缩小,则点E的对应点E'的坐标是().A.(-2,1)B.(-8,4)C.(-8,4)或(8,-4)D.(-2,1)或(2,-1)2.如图,已知点E(-4,2),点F(-1,-1),以点O为位似中心,相似比为1︰2,把△EFO缩小,则点E的对应点的坐标是().A .(-2,1)B .(2,-1)或(-2,-1)C .(2,-1)D .(-2,1)或(2,-1)3.如图,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,相似比为1︰.若点A 的坐标为(0,1),则点E 的坐标是________.4.如图,正方形OEFG 和正方形ABCD 是位似图形,点F 的坐标为(1,1),点C 的坐标为(4,2),则这两个正方形位似中心的坐标是__________.5.如图,梯形ABCD 的四个顶点分别为A (0,6),B (2,2),C (4,2),D (6,6).按下列要求画图.(1)在平面直角坐标系中,以原点O 为位似中心,在O 点同侧,画出一个梯形A 1B 1C 1D 1,使它与梯形ABCD 的相似比为; (2)画出位似图形A 1B 1C 1D 1向下平移5个单位长度后的图形A 2B 2C 2D 2.参考答案1.D .2.D .3.).4.(-2,0).5.解:(1)如图梯形A 1B 1C 1D 1;(2)如图梯形A 2B 2C 2D 2.师生活动:教师找几名学生板演,讲解出现的问题.设计意图:进一步巩固所学知识,加深对所学知识的理解.六、课堂小结1.位似多边形的概念一般地,如果两个相似多边形任意一组对应顶点P ,P'所在的直线都经过同一点O ,且12有OP'=k·OP(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.k就是这两个相似多边形的相似比.2.位似图形的性质(1)位似图形的对应顶点的连线经过位似中心;(2)位似图形的对应边互相平行(或在同一条直线上);(3)位似图形的对应顶点到位似中心(在不重合的情况下)的距离之比等于相似比.3.在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k(k ≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为k.师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:帮助学生养成系统整理知识的学习习惯,加深认识,深化提高,形成学生自己的知识体系.七、板书设计4.8图形的位似(2)1.位似多边形的概念2.位似图形的性质。

冀教版数学九年级上册25.7《相似多边形和图形的位似》说课稿

冀教版数学九年级上册25.7《相似多边形和图形的位似》说课稿

冀教版数学九年级上册25.7《相似多边形和图形的位似》说课稿一. 教材分析冀教版数学九年级上册25.7《相似多边形和图形的位似》一节,是在学生已经掌握了相似多边形的性质和判定方法的基础上进行教学的。

这部分内容是整个初中数学中重要的知识点,也是中考的热点。

通过这部分的学习,使学生能够理解和掌握相似多边形的性质,以及如何应用位似变换来解决实际问题。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对相似多边形的性质和判定方法已经有了一定的了解。

但是,对于位似变换的理解和应用,部分学生可能会感到困惑。

因此,在教学过程中,需要引导学生通过实际问题来理解和掌握位似变换的性质和应用。

三. 说教学目标1.理解相似多边形的性质,掌握位似变换的性质和应用。

2.能够运用相似多边形的性质和位似变换来解决实际问题。

3.培养学生的逻辑思维能力和空间想象能力。

四. 说教学重难点1.教学重点:相似多边形的性质,位似变换的性质和应用。

2.教学难点:位似变换的应用,如何解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生通过实际问题来理解和掌握位似变换的性质和应用。

2.教学手段:利用多媒体课件,展示位似变换的实例,帮助学生直观地理解和掌握位似变换的性质。

六. 说教学过程1.导入:通过展示一些实际问题,引导学生运用已知的相似多边形的性质来解决这些问题,激发学生的学习兴趣。

2.新课导入:介绍位似变换的定义和性质,引导学生理解和掌握位似变换的性质。

3.实例讲解:通过具体的实例,讲解位似变换的应用,引导学生如何运用位似变换来解决实际问题。

4.练习巩固:布置一些练习题,让学生运用所学的位似变换的知识来解决实际问题,巩固所学的内容。

5.课堂小结:对本节课的内容进行总结,加深学生对位似变换的理解和掌握。

七. 说板书设计板书设计主要包括位似变换的定义、性质和应用,以及相关的例题。

通过板书,帮助学生直观地理解和掌握位似变换的性质和应用。

初中数学《图形的位似(第2课时)》教学课件

初中数学《图形的位似(第2课时)》教学课件

y A′(2,1),B′(2,0)
A〞(-2,-1),B〞(-2,0)
A
A'
B〞
x
o
B'
B
A〞
观察对应点之间的坐标的变化,你有什么发现?
在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比 为k,那么位似图形对应点的坐标的比等于k或-k.
反过来有以下性质:
如果多边形有一个顶点在坐标原点,有一条边在X轴上, 那么将这个多边形的顶点坐标分别扩大(或缩小)相同的倍 数,所得到的图形与原图形是位似图形,坐标原点是它们的 位似中心.
图形的位似
第2课时
1.会用图形的坐标的变化来表示图形的位似变换,掌握 把一个图形按一定大小比例放大或缩小后,点的坐标变 化的规律. 2.了解四种变换(平移、轴对称、旋转和位似)的异同, 并能在复杂图形中找出这些变换.
1.什么叫位似图形? 对应边互相平行(或共线)且每对对应点所在的直线都经过 同一点的两个相似多边形叫做位似图形,这个交点叫做位似 中心. 2.位似图形的性质.
④位似图形上任意两点与位似中心的距离之比等于位似
比. 【答案】②③
3.两个位似图形中的对应角__相__等__,对应线段的_比__相__等__, 对应顶点的连线必经过_位__似__中__心___.
4.位似图形上某一对对应点到位似中心的距离分别为5和 10,则它们的位似比为_1__:2___.
5.四边形ABCD和四边形A′B′C′D′位似,O为位似中 心,若OA:OA′=1:4,那么S四边形ABCD :S四边形A′B′C′D′ =_1_:_1_6_.
在平面直角坐标系中, △ABC三个顶点的坐标分别为
A(2,3),B(2,1),C(6,2),以原点O为位似中心,相似比为2,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
C
(1)位似中心在△ABC的一条边AB上 A 假设位似中心点O在AB上, A` 相似比1:5,点O位置如图 o B` C` (1)所示
● ● ● ●
B (2)以点C为位似中心
A
C

A`

B

B`
C (C`)
归纳
1.画位似图形的一般步骤: 1)确定位似中心 2)分别连接并延长位似中心和能代表原图的关键点 3)根据相似比,确定能代表所作的位似图形的关键点 4)顺次连接上述各点,得到放大或缩小的图形 2.利用位似进行作图的关键是确定位似中心和关键点. 3.位似分为内位似和外位似,内位似的位似中心在连接 两个对应点的线段上;外位似的位似中心在连接两个对
(1)位似图形一定相似,位似比等于相似比;
(2)位似图形对应点和位似中心在同一条直线上; (3)任意一对对应点到位似中心的距离之比等于位似比或 相似比; (4)对应线段平行或者在一条直线上.
第二十五章
图形的相似
25.7 相似多边形和图形的位似
第2课时 位似图形
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.理解并掌握位似图形的相关概念. 2.学习并掌握位似图形的性质并能够运用其解决问题. (重点)
导入新课
观察与思考 问题1 我们学过的图形变换形式有哪些?
问题2 什么叫相似?相似与全等有什么区别与联系?
图中有多边形相似吗?如果有,那么这种相似有什么特征?
O
O
O
概念形成: 图中每幅图中的两个多边形不仅相似,而且对应顶
点的连线相交于一点,像这样的两个图形叫做位似图形,
这个点叫做位似中心.
探究归纳
从图中我们可以看到, △OAB∽△OA ' B ' △OBC∽△OB ' C ' OA OB OC 则 O ' A' O ' B ' O 'C '
OA OB OC 1 OA ' OB ' OC ' 2
C'
就是所要求图形
C O
3.画出以O为位似中心,将五边形ABCDE缩小到原来的0.5 倍的五边形A`B`C`D`E`。
B
A
A`

B`


E` ● E
O

C` C
D`

D
课堂小结
1. 位似图形:如果两个多边形不仅相似,而且对应顶点的 连线相交于一点,对应边互相平行或者在一条直线上,像这 样的两个图形叫做位似图形,这个点叫做位似中心. 2.位似图的性质:
应点的线段之外.
Байду номын сангаас
当堂作业
1.如图,△OAB 和△OCD是位似图形,AB与CD平行吗? 为什么? C A D
解:AB∥CD,理由如下:
∵△OAB与△ODC是位似图形, ∴△OAB ∽△OCD, ∴∠OAB=∠C, AB∥CD.
O
B
2. 如图,以O为位似中心,将△ABC放大为原来的两倍. 解:①作射线OA 、OB 、 OC , ②分别在OA、OB 、OC 上 取点A' 、B' 、C' 使得 B' A' B A ③顺次连接A' 、B' 、C'
讲授新课
一 位似图形的概念及性质
在日常生活中,我们经常见到这样一类相似的图形, 例如,放映幻灯时,通过光源,把幻灯片上的图形放大到屏 幕上(如图显示了它工作的原理).在照相馆中,摄影师通
过照相机,把人物的形象缩小在底片上.
这样的放大缩小,没有改变图形形状,经过放大或缩小的 图形,与原图形是相似的,因此,我们可以得到真实的图 片和满意的照片.
3) 顺次连接点A' 、B' 、C' 、D' , 所得四边形A' B' C' D' 就是所要求 的图形.
利用位似,可以将一个图形放大或缩小.
对于上面的问题,还有其他方法吗?如果在四边形外任选一个 点O,分别在OA、OB、OC、OD的反向延长线上取A‘ ,B’ 、 C‘ 、D’ ,使得
OA ' OB ' OC ' OD ' 1 OA OB OC OD 2
性质:位似图形上任意一对对应点到位似中心的距离之 比等于相似比.
二 位似图形的画法
1 1.把四边形ABCD 缩小到原来的 2
.
1) 在四边形外任选一点O(如图), 2) 分别在线段OA、OB、OC、 A A' B' C' O B D' C D OD上取点A' 、B' 、C' 、D' ,使得
OA ' OB ' OC ' OD ' 1 OA OB OC OD 2
呢?如果点O取在四边
形ABCD内部呢?分别画出这时得到的图形. A B C C' D' B' A' O D B A D
O C
2.如图,△ABC,画△A' B' C' ,使△A' B' C' ∽△ABC,且
使相似比为1.5, 要求:(1)位似中心在△ABC的一条边AB上; (2)以点C为位似中心. A A
相关文档
最新文档