近代物理实验报告

合集下载

近代物理演示实验报告_0

近代物理演示实验报告_0

近代物理演示实验报告篇一:近代物理实验实验报告20xx-20xx学年第一学期近代物理实验实验报告目录液晶电光效应实验 (4)一、实验目的 (4)二、实验原理 (4)三、实验仪器 (7)四、实验步骤 (8)1、液晶电光特性测量 .................................................................. .. (8)2、液晶上升时间、下降时间测量,响应时间 (10)3、液晶屏视角特性测量 .................................................................. .. (13)拓展实验:验证马吕斯定律 .................................................................. (14)五、注意事项 (15)附:《LCD产品介绍及工艺流程》相关资料 ..................................................................15α粒子散射 (20)一、实验目的 (20)二、实验原理 (20)1、瞄准距离与散射角的关系 .................................................................. (20)2、卢瑟福微分散射截面公式 .................................................................. (21)3、对卢瑟福散射公式可以从以下几个方面加以验证。

(23)三、实验仪器 (23)四、实验步骤 (24)五、实验数据及处理 .................................................................. (24)六、思考题 (27)α散射的应用 (27)电子衍射 (29)一、实验目的 (29)二、实验原理 (29)运动电子的波长 .................................................................. . (29)相长干涉 (29)三、实验仪器 (30)四、实验数据及处理 .................................................................. (30)五、实验结论 (31)验证德布罗意假设 .................................................................. (31)普朗克常量的测定 .................................................................. (31)六、电子衍射的应用 .................................................................. (32)塞曼效应 (33)一、实验目的 (33)二、实验原理 (33)谱线在磁场中的能级分裂 .................................................................. (33)法布里—珀罗标准具 .................................................................. ................................... 34 用塞曼效应计算电子荷质比e ................................................................... ................. 37 m三、实验步骤 (37)四、数据处理及计算结果 .................................................................. . (37)五、误差分析 (37)六、思考题 (38)拓展实验 (38)观察磁感应强度与能级分裂强弱的关系 .................................................................. (38)估算铁芯的磁导率 .................................................................. (38)七、塞曼效应在科学技术中的应用 .................................................................. (39)液晶电光效应实验一、实验目的了解液晶的特性和基本工作原理;掌握一些特性的常用测试方法;了解液晶的应用和局限。

近代物理实验报告噪声

近代物理实验报告噪声

一、实验目的1. 了解噪声的来源、类型及其影响;2. 掌握噪声的测量方法及噪声控制技术;3. 培养实验操作技能,提高物理实验素养。

二、实验原理噪声是指无规律、无目的的声波,它会对人们的生活、工作和学习产生不良影响。

本实验通过测量噪声水平,分析噪声来源,探讨噪声控制方法。

三、实验仪器与材料1. 噪声测量仪;2. 声级计;3. 实验场地(室内、室外);4. 噪声源(如音响、空调、风扇等);5. 实验记录表。

四、实验步骤1. 熟悉噪声测量仪的使用方法;2. 选择实验场地,布置实验环境;3. 将噪声测量仪放置在实验场地中心,调整高度与角度;4. 启动噪声源,观察噪声测量仪显示的数值;5. 记录不同噪声源的声级数据;6. 分析噪声来源,探讨噪声控制方法;7. 对比不同控制方法的效果,总结实验结果。

五、实验结果与分析1. 实验场地噪声水平测量结果如下:- 室内:60dB;- 室外:80dB。

2. 噪声来源分析:- 室内噪声主要来源于空调、风扇、音响等;- 室外噪声主要来源于交通、建筑施工等。

3. 噪声控制方法及效果:- 室内噪声控制方法:(1)降低噪声源功率;(2)使用隔音材料;(3)调整噪声源位置;(4)使用降噪设备。

- 室外噪声控制方法:(1)加强交通管理;(2)限制建筑施工时间;(3)设置隔音屏障。

4. 实验结论:(1)噪声对人们的生活、工作和学习产生不良影响;(2)通过合理控制噪声源、使用隔音材料和设备,可以有效降低噪声水平;(3)了解噪声来源和噪声控制方法,有助于提高生活质量。

六、实验心得1. 通过本次实验,我对噪声有了更深入的了解,认识到噪声的危害性;2. 学会了使用噪声测量仪和声级计,提高了实验操作技能;3. 噪声控制方法在实际生活中具有广泛的应用,有助于改善居住环境。

七、实验总结本次实验通过对噪声的测量、分析及噪声控制方法的探讨,使我对噪声有了更全面的了解。

在今后的学习和生活中,我将关注噪声问题,积极采取措施降低噪声,为创造一个良好的生活环境贡献自己的力量。

光学近代物理学实验报告

光学近代物理学实验报告

一、实验目的1. 了解光学近代物理学的基本实验原理和方法。

2. 掌握光学近代物理学实验的基本操作技能。

3. 通过实验,加深对光学近代物理学理论知识的理解。

二、实验内容本次实验共分为四个部分:光纤通讯、光学多道与氢氘、法拉第效应、液晶物性。

1. 光纤通讯(1)实验目的:探究光纤的一些特性,包括光纤耦合效率的测量,光纤数值孔径的测定。

(2)实验原理:利用光纤的传输特性,通过测量光信号在光纤中的传输损耗,计算光纤的耦合效率。

(3)实验步骤:①搭建实验装置,包括光源、光纤、探测器等。

②调节光源,使其发出特定波长的光信号。

③将光信号输入光纤,通过探测器测量光信号在光纤中的传输损耗。

④根据传输损耗计算光纤的耦合效率。

2. 光学多道与氢氘(1)实验目的:观察光学多道仪的工作原理,测量氢原子和氘原子的能级。

(2)实验原理:利用光学多道仪,通过测量光子的能量,确定氢原子和氘原子的能级。

(3)实验步骤:①搭建实验装置,包括激光器、光学多道仪、探测器等。

②调节激光器,使其发出特定波长的光信号。

③将光信号输入光学多道仪,测量光子的能量。

④根据测量结果,确定氢原子和氘原子的能级。

3. 法拉第效应(1)实验目的:观察法拉第效应,研究光在磁场中的传播特性。

(2)实验原理:根据法拉第效应,当光在磁场中传播时,光偏振面的旋转角度与磁场强度成正比。

(3)实验步骤:①搭建实验装置,包括激光器、法拉第盒、探测器等。

②调节激光器,使其发出特定波长的光信号。

③将光信号输入法拉第盒,测量光偏振面的旋转角度。

④根据测量结果,研究光在磁场中的传播特性。

4. 液晶物性(1)实验目的:观察液晶的光学特性,研究液晶在不同温度下的液晶态。

(2)实验原理:液晶具有液体的流动性和晶体的各向异性,其光学特性受温度、电场等因素影响。

(3)实验步骤:①搭建实验装置,包括液晶样品、激光器、探测器等。

②调节温度,观察液晶的光学特性变化。

③在液晶样品上施加电场,观察液晶的光学特性变化。

近代物理实验实验报告

近代物理实验实验报告

一、实验名称:光纤通讯实验二、实验目的:1. 了解光纤的基本原理和特性;2. 掌握光纤耦合效率的测量方法;3. 探究光纤数值孔径对通信系统性能的影响;4. 分析光纤通信在实际应用中的优势。

三、实验原理:光纤是一种利用光的全反射原理传输光信号的介质。

本实验通过测量光纤耦合效率、数值孔径等参数,分析光纤通信系统的性能。

四、实验仪器:1. 光纤耦合器;2. 光功率计;3. 光纤测试平台;4. 光纤光源;5. 光纤跳线。

五、实验步骤:1. 将光纤光源连接到光纤耦合器的一端,将光纤跳线连接到另一端;2. 将光纤耦合器连接到光纤测试平台上;3. 使用光功率计测量光源输出光功率;4. 将光纤跳线连接到光纤测试平台上的光纤耦合器另一端,测量输入光功率;5. 计算光纤耦合效率;6. 改变光纤跳线的长度,重复步骤4和5,分析数值孔径对通信系统性能的影响。

六、实验结果与分析:1. 光纤耦合效率:根据实验数据,计算得到光纤耦合效率为95.3%。

说明本实验所使用的光纤耦合器性能良好,能够有效地将光信号传输到另一端。

2. 数值孔径:通过改变光纤跳线长度,观察光纤耦合效率的变化。

当光纤跳线长度较短时,耦合效率较高;当光纤跳线长度较长时,耦合效率逐渐降低。

这表明光纤数值孔径对通信系统性能有较大影响。

3. 光纤通信优势:与传统的铜缆通信相比,光纤通信具有以下优势:a. 抗干扰能力强:光纤通信不受电磁干扰,信号传输稳定可靠;b. 传输速度快:光纤通信的传输速度可以达到数十Gbps,满足高速数据传输需求;c. 通信容量大:光纤通信具有较大的通信容量,可满足大量用户同时通信的需求;d. 通信距离远:光纤通信可以实现长距离传输,满足远距离通信需求。

七、实验总结:通过本次光纤通讯实验,我们了解了光纤的基本原理和特性,掌握了光纤耦合效率的测量方法,分析了数值孔径对通信系统性能的影响。

同时,我们也认识到光纤通信在实际应用中的优势,为今后从事相关领域的研究和工作奠定了基础。

工科近代物理实验报告

工科近代物理实验报告

一、实验目的1. 理解和掌握近代物理实验的基本原理和方法。

2. 通过实验操作,加深对理论知识的理解,提高实验技能。

3. 培养严谨的科学态度和良好的实验习惯。

二、实验原理本实验涉及近代物理的多个领域,主要包括:1. 光电效应:通过测量不同频率的光照射到金属表面时产生的光电子动能,验证爱因斯坦的光电效应方程。

2. 半导体的PN结:研究PN结的正向和反向特性,了解PN结在电子器件中的应用。

3. 光谱分析:利用光谱仪分析物质的光谱,研究物质的组成和结构。

三、实验仪器1. 光电效应实验装置:包括光源、光电管、微电流放大器、示波器等。

2. PN结测试仪:包括直流电源、万用表、数字存储示波器等。

3. 光谱仪:包括光源、单色仪、探测器等。

四、实验内容1. 光电效应实验:- 设置不同频率的光源,分别照射到光电管上。

- 测量光电子的最大动能和入射光的频率。

- 分析实验数据,验证光电效应方程。

2. PN结实验:- 测量PN结的正向和反向电流。

- 分析实验数据,了解PN结的特性。

3. 光谱分析实验:- 设置不同物质的光谱,利用光谱仪进行分析。

- 研究物质的组成和结构。

五、实验步骤1. 光电效应实验:- 调整光电管与光源的距离,确保入射光垂直照射到光电管上。

- 改变光源的频率,测量光电子的最大动能。

- 记录实验数据,分析结果。

2. PN结实验:- 将PN结接入电路,调整直流电源电压。

- 测量正向和反向电流,记录数据。

- 分析实验数据,了解PN结的特性。

3. 光谱分析实验:- 将不同物质的光谱设置到光谱仪中。

- 利用光谱仪分析光谱,研究物质的组成和结构。

- 记录实验数据,分析结果。

六、实验结果与分析1. 光电效应实验:- 实验结果显示,随着入射光频率的增加,光电子的最大动能也随之增加,符合光电效应方程。

- 通过分析实验数据,验证了爱因斯坦的光电效应方程。

2. PN结实验:- 实验结果显示,PN结的正向电流较大,反向电流较小,符合PN结的特性。

近代综合实验报告

近代综合实验报告

实验名称:近代物理实验实验日期:2023年10月15日实验地点:物理实验室实验指导教师:张老师一、实验目的1. 通过近代物理实验,加深对物理学基本理论的理解和掌握。

2. 培养实验操作技能,提高实验数据分析能力。

3. 培养科学思维和创新能力,提高解决实际问题的能力。

二、实验内容本实验共分为四个部分,分别为:1. 光纤通讯实验2. 光学多道与氢氘实验3. 法拉第效应实验4. 液晶物性实验三、实验原理1. 光纤通讯实验:光纤是一种传输信息的介质,具有低损耗、高带宽、抗干扰等优点。

本实验主要研究光纤的传输特性,包括光纤耦合效率、光纤数值孔径等。

2. 光学多道与氢氘实验:光学多道探测器是一种高灵敏度的粒子探测器,广泛应用于核物理、粒子物理等领域。

本实验通过测量氢氘核的衰变,研究其能谱和寿命。

3. 法拉第效应实验:法拉第效应是指当线偏振光通过某些介质时,其偏振面会发生变化。

本实验通过测量法拉第效应,研究其与磁场、介质等因素的关系。

4. 液晶物性实验:液晶是一种介于液体和固体之间的物质,具有各向异性的特点。

本实验通过测量液晶的折射率、粘度等物理量,研究其物性。

四、实验步骤1. 光纤通讯实验:(1)搭建实验装置,包括光纤、光源、探测器等。

(2)调整实验参数,如光纤长度、耦合效率等。

(3)测量光纤的传输特性,如衰减、带宽等。

2. 光学多道与氢氘实验:(1)搭建实验装置,包括光学多道探测器、放射性源等。

(2)调整实验参数,如探测器灵敏度、计数时间等。

(3)测量氢氘核的衰变能谱和寿命。

3. 法拉第效应实验:(1)搭建实验装置,包括法拉第盒、光源、探测器等。

(2)调整实验参数,如磁场强度、光束入射角度等。

(3)测量法拉第效应的偏振面变化。

4. 液晶物性实验:(1)搭建实验装置,包括液晶样品、光源、探测器等。

(2)调整实验参数,如液晶温度、光束入射角度等。

(3)测量液晶的折射率、粘度等物理量。

五、实验结果与分析1. 光纤通讯实验:实验结果显示,光纤的传输损耗随着长度的增加而增加,且在一定范围内趋于稳定。

近代物理频谱实验报告

近代物理频谱实验报告

一、实验目的1. 了解频谱分析的基本原理和方法。

2. 通过实验,掌握使用频谱分析仪对信号进行频谱分析的操作技能。

3. 学习如何通过频谱分析识别信号的频率成分和幅值。

二、实验原理频谱分析是一种将信号分解为其不同频率成分的方法。

在近代物理实验中,频谱分析广泛应用于信号的检测、处理和识别。

本实验采用频谱分析仪对特定信号进行频谱分析,通过观察和分析频谱图,可以了解信号的频率结构。

三、实验仪器与设备1. 频谱分析仪2. 信号发生器3. 信号调理器4. 示波器5. 连接线四、实验步骤1. 连接仪器:按照实验要求,将信号发生器、信号调理器和频谱分析仪连接好,确保信号能够正确传输。

2. 设置信号发生器:调整信号发生器产生一个已知频率和幅值的信号。

3. 输入信号:将信号发生器产生的信号输入到信号调理器,然后连接到频谱分析仪。

4. 调整频谱分析仪:设置频谱分析仪的扫描范围、分辨率和带宽等参数。

5. 观察频谱图:在频谱分析仪上观察信号的频谱图,记录频率和幅值。

6. 数据处理:根据实验数据,计算信号的功率谱密度。

7. 分析结果:分析信号的频谱特性,判断信号的频率成分和幅值。

五、实验数据与结果1. 实验数据:| 频率 (Hz) | 幅值 (dB) || ---------- | ---------- || 100 | -10 || 200 | -5 || 300 | 0 || 400 | -5 || 500 | -10 |2. 结果分析:通过观察频谱图,我们可以看到信号在300 Hz处有一个明显的峰值,这表明信号的主要频率成分是300 Hz。

同时,我们还可以看到信号在100 Hz和500 Hz处也有较小的峰值,这表明信号还包含其他频率成分。

六、讨论与总结1. 讨论:本实验通过频谱分析仪对信号进行频谱分析,成功地识别了信号的频率成分和幅值。

这表明频谱分析是一种有效的方法,可以用于信号的检测、处理和识别。

2. 总结:通过本次实验,我们了解了频谱分析的基本原理和方法,掌握了使用频谱分析仪进行频谱分析的操作技能。

物理实验报告(精选11篇)

物理实验报告(精选11篇)

物理实验报告物理实验报告(精选11篇)在现实生活中,越来越多人会去使用报告,写报告的时候要注意内容的完整。

你知道怎样写报告才能写的好吗?以下是小编整理的物理实验报告,仅供参考,大家一起来看看吧。

物理实验报告篇1实验课程名称:近代物理实验实验项目名称:盖革—米勒计数管的研究姓名:学号:一、实验目的1、了解盖革——弥勒计数管的结构、原理及特性。

2、测量盖革——弥勒计数管坪曲线,并正确选择其工作电压。

3、测量盖革——弥勒计数管的死时间、恢复时间和分辨时间。

二、使用仪器、材料G-M计数管(F5365计数管探头),前置放大器,自动定标器(FH46313Z智能定标),放射源2个。

三、实验原理盖革——弥勒计数管简称G-M计数管,是核辐射探测器的一种类型,它只能测定核辐射粒子的数目,而不能探测粒子的能量。

它具有价格低廉、设备简单、使用方便等优点,被广泛用于放射测量的工作中。

G-M计数有各种不同的结构,最常见的有钟罩形β计数管和圆柱形计数管两种,这两种计数管都是由圆柱状的阴极和装在轴线上的阳极丝密封在玻璃管内而构成的,玻璃管内充一定量的某种气体,例如,惰性气体氩、氖等,充气的气压比大气压低。

由于β射线容易被物质所吸收,所以β计数管在制造上安装了一层薄的云母做成的窗,以减少β射线通过时引起的吸收,而射线的贯穿能力强,可以不设此窗圆柱形G-M计数管计数管系统示意图在放射性强度不变的情况下,改变计数管电极上的电压,由定标器记录下的相应计数率(单位时间内的计数次数)可得如图所示的曲线,由于此曲线有一段比较平坦区域,因此把此曲线称为坪特性曲线,把这个平坦的部分(V1-V2)称为坪区;V0称为起始电压,V1称为阈电压,△V=V2-V1称为长度,在坪区内电压每升高1伏,计数率增加的百分数称为坪坡度。

G-M计数管的坪曲线由于正离子鞘的存在,因而减弱了阳极附近的电场,此时若再有粒子射入计数管,就不会引起计数管放电,定标器就没有计数,随着正离子鞘向阴极移动,阴极附近的电场就逐渐得到恢复,当正离子鞘到达计数管半径r0处时,阳极附近电场刚刚恢复到可以使进入计数管的粒子引起计数管放电,这段时间称为计数管的死时间,以td来表示;正离子鞘从r0到阴极的一段时间,我们称为恢复时间,以tr表示。

近代物理实验结报ModernInterference组别周三班第五组组员

近代物理实验结报ModernInterference组别周三班第五组组员

近代物理實驗結報Modern Interference組別:週三班第五組組員:張學文莊智涵陳子響實驗日期:2009/4/14~2009/4/28實驗原理:干涉儀是利用所使用之光的特性,將來自有相同特性的兩個或多個光源的光波,在空間某點相互會合,因相位之間的差異而產生光強度變強或弱的現象,我們稱之為干涉。

所謂有相同特性的光源,是指具有相同頻率和穩定的相位關係的光源(例如有相同的相位差)。

在使用兩道光作干涉時,有時必須注意到兩者的偏極性,以免雖然兩道光交會了,卻沒有干涉條紋產生。

通常比較容易出現光束偏極特性偏轉的情形,是利用面鏡將光束之水平面高度上升或下降時引起的,如果將光束分光後即保持在同一水平面,便比較沒有這一層顧慮。

在組合各種類型的實驗時,無論是太曼格林(Twyman Green) 干涉儀、麥克詹達干涉儀(Mach-Zender)、菲索(Fizeau )干涉儀、剪像(shearing)干涉計、法布裡-派洛(Fabry-Perot)干涉儀和麥克森(Michelson) 干涉儀,皆屬於一種以光的干涉方式進行的量測技術,必須留意到光束偏極特性的問題,這點是常為眾人所忽略的地方。

光的干涉方式可按波動說的解釋:光以正弦波的波形前進,因此兩相同頻率及相同相位的光波向同一方向前進,即波峰對波峰,波谷對波谷時,會產生光波增強的現象,該處即得明亮條紋。

若兩相同頻率,相位差180 度,即波峰對波谷,波谷對波峰時,兩光波會互相干涉而抵銷,該處即得黑暗的條紋。

利用條紋數及其分佈情形即可進行待測物之物理量差異的定量分析。

一些傳統的干涉儀使用非同調光(通常是單色光)即可進行量測,但是由於光源同調性差,因此操作的人員不但須對干涉理論有所認識,而且也要對儀器有良好的熟練度。

1960 年高強度同調性(Coherence) 光源的雷射問世後,干涉儀才開始蓬勃地發展;干涉儀可按照形成干涉的光束數目分為雙光束及多光束兩大類,雙光束干涉儀所產生的條紋其亮度多呈正弦曲線的分佈情形,例如太曼格林(Twyman Green) 干涉儀、菲索(Fizeau )干涉儀、麥克詹達干涉儀(Mach-Zender)、剪像(shearing)干涉計及麥克森(Michelson) 干涉儀,皆屬於此種雙光束干涉方式,而多光束干涉儀之條紋亮度分佈情形也是週期性的,但卻呈狹窄的亮帶,如梳狀脈衝波形(Dirac comb ),有名的法布裡-派洛(Fabry-Perot)干涉儀即屬此類。

近代物理实验报告

近代物理实验报告

近代物理实验报告一、实验目的:本次实验旨在通过实际操作,了解近代物理中的一些基本实验现象和实验方法,加深对近代物理理论的理解和认识。

二、实验原理:1.光电效应实验光电效应是指当光照射到金属表面时,如果光的能量大于金属的束缚能,就会有电子从金属表面逸出。

实验中,我们将使用光电效应实验装置,包括光源、金属样品和电子倍增器等,通过调整光源的强度和波长,可以观察到光电流的变化,从而了解光电效应的一些基本特性。

2.康普顿散射实验康普顿散射是指入射光子与静止的自由电子相互碰撞后发生能量和动量的转移。

在实验中,我们将使用康普顿散射实验装置,包括光源、散射靶和探测器等,通过测量探测器中散射光的能量和角度,可以利用康普顿散射公式计算出入射光子的能量和散射角度,从而验证康普顿散射的基本规律。

三、实验步骤:1.光电效应实验①将光电效应实验装置搭建起来,并调整光源的位置和强度。

②将电子倍增器接入实验电路,调节放大器的放大倍数。

③将金属样品放置在实验台上,并遮挡住一部分金属表面。

④调节光源的强度和波长,观察电子倍增器的电流变化情况。

2.康普顿散射实验①将康普顿散射实验装置搭建起来,并调整光源的位置和强度。

②将探测器放置在合适的位置,并调整其与散射靶的距离。

③调节光源的波长和散射角度,观察探测器中散射光的能量变化情况。

④根据康普顿散射公式计算入射光子的能量和散射角度。

四、实验结果与分析:1.光电效应实验实验中,我们观察到了光电流随着光源强度的增加而增加的现象,这符合光电效应的基本规律。

同时,我们发现在不同波长的光照射下,光电流的变化也不同,这与光电效应中的电子能量与波长之间的关系是一致的。

2.康普顿散射实验通过测量不同散射角度下的散射光能量,我们得到了散射光的能谱曲线。

根据康普顿散射公式,我们计算出了入射光子的能量和散射角度,并与理论值进行比较。

实验结果与理论值吻合较好,验证了康普顿散射的基本规律。

五、实验总结:通过本次实验,我们加深了对近代物理中光电效应和康普顿散射的理解。

近代物理实验报告之单光子实验系统

近代物理实验报告之单光子实验系统

近代物理实验报告(五)————单光子实验系统实验小组:日期: 2011-121)实验目的:2)了解本实验的基本操作;3)研究鉴别电压(阈值)对系统性能的影响, 确定最佳鉴别电压(阈值);4)学习用光子计数器测量微弱光信号的原理与技术。

二、实验原理:光是由光子组成的, 由量子物理的知识可知, 光子的能量和波长有关, 本实验的最终目的是测量光子数的影响因素, 本实验采用了光电倍增管(一种可以探测光信号的器件), 他使得光子在阳极回路形成一个电流脉冲, 然后, 我们通过计算机的系统可以观测到不同时刻里光子的个数, 试验中, 设置了一个半导体制冷器, 来降低光电倍增管的温度, 试验中我们通过改变温度来观测对光子数测量的影响因素。

光电检测技术在本实验的应用:我觉得本实验中运用了如下光电检测知识:光电倍增管在实验中的应用。

实验过程、现象、数据:NO.1实验过程:①: 打开计算机电源, 打开单光子实验计数器电源, 打开软件.②: 手动在在制冷器的控温仪表上设定某一温度, 控温开始, 一定时间后, 待温度稳定, 启动计算机, 运行应用程序开始采集数据;③:保持冷去温度的值不变, 改变输入的功率和电流的大小, 运行应用程序开始采集数据;①NO、2实验现象及数据:-15度时光子数:GSZF-2型单光子计数器起点:0终点:100最大值:13最小值:0毫秒(ms)采样间隔:1000积分时间:1000高压:8阈值:400 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 9 77 10 4 4 7 9 11 11 11 11 11 12 8 8 9 11 12 6 6 6 6 10 3 4 7 10 3 4 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 1 1 6 9 13 11 10 6 6 10 6 10 3 7 5 5 5 8 12 8 8 9 10 10 3 3 4 6 8 7②- 5度 0.1uw 0.1mA时光子数:GSZF-2型单光子计数器起点:0终点:100最大值:160最小值:100毫秒(ms)采样间隔:1000积分时间:1000高压:8阈值:400 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19132 125 126 133 140 151 151 149 135 134 139 120 128 121 121 128 135 132 134 14820 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39134 135 154 135 114 160 148 130 135 140 140 147 154 154 140 135 136 122 123 13940 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59133 137 134 134 135 134 144 109 114 130 141 143 135 136 146 139 122 129 145 149③- 5度 0.67uw 0.67mA时GSZF-2型单光子计数器起点:0终点:100最大值:786最小值:500毫秒(ms)采样间隔:1000积分时间:1000高压:8阈值:400 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19分析实验操作、现象、数据以及自己的结论:No1.对实验操作的分析:本实验我们通过调节不同冷却温度来观察不同情况下的光子数, 在温度一致的情况下通过改变所加电流及功率的大小来观察影响光子数的影响因素。

近代光学实验报告

近代光学实验报告

实验名称:干涉现象与光的波动性实验日期:2023年11月10日实验地点:近代物理实验室实验人员:张三、李四、王五一、实验目的1. 了解干涉现象的原理及其在光学中的应用。

2. 通过实验验证光的波动性。

3. 掌握使用干涉仪进行实验的方法和技巧。

二、实验原理干涉现象是光波叠加时产生的现象,当两束或多束相干光波叠加时,会形成明暗相间的干涉条纹。

干涉现象是光的波动性的重要证据之一。

三、实验仪器1. 干涉仪2. 光源(激光器)3. 平面镜4. 透镜5. 分束器6. 光电传感器7. 数据采集系统四、实验步骤1. 将干涉仪组装好,确保所有部件连接牢固。

2. 将光源(激光器)连接到干涉仪的输入端口。

3. 将分束器放置在干涉仪的光路上,用于将激光束分成两束。

4. 将第一束光照射到平面镜上,反射后与第二束光发生干涉。

5. 调整透镜,使干涉条纹清晰可见。

6. 使用光电传感器和数据采集系统记录干涉条纹的变化。

五、实验数据1. 记录干涉条纹的间距和形状。

2. 记录干涉条纹的变化规律。

3. 记录光电传感器的输出信号。

六、实验结果与分析1. 通过观察干涉条纹,我们可以看到明暗相间的干涉条纹,这表明光具有波动性。

2. 当改变干涉仪的光路长度时,干涉条纹的间距也会发生变化,这表明光具有波长。

3. 通过光电传感器的输出信号,我们可以得到干涉条纹的变化规律,进一步验证了光的波动性。

七、实验结论1. 通过实验,我们验证了干涉现象的存在,这表明光具有波动性。

2. 通过实验,我们掌握了使用干涉仪进行实验的方法和技巧。

3. 通过实验,我们加深了对光的波动性的理解。

八、实验讨论1. 干涉现象在光学中的应用非常广泛,如光学干涉仪、激光干涉仪等。

2. 光的波动性是光学研究的基础,对于理解光的性质和现象具有重要意义。

3. 在实验过程中,我们需要注意调整光路,确保干涉条纹清晰可见。

九、实验反思1. 在实验过程中,我们遇到了一些问题,如干涉条纹不清晰、光电传感器输出信号不稳定等。

近代物理创新实验报告(3篇)

近代物理创新实验报告(3篇)

第1篇一、实验背景随着科技的不断发展,物理学领域的研究也在不断深入。

近代物理实验作为物理学研究的重要手段,对于培养科学精神和创新意识具有重要意义。

为了进一步提高实验教学质量,激发学生的学习兴趣,我们设计了一项近代物理创新实验,旨在探究光子与电子的相互作用,为光电子学领域的研究提供新的思路。

二、实验目的1. 了解光子与电子相互作用的原理和实验方法;2. 通过实验验证康普顿效应,探究光子与电子的散射过程;3. 分析实验数据,总结实验规律,为光电子学领域的研究提供参考。

三、实验原理康普顿效应是指当高能光子(如X射线)与物质中的自由电子发生碰撞时,光子会被散射,同时其波长发生变化的现象。

康普顿效应揭示了光子与电子的相互作用规律,为量子力学的发展奠定了基础。

实验原理如下:1. 当入射光子与电子发生碰撞时,光子将部分能量传递给电子,使其获得动能;2. 由于能量守恒和动量守恒,光子波长发生变化,即发生散射;3. 通过测量散射光子的波长,可以验证康普顿效应,并探究光子与电子的相互作用。

四、实验仪器与材料1. 激光器:用于产生高能光子;2. 电子靶:由自由电子组成的靶材料;3. 检测器:用于测量散射光子的波长;4. 光谱仪:用于分析散射光子的波长;5. 计算机软件:用于数据处理和分析。

五、实验步骤1. 将激光器、电子靶和检测器依次连接,搭建实验装置;2. 设置激光器的参数,调整电子靶与检测器之间的距离;3. 启动激光器,使光子与电子靶中的自由电子发生碰撞;4. 检测器接收散射光子,通过光谱仪分析散射光子的波长;5. 记录散射光子的波长数据,并进行数据处理和分析。

六、实验结果与分析1. 实验结果显示,散射光子的波长与入射光子的波长之间存在差异,符合康普顿效应的规律;2. 通过对实验数据进行拟合,可以得到散射光子波长的变化量与入射光子能量的关系;3. 分析实验结果,可以得出以下结论:(1)光子与电子的相互作用符合康普顿效应的规律;(2)散射光子的波长变化量与入射光子能量之间存在线性关系;(3)实验结果与理论预期相符,验证了康普顿效应的正确性。

近代物理实验

近代物理实验

利用光学多道分析器测定钠原子光谱
一、实验目的
1.测定钠原子的光谱线。 2.掌握WDS-8A型组合式多功能光栅光谱仪的原理 和使用方法。 3.了解原子能级与光谱的联系。
利用光学多道分析器测定钠原子光谱
二、实验原理
1.钠原子光谱
光谱线的波数: 钠原子有四个线系:主线系(P线系)3S-nP,n=3,4,5… 漫线系(D线系)3P-nD,n=3,4,5… 锐线系(S线系)3P-Ns,n=4,5,6… 基线系(F线系)3P-nF,n=4,5,6…
记录第1次速度达到最大时的采样次数N1max和第11次速 度达到最大时的采样次数N11max,就可计算实际测量的 运动周期T及角频率ω
多普勒效应综合实验
4、研究直线运动,验证牛顿第二运动定律 【实验装置】
多普勒效应综合实验
【注意事项】 (1)实验注意砝码的质量不可过大,否则出 现的曲线斜率很小,不好观察。 (2)砝码与自由落体接收组件间的绳子长度 不要过短使自由落体组件不能落于保护盒内, 也不要过长使砝码起始位置置于地上。 (3) 要更换砝码的质量进行试验。
f = f o ( u ± V1 cos α1 ) / ( u ± V2 cos α 2 )
当声源静止,接收器运动时:
f = f o (1 + V / u )
V = u ( f / f o − 1)
f-v关系图 V-t关系图
多普勒效应综合实验
2、超声的红外调制与接收 超声的接收信号: 红外调制 发射
多普勒效应综合实验
2、研究自由落体运动,求自由落体加速度 【实验装置】
多普勒效应综合实验
【数据记录】 采样时间间隔差ti=0.05(i-1),ti为第i次采样与第1次

近代物理实验报告

近代物理实验报告

近代物理实验报告近代物理实验报告一、引言近代物理实验是物理学研究的重要手段之一,通过实验可以验证理论,揭示自然界的规律。

本次实验旨在探究几个与近代物理相关的实验,包括光电效应、康普顿散射和量子力学的基础实验。

二、光电效应实验光电效应是指当光照射到金属表面时,金属会发射出电子的现象。

为了验证光电效应的基本规律,我们设计了以下实验步骤:1. 准备材料:光电效应实验装置、金属样品、光源、电流计等。

2. 实验步骤:a. 将金属样品安装在实验装置上,并连接好电路。

b. 调节光源的强度和波长,使其分别达到不同的数值。

c. 测量不同波长下金属样品发射的电流强度。

3. 实验结果与分析:根据实验结果,我们发现金属样品发射的电流强度与光源波长呈反比关系。

这符合光电效应的基本规律,即光的能量与波长成反比。

三、康普顿散射实验康普顿散射是指入射光子与物质中自由电子发生碰撞后,光子的能量和方向发生改变的现象。

为了验证康普顿散射的基本规律,我们进行了以下实验:1. 准备材料:康普顿散射实验装置、散射体、探测器等。

2. 实验步骤:a. 将散射体和探测器安装在实验装置上,并连接好电路。

b. 调节入射光子的能量和散射体的角度,记录下散射后的光子能量和方向。

c. 重复实验多次,得到一系列数据。

3. 实验结果与分析:根据实验结果,我们发现入射光子的能量和散射后的光子能量呈正比关系,而散射角度与散射后的光子方向呈正相关关系。

这符合康普顿散射的基本规律,即光子与自由电子碰撞后,能量和动量守恒。

四、量子力学基础实验量子力学是描述微观粒子行为的理论,为了验证量子力学的基本原理,我们进行了以下实验:1. 准备材料:双缝干涉实验装置、光源、屏幕等。

2. 实验步骤:a. 将双缝干涉实验装置搭建起来,并调节好光源的强度和波长。

b. 观察在屏幕上形成的干涉条纹,并记录下实验数据。

c. 改变光源的强度和波长,再次观察并记录数据。

3. 实验结果与分析:根据实验结果,我们发现在屏幕上形成的干涉条纹符合波粒二象性的原理。

近代物理实验教程的实验报告

近代物理实验教程的实验报告

近代物理实验教程的实验报告实验报告:近代物理实验教程实验名称:测量光速实验目的:通过实验测量光的速度,并了解光的本质和光速度的重要性。

实验器材:- 激光器- 两个距离固定的反射镜- 一个光电探测器- 一个计时器实验步骤:1. 将激光器放置在适当的位置,并使其光束直射向一个固定的反射镜。

2. 另一块反射镜放在距离第一个反射镜一定距离的位置上,使激光束反射到光电探测器上。

3. 打开激光器,使其发出光束。

4. 使用计时器,记录激光束从激光器到第一个反射镜的时间间隔。

5. 同时,使用光电探测器测量光从第一个反射镜反射到第二个反射镜再反射到光电探测器的时间间隔。

6. 计算光从第一个反射镜到第二个反射镜的距离,并根据测得的时间间隔计算光的速度。

实验结果:根据实验数据,我们得到光从第一个反射镜到第二个反射镜的时间间隔为t,光从激光器到第一个反射镜的时间间隔为t',则光从第一个反射镜到第二个反射镜的距离为d=t*v,其中v为光的速度。

根据测量得到的数据,我们可以计算出光的速度v=d/t。

讨论与结论:通过实验测量,我们得到了光的速度,并发现光速度非常接近299,792,458m/s,这个值是一个常数,通常用c表示。

这个实验结果进一步验证了光速度是一个常数,并说明光在真空中传播时的速度是恒定的,不受其他因素的影响。

光速度的稳定性和恒定性是现代物理的一项重要发现,不仅证明了光的波粒二象性,也为相对论的发展提供了基础。

实验中可能存在的误差:1. 仪器精度问题:实验中所使用的仪器可能存在一定的误差,如计时器的精度、光电探测器的灵敏度等。

2. 实验操作问题:实验过程中的不准确操作也可能引入误差,如指向不准确、记录时间时的误差等。

3. 实验环境问题:实验环境的温度、湿度等因素可能对实验数据产生一定的影响。

改进方案:为了提高实验的准确性和精度,可以考虑以下方面的改进:1. 使用更精密的实验仪器,如高精度计时器和高灵敏度的光电探测器,以减小仪器误差。

近代物理实验期末总结

近代物理实验期末总结

近代物理实验期末总结近代物理实验是一门对物理学原理进行实践验证的课程。

通过实验操作,我们可以更加直观地理解和掌握物理学原理。

在这个学期的近代物理实验课程中,我参与了多个实验项目,这些实验项目涉及到了很多与近代物理相关的重要原理和现象。

在这篇期末总结中,我将回顾和总结这些实验项目,并展望未来的学习方向。

在本学期的近代物理实验中,我参与了“光电效应实验”、“拉曼散射实验”和“扫描隧道显微镜实验”等实验项目。

这些实验项目都具有一定的难度和挑战,但通过认真的学习和实践,我逐渐掌握了实验操作技巧和数据分析方法,并对实验中涉及到的物理学原理有了更加深入的理解。

光电效应实验是研究光与物质相互作用的重要实验项目。

通过调节不同波长、强度和光电倍增管的参数,我们可以观察到光电效应现象的不同特征。

在实验中,我对实验所需设备的调试和操作有了更深入的认识,理解了光电效应与波粒二象性的关系,并通过实验数据的处理和分析,得到了光电效应的一些基本规律。

拉曼散射实验是研究物质的光谱特性的重要实验项目。

通过激光束与物质相互作用,我们可以得到物质的拉曼散射光,进而观察和分析物质的分子结构和振动特性。

在实验中,我学习并掌握了拉曼散射光谱的记录和分析方法,通过与理论模型的对比,得出了一些有关物质的性质和结构的结论。

扫描隧道显微镜实验是研究物质表面的重要实验项目。

通过使用铂钯探头在物质表面进行扫描,我们可以获得物质表面的原子尺度的拓扑形貌和电子结构信息。

在实验中,我学习和掌握了扫描隧道显微镜的操作方法和参数的选择,通过观察和分析实验数据,得到了一些有关物质表面形貌和电子结构的重要结论。

通过这些实验项目的参与,我对近代物理学的原理和现象有了更加深入的理解。

但是,我也意识到我在实验操作的技巧和数据处理的方法上还有很大的提升空间。

在以后的学习中,我将继续加强实验技能的训练,并努力掌握更多的物理实验技术。

总之,近代物理实验是一门非常有意义的课程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近代物理实验报告实验题目: 1 真空获得与真空测量2 热蒸发法制备金属薄膜材料3 磁控溅射法制备金属薄膜材料班级:学号:学生姓名:实验教师:2010-2011学年第1学期实验1真空获得与真空测量实验时间: 地点: 指导学生:【摘要】本实验采用JCP-350C 型热蒸发/磁控溅射真空镀膜机,初步了解真空获得与测量的方法,熟悉使用镀膜机的机械泵和油扩散泵,能用测量真空的热偶真空计和电离真空计等实验仪器,掌握真空的获得和测量方法。

【关键词】镀膜机;机械泵;扩散泵;真空获得和测量一、实验目的1.1、学习并了解真空科学基础知识,学会掌握低、高真空获得和测量的原理及方法;1.2、熟悉实验设备和仪器的使用。

二、实验仪器JCP-350C 型热蒸发/磁控溅射真空镀膜机。

三、真空简介3.1真空“真空”这一术语译自拉丁文Vacuo ,其意义是虚无。

其实真空应理解为气体较稀薄的空间。

在指定的空间内,低于一个大气压力的气体状态统称为真空。

3.2真空的等级真空状态下气体稀薄程度称为真空度,通常用压力值表示。

1958年,第一界国际技术会议曾建议采用“托”(Torr)作为测量真空度的单位。

国际单位制(SI)中规定压力的单位为帕(Pa)。

我国采用SI 规定。

● 1标准大气压(1atm)≈1.013×105Pa(帕)● 1Torr≈1/760atm≈1mmHg● 1Torr≈133Pa● 我国真空区域划分为:粗真空、低真空、高真空、超高真空和极高真空。

●粗真空 Pa 35103331~100131⨯⋅⨯⋅ ●低真空 Pa 13103331~103331-⨯⋅⨯⋅ ●高真空 Pa 61103331~103331--⨯⋅⨯⋅ ●超高真空 Pa 106103331~103331--⨯⋅⨯⋅ ● 极高真空 Pa 10103331-⨯⋅< 3.3获得真空的意义获得真空不仅在科研、教学、工业以及人类生活中应用起到很大的作用,而且给人类的整个社会文明的进步、财富创造以及科技创新都具有重大的意义。

3.4真空技术的应用随着真空获得技术的发展,真空科学的应用领域很广,目前已经渗透到车辆、土木工程呢、机械、包装、环境保护、医药及医疗机械、石油、化工、食品、光学、电气、电子、原子能、半导体、航空航天、低温、专用器械、纺织、造纸、农业以及民用工业等工业部门和科学研究工作中,因此真空技术在现实生活各种领域中都得到广泛的应用。

四、实验原理4.1真空的获得4.1.1低真空的获得:获得低真空常采用机械泵,结构如图1-1机械泵是运用机械方法不断地改变泵内吸气空腔的体积,使被抽容器内气体的体积不断膨胀,从而获得真空的装置。

它可以直接在大气压下开始工作,极限真空度一般为1.33~1.33×10-2Pa ,抽气速率与转速及空腔体积V 的大小有关,一般在每秒几升到每秒几十升之间。

旋片式机械泵通常由转子、定子、旋片等结构构成。

偏心转子置于定子的圆柱形空腔内切位置上,空腔上连接进气管和出气阀门。

转子中镶有两块旋片,旋片间用弹簧连接,使旋片紧压在定子空腔的内壁上。

转子的转动是由马达带动的,定子置于油箱中,油起到密切、润滑与冷却的作用。

机械泵工作过程如图1-2。

当转子顺时针转动时,空气由被抽容器通过进气管被吸入,旋片随着转子的转动使与进气管相连的区域不断扩大,而气体就不断地被吸入。

当转子达到一定位置时,另一旋片把被吸入气体的区域与被抽容器隔开,并将气体压缩,直到压强增大到可以顶开出气口的活塞阀门而被排出泵外,转子的不断转动使气体不断地从被抽容器中抽出。

4.1.2高真空的获得获得真空用真空泵。

真空泵按工作条件的不同分为两类:能够在大气压下工作的真空泵称为初级泵(机器泵),用来产生预备真空,需要在预备条件下才能工作的真空泵称为次级泵(扩散泵),次级泵用来进一步提高真空度,获得高真空。

目前,广泛使用的获得高真空的泵就是扩散泵。

扩散泵是利用气体扩散现象来抽气的,它不能直接在大气压下工作,而需要一定的预备真空度(1.33~0.133Pa )。

油扩散泵的极限真空度主要取决于油蒸汽压和气体分子的反扩散,一般能达到1.33×10-5~1.33×10-7Pa 。

抽气速率与结构有关,每秒几升~几图1-1 机械泵结构图 图1-2 机械泵工作原理图百升不等,油扩散泵的结构如示意图1-3。

泵的底部—是装有真空泵油的蒸发器,真空泵油经电炉加热沸腾后,产生一定的油蒸汽,蒸汽沿着蒸汽导流管传输到上部,经由三级伞形喷口向下喷出。

喷口外面的压强较油蒸汽压低,于是便形成一股向出口方向运动的高速蒸汽流,使之具有很好的运载气体分子的能力。

油分子与气体分子碰撞,由于油分子的分子量大,碰撞的结果是油分子把动量交给气体分子自己慢下来,而气体分子获得向下运动的动量后便迅速往下飞去.并且,在射流的界面内,气体分子不可能长期滞留,因而界面内气体分子浓度较小.由于这个浓度差,使被抽气体分得以源源不断地扩散进入蒸汽流而被逐级带至出口,并被前级泵抽走.慢下来的蒸汽流在向下运动的过程中碰到水冷的泵壁,油分子就被冷凝下来,沿着泵壁流回蒸发器继续循环使用.冷阱的作用是减少油蒸汽分子进入被抽容器。

4.2真空的测量测量真空的装置称为真空计,常用的油热耦真空计和电离真空计。

热耦真空计可以测量0.1~10Pa的压强,利用低压下气体的热传导与压强成正比的原理;电离真空计利用电子与气体分子碰撞产生电离电流随压强变化的原理制成,可测量范围是10的-6~-1数量级。

注意,电离真空计必须在0.1Pa以下使用,否则会损坏装置。

五、真空镀膜机部分结构5.1真空获得和测量设备JCP-350磁控溅射镀膜机(2inch基片/多靶共溅射)、JCP-1200/1600高真空磁控溅射镀膜机、TEMD-600/1000电子束蒸发镀膜机(蒸发高熔点金属及氧化物/高速沉积/光学镀膜)等。

5.2真空泵简介5.2.1机械泵机械泵通过不断改变泵内吸气空腔的容积,使被抽容器内气体的体积不断膨胀压从而获得真空,常用的是旋片式机械泵。

旋片式机械泵原理见下附图2。

旋片式机械泵使用注意:(1)、检查油槽中油液面的高度是否符合规定,机械泵转子的转动方向与规定方向是否一致;(2)、机械泵停止工作时,要立即使进气口与大气相通,防止回油现象。

这步由机械泵上的电磁阀自动进行。

(3)、机械泵不宜工作过长,否则会影响使用寿命。

5.2.2扩散泵扩散泵利用气体扩散现象来抽气的。

利用高速定向喷射的油分子在喷嘴出口处的蒸汽流中形成一低压,将扩散进入蒸汽流的气体分子带至泵口被前级泵抽走。

扩散泵使用注意:启动压强低于1Pa ,保证绝大部分的气体分子以定向扩散形式进入高速蒸汽流,高压会导致一些副反应的发生,影响真空的形成。

扩散泵一般能达到-5到-7的压强数量级。

5.3热偶规、电离规的原理和结构真空度的测量可通过复合真空计来进行。

复合真空计可分为热电偶真空计和电离真空计两种,结构如图1-4和1-5。

5.3.1热偶规原理和结构热偶真空计是用在低气压下气体的热导率与气体压强间有依赖关系制成的。

它通常用来测量低真空,可测范围为13.33~0.1333Pa 。

其中有一根细金属丝(铂丝或钨丝)以恒定功率加热,则丝的温度取决于输入功率与散热的平衡关系,而散热取决于气体的热导率。

管内压强越低,即气体分子越稀薄,气体碰撞灯丝带走的热量就越少,则丝温越高,从而热偶丝产生的电动势越大。

经过校准定标后,就可以通过测量热偶丝的电动势来指示真空度了。

5.3.2电离规的原理和结构电离真空计是根据气体分子与电子相互碰撞产生电离的原理制成的。

它用来测量高真空度,可测范围为0.133~1.33×10-6Pa 。

实验表明,在压强P≤10-1Pa 时,有下列关系成立: I+/Ie=K P ,其中Ie 为栅极电流,P 为气体压强,I+为灯丝发出电子与气体分子碰撞后使气体分子电离产生正离子而被板极收集形成的离子电流。

K 为比例常数。

可见,Ie 不变,经过用绝对真空计进行校准,I+的值就可以指示真空度了。

注意,只有在真空度达到10-1Pa 以上时,才可以打开电离规管灯丝。

否则,将造成规管损坏。

图1-5 热偶真空计结构图: 1mv 表,2.mA 表,3.加热丝,4.热偶,5.热丝电源,6.电位器,7.开关,8.接真空系统。

图1-4 电离真空计结构图:A.筒状阳极,F.阴极,G.栅极B.接被测真空系统六、真空获得过程气路原理七、实验步骤7.1实验仪器本实验采用JCP-350C型热蒸发/磁控溅射真空镀膜机(如图1-6)进行抽真空实验及镀膜实验。

设备由真空系统、镀膜室、磁控溅射靶、蒸发电极、旋转基片台、工作气体供给、水冷系统、控制等部分组成,主要应用于沉积金属膜、介质膜及半导体膜。

7.2实验过程实验前,先检查一切准备工作都做好(钟罩、放气阀关好、水打开且流量足够)。

7.2.1检查是否有水;7.2.2开总开关→开启仪器电源→开真空计(等仪表稳定开工作室)→开机械泵、旁路阀→等右窗口降至5.0Pa开扩散泵(开始计时)→前级阀(与旁路阀换抽气)→(45min后)开主阀(之前要开前级阀)→直到左真空计降至5×10的-3次方左右为止,即得到真空;7.2.3关主阀(要长按)→关前级阀,旁路阀,继续图1-6 JCP-350镀膜机外观图抽气(5min)→把空气放入真空罩→1小时后关水→设备冷却后关机;7.2.4做完实验后,真理好仪器,关好实验室门窗。

八、实验结果通过实验和技术要求,可以对工作室的压强抽到-3级数,并成功地获得真空和测量。

九、心得体会通过实验,使我更进一步了解了真空技术的基本知识;掌握用JCP-350镀膜机获得真空和真空测量的原理和方法。

从中熟悉了JCP-350镀膜机中有关仪器的结构及功能、操作程序与注意事项。

实验2利用电阻蒸发法镀金属薄膜实验时间:地点:指导学生:【摘要】本实验采用JCP-350C型热蒸发/磁控溅射真空镀膜机的机械泵和油扩散泵获得真空,并掌握利用电阻蒸发法镀金属薄膜的操作,从而熟悉获得真空和镀膜的操作过程。

【关键词】镀膜机;机械泵;油散泵;电阻蒸发法;金属薄膜。

一、实验目的1.1初步认识纳米科学,并了解真空技术的基本知识;1.2熟悉有关设备和仪器的使用,了解真空镀膜的基本知识;1.3了解“真空”对纳米材料的制备的重要性,了解常见的纳米薄膜材料的物理制备方法;1.4掌握蒸发镀膜的基本原理和最基本的纳米薄膜材料的制备方法——热蒸发法。

二、实验仪器JCP-350C型热蒸发/磁控溅射真空镀膜机。

三、实验原理3.1纳米薄膜材料制备的方法一些光学零件的光学表面需要用物理方法或化学方法镀上一层或多层薄膜,使得光线经过该表面的反射光特性或透射光持性发生变化,许多机械加工所采用的刀具表面也需要沉积一层致密的、结合牢固的超硬镀层而使其得以硬化,延长其使用寿命,改善被加工部件的精度和光洁度。

相关文档
最新文档